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ABSTRACT

In the context of the high-dimensional Gaussian linear regression for ordered variables, we study
the variable selection procedure via the minimization of the penalized least-squares criterion. We
focus on model selection where the penalty function depends on an unknown multiplicative constant
commonly calibrated for prediction. We propose a new proper calibration of this hyperparameter to
simultaneously control predictive risk and false discovery rate. We obtain non-asymptotic bounds on
the False Discovery Rate with respect to the hyperparameter and we provide an algorithm to calibrate
it. This algorithm is based on quantities that can typically be observed in real data applications. The
algorithm is validated in an extensive simulation study and is compared with some existing variable
selection procedures. Finally, we study an extension of our approach to the case in which an ordering
of the variables is not available.

Keywords Ordered variable selection · Prediction · FDR · High-dimension · Gaussian regression ·
Hyperparameter calibration

1 Introduction.

1.1 Problem statement.

We consider the following high-dimensional univariate Gaussian linear regression model :

Y = Xβ∗ + ε. (1.1)

The random response vector Y =
(
(Yi){1≤i≤n}

)T
∈ Rn is regressed on p deterministic vectors : X1 =(

(xi1){1≤i≤n}

)T
, · · · , Xp =

(
(xip){1≤i≤n}

)T
. The design matrix of size n× p is denoted by X = (X1, · · · , Xp).

The noise ε =
(
(εi){1≤i≤n}

)T
is assumed to be Gaussian : ε ∼ N (0, σ2In) with σ2 > 0. In the high-dimensional

context, additional assumptions of regularity are required and we assume that β∗ is sparse, meaning that only a few
coefficients are non-zero. In the following, a variable Xj corresponding to a non-zero coefficient β∗

j is called an active
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Trade-off between prediction and FDR for variable selection

variable. Otherwise the variable is said to be non-active.
In this paper, we are interested in variable selection. We refer the reader to [1] and references therein. To the best of our
knowledge, some variable selection procedures focus on the prediction of the response variable Y through a control
of the predictive risk. Others focus on limiting the number of selected non-active variables through a control of the
False Discovery Rate. There also exists procedures where several cost functions are considered simultaneously. In the
line of the latter, our goal is to identify a set of variables from a model selection procedure by limiting the selection of
non-active variables while maintaining accurately prediction performances.

1.2 Related works.

In a variable selection procedure, a cost function has to be defined. The predictive risk (PR) and the False Discovery
Rate (FDR) are the common used cost functions.

The penalized methods to control the predictive risk. The penalization procedure balances goodness of fit and
sparsity : the smaller the penalty function, the better the fitting to the data but the higher the number of selected variables.
In high-dimension, the most popular method is the Lasso criterion [2] where the estimator β̂λ of β∗ is the solution of :

β̂λ = argmin
β∈Rp

{
||Y −Xβ||22 + λ|β|1

}
, (1.2)

where | · |1 and || · ||2 design the ℓ1-norm and the euclidean norm of a vector respectively. The main challenge is to

calibrate the hyperparameter λ > 0. If λ is chosen to be proportional to σ
√

log(p)
n , then the predictive risk is bounded

[3, 4]. However, the noise being usually unknown, the choice of λ remains tricky. Therefore, an alternative is to solve
the Lasso criterion for a λ within a reasonable interval by using subsamples [5] or resamples [6]. The selected variables
are then defined as the variables with the highest selection frequencies. Such alternative is no longer sensitive to the
choice of λ but the main challenge lies in the threshold on the frequency defining the selected variables.
In this paper, we consider a model selection procedure composed of three steps. The first step consists in solving the
Lasso criterion on a relevant grid Λ. Each λ ∈ Λ defines a variable subset to get a collection M of relevant subsets of
variables with a wide range of sizes. In the second step, the least-squares estimator onto each variable subset of M is
calculated leading to a collection of estimators

(
β̂m

)
m∈M

. Lastly, the following penalized least-squares minimization

is solved to select the best m of M :

m̂ = argmin
m∈M

{
||Y −Xβ̂m||22 + pen(Dm)

