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ABSTRACT

In the context of the high-dimensional Gaussian linear regression for ordered variables, we study the
variable selection procedure via the minimization of the penalized least-squares criterion. We focus on
model selection where we propose to control predictive risk and False Discovery Rate simultaneously.
For this purpose, we obtain a convenient trade-off thanks to a proper calibration of the hyperparameter
K appearing in the penalty function. We obtain non-asymptotic theoretical bounds on the False
Discovery Rate with respect to K. We then provide an algorithm for the calibration of K. It is
based on completely observable quantities in view of applications. Our algorithm is validated by an
extensive simulation study.

Keywords Ordered variable selection · Prediction · FDR · High-dimension · Gaussian regression ·
Hyperparameter calibration

1 Introduction.

1.1 The issue.

We consider the following high-dimensional Gaussian linear regression model:

Y = Xβ∗ + ε. (1.1)

The random response vector Y =

(Yi){1≤i≤n}

T

∈ R
n is regressed on p deterministic vectors:

X1 =

(xi1){1≤i≤n}

T

, · · · , Xp =

(xip){1≤i≤n}

T

. The design matrix of size n × p is denoted by

X = (X1, · · · , Xp). The noise ε =

(εi){1≤i≤n}

T

is assumed to be Gaussian: ε ∼ N (0,σ2In) with σ2 > 0.

In the high-dimensional context, additional assumptions of regularity are required and we assume that β∗ is sparse,
meaning that only a few coefcients are non-zero. In the following, a variableXj corresponding to a non-zero coefcient
β∗
j is called an active variable. Otherwise the variable is said to be non active.

In this paper, we are interested in variable selection procedures. To the best of our knowledge, some procedures focus on
the prediction of the response variable Y through a control of the predictive risk. Others focus on limiting the number of
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Trade-off between prediction and FDR for variable selection

selected non active variables through a control of the False Discovery Rate. There also exists procedures where several
cost functions are considered simultaneously. In the line of the latter, our goal is to identify a set of variables from a
model selection procedure by limiting the selection of non active variables while maintaining accurately prediction
performances.

1.2 Related works.

In a variable selection procedure, a cost function has to be dened. The predictive risk (PR) and the False Discovery
Rate (FDR) are the common used cost functions.

The penalized methods to control the predictive risk. The penalization procedure balances goodness of t and
sparsity: the smaller the penalty function, the better the tting to the data but the higher the number of selected variables.

In high-dimension, the most popular method is the Lasso criterion [1] where the estimator β̂λ of β∗ is the solution of:

β̂λ = argmin
β∈Rp

{

||Y −Xβ||22 + λ|β|1
}

, (1.2)

where | · |1 and || · ||2 design the `1-norm and the euclidean norm of a vector respectively. The main challenge is to

calibrate the hyperparameter λ > 0. If λ is chosen to be proportional to σ


log(p)

n
, then the predictive risk is bounded

[2, 3]. However, the noise being usually unknown, the choice of λ remains tricky. Therefore, an alternative is to solve
the Lasso criterion for a λ within a reasonable interval by using subsamples [4] or resamples [5]. The selected variables
are then dened as the variables with the highest selection frequencies. Such alternative is no longer sensitive to the
choice of λ but the main challenge lies in the threshold on the frequency dening the selected variables.

In this paper, we consider a model selection procedure composed of three steps. The rst step consists in solving the
Lasso criterion on a relevant grid Λ. Each λ ∈ Λ denes a variable subset to get a collectionM of relevant subsets of
variables with a wide range of sizes. In the second step, the least-squares estimator onto each variable subset of M is

calculated leading to a collection of estimators

β̂m


m∈M

. Lastly, the following penalized least-squares minimization

is solved to select the bestm ofM:

m̂ = argmin
m∈M

{

||Y −Xβ̂m||22 + pen(Dm)
}

, (1.3)

where Dm is the dimension of the modelm and the function pen is a penalty function increasing with Dm.

Selecting m̂ from M by minimizing (1.3) corresponds to select λ̂ from Λ by minimizing (1.2). Hence, the main
challenge is the denition of pen that makes the best trade-off between goodness of t and sparsity within M. Among
the most famous methods for model selection, we can cite V−fold cross-validation [6, 7], AIC [8], Cp-Mallows [9],
BIC [10] and eBIC [11]. For these penalty functions, the predictive risk is bounded when σ2 is known and when
the sample size n tends to innity. When n is xed, relatively small, and possibly smaller than the dimension p, a
non-asymptotic point of view is preferable to get properties for all couples of (n, p). In this direction, [12] propose
some penalty functions depending on the collection complexity such that m̂ guarantees non-asymptotic optimal control
of the predictive risk. If the model collection is nested with a known variance, pen(Dm) = 2σ2Dm allows to achieve
an optimal non-asymptotic control of the predictive risk [8]. If the model collection is xed and large (for instance with
an exponential growth with Dm) and if the variance is unknown, this optimal control is obtained with the data-driven
penalties [12, 13]. Lastly, if the model collection is data-dependent and if the variance σ2 is unknown, the LinSelect
penalty [14, 15] guarantees an optimal control of the predictive risk.

The multiple testing methods to control the False Discovery Rate. In the multiple testing procedure, the p tests
H0 = {β∗

j = 0} versusH1 = {β∗
j 6= 0} are performed independently to get a list of p-values. Variables associated with

a p-value smaller than a threshold are selected and the challenge is to nd this threshold to obtain an upper bound on a
function of the number of selected non active variables. First methods control the Family-Wise Error (FWER) which is
the probability of selecting at least one non active variable [16, 17]. However, these methods tend to be conservative
leading to a tiny set of selected variables. An alternative consists in controlling the FDR which is the expectation of
the proportion of non active variables among the selected ones. The authors of [18] rst provide a threshold assuming
independence of the p-values. This hypothesis is then relaxed in [19, 20, 21, 22].

Instead of considering the p-values, the knockoff lter method [23] consists in introducing copies of Xj built to be non
active variables to calibrate a threshold on test statistics.

The simultaneous control of several cost functions. Controlling PR or FDR is usually performed independently in
the literature and yield different sets of selected variables. For a PR control, selected variables aim at correctly predict
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a new observation of Y , without guarantying that the set of selected variables does not contain non active variables.
Conversely, when the cost function is the FDR, the number of non active variables is controlled at the prize that some
active variables are not selected.

Therefore, recent works have been proposed to combine prediction and FDR approaches to select all but only active
variables. For instance, [24] propose a multi-step algorithm where a threshold procedure is applied on some Lasso
estimators computed for specic values of λ. In addition to prediction performances, a consistency property on the
selected variable set is satised under some conditions on X . Another idea is the post-selection inference [25, 26]
where the principle is to test the relevance of each selected variable by a model selection procedure. Valid condence
intervals are provided from conditional hypothesis tests for each model of the collection in addition to a PR control.
Their work has been generalized by [27, 28, 29] and a review can be found in [30].

In a completely different direction, [31, 32] propose to control the False Negative Rate (FNR) in addition to the FDR. A
good FNR control ensures that most of the active variables are selected. So, minimizing a weighted sum of FDR and
FNR provide a set of variables close to the set of active variables. However, improving FDR control deteriorates FNR
control and vice versa. Hence, optimal controls of both criteria are impossible to achieve.

Some other papers propose to combine the FDR with the PR. An additive motivation to consider the PR is its behavior
between the learning phase and the over-tting phase. In the learning phase, the addition of a variable in the selected set
drastically reduces the PR, whereas in the over-tting phase, it increases proportionally to the noise level. Firstly, in
the standard multivariate normal mean problem with a known variance, [33] propose a penalty function in the model
selection procedure built from a multiple testing procedure. They obtain simultaneously sharp asymptotic minimality
of the FDR and the PR. Then, [34] propose the Sorted `1 penalized estimator (SLOPE) which is the minimizer of the
Lasso criterion (1.2) where λ is replaced by a p-vector built from a multiple testing procedure. When the variables
X1, · · · , Xp are orthogonal, they obtain a non-asymptotic control of the FDR additionally to the asymptotic minimax
convergence rate of the PR. This asymptotic convergence of the FDR has been generalized under a wide range of
hypotheses, for instance, for a random design in [35].

1.3 Main contributions.

The originality of this paper is to obtain a control of the FDR in addition to the PR control in model selection through a
convenient calibration of the penalty.

We assume variables are ordered: the most relevant one to explain Y is X1; the most relevant couple of two variables is
(X1, X2); and so on. A natural model collection is the one containing the nested models respecting the variable order.
This framework sounds restrictive but allows to derive theoretical expressions of the FDR in the considered model
selection procedure. According to [36], all the penalty functions dened by:

pen(Dm) = Kσ2Dm, ∀m ∈ M, (1.4)

provide a non-asymptotic control of the PR forK > 1 when variables are ordered.

Theoretical bounds on the FDR in model selection: Although the model selection procedure is built for a PR control,
we obtain non-asymptotic lower and upper bounds on the FDR with respect toK > 0 when σ2 is known. We show that
these bounds only involve some evaluations of cumulative functions of the standard Gaussian and of some chi-squared
variables. Whatever the noise level, FDR is always strictly positive. When K tends to innity, the FDR converges to 0
with an exponential rate. So, a low value of the FDR is satisfying as soon as the value ofK is not too large.

Calibration of the hyperparameter K: The obtained theoretical bounds depend on the parameters β∗ and σ2. We
replace them with estimators to obtain completely data-dependent bounds on the FDR. Then, we propose a procedure to
calibrate the hyperparameterK. Our algorithm is validated on an extensive simulation study.

1.4 Outline of the paper.

The rest of the paper is organized as follows. Section 2 introduces the Gaussian linear regression model and some
notations. Section 3 contains theoretical results. Since an increase of the hyperparameterK leads to a decrease of the
FDR, it motivates the study of the FDR function in model selection with respect toK. As the FDR has an intractable
expression, bounds are obtained when variables are ordered and the variance is known. We establish an exponential
convergence rate of the FDR function when K tends to innity. The special case of orthogonal design matrix is studied
to illustrate the main results. In Section 4, an algorithm is proposed to calibrate the hyperparameterK in the penalty
function to get a convenient trade-off between FDR and PR controls. It is based on the simultaneous study of the
estimated FDR upper bound and the estimated PR which depend on properly chosen estimators of σ2 and β∗. Section 5
contains conclusions and perspectives. In Section 6, proofs of all the theoretical results are provided. Lastly, a validation
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of the chosen estimators of σ2 and β∗ and of our algorithm to calibrateK is proposed in Section 7 through an extensive
simulation study with different parameters.

2 Model and notations.

Let us consider the Gaussian linear regression model given in (1.1). We dene q = min(n, p) and assume that
(X1, · · · , Xq) is a family of linearly independent vectors. We consider the deterministic and nested model collection of
linear spaces:

M =
{

m0 = {0},m1 = Span(X1), · · · ,mq = Span(X1, X2, · · · , Xq)
}

. (2.1)

By construction, the true modelm∗ = Span

Xj , j s.t. β

∗
j 6= 0


belongs toM.