}
, (1.3)

where Dm is the dimension of the model m and the function pen is a penalty function increasing with Dm.
Selecting m̂ from M by minimizing (1.3) corresponds to selecting λ̂ from Λ by minimizing (1.2). Hence, the main
challenge is the definition of pen that achieves an optimal trade-off between goodness of fit and sparsity within M.
Popular methods of model selection include V−fold cross-validation [7, 8], AIC [9], Cp-Mallows [10], BIC [11] and
eBIC [12]. For these penalty functions, the predictive risk is bounded when σ2 is known and when the sample size n
tends to infinity. When n is fixed, relatively small, and possibly smaller than the dimension p, a non-asymptotic point
of view is preferable to get properties for all couples of (n, p). In this direction, [13] propose some penalty functions
depending on the collection complexity such that m̂ guarantees non-asymptotic optimal control of the predictive risk. If
the model collection is nested with a known variance, pen(Dm) = 2σ2Dm allows to achieve an optimal non-asymptotic
control of the predictive risk [9]. If the model collection is fixed and large (for instance with an exponential growth with
Dm) and if the variance is unknown, this optimal control is obtained with data-driven penalties [13, 14]. Lastly, if the
model collection is data-dependent and if the variance σ2 is unknown, the LinSelect penalty [15, 16] guarantees an
optimal control of the predictive risk.

The multiple testing methods to control the False Discovery Rate. In the multiple testing procedure, the p tests
H0 = {β∗

j = 0} versus H1 = {β∗
j ̸= 0} are performed independently to get a list of p-values. Variables associated with

a p-value smaller than a threshold are selected and the challenge is to find this threshold to obtain an upper bound on a
function of the number of selected non-active variables. Several methods control the Family-Wise Error (FWER) which
is the probability of selecting at least one non-active variable [17, 18]. However, these methods tend to be conservative
leading to a tiny set of selected variables. An alternative consists in controlling the FDR which is the expectation of
the proportion of non-active variables among the selected ones. The authors of [19] first provide a threshold assuming
independence of the p-values. This hypothesis is then relaxed in [20, 21, 22, 23].
Instead of considering the p-values, the knockoff filter method [24] consists in introducing copies of Xj built to be
non-active variables to calibrate a threshold on test statistics.
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Trade-off between prediction and FDR for variable selection

The simultaneous control of several cost functions. Controlling PR or FDR is commonly performed independently
in the literature and yield different sets of selected variables. For a PR control, selected variables aim at correctly
predicting a new observation of Y , without guaranteeing that the set of selected variables does not contain non-active
variables. Conversely, when the cost function is the FDR, the number of non-active variables is controlled at the price
that some active variables are not selected.
Therefore, recent works have been proposed to combine prediction and FDR approaches to select all active variables
without selecting non-active ones. For instance, [25] propose a multi-step algorithm where a threshold procedure
is applied to some Lasso estimators computed for specific values of λ. In addition to prediction performances, a
consistency property on the selected variable set is satisfied under some conditions on X . Another idea is the post-
selection inference [26, 27] where the principle is to test the relevance of each selected variable by a model selection
procedure. Valid confidence intervals are provided from conditional hypothesis tests for each model of the collection in
addition to a PR control. Their work has been generalized by [28, 29, 30] and a review can be found in [31].
In a completely different direction, [32, 33] propose to control the False Negative Rate (FNR) in addition to the FDR. A
good FNR control ensures that most of the active variables are selected. So, minimizing a weighted sum of FDR and
FNR provide a set of variables close to the set of active variables. However, improving FDR control deteriorates FNR
control and vice versa. Hence, optimal controls of both criteria are impossible to achieve.
Some other papers propose to combine the FDR with the PR. Additional motivation to consider the PR is its behavior
between the learning phase and the over-fitting phase. In the learning phase, the addition of a variable in the selected set
drastically reduces the PR, whereas in the over-fitting phase, it increases proportionally to the noise level. Firstly, in
the standard multivariate normal mean problem with a known variance, [34] propose a penalty function in the model
selection procedure built from a multiple testing procedure. They obtain simultaneously sharp asymptotic bounds of the
FDR and the PR. Then, [35] propose the Sorted ℓ1 penalized estimator (SLOPE) which is the minimizer of the Lasso
criterion (1.2) where λ is replaced by a p-vector built from a multiple testing procedure. For the orthogonal design,
their approach achieves a non-asymptotic control of the FDR and satisfies a minimum value of the total mean squared
error with minimax convergence rate [36]. This asymptotic convergence of the FDR has been generalized under a wide
range of hypotheses, for instance, for a random design in [37].

Ordered variable selection. The ordered variable framework has attracted much attention recently, especially to
overcome the high-dimensional problem. In literature, a large class of methods exists dealing with variables having a
natural ranking : [38] for the regression framework, [39] with the nested lasso penalty and [40] for covariance matrix
estimation. This assumption allows for drastically reducing the estimation complexity. We develop our paper’s theory
under this assumption. It can be applied to datasets where assuming an order of variables, obtained for example via a
priori knowledge, makes sense.
However, in most applications, no canonical ranking of the variables is available and having a natural order on variables
becomes a strong assumption. In this case, alternatives consist in proposing a candidate order from random procedures
and applying theoretical statistical methods on the random variable ranking. Several approaches have been implemented
in the literature to provide the random orders. The most used ones are based either on a regularization path which is built
with the Lasso type equation solving [2] or on a decision tree [41]. However, these approaches suffer from instability
in that a small modification of the initial sample could radically change the variable order [42]. To circumvent this
instability problem, one solution is to add a sampling procedure like the bootstrap [43]. We adopt this point of view in
this article to generalize our theoretical results in non-ordering variable selection.

1.3 Main contributions.

The originality of this paper is to obtain a control of the FDR in addition to the PR control in model selection through a
convenient calibration of the penalty.
We assume variables are ranked according to their importance for the response variable Y ; X1 being the most important
one, X2 being the second one, · · · , and Xp being the least important one. In Gaussian linear regression, the order is
given by the partial correlation between Y and each Xj . A natural model collection is the one containing the nested
models respecting the variable order. This framework sounds restrictive but allows to derive theoretical expressions of
the FDR in the considered model selection procedure. According to [13], all the penalty functions defined by :

pen(Dm) = Kσ2Dm, ∀m ∈ M, (1.4)

provide a non-asymptotic control of the PR for K > 1 when variables are ranked.

Theoretical bounds on the FDR in model selection : Although the model selection procedure is built for a PR control,
we obtain non-asymptotic lower and upper bounds on the FDR with respect to K > 0 when σ2 is known. We show that
these bounds only involve some evaluations of cumulative distribution functions of the standard Gaussian and of some
chi-squared variables. Whatever the noise level, FDR is always strictly positive. When K tends to infinity, the FDR
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converges to 0 with an exponential rate. So, a low value of the FDR is satisfying as soon as the value of K is not too
large.

Calibration of the hyperparameter K : The obtained theoretical bounds depend on the parameters β∗ and σ2. We
replace them with estimators to obtain completely data-dependent bounds on the FDR. Then, we propose a calibration
of the hyperparameter K to control a trade-off between FDR and PR. Our algorithm is validated on an extensive
simulation study and is compared with several existing variable selection procedures.

Towards a non-ordering variable selection : From a practical point of view, a crucial assumption of this work is
the knowledge of the variable ranking. We investigate empirically an extension in which the variable ordering is not
beforehand but estimated using a data-driven procedure to build random model collections.

1.4 Outline of the paper.

The rest of the paper is organized as follows. Section 2 introduces the Gaussian linear regression model and some
notations. Section 3 contains theoretical results. Since an increase of the hyperparameter K leads to a decrease of the
FDR, it motivates the study of the FDR function in model selection with respect to K. As the FDR has an intractable
expression, bounds are obtained when the variable order and the variance are known. We establish an exponential
convergence rate of the FDR function when K tends to infinity. The special case of orthogonal design matrix is studied
to illustrate the main results. In Section 4, an algorithm is proposed to calibrate the hyperparameter K in the penalty
function to achieve a suitable trade-off between FDR and PR controls. It is based on simultaneous evaluations of the
prediction performance and the FDR of the models, which are calculated from properly chosen estimators of σ2 and β∗.
We then present a study to generalize our procedure in non-ordering variable selection and we compare our algorithm
with some existing variable selection procedures. Section 5 contains a conclusion and a discussion of prospective work.
In Section 6, proofs of all the theoretical results are provided. Lastly, validations of the chosen estimators of σ2 and β∗,
of our algorithm to calibrate K and of the considered alternatives to go towards the non-ordering variable selection are
proposed in Section 7 through an extensive simulation study with different parameters.

2 Model and notations.

Let us consider the Gaussian linear regression model given in (1.1). We define q = min(n, p) and assume that
(X1, · · · , Xq) is a family of linearly independent vectors. We consider the deterministic and nested model collection of
linear spaces :

M =
{
m0 = {0},m1 = Span(X1), · · · ,mq = Span(X1, X2, · · · , Xq)

}
. (2.1)

By construction, the true model m∗ = Span
(
Xj , j s.t. β∗

j ̸= 0
)

belongs to M.
For each m ∈ M, Dm is the dimension of m and β̂m is the least-squares estimator onto m :

β̂m = argmin
{β,Xβ∈m}

{
||Y −Xβ||22

}
.