For eachm ∈ M, Dm is the dimension ofm and β̂m is the least-squares estimator ontom:

β̂m = argmin
{β,Xβ∈m}

{

||Y −Xβ||22

}

.

With the denition of q and properties on the family (X1, · · · , Xq), β̂m is unique for eachm ∈ M.

For allK > 0, we dene the function critK onM as:

critK(m) = ||Y −Xβ̂m||22 +Kσ2Dm,

and the selected model m̂(K) by:

m̂(K) = argmin
m∈M

{

critK(m)
}

. (2.2)

We dene PR(m) the predictive risk associated to the modelm ∈ M by:

PR(m) = E

[

||Y −Xβ̂m||22

]

, (2.3)

where E designs the expectation under the distribution of Y satisfying (1.1). We dene successively FP (m) the number
of variables contained inm but not inm∗, the false discovery proportion by:

FDP(m) =
FP(m)

max(Dm, 1)
;

and the False Discovery Rate by:

FDR(m) = E

[

FDP(m)
]

.

Finally, 〈., .〉 designs the canonical scalar product in Rn, ΠX denotes the orthogonal projection function onto the space
X , Φ designs the standard Gaussian cumulative distribution function and Fχ2(k) is the cumulative distribution function
of a chi-squared variable with k degrees of freedom. By convention, an intersection or an union from indices k to ` with
k > ` are the intersection or the union over an empty set. In the same way, the set {k, · · · , `} is empty if k > `.

3 The main results.

In this section, the variance σ2 is supposed to be known. We rst present intuitions that lead to study FDR(m̂(K)) in
model selection. Non-asymptotic bounds on FDR(m̂(K)) are obtained in Theorem 3.2, as well as asymptotic behaviors
whenK tends to innity in Corollary 3.4. Finally, the particular case whereX is the orthogonal design matrix is studied
to illustrate the main results.

3.1 Intuitions.

According to [12], the penalty function (1.4) satises a non-asymptotic control of the PR if and only if K > 1. The
constant K = 2 allows to achieve the optimal asymptotic control of the PR. Hence, 2 is commonly chosen in practice
but other values of K close to 2 can give equivalent even better non-asymptotic prediction performances. In this
direction, we propose to calibrate the hyperparameter K among those leading to prediction performances close to
or better than for K = 2 while satisfying a control of the FDR. The calibration is based on both PR(m̂(K)) and
FDR(m̂(K)) functions with respect toK.
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Figure 1: Curves of the empirical estimations of FDR

m̂(K)


and PR


m̂(K)


for the toy data set described in

Subsection 7.1.

In Figure 1, we propose an illustration of our intuitions by plotting the empirical estimators of PR(m̂(K)) and
FDR(m̂(K)) on a regular grid of positive K. Graphs are obtained from the toy data set described in Section 7. We
observe that for all K ∈ [2, 3], the empirical PR(m̂(K)) values are kept low while the FDR(m̂(K)) function decreases
with K. Hence, in this example, the choice K = 3 is more judicious than K = 2 since it ensures a stronger control of
the FDR while satisfying similar prediction performances.

Increasing the constant K to limit the non active variable selection is known for the asymptotic point of view. Indeed,
AIC and Cp-Mallows penalties [8, 9], where K is xed to 2, give asymptotically the best set of variables for prediction
performances; while BIC penalty [10], where K is xed to log(n), exactly recovers asymptotically the set of active
variables. Obtaining the asymptotic properties of AIC, Cp-Mallows and BIC penalties simultaneously is impossible
[37], but it suggests that a value of K ∈ [2, log(n)] would get reasonable (but not necessarily optimal) values for both

PR and FDR in a non-asymptotic framework. In this way, we propose to study the function FDR

m̂(K)


in the model

selection procedure (1.4) when variables are ordered.
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3.2 Bounds on the FDR in model selection.

3.2.1 FDR expression in model selection for ordered variables.

Let us assume that K > 0 and critK is injective on M. If D∗
m = q, FDR(m̂(K)) = 0. Otherwise, the FDR(m̂(K)) is

expressed within the model selection procedure as:

FDR(m̂(K)) =

q∑

r=Dm∗+1

r −Dm∗

r
P

(
q

∩
`=0
`6=r

{critK(mr) < critK(m`)}

)

. (3.1)

A detailed proof of (3.1) can be found in Subsection 6.1.

By using the decomposition


r−1∩
`=0

{critK(mr) < critK(m`)}

⋂
q

∩
`=r+1

{critK(mr) < critK(m`)}


,

we obtain the following proposition:

Proposition 3.1. Let us consider the ordered variable framework and the model collection (2.1) where q = min(n, p),
m∗ ∈ M and D∗

m < q. Let us assume that critK is injective on M. Let us apply the Gram–Schmidt process to
obtain (u1, · · · , uq) the orthonormal basis of R

q such that Span(X1, · · · , Xj) = Span(u1, · · · , uj), ∀j ∈ {1, · · · , q}.
If p < n, (u1, · · · , uq) is naturally completed to an orthonormal basis (u1, · · · , un) on R

n by the incomplete basis
theorem.
Then, ∀K > 0,

FDR(m̂(K)) =

q∑

r=Dm∗+1

r −Dm∗

r
Pr(K) Qr(K,β∗,σ2), (3.2)

where for each r ∈ {Dm∗ + 1, · · · , q},

Pr(K) = P


q

∩
`=r+1

{ ∑̀

k=r+1

Z2
k < K(`− r)

}


, (3.3)

where Zk
i.i.d.∼ N (0, 1), ∀k ∈ {r + 1, · · · , q},

and Qr(K,β∗,σ2) = P


r−1∩
`=0

{

r∑

k=`+1

〈Y, uk〉2 > Kσ2(r − `)
}


.

Proof of Proposition 3.1 can be found in Subsection 6.1.

3.2.2 General bounds.

In (3.2), the Pr(K) terms do not depend on data. Conversely, the Qr(K,β∗,σ2) terms depend on the data. Thus, to
understand the behavior of the FDR function with respect to m̂(K), we propose to bound the Qr(K,β∗,σ2) terms in
the following theorem:

Theorem 3.2. Let us consider the ordered variable framework and the model collection (2.1) where q = min(n, p).
Let us suppose thatm∗ ∈ M and D∗

m < q. The notation Φ stands for the standard gaussian cumulative distribution
function and Fχ2(k) is the cumulative distribution function of a chi-squared variable with k degrees of freedom. Let

us assume that ∀K > 0, critK is injective onM. Let us apply the Gram–Schmidt process to obtain (u1, · · · , uq) the
orthonormal basis of Rq such that Span(X1, · · · , Xj) = Span(u1, · · · , uj), ∀j ∈ {1, · · · , q}. If p < n, (u1, · · · , uq)
is naturally completed to an orthonormal basis (u1, · · · , un) on R

n by the incomplete basis theorem.
Then, ∀K > 0, m̂(K) satises:

b(K,β∗,σ2) ≤ FDR(m̂(K)) ≤ B(K,β∗,σ2), (3.4)
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where
[

K 7→ b(K,β∗,σ2)
]

and
[

K 7→ B(K,β∗,σ2)
]

are two real-valued functions on R
+ dened by:

b(K,β∗,σ2) =

q∑

r=Dm∗+1

(

r −Dm∗

r
Pr(K) f

r
(K,β∗,σ2)

)

,

B(K,β∗,σ2) =

q∑

r=Dm∗+1

(

r −Dm∗

r
Pr(K) fr(K,β∗,σ2)

)

, (3.5)

with for allK > 0,

1. for each r ∈ {Dm∗ + 1, · · · , q},

Pr(K) = P


q

∩
`=r+1

{ ∑̀

k=r+1

Z2
k < K(`− r)

}


,

where Zk
i.i.d.∼ N (0, 1), ∀k ∈ {r + 1, · · · , q}.

2. for each r ∈ {Dm∗ + 1, · · · , q} and for all ` ∈ {1, · · · , r}, f
`
(·,β∗,σ2) is dened by:

f
1
(K,β∗,σ2) = G1

f
`
(K,β∗,σ2) = G` +H` f `−1

(K,β∗,σ2), ∀` ∈ {2, · · · , r},

with for ` ∈ {1, · · · , Dm∗}:

G` = 2−

Φ
√

`K − 〈Xβ∗, u`〉
σ


+ Φ

√
`K +

〈Xβ∗, u`〉
σ


,

for ` ∈ {2, · · · , Dm∗}:

H` = Φ

√
`K − 〈Xβ∗, u`〉

σ


+ Φ

√
`K +

〈Xβ∗, u`〉
σ



−

Φ

√
K − 〈Xβ∗, u`〉

σ


+ Φ

√
K +

〈Xβ∗, u`〉
σ


,

for ` ∈ {Dm∗ + 1, · · · , r} :

G` = 2


1− Φ

√
`K



H` = 2


Φ
√

`K

− Φ

√
K


,

3. ∀r ∈ {Dm∗ + 1, · · · , q}, fr(·,β
∗,σ2) is dened by:

fr(K,β∗,σ2) = 1−max

(

max
`∈{1,··· ,r−Dm∗}


Fχ2(`)(`K)


,

max
`∈{r−Dm∗+1,··· ,r}


Fχ2(`)

`K
2

−
Dm∗∑

k=r−`+1

〈Xβ∗, uk〉2
σ2

)
.

Proof of Theorem 3.2 can be found in Subsection 6.2.

Hence, although the model selection procedure is built for prediction performances, bounds on the FDR are derived with

respect to m̂(K). Terms f
r
(K,β∗,σ2) and fr(K,β∗,σ2) only involve some evaluations of cumulative distribution

functions of the standard Gaussian and chi-squared variables. So, they have a fully explicit form which makes easier
the understanding of the behavior of the FDR in model selection. Note that some of these terms depend on the
signal-to-noise ratio, as usual in statistics.
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3.2.3 Strictly positive FDR.

The following corollary gives a lower bound on the FDR which is independent from σ2.

Corollary 3.3. Under the assumptions and denitions of Theorem 3.2, ∀K > 0:

FDR(m̂(K)) ≥
q∑

r=Dm∗+1

(

r −Dm∗

r
Pr(K)

2
√
2

√
π
√

rK +
√
rK + 4

e− rK
2

)

> 0.

Proof of Corollary 3.3 can be found in Subsection 6.3.

Hence, FDR(m̂(K)) > 0 for all K > 0 and whatever σ2. This is not surprising since the FDR(m̂(K)) is strictly
positive even in the simplest case of no noise level. Indeed, when σ2 = 0, Y = Xβ∗ and the minimization in (2.2) is

reduced to the least-squares minimization. So, β̂m∗ = β∗, which provides a zero value of the associated least-squares
criterion. Moreover, for m ∈ M such that m∗ ⊂ m, β̂m leads to a zero value of the least-squares criterion with a
non-zero probability. So, the selected model m̂ is strictly larger thanm∗ with a non-zero probability leading to a strictly
positive value of the FDP(m̂). By taking the expectation, FDR(m̂) > 0. The larger σ2, the larger the FDR. So for
σ2 > 0, the eventm∗ ⊂ m̂ happens with a non-zero probability providing a strictly positive FDR as well.