With the definition of q and properties on the family (X1, · · · , Xq), β̂m is unique for each m ∈ M.
For all K > 0, we define the function critK on M as :

critK(m) = ||Y −Xβ̂m||22 +Kσ2Dm,

and the selected model m̂(K) by :
m̂(K) = argmin

m∈M

{
critK(m)

}
. (2.2)

We define PR(m) the predictive risk associated to the model m ∈ M by :

PR(m) = E
[
||Y −Xβ̂m||22

]
, (2.3)

where E designs the expectation under the distribution of Y satisfying (1.1). We define successively FP (m) the number
of variables contained in m but not in m∗, the false discovery proportion by :

FDP(m) =
FP(m)

max(Dm, 1)
;

and the False Discovery Rate by :
FDR(m) = E

[
FDP(m)

]
,
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where E still designs the expectation under the distribution of Y satisfying (1.1), so that FDR(m) is deterministic even
in the case where m is random.

Finally, the notation ⟨., .⟩ designs the canonical scalar product in Rn, ΠX denotes the orthogonal projection function
onto the space X , Φ denotes the standard Gaussian cumulative distribution function and Fχ2(k) is the cumulative
distribution function of a chi-squared variable with k degrees of freedom. By convention, an intersection or an union
from indices k to ℓ with k > ℓ are the intersection or the union over an empty set. In the same way, the set {k, · · · , ℓ}
is empty if k > ℓ.

3 Main results.

In this section, the variance σ2 is supposed to be known. We first present intuitions that lead to study FDR(m̂(K)) in
model selection. Non-asymptotic bounds on FDR(m̂(K)) are obtained in Theorem 3.2, as well as asymptotic behaviors
when K tends to infinity in Corollary 3.4. Finally, the particular case where X is the orthogonal design matrix is studied
to illustrate the main results.

3.1 Intuitions.

According to [13], the penalty function (1.4) satisfies a non-asymptotic control of the PR if and only if K > 1. The
constant K = 2 allows to achieve the optimal asymptotic control of the PR. Hence, 2 is commonly chosen in practice
but other values of K close to 2 can give identical if not better non-asymptotic prediction performances. In this direction,
we propose to calibrate the hyperparameter K among those leading to prediction performances close to or better than for
K = 2 while satisfying a control of the FDR. The calibration is based on both PR(m̂(K)) and FDR(m̂(K)) functions
with respect to K.

Figure 1: Curves of the empirical FDR
(
m̂(K)

)
and PR

(
m̂(K)

)
for the toy data set described in Subsection 7.1. The

vertical lines correspond to K = 3.

We propose an example to illustrate our point and intuition. In Figure 1, we plot the empirical estimators of PR(m̂(K))
and FDR(m̂(K)) on a regular grid of positive K. Graphs are obtained from the toy data set described in Section 7 and
values are transferred to Table 1. We observe that the empirical PR(m̂(K)) values are kept low for K ∈ [2, 4] while the
FDR(m̂(K)) function decreases with K until 0. Here, the choice K = 3 is more judicious than K = 2: it ensures a
stronger and positive (a FDR zero value is not relevant as it means that no variable is selected) control of the FDR while
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K 0.1 1 2 3 4 5 6 7 8 9 10
empirical

FDR(m̂(K)) 0.80 0.38 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
empirical

PR(m̂(K)) 2.01 1.55 1.25 1.24 1.25 1.26 1.28 1.30 1.32 1.33 1.36
Table 1: Values of the empirical estimators of PR(m̂(K)) and FDR(m̂(K)) according to K for the toy data set

described in Subsection 7.1.

satisfying similar prediction performances. We also observe that while FDR decreases with K, PR increases from a
certain value of K ≥ 2. To control PR and FDR simultaneously, the constant K must be close to 2.
Increasing the constant K to limit the non-active variable selection is known for the asymptotic point of view. Indeed,
AIC and Cp-Mallows penalties [9, 10], where K equals 2, give asymptotically the best set of variables for prediction
performances; while BIC penalty [11], where K is fixed to log(n), exactly recovers asymptotically the set of active
variables. Obtaining the asymptotic properties of AIC, Cp-Mallows and BIC penalties simultaneously is impossible
[44], but it suggests that a value of K ∈ [2, log(n)] would get reasonable (but not necessarily optimal) values for both
PR and FDR in a non-asymptotic framework. In this way, we propose to study the function FDR

(
m̂(K)

)
in the model

selection procedure (2.2) where the penalty function is (1.4) in the ordered variable setting.

3.2 Bounds on the FDR in model selection.

3.2.1 FDR expression in model selection for ordered variables.

Let us assume that K > 0 and critK is injective on M. If D∗
m = q, FDR(m̂(K)) = 0. Otherwise, the FDR(m̂(K)) is

expressed within the model selection procedure as :

FDR(m̂(K)) =

q∑
r=Dm∗+1

r −Dm∗

r
P

({
q
∩
ℓ=0
ℓ̸=r

{critK(mr) < critK(mℓ)}

})
. (3.1)

A detailed proof of (3.1) can be found in Subsection 6.1.

By using the decomposition{
r−1
∩
ℓ=0

{critK(mr) < critK(mℓ)}
}⋂{

q
∩

ℓ=r+1
{critK(mr) < critK(mℓ)}

}
of the term

q
∩
ℓ=0
ℓ ̸=r

{critK(mr) < critK(mℓ)}, we obtain the following proposition :

Proposition 3.1. Let us consider the ordered variable framework and the model collection (2.1) where q = min(n, p),
m∗ ∈ M and D∗

m < q. Let us assume that critK is injective on M. Let (u1, · · · , un) an orthonormal basis of Rn such
that Span(X1, · · · , Xj) = Span(u1, · · · , uj), ∀j ∈ {1, · · · , q}.
Then, ∀K > 0,

FDR(m̂(K)) =

q∑
r=Dm∗+1

r −Dm∗

r
Pr(K) Qr(K,β∗, σ2), (3.2)

where for each r ∈ {Dm∗ + 1, · · · , q},

Pr(K) = P
(

q
∩

ℓ=r+1

{ ℓ∑
k=r+1

Z2
k < K(ℓ− r)

})
, (3.3)

where Zk
i.i.d.∼ N (0, 1), ∀k ∈ {r + 1, · · · , q},

and Qr(K,β∗, σ2) = P
(

r−1
∩
ℓ=0

{ r∑
k=ℓ+1

⟨Y, uk⟩2 > Kσ2(r − ℓ)
})

.
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A proof of Proposition 3.1 can be found in Subsection 6.1.

3.2.2 General bounds.

In (3.2), the Pr(K) terms do not depend on data. Conversely, the Qr(K,β∗, σ2) terms depend on the data. Thus, to
understand the behavior of the FDR function with respect to m̂(K), we propose to bound the Qr(K,β∗, σ2) terms in
the following theorem :
Theorem 3.2. Let us consider the ordered variable framework and the model collection (2.1) where q = min(n, p).
Let us suppose that m∗ ∈ M and D∗

m < q. The notation Φ stands for the standard gaussian cumulative distribution
function and Fχ2(k) is the cumulative distribution function of a chi-squared variable with k degrees of freedom.
Let us assume that ∀K > 0, critK is injective on M. Let (u1, · · · , un) an orthonormal basis of Rn such that
Span(X1, · · · , Xj) = Span(u1, · · · , uj), ∀j ∈ {1, · · · , q}.
Then, ∀K > 0, m̂(K) satisfies :

b(K,β∗, σ2) ≤ FDR(m̂(K)) ≤ B(K,β∗, σ2), (3.4)

where
[
K 7→ b(K,β∗, σ2)

]
and

[
K 7→ B(K,β∗, σ2)

]
are two real-valued functions on R+ defined by :

b(K,β∗, σ2) =

q∑
r=Dm∗+1

(
r −Dm∗

r
Pr(K) f

r
(K,β∗, σ2)

)
,

B(K,β∗, σ2) =

q∑
r=Dm∗+1

(
r −Dm∗

r
Pr(K) fr(K,β∗, σ2)

)
, (3.5)

where for all K > 0, Pr(K) is defined in (3.3) and

1. for each r ∈ {Dm∗ + 1, · · · , q} and for all ℓ ∈ {1, · · · , r}, f
ℓ
(·, β∗, σ2) is defined by :

f
1
(K,β∗, σ2) = G1

f
ℓ
(K,β∗, σ2) = Gℓ +Hℓ f ℓ−1

(K,β∗, σ2), ∀ℓ ∈ {2, · · · , r},

with for ℓ ∈ {1, · · · , Dm∗} :

Gℓ = 2−
(
Φ
(√

ℓK − ⟨Xβ∗, uℓ⟩
σ

)
+Φ

(√
ℓK +

⟨Xβ∗, uℓ⟩
σ

))
,

for ℓ ∈ {2, · · · , Dm∗} :

Hℓ = Φ
(√

ℓK − ⟨Xβ∗, uℓ⟩
σ

)
+Φ

(√
ℓK +

⟨Xβ∗, uℓ⟩
σ

)
−
(
Φ
(√

K − ⟨Xβ∗, uℓ⟩
σ

)
+Φ

(√
K +

⟨Xβ∗, uℓ⟩
σ

))
,

for ℓ ∈ {Dm∗ + 1, · · · , r} :

Gℓ = 2

(
1− Φ

(√
ℓK
))