3.2.4 Asymptotic analysis.

The following corollary gives the asymptotic behavior of the FDR function in model selection when K tends to innity.

Corollary 3.4. Under the assumptions and the denitions of Theorem 3.2, the FDR(m̂(K)) function tends to 0 when
K tends to innity and satises ∀η > 0,

FDR(m̂(K)) = o
K−→+∞


e−K( 1

2−η)

. (3.6)

Furthermore, ∀η > 0, ∃Cη > 0, ∃Lη > 0, ∀K > Lη, we have:

FDR(m̂(K)) ≥ Cηe
−K


Dm∗+1+2η

2


. (3.7)

So, ∀ε > 0,

−Dm∗

2
− 1

2
− ε ≤ lim inf

K−→+∞

1

K
log


FDR(m̂(K))



lim sup
K−→+∞

1

K
log


FDR(m̂(K))


≤ −1

2
+ ε. (3.8)

Proof of Corollary 3.4 can be found in Subsection 6.4.

From Equation (3.6), FDR(m̂(K)) tends to 0 whenK tends to +∞ with at least an exponential convergence rate and
Equation (3.7) suggests that the exponential convergence rate is optimal. Moreover, although this result is asymptotic in
K, Equation (3.6) states that there is no need to go far fromK = 2 to have a reasonably small control of the FDR in the
model selection procedure (1.4).

Remark 3.5. With no signal (β∗ = 0 and Dm∗ = 0), the asymptotic bounds in (3.8) are − 1
2 − ε and − 1

2 + ε and
consequently:

log

FDR(m̂(K))


∼

K→+∞
−1

2
K.

Remark 3.6. The asymptotic upper and lower bounds (3.6) and (3.7) are satised whatever the value of σ2 > 0. It is
possible to obtain the following sharpest asymptotic upper bound: ∀η̃ > 0,

FDR(m̂(K)) = o


e
−

K

(Dm∗+1−η̃)

4 − 1
2σ2

Dm∗
∑

k=1

〈Xβ∗,uk〉2


(3.9)

in the asymptotic regime where K −→ +∞ and σ −→ 0 with 1
σ
= o

σ−→0
(
√
K). The reader can nd the proof in

Subsection 6.4.

8
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3.3 Illustrations of the main result in the orthogonal case.

We propose to analyze the particular case where the design matrix X is orthogonal since it leads to simplied forms for
the FDR bounds easy to implement.

Corollary 3.7 (Application on the orthogonal case). Under assumptions of Theorem 3.2 and by assuming that
(X1, · · · , Xq) are orthonormal for 〈., .〉, then:
∀K > 0,FDR(m̂(K)) satises the same inequalities as (3.4) where:
for ` ∈ {1, · · · , Dm∗} :

G` = 2−

Φ

√
`K − β∗

`

σ


+ Φ

√
`K +

β∗
`

σ


,

for ` ∈ {2, · · · , Dm∗} :

H` = Φ

√
`K − β∗

`

σ


+ Φ

√
`K +

β∗
`

σ


−


Φ

√
K − β∗

`

σ


+ Φ

√
K +

β∗
`

σ


,

for all r ∈ {Dm∗ + 1, · · · , q} :

fr(K,β∗,σ2) = 1−max

(

max
`∈{1,··· ,r−Dm∗}


Fχ2(`)(`K)


,

max
`∈{r−Dm∗+1,··· ,r}


Fχ2(`)

`K
2

−
Dm∗∑

k=r−`+1

β∗2
k

σ2

)
,

and all other terms are the same as those dened in Theorem 3.2.

Proof of Corollary 3.7 can be found in Subsection 6.5.

Figure 2: Left: curves of the empirical estimation of the FDR(m̂(K)) (red) and the terms b(K,β∗,σ2) (green) and
B(K,β∗,σ2) (blue) under the orthogonal design matrix X for the toy data set described in Subsection 7.1. Right:

curves are plotted only forK ≥ 2.

In Figure 2, we plot the empirical estimation of the FDR(m̂(K)) with the functions b(K,β∗,σ2) and B(K,β∗,σ2)
on a grid of positiveK (left) and forK ≥ 2 (right). Graphs are obtained from the toy data set described in Section 7
where X is orthogonal. The left gure is devoted to illustrate Corollary 3.7. The FDR function curve is well withing
the lower and upper bounds curves. From the right gure and consistency to Corollary 3.4, the empirical FDR(m̂(K))
approaches 0 whenK increases and the convergence rate seems to be exponential. Moreover, the curves of b(K,β∗,σ2)
and B(K,β∗,σ2) frame the empirical FDR and the difference between the three curves becomes quickly negligible for
K larger than 2.

9
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4 Trade-off between the PR and the FDR controls.

While bounds b(K,β∗,σ2) and B(K,β∗,σ2) are easily understandable and fully implementable, they depend on β∗

and σ2, unknown in practice. For a practical use, we propose to replace the theoretical bounds on the FDR as well as
the theoretical expression of the PR with observable quantities from the data set (Subsection 4.1). Then, we propose an
algorithm to calibrate the hyperparameterK from the data set such that both PR and FDR are small (Subsection 4.2).

4.1 Estimation of the theoretical terms.

When n is xed, empirical approaches are not adapted. An alternative is to replace the theoretical terms by observable
quantities.

4.1.1 Estimation of the PR.

Commonly, the predictive risk is evaluated with the mean squared error on a validation set independent from the training
set used to estimate the parameters (see Formula (7.1) for the denition). However, it requires separating the dataset in
two parts which increases the estimation errors. Here, we propose to use the entire dataset to both apply the model
selection procedure and evaluate the predictive risk. By re-express the PR, we obtain the following proposition:

Proposition 4.1. The dynamics of E[||Xβ̂m̂(2) − Xβ̂m̂(K)||
2
2] with respect to K > 0 is close to the one of

E[||Y − Xβ̂m̂(K)||
2
2].

Proof of Proposition 4.1 can be found in Subsection 6.6.

Hence, the constantK minimizing E[||Xβ̂m̂(2) −Xβ̂m̂(K)||
2
2] and the one minimizing E[||Y −Xβ̂m̂(K)||

2
2] are almost

equal. Therefore, to evaluate the prediction performances, we propose the following term that we call estimated risk:

P̂R(m̂(K)) =
1

n

n∑

i=1


Xβ̂m̂(2)


i
−


Xβ̂m̂(K)


i

2

. (4.1)

4.1.2 Estimation of the FDR.

The functions b(·, β∗,σ2) and B(·,β∗,σ2) are explicit and easily implementable but depend on β∗ and σ2, both
unknown.

We propose:

1. to apply the slope heuristic method [12] to get an estimator σ̂2 of σ2,

2. to replace β∗ by the estimator β̂m̂(4).

Justications for the choice of these two estimates are provided in Section 7.

4.2 A data-dependent calibration ofK in model selection procedure.

We propose a completely data-driven calibration of the hyperparameter K using the estimated risk function given

in (4.1) and the B(·, β̂m̂(4), σ̂
2) function to obtain a low value of both PR and FDR.

We propose the following algorithm:

Algorithm 1: Algorithm to calibrateK

1. Choose α the threshold for the FDR control.

2. Compute I1 =
{

K ≥ 2, B(K, β̂m̂(4), σ̂
2) ∈ ]0,α[

}

.

3. Compute I2 =
{

K ≥ 2, P̂R(m̂(K)) ≈ P̂R(m̂(2))
}

.

4. If I1 ∩ I2 6= ∅, return min
{

K, K ∈ I1 ∩ I2

}

;

Otherwise, return min
{

K,K ∈ I1

}

or take a larger value of α.

10
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Figure 3: Curves of the empirical estimation functions FDR

m̂(K)


(red) and PR


m̂(K)


(blue), of the estimated risk

(violet) and of the B(K, β̂m̂(4), σ̂
2) function (pink) forK ≥ 2 for the toy data set described in Subsection 7.1.

Curves of Figure 3 are generated from the toy data set described in Section 7. For this example, we choose α = 0.05

and the condition |P̂R(m̂(K))− P̂R(m̂(2))| ≤ 0.1 for the denition of P̂R(m̂(K)) ≈ P̂R(m̂(2)) in the algorithm. We
gets I1 = [3.3, 10] and I2 = [2, 5.8] and so, our proposed algorithm returns K = 3.3. The selected model m̂(3.3)

satises P̂R(m̂(3.3)) = 1.14 and B(3.3, β̂m̂(4), σ̂
2) = 0.03. This constant corresponds to a low value of both empirical

predictive risk and FDR curves. Indeed, the empirical predictive risk of m̂(3.3) is equal to 1.24 and the empirical
FDR of m̂(3.3) is equal to 0.01. To compare with the usual choiceK = 2, the empirical predictive risk of m̂(3.3) is
equal to 1.25 and the empirical FDR of m̂(3.3) is equal to 0.05. Hence, our proposed algorithm allows to maintain
the prediction performances from m̂(2), reinforce the control of the FDR criterion and so gain a convenient trade-off
between PR and FDR.

11
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In Section 7, this algorithm 1 is applied on several data sets generated from various sets of parameters. Each time, the
hyperparameterK is strictly larger than the commonly used constant 2.

5 Conclusions.

The variable selection procedure in a high-dimensional Gaussian linear regression with sparsity assumption is commonly
used to identify a set of variables with prediction performances or to avoid the selection of non active variables. For
prediction performances, the PR is usually controlled via a penalized least-squares minimization; to avoid the selection
of non active variables, the FDR is usually controlled via a multiple testing approach. Controlling the PR tends to select
too many variables, including non active ones, whereas controlling the FDR tends to select too few variables, leaving
out some active ones.

This work shows that a convenient trade-off between PR and FDR can be achieved in ordered variable selection.
The originality of this paper is to obtain this trade-off through a proper calibration of the hyperparameter K in the
penalty of the model selection (1.4). Firstly, theoretical results lead to non-asymptotic lower and upper bounds on
the FDR


m̂(K)


function when σ2 is known. Asymptotic behaviors suggest that bounds are optimal. Secondly,

the proposed methodology provides an algorithm to calibrate the hyperparameter K in the penalty function when
σ2 is unknown. This algorithm is based on completely data-driven terms: the estimated risk and the estimated

upper bound on the FDR where the choices of estimators σ̂2 and β̂m̂(4) are derived from an extensive simulation

study. The hyperparameter K is calibrated from the dataset to ensure P̂R(m̂(K)) ≈ P̂R(m̂(2)) under the constraint

B(K, β̂m̂(4), σ̂
2) < α. Our algorithm is validated on an extensive simulation study and allows to obtain a selected

model ensuring a small value of both theoretical PR and FDR. The calibrated hyperparameter K is strictly larger than
the commonly used constantK = 2.

If Dm̂(K) = q for one K > 1, the lower and upper bounds equal 0. This means that if Dm̂(K) = q, a distinction
between Dm∗ = q and Dm∗ < q is not possible without additional arguments. This is a limitation of our work.