Hℓ = 2

(
Φ
(√

ℓK
)
− Φ

(√
K
))

,

2. ∀r ∈ {Dm∗ + 1, · · · , q}, fr(·, β∗, σ2) is defined by :

fr(K,β∗, σ2) = 1−max

(
max

ℓ∈{1,··· ,r−Dm∗}

(
Fχ2(ℓ)(ℓK)

)
,

max
ℓ∈{r−Dm∗+1,··· ,r}

(
Fχ2(ℓ)

(ℓK
2

−
Dm∗∑

k=r−ℓ+1

⟨Xβ∗, uk⟩2

σ2

)))
.
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A proof of Theorem 3.2 can be found in Subsection 6.2.
Hence, although the model selection procedure is built for prediction performances, bounds on the FDR are derived
with respect to m̂(K). Terms f

r
(K,β∗, σ2) and fr(K,β∗, σ2) only involve evaluations of cumulative distribution

functions of the standard Gaussian and chi-squared variables. So, they have a fully explicit form which simplifies the
understanding of the behavior of the FDR in model selection. However, they depend on the unknown parameters β∗

and σ2 for which estimators are proposed in Section 4.1.2.

3.2.3 Strictly positive FDR.

The following corollary gives a lower bound on the FDR independent from σ2.
Corollary 3.3. Under the assumptions and definitions of Theorem 3.2, ∀K > 0 :

FDR(m̂(K)) ≥
q∑

r=Dm∗+1

(
r −Dm∗

r
Pr(K)

2
√
2

√
π
(√

rK +
√
rK + 4

)e− rK
2

)
> 0.

A proof of Corollary 3.3 can be found in Subsection 6.3.
From Corollary 3.3, FDR(m̂(K)) > 0 for all K > 0 and whatever σ2. This may be counter-intuitive, especially in
the noiseless setting. When σ2 = 0, Y = Xβ∗ and the minimization in (2.2) is reduced to the least-squares criterion
minimization. So, in this particular noiseless case, β̂m∗ = β∗ and the associated least-squares criterion is zero. Any m
including m∗ also attains a least squares objective of zero as the magnitude of the regression coefficients corresponding
to the non-active variables is null. Such supersets can be selected leading to FDP(m̂) > 0 and so FDR(m̂) > 0.

3.2.4 Asymptotic analysis.

The following corollary gives the asymptotic behavior of the FDR function in model selection when K tends to infinity.
Corollary 3.4. Under the assumptions and the definitions of Theorem 3.2, the FDR(m̂(K)) function tends to 0 when
K tends to infinity and satisfies ∀η > 0,

FDR(m̂(K)) = o
K−→+∞

(
e−K( 1

2−η)
)
. (3.6)

Furthermore, ∀η > 0, ∃Cη > 0, ∃Lη > 0, ∀K > Lη, we have :

FDR(m̂(K)) ≥ Cηe
−K

(
Dm∗+1+2η

2

)
. (3.7)

So, ∀ε > 0,

−Dm∗

2
− 1

2
− ε ≤ lim inf

K−→+∞

1

K
log
(

FDR(m̂(K))
)

lim sup
K−→+∞

1

K
log
(

FDR(m̂(K))
)

≤ −1

2
+ ε. (3.8)

A proof of Corollary 3.4 can be found in Subsection 6.4.
From Equation (3.6), FDR(m̂(K)) tends to 0 when K tends to +∞ with at least an exponential convergence rate and
Equation (3.7) suggests that the exponential convergence rate is optimal.
Remark 3.5. With no signal (β∗ = 0 and Dm∗ = 0), the asymptotic bounds in (3.8) are − 1

2 − ε and − 1
2 + ε and

consequently :

log
(

FDR(m̂(K))
)

∼
K→+∞

−1

2
K.

Remark 3.6. The asymptotic upper and lower bounds (3.6) and (3.7) are satisfied whatever the value of σ2 > 0. It is
possible to obtain the following sharpest asymptotic upper bound : ∀η̃ > 0,

FDR(m̂(K)) = o

(
e
−
(
K

(Dm∗+1−η̃)

4 − 1
2σ2

Dm∗∑
k=1

⟨Xβ∗,uk⟩2
))

(3.9)

in the asymptotic regime where K −→ +∞ and σ −→ 0 with 1
σ = o

σ−→0
(
√
K). The reader can find a proof in

Subsection 6.4.
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3.3 Illustrations of the main result in the orthogonal case.