To establish Theorem 3.2, variables are supposed to be ordered. The main perspective of our work is to generalize
this result to complete variable selection procedure. This requires a complex combinatorial computation that appears
at the stage of formula (3.2) as well as the use of a more complicated form of penalty function in model selection.
Another generalization is to random model collections or a non-xed design, more general frameworks adapted to
some application points of view. These extensions are much more intricate. A second perspective is the construction
of other algorithms based on the theoretical results. Indeed, estimators of σ2 and β∗ to get observable quantities and
our proposed calibration of K are not necessarily the optimal choices. For example, an idea is to rerun Algorithm 1
several times, updating the value ofK for the β∗ estimate of the FDR bound by the algorithm output. The algorithm

would then be less sensitive to the choice of the proposed β̂m̂(4) as input. A possible opening is to study the potential
characteristics of the hyperparameterK provided by our data-driven hyperparameter calibration in a theoretical point of
view, for instance K could depend on |β∗|. Finally, another possible extension is to study the false negative rate (FNR)
function in the model selection procedure, similarly and in addition to the FDR one. This can be increase the power of
the method, in the same idea of [31, 32].

12
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6 Proofs of theoretical results.

This section contains proofs of all the theoretical results of this paper.

6.1 FDR expression in model selection.

Proof of Formula 3.1.
If D∗

m = q, then FP(m) = 0 for allm ∈ M and FDR(m) = 0 for allm ∈ M.

Let us now suppose that D∗
m < q. The FDP expression within the model selection procedure is:

∀K > 0, FDP(m̂(K)) =
FP(m̂(K))

max(Dm̂(K), 1)

=
(*)

Dm̂(K) −Dm∗

Dm̂(K)
1{Dm̂(K)>Dm∗}

=

q∑

r=1

r −Dm∗

r
1{r>Dm∗}1{Dm̂(K)=r}

=
(**)

q∑

r=Dm∗+1

r −Dm∗

r
1{m̂(K)=mr}

=
(***)

q∑

r=Dm∗+1

r −Dm∗

r
1






q
∩

`=0
`6=r

{critK(mr)<critK(m`)}







.

(*) and (**) are due to the fact that models (m)m∈M are nested andm∗ ∈ M. (***) is obtained since the critK function
is injective onM. Finally, by taking the expectation, we obtain the FDR expression (3.1).

Proof of Proposition 3.1.
Before proving Proposition 3.1, let us cite and prove two lemmas.

Lemma 6.1. For r ∈ {Dm∗ + 1, · · · , q} and for all ` ∈ {0, · · · , r − 1}:

||Y −Xβ̂mr
||22 − ||Y −Xβ̂m`

||22 = −
r∑

k=`+1

〈Y, uk〉2.

Lemma 6.2. For r ∈ {Dm∗ + 1, · · · , q} and for all ` ∈ {r + 1, · · · , q}:

||Y −Xβ̂mr
||22 − ||Y −Xβ̂m`

||22 =
∑̀

k=r+1

〈Y, uk〉2.

Proof of Lemma 6.1.
For r ∈ {Dm∗ + 1, · · · , q} and ` ∈ {0, · · · , r − 1}:

||Y −Xβ̂mr
||22 − ||Y −Xβ̂m`

||22 = ||Xβ̂mr
||22 − ||Xβ̂m`

||22 + 2〈Y,Xβ̂m`
−Xβ̂mr

〉
= ||Xβ̂mr

||22 − ||Xβ̂m`
||22 + 2〈Y −Xβ̂mr

, Xβ̂m`
〉

− 2〈Y −Xβ̂mr
, Xβ̂mr

〉+ 2〈Xβ̂mr
, Xβ̂m`

〉 − 2||Xβ̂mr
||22

= −||Xβ̂mr
||22 − ||Xβ̂m`

||22 + 2〈Xβ̂mr
, Xβ̂m`

〉 = −||Xβ̂mr
−Xβ̂m`

||22.

The last line is due to the fact that Y −Xβ̂mr
∈ (mr)

⊥ ⊂ (m`)
⊥ since m` ⊂ mr and Xβ̂mr

is the projection of Y
ontomr.

13
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Then,

||Xβ̂mr
−Xβ̂m`

||22 = ||Πmr
(Y )−Πm`

(Y )||22

= ||ΠSpan(X1,··· ,Xr)(Y )−ΠSpan(X1,··· ,X`)(Y )||22

=
(*)

||ΠSpan(u1,··· ,ur)(Y )−ΠSpan(u1,··· ,u`)(Y )||22

= ||ΠSpan(u`+1,··· ,ur)(Y )||22

= ||
r∑

k=`+1

〈Y, uk〉uk||
2
2

=
(**)

r∑

k=`+1

〈Y, uk〉2.

(*) come from the denition of (u1, · · · , un) and (**) is obtained by Parseval’s identity.

Proof of Lemma 6.2.
For r ∈ {Dm∗ + 1, · · · , q} and l ∈ {r + 1, · · · , q}:

||Y −Xβ̂mr
||22 − ||Y −Xβ̂m`

||22 = ||Xβ̂mr
||22 − ||Xβ̂m`

||22 + 2〈Y,Xβ̂m`
−Xβ̂mr

〉
= ||Xβ̂mr

||22 − ||Xβ̂m`
||22 + 2〈Y −Xβ̂m`

, Xβ̂m`
〉

− 2〈Y −Xβ̂m`
, Xβ̂mr

〉+ 2||Xβ̂m`
||22

− 2〈Xβ̂m`
, Xβ̂mr

〉
=
(*)

||Xβ̂mr
||22 + ||Xβ̂m`

||22 − 2〈Xβ̂m`
, Xβ̂mr

〉

= ||Xβ̂m`
−Xβ̂mr

||22.

(*) is due to the fact that Y −Xβ̂m`
∈ (m`)

⊥ ⊂ (mr)
⊥ sincemr ⊂ m`, and Xβ̂m`

is the projection of Y ontom`.
Then,

||Xβ̂m`
−Xβ̂mr

||22 = ||Πm`
(Y )−Πmr

(Y )||22

= ||ΠSpan(X1,··· ,X`)(Y )−ΠSpan(X1,··· ,Xr)(Y )||22

=
(*)

||ΠSpan(u1,··· ,u`)(Y )−ΠSpan(u1,··· ,ur)(Y )||22

= ||ΠSpan(ur+1,··· ,u`)(Y )||22

= ||
∑̀

k=r+1

〈Y, uk〉uk||
2
2

=
(**)

∑̀

k=r+1

〈Y, uk〉2.

(*) come from the denition of (u1, · · · , un) and (**) is obtained by Parseval’s identity.

Proof of Proposition 3.1.

Starting from (3.1), we decompose the event


q

∩
`=0
`6=r

{critK(mr) < critK(m`)}


by the intersection of these two events


r−1∩
`=0

{critK(mr) < critK(m`)}


and


q

∩
`=r+1

{critK(mr) < critK(m`)}


.

By using the denition of the critK function, we have for r ∈ {Dm∗ +1, · · · , q} and ` ∈ {0, · · · , r− 1, r+1, · · · , q}:
{

critK(mr) < critK(m`)
}

=
{

||Y −Xβ̂mr
||22 +Kσ2r < ||Y −Xβ̂m`

||22 +Kσ2`
}

=
{

||Y −Xβ̂mr
||22 − ||Y −Xβ̂m`

||22 < Kσ2(`− r)
}

.
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So, by applying Lemma 6.1, ` ∈ {0, · · · , r − 1}:
{

critK(mr) < critK(m`)
}

=
{

r∑

k=`+1

〈Y, uk〉2 > Kσ2(r − `)
}

,

and by applying Lemma 6.2, ` ∈ {r + 1, · · · , q}:

{

critK(mr) < critK(m`)
}

=
{ ∑̀

k=r+1

〈Y, uk〉2 < Kσ2(`− r)
}

.

In this way,


q

∩
`=0
`6=r

{critK(mr) < critK(m`)}


is decomposed by two events:


r−1∩
`=0


r∑

k=`+1

〈Y, uk〉2 > Kσ2(r − `)


∩


q

∩
`=r+1

 ∑̀

k=r+1

〈Y, uk〉2 < Kσ2(`− r)


.

Let us dene U the n× n matrix such that uk is the k−th column of U . Since ε ∼ N (0,σ2In) and (u1, · · · , un) is an

orthonormal basis of Rn, we get UT ε =

〈ε, u1〉, · · · , 〈ε, un〉

T

∼ N (0,σ2UInU
T ) = N (0,σ2In). Hence, random

variables (〈Y, ui〉)i∈{1,··· ,n} are independent with 〈Y, ui〉 ∼ N

〈Xβ∗, ui〉,σ2


for all i in {1, · · · , n}. Since the rst

event of the previous decomposition depends only on random variables 〈Y, ui〉 for i ∈ {1, · · · , r − 1} whereas the
second one depends only on random variables 〈Y, ui〉 for i ∈ {r + 1, · · · , q}, the two events are independent. Hence,
from (3.1), we obtain for allK > 0:

FDR(m̂(K)) =

q∑

r=Dm∗+1

r −Dm∗

r
P

(

r−1∩
`=0


r∑

k=`+1

〈Y, uk〉2 > Kσ2(r − `)

)

× P

(

q

∩
`=r+1

 ∑̀

k=r+1

〈Y, uk〉2 < Kσ2(`− r)

)

.

Moreover, since 〈Xβ∗, uk〉 = 0, ∀k > Dm∗ and since r ≥ Dm∗ + 1, we have:
r∑

k=`+1

〈Y, uk〉2 =
r∑

k=`+1

〈ε, uk〉2.

So, for allK > 0 and for each r ∈ {Dm∗ + 1, · · · , q}:

P

(

q

∩
`=r+1

 ∑̀

k=r+1

〈Y, uk〉2 < Kσ2(`− r)

)

= P


q

∩
`=r+1

{ ∑̀

k=r+1

Z̃k

2
< Kσ2(`− r)

}


,

where Z̃k
i.i.d.∼ N (0,σ2)

P

(

q

∩
`=r+1

 ∑̀

k=r+1

〈Y, uk〉2 < Kσ2(`− r)

)

= P


q

∩
`=r+1

{ ∑̀

k=r+1

Z2
k < K(`− r)

}


,

where Zk
i.i.d.∼ N (0, 1).

Hence, for allK > 0 and for each r ∈ {Dm∗ + 1, · · · , q},

P

(

q

∩
`=r+1


̀

k=r+1

〈Y, uk〉2 < Kσ2(`− r)

)

does not depend on the data and we deduce the Formula (3.2) with:

Pr(K) = P


q

∩
`=r+1

{ ∑̀

k=r+1

Z2
k < K(`− r)

}


,

Qr(K,β∗,σ2) = P


r−1∩
`=0

{

r∑

k=`+1

〈Y, uk〉2 > Kσ2(r − `)
}


,

where Zk
i.i.d.∼ N (0, 1), ∀k ∈ {r + 1, · · · , q}.
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6.2 General bounds.

Proof of Theorem 3.2.
We start from (3.2).

- bounds on the Qr terms.
For allK > 0 and for each r ∈ {Dm∗ + 1, · · · , q}, we recall that:

Qr(K,β∗,σ2) = P

(

r−1∩
`=0


r∑

k=`+1

〈Y, uk〉2 > Kσ2(r − `)

)

,

and since 〈Xβ∗, uk〉 = 0, ∀k > Dm∗ , we have:

Qr(K,β∗,σ2) = P

(

r−1∩
`=0


r∑

k=`+1


〈ε, uk〉21k>Dm∗ + 〈Y, uk〉21k≤Dm∗


> Kσ2(r − `)

)

= P


{

〈ε, ur〉2 > Kσ2
}

∩ · · · ∩
{

〈ε, ur〉2 + · · ·+ 〈ε, uDm∗+1〉2 > Kσ2(r −Dm∗)
}

∩
{

〈ε, ur〉2 + · · ·+ 〈ε, uDm∗+1〉2 + 〈Y, uDm∗ 〉2 > Kσ2(r −Dm∗ + 1)
}

∩ · · ·

∩
{

〈ε, ur〉2 + · · ·+ 〈ε, uDm∗+1〉2 + 〈Y, uDm∗ 〉2 + · · ·+ 〈Y, u1〉2 > Kσ2r
}



= P

(

{

cr > Kσ2
}

∩
{

cr + cr−1 > 2Kσ2
}

∩ · · · ∩
{

cr + cr−1 + · · ·+ c1 > rKσ2
}

)

(6.1)

where c` = 〈Y, u`〉2 for ` ∈ {1, · · ·Dm∗} and c` = 〈ε, u`〉2 for ` ∈ {Dm∗ + 1, · · · , r}.

Lower bound on Qr(K,β∗,σ2) for r ∈ {Dm∗ + 1, · · · , q}:

Lemma 6.3. Let us consider an integer s > 1,K > 0 and c1, · · · , cs s non-negative random independent quantities. We
dene by E` the event {c` > `Kσ2} for ` ∈ {1, · · · , s} and by F` the event {Kσ2 < c` ≤ `Kσ2} for ` ∈ {2, · · · , s}.
Then:

{

cs > Kσ2
}

∩
{

cs + cs−1 > 2Kσ2
}

∩ · · · ∩
{

cs + cs−1 + · · ·+ c1 > sKσ2
}

⊇ Es t

(

Fs u


Es−1 t


Fs−1 u


Es−2 t · · · t (F3 u (E2 t (F2 u E1)))


)

,

where ∩ and u design respectively any intersection and a disjoint intersection of events, as well as ∪ and t designing
respectively any union and a disjoint union of events.

Proof. We prove Lemma 6.3 by a recurrence on s ≥ 1.

For s = 1, both sets correspond to E1, so the inclusion is obvious. Let s ≥ 1 and suppose that the inclusion is true for s.
With the denitions of Es+1 and Fs+1, we obtain:
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{

cs+1 >Kσ2
}

∩
{

cs+1 + cs > 2Kσ2
}

∩ · · · ∩
{

cs+1 + cs + · · ·+ c1 > (s+ 1)Kσ2
}

=

(

Es+1 t Fs+1

)

∩
(

{

cs+1 + cs > 2Kσ2
}

∩ · · · ∩
{

cs+1 + cs + · · ·+ c1 > (s+ 1)Kσ2
}

)

=

(

Es+1 ∩

{

cs+1 + cs > 2Kσ2
}

∩ · · · ∩
{

cs+1 + cs + · · ·+ c1 > (s+ 1)Kσ2
}

)

t

(

Fs+1 ∩

{

cs+1 + cs > 2Kσ2
}

∩ · · · ∩
{

cs+1 + cs + · · ·+ c1 > (s+ 1)Kσ2
}

)

=
(*)

Es+1

t

(

Fs+1 ∩

{

cs+1 + cs > 2Kσ2
}

∩ · · · ∩
{

cs+1 + cs + · · ·+ c1 > (s+ 1)Kσ2
}

)

⊇
(**)

Es+1 t

(

Fs+1

∩

{

cs > Kσ2
}

∩
{

cs + cs−1 > 2Kσ2
}

∩ · · · ∩ {cs + cs−1 + · · ·+ c1 > sKσ2}

)

⊇
(***)

Es+1 t

(

Fs+1 ∩

Es t


Fs u


Es−1 t · · · t (F3 u (E3 t (F2 u E1)))


)

⊇
(****)

Es+1 t

(

Fs+1 u


Es t


Fs u


Es−1 t · · · t (F3 u (E3 t (F2 u E1)))


)

.

(*) is true since ci are non-negative for all i ∈ {1, · · · , s+ 1} providing that

Es+1 ⊂

{

cs+1 + cs > 2Kσ2
}

∩ · · · ∩
{

cs+1 + cs + · · · + c1 > (s + 1)Kσ2
}


, (**) comes from the inclusion

{

cs+1 > Kσ2
}

⊂ Fs+1. We obtain (***) by applying the recurrence assumption at the step s. Independence of

c1, · · · , cs+1 provides the independence between Fs+1 and


Es t


Fs u


Es−1 t · · · t (F3 u (E3 t (F2 u E1)))



which gets (****).

Thus, the property is true for s+ 1, which proves lemma.

By applying Lemma 6.3 on Formula (6.1) with s = r, we obtain:

Qr(K,β∗,σ2) ≥ P(Er)

+ P(Fr)

(

P(Er−1) + P(Fr−1)


P(Er−2) + · · ·+ P(F3)


P(E2) + P(F2)P(E1)

)
.

By using that 〈Y, u`〉 ∼ N (〈Xβ∗, u`〉,σ2) for ` ∈ {1, · · · , Dm∗} and 〈ε, u`〉 ∈ N (0,σ2) for ` ∈ {1, · · · , r}, we get:
For ` ∈ {1, · · · , Dm∗} :

P(E`) = P


{

〈Y, u`〉2 > `Kσ2
}



= 2−

Φ

√
`K − 〈Xβ∗, u`〉

σ


+ Φ

√
`K +

〈Xβ∗, u`〉
σ



= G`.
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For ` ∈ {2, · · · , Dm∗} :

P(F`) = P


{

Kσ2 < 〈Y, u`〉2 ≤ `Kσ2
}



= Φ

√
`K − 〈Xβ∗, u`〉

σ


+ Φ

√
`K +

〈Xβ∗, u`〉
σ



−

Φ

√
K − 〈Xβ∗, u`〉

σ


+ Φ

√
K +

〈Xβ∗, u`〉
σ



= H`.

For ` ∈ {Dm∗ + 1, · · · , r} :

P(E`) = P


{

〈ε, u`〉2 > `Kσ2
}



= 2


1− Φ

√
`K



= G`,

P(F`) = P


{

Kσ2 < 〈ε, u`〉2 ≤ `Kσ2
}



= 2


Φ
√

`K

− Φ

√
K


= H`.

Hence, a lower bound on Qr(K,β∗,σ2) is obtained for allK > 0:

f
r
(K,β∗,σ2) ≤ Qr(K,β∗,σ2) (6.2)

with:

f
r
(K,β∗,σ2) = Gr +Hr fr−1

(K,β∗,σ2)

and f
1
(K,β∗,σ2) = G1. (6.3)

Upper bound on Qr(K,β∗,σ2) for r ∈ {Dm∗ + 1, · · · , q}:
By using denitions of Lemma 6.3 and formula (6.1), we get:

Qr(K,β∗,σ2) ≤ min

(

P


{

cr > Kσ2
}


,P


{

cr + cr−1 > 2Kσ2
}


, · · · ,

P


{

cr + cr−1 + · · ·+ c1 > rKσ2
}

)
. (6.4)

Since 〈ε, ui〉i∈{Dm∗+1,··· ,r}
i.i.d.∼ N


0,σ2


, we have for all j ∈ {Dm∗ + 1, · · · , r}:

P


{

cr + · · ·+ cj > (r − j + 1)Kσ2
}


= 1− Fχ2(r−j+1)


(r − j + 1)K


. (6.5)
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For all j ∈ {1, · · · , Dm∗},

P


{

cr + · · ·+ cj > (r − j + 1)Kσ2
}



= P


{

cr + · · ·+ cDm∗+1 + cDm∗ + · · ·+ cj > (r − j + 1)Kσ2
}



= P


{

cr + · · ·+ cDm∗+1 +

〈Xβ∗, uDm∗ 〉+ 〈ε, uDm∗ 〉

2
+ · · ·

+

〈Xβ∗, uj〉+ 〈ε, uj〉

2
> (r − j + 1)Kσ2

}



≤
(**)

P


{

cr + · · ·+ cDm∗+1 + 2〈Xβ∗, uDm∗ 〉2 + 2〈ε, uDm∗ 〉2 + · · ·

+ 2〈Xβ∗, uj〉2 + 2〈ε, uj〉2 > (r − j + 1)Kσ2
}



≤ P


{

2cr + · · ·+ 2cDm∗+1 + 2〈ε, uDm∗ 〉2 + · · ·+ 2〈ε, uj〉2 > (r − j + 1)Kσ2

− 2〈Xβ∗, uDm∗ 〉2 − · · ·− 2〈Xβ∗, uj〉2
}



=
(***)

P


{

2σ2Z2
r + · · ·+ 2σ2Z2

Dm∗+1 + 2σ2Z2
Dm∗ + · · ·+ 2σ2Z2

j

> (r − j + 1)Kσ2 − 2〈Xβ∗, uDm∗ 〉2 − · · ·− 2〈Xβ∗, uj〉2
}


,

where (Z`)`∈{j,··· ,r}
i.i.d∼ N (0, 1).

= P


{

Z2
r + · · ·+ Z2

Dm∗+1 + Z2
Dm∗ + · · ·+ Z2

j

>
(r − j + 1)K

2
− 〈Xβ∗, uDm∗ 〉2

σ2
− · · ·− 〈Xβ∗, uj〉2

σ2

}



= P


{

X >
(r − j + 1)K

2
− 〈Xβ∗, uDm∗ 〉2

σ2
− · · ·− 〈Xβ∗, uj〉2

σ2

}


,

for X ∼ χ2(r − j + 1)

= 1− Fχ2(r−j+1)


(r − j + 1)K

2
− 〈Xβ∗, uDm∗ 〉2

σ2
− · · ·− 〈Xβ∗, uj〉2

σ2


. (6.6)

(**) provides from (a+ b)2 ≤ 2(a2 + b2), ∀(a, b) ∈ R and (***) is true since 〈ε, ui〉i∈{1,··· ,r}
i.i.d.∼ N


0,σ2


.