We propose to analyze the particular case where the design matrix X is orthogonal since it leads to simplified forms for
the FDR bounds that are easy to calculate.
Corollary 3.7 (Application on the orthogonal case). Under assumptions of Theorem 3.2 and by assuming that
(X1, · · · , Xq) are orthonormal with respect to ⟨., .⟩, then, ∀K > 0, FDR(m̂(K)) satisfies the same inequalities as (3.4)
where :
for ℓ ∈ {1, · · · , Dm∗} :

Gℓ = 2−
(
Φ
(√

ℓK − β∗
ℓ

σ

)
+Φ

(√
ℓK +

β∗
ℓ

σ

))
,

for ℓ ∈ {2, · · · , Dm∗} :

Hℓ = Φ
(√

ℓK − β∗
ℓ

σ

)
+Φ

(√
ℓK +

β∗
ℓ

σ

)
−
(
Φ
(√

K − β∗
ℓ

σ

)
+Φ

(√
K +

β∗
ℓ

σ

))
,

for all r ∈ {Dm∗ + 1, · · · , q} :

fr(K,β∗, σ2) = 1−max

(
max

ℓ∈{1,··· ,r−Dm∗}

(
Fχ2(ℓ)(ℓK)

)
,

max
ℓ∈{r−Dm∗+1,··· ,r}

(
Fχ2(ℓ)

(ℓK
2

−
Dm∗∑

k=r−ℓ+1

β∗2
k

σ2

)))
,

and all other terms are the same as those defined in Theorem 3.2.

A proof of Corollary 3.7 can be found in Subsection 6.5.

Figure 2: Left : curves of the empirical FDR(m̂(K)) (red) and of the terms b(K,β∗, σ2) (green) and B(K,β∗, σ2)
(blue) for the orthogonal design matrix X for the toy data set described in Subsection 7.1. Right : curves are plotted

only for K ≥ 2.

In Figure 2, we plot the empirical estimation of the FDR(m̂(K)) with the functions b(K,β∗, σ2) and B(K,β∗, σ2) on
a grid of positive K (left) and for K ≥ 2 (right). Graphs are obtained from the toy data set described in Section 7 where
X is orthogonal. The left figure is devoted to illustrate Corollary 3.7. The FDR values are well smaller than the upper
bound values and larger than the lower bound ones. From the right figure and in accordance with Corollary 3.4, the
empirical FDR(m̂(K)) values tend to 0 when K increases and the convergence rate seems to be exponential. Moreover,
the curves of b(K,β∗, σ2) and B(K,β∗, σ2) frame the empirical FDR and the difference between the three functions
becomes quickly negligible for K larger than 2.

9
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4 Trade-off between the PR and the FDR controls.

While bounds b(K,β∗, σ2) and B(K,β∗, σ2) are easily understandable and fully implementable, they depend on β∗,
σ2 and D∗

m. These quantities are unknown in practice. For a practical use, we propose to replace the theoretical bounds
on the FDR as well as the theoretical expression of the PR with observable quantities (Subsection 4.1). Then, we
propose an algorithm to calibrate the hyperparameter K from the data set such that both PR and FDR are controlled
(Subsection 4.2).

As variables are not usually naturally ranked, we explore the robustness of our algorithm under perturbations of the
correct variable ordering and present approaches for obtaining a variable ordering in a data-driven manner. Results
are provided in Subsection 4.3. Lastly, our algorithm is compared with some existing variable selection procedures in
Subsection 4.4, in terms of both PR and FDR.

4.1 Estimation of the unknown quantities appearing in our bounds.

We propose to replace the theoretical terms by observable quantities.

4.1.1 Estimation of the PR.

Commonly, the predictive risk is evaluated with the mean squared error on a validation set independent from the training
set used to estimate the parameters (see Formula (7.1) for the definition). However, it requires separating the dataset in
two parts which increases the estimation errors. Here, we propose to use the entire dataset to both apply the model
selection procedure and evaluate the predictive risk. Intuitively, the response vector Y is replaced with Xβ̂m̂(2) which
provides good prediction performances [13]. Moreover, by re-expressing the PR, it is straightforward to show that for
all K > 0 and K

′
> 0 :

E[||Y −Xβ̂m̂(K)||22]− E[||Y −Xβ̂m̂(K′ )||
2
2]

= E[||Xβ̂m̂(2) −Xβ̂m̂(K)||22]− E[||Xβ̂m̂(2) −Xβ̂m̂(K′ )||
2
2]

− 2E[⟨Xβ̂m̂(2) − Y,Xβ̂m̂(K′ ) −Xβ̂m̂(K)⟩]. (4.1)