So, from (6.4), (6.5) and (6.6), we deduce that for allK > 0 and for each r ∈ {Dm∗ + 1, · · · , q}:

Qr(K,β∗,σ2) ≤ min

(

1− Fχ2(1)(K), · · · , 1− Fχ2(r−Dm∗ )


(r −Dm∗)K


,

1− Fχ2(r−Dm∗+1)


(r −Dm∗ + 1)K

2
− 〈Xβ∗, uDm∗ 〉2

σ2


,

1− Fχ2(r−Dm∗+2)


(r −Dm∗ + 2)K

2
− 〈Xβ∗, uDm∗ 〉2

σ2
− 〈Xβ∗, uDm∗−1

〉2
σ2


,

· · · ,

1− Fχ2(r)


rK

2
− 〈Xβ∗, uDm∗ 〉2

σ2
− 〈Xβ∗, uDm∗−1

〉2
σ2

− · · ·− 〈Xβ∗, u1〉2
σ2

)
.
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Hence, an upper bound on Qr(K,β∗,σ2) is obtained for allK > 0:

Qr(K,β∗,σ2) ≤ fr(K,β∗,σ2)) (6.7)

with:

fr(K,β∗,σ2) = 1−max

(

max
`∈{1,··· ,r−Dm∗}


Fχ2(`)(`K)


,

max
`∈{r−Dm∗+1,··· ,r}


Fχ2(`)

`K
2

−
Dm∗∑

k=r−`+1

〈Xβ∗, uk〉2
σ2

)
. (6.8)

- bounds on the FDR.
By combining (3.2), (6.2), (6.3), (6.7), (6.8) and (3.3), we obtain:

q∑

r=Dm∗+1

(

r −Dm∗

r
Pr(K)f

r
(K,β∗,σ2)

)

≤ FDR(m̂(K))

and

FDR(m̂(K)) ≤
q∑

r=Dm∗+1

(

r −Dm∗

r
Pr(K)fr(K,β∗,σ2)

)

,

which allows us to obtain Theorem 3.2 with ∀K > 0,

b(K,β∗,σ2) =

q∑

r=Dm∗+1

(

r −Dm∗

r
Pr(K)f

r
(K,β∗,σ2)

)

and

B(K,β∗,σ2) =

q∑

r=Dm∗+1

(

r −Dm∗

r
Pr(K)fr(K,β∗,σ2)

)

.

6.3 Strictly positive FDR.

Proof of Corollary 3.3.
From Theorem 3.2, we have ∀K > 0,

FDR(m̂(K)) ≥
q∑

r=Dm∗+1

(

r −Dm∗

r
Pr(K) f

r
(K,β∗,σ2)

)

. (6.9)

For the rest of the proof, we use the following Lemma:

Lemma 6.4 (Frank R. Kschischang [38]). The complementary error function, erfc(x), is dened, for x ≥ 0, as:

erfc(x) = 2

1− FN (0, 12 )

(x)


where FN (0, 12 )
designs the cumulative function of the centered Gaussian with the variance equals 1

2 .

Then,

∀x ≥ 0,
2e−x2

√
π

x+

√
x2 + 2

 ≤ erfc(x) ≤ e−x2

√
πx

.
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We remark that for all x ≥ 0, 1− Φ(x) = 1
2erfc


x√
2


. Then, for each r ∈ {Dm∗ + 1, · · · , q},

f
r
(K,β∗,σ2) = Gr +Hr


Gr−1 +Hr−1


Gr−2 + · · ·+H2G1



≥ Gr

= 2


1− Φ

√
rK



= ercf
rK

2



≥
(**)

2
√
π


rK
2 +


rK
2 + 2

e− rK
2

=
2
√
2

√
π
√

rK +
√
rK + 4

e− rK
2 . (6.10)

(**) is provided by Lemma 6.4. So, from (6.9) and (6.10), we obtain:

∀K > 0, FDR(m̂(K)) ≥
q∑

r=Dm∗+1

(

r −Dm∗

r
Pr(K)

2
√
2

√
π
√

rK +
√
rK + 4

e− rK
2

)

.

This lower bound is strictly positive and since the Pr(K) terms are all strictly positive too, we deduce that the FDR
function is a strictly positive function.

6.4 Asymptotic analysis.

Proof of Corollary 3.4.
For all r ∈ {Dm∗ + 1, · · · , q} and by using the denitions from Theorem 3.2,
for ` ∈ {1, · · · , Dm∗} :

G` = 2−

Φ

√
`K − 〈Xβ∗, u`〉

σ
〉

+ Φ

√
`K +

〈Xβ∗, u`〉
σ



−→
K−→+∞

0;

for ` ∈ {2, · · · , Dm∗} :

H` = Φ

√
`K − 〈Xβ∗, u`〉

σ


+ Φ

√
`K +

〈Xβ∗, u`〉
σ


−


Φ

√
K − 〈Xβ∗, u`〉

σ


+ Φ

√
K +

〈Xβ∗, u`〉
σ



−→
K−→+∞

0;

and for ` ∈ {Dm∗ + 1, · · · , r} :

G` = 2


1− Φ

√
`K


−→

K−→+∞
0,

H` = 2


Φ
√

`K

− Φ

√
K


−→
K−→+∞

0;

which provides that f
r
(K,β∗,σ2) −→

K−→+∞
0.

Moreover, fr(K,β∗,σ2)) −→
K−→+∞

0. So, Qr(K,β∗,σ2) −→
K−→+∞

0. In the same way, Pr(K) −→
K−→+∞

1.

So, Pr(K)Qr(K,β∗,σ2) −→
K−→+∞

0.
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Finally, for each r ∈ {Dm∗ + 1, · · · , q}, we deduce from (3.2) that

FDR(m̂(K)) −→
K−→+∞

0.

As for each r ∈ {Dm∗ + 1, · · · , q} Pr(K) −→
K−→+∞

1, we deduce that for all C1 ∈]0, 1[, there exists L̃C1 > 0 such

that ∀K > L̃C1
and ∀r ∈ {Dm∗ + 1, · · · , q}, we have C1 ≤ Pr(K). For the following, we x C1 ∈]0, 1[.

By using (6.2), (6.7) and Pr(K) ≤ 1 for each r ∈ {Dm∗ + 1, · · · , q}, we deduce that:

∀K > L̃C1 , FDR(m̂(K)) ≥ C1

q∑

r=Dm∗+1

(

r −Dm∗

r
f
r
(K,β∗,σ2)

)

(6.11)

and

∀K > 0, FDR(m̂(K)) ≤
q∑

r=Dm∗+1

(

r −Dm∗

r
fr(K,β∗,σ2))

)

. (6.12)

- Upper bound on fr:
For each r ∈ {Dm∗ + 1, · · · , q} and for all K > 0:

fr(K,β∗,σ2)) = 1−max

(

max
`∈{1,··· ,r−Dm∗}


Fχ2(`)(`K)


,

max
`∈{r−Dm∗+1,··· ,r}


Fχ2(`)

`K
2

−
Dm∗∑

k=r−`+1

〈Xβ∗, uk〉2
σ2

)

= min

(

min
`∈{1,··· ,r−Dm∗}


P

X` > `K


,

min
`∈{r−Dm∗+1,··· ,r}


P

Y` >

`K

2
−

Dm∗∑

k=r−`+1

〈Xβ∗, uk〉2
σ2


)

,

with X` ∼ χ2(`) and Y` ∼ χ2(`)

= min

(

min
`∈{1,··· ,r−Dm∗}


P

X` − ` > `K − `


,

min
`∈{r−Dm∗+1,··· ,r}


P


Y` − ` >

`(K − 2)

2
−

Dm∗∑

k=r−`+1

〈Xβ∗, uk〉2
σ2

)
,

with X` ∼ χ2(`) and Y` ∼ χ2(`). (6.13)

So, for each r ∈ {Dm∗ + 1, · · · , q} and for allK > 0:

fr(K,β∗,σ2)) ≤ min
`∈{1,··· ,r−Dm∗}


P

X` − ` > `K − `


, with X` ∼ χ2(`).

By the exponential inequality of [39] for X ∼ χ2(`) and ` ∈ N
∗:

∀x ≥ 0, P


X − ` > 2

√
`x+ 2x


≤ e−x. (6.14)

We apply (6.14) for each ` = 1, · · · , (r − Dm∗) with x = `
4


1 −

√
2K − 1

2

which is one solution of

2
√
` x + 2x = `K − ` whenK > 1. We obtain for allK > 1:

min
`∈{1,··· ,r−Dm∗}


P

X` − ` > `K − `


≤ min

`=1,··· ,(r−Dm∗ )


e
− `

4


1−

√
2K−1

2


≤ e
(r−Dm∗ )

√
2K−1

2 e−
(r−Dm∗ )K

2 . (6.15)
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So, from (6.12) and (6.15), we obtain for each r ∈ {Dm∗ + 1, · · · , q} and for allK > 1:

FDR(m̂(K)) ≤
q∑

r=Dm∗+1

(

r −Dm∗

r
e

(r−Dm∗ )
√

2K−1

2 e−
(r−Dm∗ )K

2

)

≤ e−
K
2

q∑

r=Dm∗+1

(

r −Dm∗

r
e

(r−Dm∗ )
√

2K−1

2

)

.

For all η > 0 and r ∈ {Dm∗ + 1, · · · , q}, e
(r−Dm∗ )

√
2K−1

2 = o
K−→+∞


eηK


.

Hence, ∀η > 0

FDR(m̂(K)) = o
K−→+∞


e−K( 1

2−η)

,

which allows to obtain (3.6).

Proof of Remark 3.6:
The inequalities (6.11) and (6.12) are also true when K −→ +∞ and σ −→ 0 with 1

σ
= o

σ−→0
(
√
K). To obtain the

nest asymptotic upper bound (3.9), we start from the equation (6.13) and we consider the second term. Similar to
previously, we apply (6.14) for each ` = r −Dm∗ + 1, · · · , r with

x =
`

4

(

1−

√K − 1− 2

`

Dm∗∑

k=r−`+1

〈Xβ∗, uk〉2
σ2

)2

,

which is one solution of

2
√
`x+ 2x =

`(K − 2)

2
−

Dm∗∑

k=r−`+1

〈Xβ∗, uk〉2
σ2

when σ2(K − 1) > 2
r−Dm∗+1

Dm∗
k=1

〈Xβ∗, uk〉2 + 2. This condition is valid since σ −→ 0 with 1
σ

= o
σ−→0

(
√
K)

leading to 1
σ2 = o

σ−→0
(K) and so σ2(K − 1) −→ +∞ when K −→ +∞. We obtain for all K > 0 such that

σ2(K − 1) > 2
r−Dm∗+1

Dm∗
k=1

〈Xβ∗, uk〉2 + 2:

min
`∈{r−Dm∗+1,··· ,r}


P

Y` − ` >

`(K − 2)

2
−

Dm∗∑

k=r−`+1

〈Xβ∗, uk〉2
σ2


)

≤ min
`∈{r−Dm∗+1,··· ,r}


e

− `
4

(

1−

√





K−1− 2
`

Dm∗
∑

k=r−`+1

〈Xβ∗,uk〉2
σ2

)2



≤ e
1
2

Dm∗
∑

k=1

〈Xβ∗,uk〉2

σ2

e
r
2



K−1− 2
r

Dm∗
∑

k=1

〈Xβ∗,uk〉2
σ2

e−
rK
4 . (6.16)

(*) come from the fact that a minimum into a set is smaller than any value in the set. We choose the value corresponding
for ` = 0.
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So, from (6.12), (6.15) and (6.16), we obtain for each r ∈ {Dm∗ + 1, · · · , q} and for allK > 1 respecting

σ2(K − 1) > 2
r−Dm∗+1

Dm∗
k=1

〈Xβ∗, uk〉2 + 2:

FDR(m̂(K)) ≤
q∑

r=Dm∗+1

(

r −Dm∗

r
min


e

(r−Dm∗ )
√

2K−1

2 e−
(r−Dm∗ )K

2 ,

e
1
2

Dm∗
∑

k=1

〈Xβ∗,uk〉2

σ2

e
r
2



K−1− 2
r

Dm∗
∑

k=1

〈Xβ∗,uk〉2
σ2

e−
rK
4

)

= min

(

q∑

r=Dm∗+1


r −Dm∗

r
e

(r−Dm∗ )
√

2K−1

2 e−
(r−Dm∗ )K

2


,

q∑

r=Dm∗+1


r −Dm∗

r
e

1
2

Dm∗
∑

k=1

〈Xβ∗,uk〉2

σ2

e
r
2



K−1− 2
r

Dm∗
∑

k=1

〈Xβ∗,uk〉2
σ2

e−
rK
4

)

≤ min

(

e−
K
2

q∑

r=Dm∗+1

(

r −Dm∗

r
e

(r−Dm∗ )
√

2K−1

2

)

,

q∑

r=Dm∗+1


r −Dm∗

r
e

r
2



K−1− 2
r

Dm∗
∑

k=1

〈Xβ∗,uk〉2
σ2


e
−


(Dm∗+1)K

4 − 1
2σ2

Dm∗
∑

k=1

〈Xβ∗,uk〉2
)

. (6.17)

For all η > 0 and r ∈ {Dm∗ +1, · · · , q}, e
(r−Dm∗ )

√
2K−1

2 = o
K−→+∞


eηK


, independently of the value of σ2. Hence,

the rst term in (6.17) is o

e−K( 1

2−η)

, ∀η > 0 whenK −→ +∞ and σ −→ 0 with 1

σ
= o

σ−→0
(
√
K).

For all r ∈ {Dm∗ + 1, · · · , q}, e
r
2



K−1− 2
r

Dm∗
∑

k=1

〈Xβ∗,uk〉2
σ2 ≤ e

r
2

√
K . Moreover, for all η̃ > 0 and r ∈

{Dm∗ + 1, · · · , q}, e
r
2

√
K = o

K−→+∞


eη̃K


, independently of the value of σ2. Hence, the second term in (6.17) is

o


e
−

K

(Dm∗+1−η̃)

4 − 1
2σ2

Dm∗
∑

k=1

〈Xβ∗,uk〉2


, ∀η̃ > 0 whenK −→ +∞ and σ −→ 0 with 1
σ
= o

σ−→0
(
√
K).

Hence,

FDR(m̂(K)) ≤ min

(

o

e−K( 1

2−η)

, o


e
−

K

(Dm∗+1−η̃)

4 − 1
2σ2

Dm∗
∑

k=1

〈Xβ∗,uk〉2
)

= o


e
−

K

(Dm∗+1−η̃)

4 − 1
2σ2

Dm∗
∑

k=1

〈Xβ∗,uk〉2


.

∀(η, η̃) > 0 whenK −→ +∞ and σ −→ 0 with 1
σ
= o

σ−→0
(
√
K); which allows us to obtain (3.9).
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- Lower bound on f
r
:

From (6.10) and (6.11), we obtain:

∀K > L̃C1
, FDR(m̂(K)) ≥ C1

q∑

r=Dm∗+1

(

r −Dm∗

r

2
√
2

√
π
√

rK +
√
rK + 4

e− rK
2

)

≥ C1
2
√
2

√
π
√

qK +
√
qK + 4

 1

Dm∗ + 1

q∑

r=Dm∗+1

(

e−
rK
2

)

≥
(*)

C1
2
√
2

√
π
√

qK +
√
qK + 4

 1

Dm∗ + 1
e−

(Dm∗+1)K

2

=
2
√
2C1√

π(Dm∗ + 1)

1√
qK +

√
qK + 4

e−K
(Dm∗+1)

2 .

(*) is true since each term in the sum is positive, so, the sum is larger than one of them.

For all η > 0, ∃C̃η > 0, ∃L̃η > 0 such that ∀K > L̃η , we have C̃ηe
−ηK ≤ 1√

qK+
√
qK+4

.

So,

∀η > 0, ∃C̃η > 0, ∃L̃η > 0, ∀K > max

L̃C1 , L̃η


,

FDR(m̂(K)) ≥ 2
√
2C1√

π(Dm∗ + 1)
C̃ηe

−K


Dm∗+1+2η

2


,

which gives (3.7) with Cη = 2
√
2C1√

π(Dm∗+1)
C̃η and Lη = max


L̃C1

, L̃η


.

Formula (3.8) automatically follows from (3.6) and (3.7).

6.5 General bounds.

Proof of Corollary 3.7.
By taking uj = Xj , ∀j ∈ {1, · · · , q}, then (X1, · · · , Xq, uq+1, · · · , un) is an orthonormal basis of Rn. Consequently,
∀j ∈ {1, · · · , q}, 〈Xβ∗, uj〉 = 〈Xβ∗, Xj〉 = β∗

j , which concludes the proof.

6.6 Estimation of the PR.

Proof of Proposition 4.1.

Let us observe that for allK > 0 andK
′
> 0:

E[||Y −Xβ̂m̂(K)||
2
2]− E[||Y −Xβ̂m̂(K′ )||

2
2]

= E[||Xβ̂m̂(K)||
2
2]− E[||Xβ̂m̂(K′ )||

2
2] + 2E[〈Y,Xβ̂m̂(K′ ) −Xβ̂m̂(K)〉]

= E[||Xβ̂m̂(2) −Xβ̂m̂(K)||
2
2]− E[||Xβ̂m̂(2) −Xβ̂m̂(K′ )||

2
2]

+ 2E[〈Xβ̂m̂(K) −Xβ̂m̂(K′ ), Xβ̂m̂(2)〉] + 2E[〈Y,Xβ̂m̂(K′ ) −Xβ̂m̂(K)〉]
= E[||Xβ̂m̂(2) −Xβ̂m̂(K)||

2
2]− E[||Xβ̂m̂(2) −Xβ̂m̂(K′ )||

2
2]

− 2E[〈Xβ̂m̂(2) − Y,Xβ̂m̂(K′ ) −Xβ̂m̂(K)〉]. (6.18)

The constant 2 allows to get the optimal asymptotic control of (2.3). Consequently, ||Y − Xβ̂m̂(2)||2 is close to 0

and Xβ̂m̂(2) − Y almost belongs to the subspace Im(X)⊥ since Xβ̂m̂(2) is close to ΠIm(X)(Y ). Since Xβ̂m̂(K) and

Xβ̂m̂(K′ ) belongs to Im(X), the term E[〈Xβ̂m̂(2) − Y,Xβ̂m̂(K′ ) −Xβ̂m̂(K)〉] in (6.18) is close to 0 and is negligible

compared to the two others. So, the dynamics of E[||Xβ̂m̂(2) −Xβ̂m̂(K)||
2
2] with respect to positiveK is close to the

one of E[||Y −Xβ̂m̂(K)||
2
2].
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7 Extensive simulation study to justify the observable estimations.

This section is a complement to Section 4 and presents an extensive simulation study.

7.1 Description of the simulation protocol

Description of the data simulation. Given values of n and p, we simulate Y ∼ N (β∗, In) where β∗ is a vector
satisfying β∗

j ≤ β∗
j+1 for all j ∈ {1, · · · , Dm∗−1} to get ordered active variables. We consider four scenarios, described

in Table 1, where values of Dm∗ , β∗, n and σ2 vary and where the number of variables p is always equal to 50.

Scenario
with
p = 50

Active
variable
number

Non-zero coefcient amplitude
in β∗

Observation
number

Noise
amplitude

(i)
Sparsity

Dm∗ ∈
{1, 10, 20}

β∗
Dm∗ = 2,

∀j ∈ {1, · · · , Dm∗ − 1}
β∗
j ∼ Unif(β∗

j+1 + 0.5,β∗
j+1 +

1.5)

n = 50 σ2 = 1

(ii)
Com-
plexity

Dm∗ =
10

β∗
10 = 2 with

∀j ∈ {1, · · · , 9}
β∗
j ∼ Unif(β∗

j+1 + 0.5,β∗
j+1 +

1.5)

β∗
10 = 2

10 with
∀j ∈ {1, · · · , 9},
β∗
j ∼ Unif(β∗

j+1 + 0.05,β∗
j+1 +

0.15)

β∗
10 = 2 with

∀j ∈ {1, · · · , 9}
β∗
j ∼ Unif(β∗

j+1 + 0.05,β∗
j+1 +

0.15)

n = 50 σ2 = 1

(iii)
High-
dimension

Dm∗ =
10

β∗
Dm∗ = 2,

∀j ∈ {1, · · · , 9}
β∗
j ∼ Unif(β∗

j+1 + 0.5,β∗
j+1 +

1.5)

n ∈
{30, 50, 300}

σ2 = 1

(iv)
Noise

Dm∗ =
10

β∗
Dm∗ = 2,

∀j ∈ {1, · · · , 9}
β∗
j ∼ Unif(β∗

j+1 + 0.5,β∗
j+1 +

1.5)

n = 50
σ2 ∈
{0.1, 1, 4}

Table 1: Description of the four scenarios.

The scenario (i) allows us to evaluate the impact of the sparsity of the parameter β∗. The scenario (ii) allows us to
evaluate how the values of the non-zero coefcients in β∗ complicate the identication of the active variables. In
particular, the non-zero coefcients are close and, in the second conguration, some of them are smaller than the noise
level σ. The scenario (iii) allows us to evaluate the behavior of our method in a high-dimensional context through
the variation of the number of observations n, either smaller, equal or larger than the number of variables p. The last
scenario (iv) allows us to evaluate the impact of the noise amplitude through different values of σ2.

Note that for a fair comparison, the datasets where n = 30 in scenario (iii) are inlcuded in those where n = 50 which are
included in those where n = 300. Moreover, for the sake of reproducibility, the seed of the random number generator is
identically xed for each scenario.

The toy data set. We call the toy data set the data set where n = p = 50, Dm∗ = 10, β∗
10 = 2 and ∀j ∈ {1, · · · , 9},

β∗
j ∼ Unif(β∗

j+1 + 0.5,β∗
j+1 + 1.5). It corresponds to the reference data set in all scenarios.

Empirical estimations. For the empirical estimations, we simulate D a set of 1000 data sets for each scenario. For
each d ∈ D and for all K > 0, the selected model m̂d(K) is obtained from (Y d, Xd). Since m∗ is known, the
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quantity FDP(m̂d(K)) is calculable for each d ∈ D and the empirical estimator of FDR(m̂(K)) is the average of the

FDP(m̂d(K)). Concerning PR, we simulate D̃ a new set of 1000 data sets for each scenario. New Ỹ d are generated on

D̃, from the model (1.1), and by using theXd on D to respect the xed design assumption. The selected models m̂d(K)

and the β̂d
m̂(K) estimators are extracted by solving (2.2) from the training sets (Y d, Xd) on D. The PR is evaluated

from the validation sets (Ỹ d, Xd) on D̃ by the mean squared error:

MSE(m̂d(K)) =
1

n

n∑

i=1


Ỹ d
i −

p∑

j=1

xd
ij β̂m̂d(K)j

2

. (7.1)

The empirical estimator of PR(m̂(K)) is the average of the MSE(m̂d(K)).

To validate the quality of the empirical estimations, the central limit theorem is applied to get the 95% asymptotic
condence intervals:

[

FDR(m̂(K))− 1.96
σ̂√
1000

, FDR(m̂(K)) + 1.96
σ̂√
1000

]

and
[

PR(m̂(K))− 1.96
σ̂√
1000

, PR(m̂(K)) + 1.96
σ̂√
1000

]

,

where σ̂ is the unbiased empirical estimator of the standard deviation σ. Since their width do not exceed 0.011 and 0.07
for respectively the FDR and the PR, they are tight, meaning that the empirical estimations are closed to the theoretical
quantities FDR(m̂(K)) and PR(m̂(K)).

7.2 Estimation of the theoretical FDR

This subsection completes Subsection 4.1. We present the slope heuristic principle and an analyse of the σ̂2, obtained by

the slope heuristics, is processed. Then, a large simulation study is performed to justify the choice of β̂m̂(4) to estimate
β∗ in the upper bound of the FDR.

The FDR bounds of Theorem 3.2 depend on the Pr, the fr
(K,β∗,σ2) and the fr(K,β∗,σ2) quantities. Concerning

the Pr quantities, they do not depend on the data as soon as r is given. They can be estimated once and for all
without any dataset. For each 1 ≤ r ≤ q, Pr is estimated by generating 5000 independent standard Gaussian vectors
Zk


k∈{r+1,··· ,q}

and by counting for each vector the number of times that Z2
k < K(`−r) for each ` ∈ {r+1, · · · , q}.

Concerning the f
r
(K,β∗,σ2) and fr(K,β∗,σ2) quantities, they depend on β∗ and σ2, both unknown.

The slope heuristic to estimate σ2. The slope heuristic principle, introduced in [12], is that when Dm is large

enough, the empirical least squares values 1
n
||Y −Xβ̂m||22 are almost equal to − 1

2nKσ2Dm plus an additive constant

independent of n andm. Hence, it is possible to estimate σ2 from the dataset by the multiplicative coefcient of the
afne behavior between the empirical least squares and − K

2nDm for Dm large enough. We use the function capushe of
the R package capushe (version 1.1.1) [13] with parameters set to the default values.

Some substitutes of β∗. According to [12], β̂m̂(K) is a good estimator of β∗ in a predictive point of view when K is

equal or close to 2. We propose to test the estimators β̂m̂(K̃) for K̃ ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, log(n)} to replace

β∗ in the lower and upper bounds b(K,β∗,σ2) and B(K,β∗,σ2).

To determine the best constant K̃ among {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, log(n)}, we evaluate all b(K, β̂m̂(K̃), σ̂
2) and

B(K, β̂m̂(K̃), σ̂
2) on the setsD from the four scenarios described in Subsection 7.1. To take into account the randomness

of b(K, β̂m̂(K̃), σ̂
2) and B(K, β̂m̂(K̃), σ̂

2), the model collection generation and model selection given by (2.2) are

processed on a new data set independent of D for the four scenarios.

To evaluate the error by replacing b(K,β∗,σ2) and B(K,β∗,σ2) with their estimation b(K, β̂m̂(K̃), σ̂
2) and

B(K, β̂m̂(K̃), σ̂
2), we propose to evaluate the relative changes dened by: ∀K > 0,

b(K, β̂m̂(K̃), σ̂
2)− b(K,β∗,σ2)

b(K,β∗,σ2)
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for the lower bound and by:

B(K, β̂m̂(K̃), σ̂
2)−B(K,β∗,σ2)

B(K,β∗,σ2)

for the upper bound. To ensure that B(K, β̂m̂(K̃), σ̂
2) is above B(K,β∗,σ2) and so above the FDR, positive relative

change values and as close to 0 as possible are expected. Concerning the lower bounds, negative relative change

values are expected to ensure that b(K, β̂m̂(K̃), σ̂
2) is below B(K,β∗,σ2) and so below the FDR. To take into account

randomness of the b(K, β̂m̂(K̃), σ̂
2) and B(K, β̂m̂(K̃), σ̂

2) terms, we evaluate for all K the relative standard deviation,

dened by the standard deviation divided by the mean, by calculated the variance of bounds b(K, β̂m̂(K̃), σ̂
2) and

B(K, β̂m̂(K̃), σ̂
2) evaluated on 100 new data sets generated independently of D. The relative standard deviation values

are expected to be as close to 0 as possible.

Figures 4-9 are plotted from the toy data set. In Figures 4 and 5, the empirical estimation of the FDR

m̂(K)


and

the quantities b(K,β∗,σ2), B(K,β∗,σ2), b(K, β̂m̂(K̃), σ̂
2) and B(K, β̂m̂(K̃), σ̂

2) are plotted on a grid of positiveK.

Relative changes and relative standard deviations for the lower bounds b(K, β̂m̂(K̃), σ̂
2) are plotted in Figures 6 and 7.

Relative changes and relative standard deviations for the upper bounds B(K, β̂m̂(K̃), σ̂
2) are plotted in Figures 8 and 9.

The graphs of all others D of the 4 scenarios described in Subsection 7.1 are provided in the supplementary material
available in 1.

The lower bounds: For K̃ > 1, the relative change values are positive until achieving more than 2 for large K
(Figure 6) and the estimated lower bounds curves can be larger than the theoretical one. The relative standard deviation

functions increase quickly whatever the value of K̃ suggesting that uctuations around the mean are not negligible
(Figure 7).

The upper bounds: For K̃ > 1, the relative change functions are always positive and do not exceed 0.11 meaning

that the B(K, β̂m̂(K̃), σ̂
2) curves are close to B(K,β∗,σ2) for all K > 0 (Figure 8). For data sets D other than the toy

data set (Figures are available in Supplementary material 1), the relative change values are always small but can be

negative. However, it happens very rarely for K̃ ≥ 4 and in this case, values are low enough (smaller than −0.02%) to

ensure that the empirical FDR estimation curves do not exceed the B(K, β̂m̂(K̃), σ̂
2) terms. Concerning the relative

standard deviation functions (Figures 9), the larger K̃, the smaller the values, except for the scenario (ii) with the third

conguration where values increase after K̃ ≥ 4.5. For K̃ ≥ 3.5, the relative standard deviation values are around
0.2 for all the scenarios except for scenario (ii) with the second conguration (can achieve 0.8) and with the third

conguration (can achieve 1). Thus, for a value of K̃ ∈ {3.5, log(n), 4, 4.5, 5} and eventually except for the two
extreme scenarios, uctuations around the mean are small, meaning that the upper bound estimations are stable.

To conclude, we drop the lower bound to implement our data-driven algorithm for hyperparameter calibration since

b(K, β̂m̂(K̃), σ̂
2) functions can be larger than the theoretical FDR one. To control the FDR, only an upper bound

control is sufcient. The best results for B(K, β̂m̂(K̃), σ̂
2) are obtained with the hyperparameter K̃ = 4, where the

relative change values are almost always positive, small enough to guarantee that the B(K, β̂m̂(4), σ̂
2) are larger than

the theoretical FDR, and the relative standard deviation values are the smallest ones whatever the scenarios. So, the

estimator used in our algorithm to replace β∗ in the upper bound of the FDR is β̂m̂(4). The value of the hyperparameter

K̃ = 4 is not surprising since the value of Dm̂ has to be small enough in (3.5) to get an upper bound B(K, β̂m̂(K̃), σ̂
2)

larger than the theoretical upper one. So, the penalization function has to be large enough in (2.2).

Algorithm 1 getsK = 2.7 for scenario (i) with D∗
m = 20;K = 4.8 for scenario (i) with D∗

m = 1 and for scenario (ii)
with the second conguration; and K = 3.3 for all the others. Thus, the hyperparameter K returned by the algorithm is
strictly larger than the commonly used constant 2.

1https://github.com/PerrineLacroix/Trade_off_FDR_PR
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All the R scripts are available at https://github.com/PerrineLacroix/Trade_off_FDR_PR.
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2) from the 4 scenarios described in Subsection 7.1 are provided in

the supplementary material available in https://github.com/PerrineLacroix/Trade_off_FDR_PR. It is
complementary to Subsection 7.2.
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Figure 4: Comparison of the empirical estimation of the FDR, the function b(K,β∗,σ2) under the orthogonal design

matrixX and the function b(K, β̂m̂(K̃), σ̂
2) with respectively β̂m̂(1), β̂m̂(1.5), β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4),

β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n)). The terms b(K, β̂m̂(K̃), σ̂
2) are calculating from only one dataset, independent of

those used for the empirical estimations. For a better readability, we plot curves only for K ≥ 2; but at the bottom
right is the entire curve for K̃ = 4.
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Figure 5: Comparison of the empirical estimation of the FDR, the function B(K,β∗,σ2) under the orthogonal design

matrixX and the functionB(K, β̂m̂(K̃), σ̂
2)with respectively β̂m̂(1), β̂m̂(1.5), β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4),

β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n)). The terms B(K, β̂m̂(K̃), σ̂
2) are calculating from only one dataset independent of

those used for the empirical estimations. For a better readability, we plot curves only for K ≥ 2; but at the bottom
right is the entire curve for K̃ = 4.
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Figure 6: Curves of the relative change values between the function b(K,β∗,σ2) and the functions b(K, β̂m̂(K̃), σ̂
2)

with respectively β̂m̂(1), β̂m̂(1.5), β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n)), where
estimators are calculating from only one dataset.
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Trade-off between prediction and FDR for variable selection

Figure 7: Curves of the relative standard deviation (standard deviation normalized by the

mean) of the functions b(K, β̂m̂(K̃), σ̂
2) obtained from 100 data sets. With each one,

β̂m̂(1), β̂m̂(1.5), β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n)) are calculated given

b(K, β̂m̂(K̃), σ̂
2), variance of the 100 b(K, β̂m̂(K̃), σ̂

2) functions and then the relative standard deviation

with respect toK.
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Trade-off between prediction and FDR for variable selection

Figure 8: Curves of the relative change values between the function B(K,β∗,σ2) and the functions B(K, β̂m̂(K̃), σ̂
2)

with respectively β̂m̂(1), β̂m̂(1.5), β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n)), where
estimators are calculating from only one dataset.
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Trade-off between prediction and FDR for variable selection

Figure 9: Curves of the relative standard deviation (standard deviation normalized by the

mean) of the functions B(K, β̂m̂(K̃), σ̂
2) obtained from 100 data sets. With each one,

β̂m̂(1), β̂m̂(1.5), β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n)) are calculated given

B(K, β̂m̂(K̃), σ̂
2), variance of the 100 B(K, β̂m̂(K̃), σ̂

2) functions and then the relative standard deviation

with respect toK.
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