According to [45], the constant 2 provides the optimal asymptotic control of (2.3), so ||Y − Xβ̂m̂(2)||2 is close to
0. Moreover, Xβ̂m̂(2) is close to ΠIm(X)(Y ), so Xβ̂m̂(2) − Y almost belongs to the subspace Im(X)⊥. In addition,
Xβ̂m̂(K) and Xβ̂m̂(K′ ) belongs to Im(X), so the last term in (4.1) is close to 0 and is negligible compared to the

two others. So, for all K > 0 and K
′
> 0, E[||Y − Xβ̂m̂(K)||22] − E[||Y − Xβ̂m̂(K′ )||22] equals E[||Xβ̂m̂(2) −

Xβ̂m̂(K)||22] − E[||Xβ̂m̂(2) − Xβ̂m̂(K′ )||22] up to an additive negligible term. Hence, the constant K minimizing

E[||Xβ̂m̂(2) −Xβ̂m̂(K)||22] and the one minimizing E[||Y −Xβ̂m̂(K)||22] are almost equal. Therefore, to evaluate the
prediction performances of m̂(K), we propose to compare prediction performances of the estimates Xβ̂m̂(K) and
Xβ̂m̂(2). We introduce the following term that we call estimated difference in predictions :

d̂iff-PR(m̂(K)) =
1

n

n∑
i=1

((
Xβ̂m̂(2)

)
i
−
(
Xβ̂m̂(K)

)
i

)2
. (4.2)

For the rest of the paper, the empirical version of (4.2) is calculated averaging over 100 independent data sets and is
denoted diff-PR. If this difference is significantly smaller than the noise level σ2, the model m̂(K) has performances
similar to those satisfied by m̂(2).

4.1.2 Estimation of the FDR.

The functions b(·, β∗, σ2) and B(·, β∗, σ2) are explicit and easily implementable but depend on β∗, σ2 and D∗
m, which

are unknown.
We propose :

1. to apply the slope heuristic method [13] to get an estimator σ̂2 of σ2,

2. to replace β∗ by the estimator β̂m̂(4),

10
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3. to replace Dm∗ by the number of non zero in β̂m̂(4).

Justifications are provided in Subsection 7.2.

4.2 A data-dependent calibration of K in the model selection procedure.

We propose a completely data-driven calibration of the hyperparameter K up to chosen parameters α and γ that we
define just below. The algorithm depends on the functions K −→ B(·, β̂m̂(4), σ̂

2) and K −→ d̂iff-PR(m̂(K)) to
obtain a lower bound on both PR and FDR.
We propose the following algorithm :

Algorithm 1: Algorithm to calibrate K

1. Choose α the threshold for the FDR control and γ the threshold for the estimated risk estimated difference in
predictions (4.2).

2. Compute I1 =
{
K ≥ 2, B(K, β̂m̂(4), σ̂

2) ∈ ]0, α[
}

.

3. Compute I2 =
{
K ≥ 2, d̂iff-PR(m̂(K)) < γ × σ̂2

}
.

4. If I1 ∩ I2 ̸= ∅, return min
{
K, K ∈ I1 ∩ I2

}
;

Otherwise, return min
{
K,K ∈ I1

}
or take a larger value of either α or γ.

Curves of Figure 3 are generated from the toy data set and from the simulation protocol described in Subsection 7.1.
Parameters α and γ are free and are defined by the user for maximum acceptable values for FDR and PR. In this
example, we choose α = 0.05 and γ = 0.1. The graph at bottom right shows that there exists some constants K
for which a trade-off between both theoretical FDR and PR and both empirical FDR and PR can be achieved : here
for a value of K between 2 and 6. These values correspond to a selected model dimension close to Dm∗ (Figure 3
at the bottom left). By applying our algorithm on this example, we get I1 = [3.3, 10] and I2 = [2, 5.8] and so, our
proposed algorithm returns K = 3.3. The evaluation of the prediction performances provided by the selected model
m̂(3.3) is equal to 1.14 and we get B(3.3, β̂m̂(4), σ̂

2) = 0.03. The constant K = 3.3 corresponds to a low value of
both empirical predictive risk and FDR functions. Indeed, the empirical predictive risk of m̂(3.3) is equal to 1.24 and
the empirical FDR of m̂(3.3) is equal to 0.01. To compare with the usual choice K = 2, the empirical predictive risk
of m̂(2) is equal to 1.25 and the empirical FDR of m̂(2) is equal to 0.05. Hence, our proposed algorithm allows to
maintain the prediction performances from m̂(2), reinforce the control of the FDR criterion and so gain a convenient
trade-off between PR and FDR.

In Subsection 7.4, the algorithm 1 is applied to several data sets generated from various sets of parameters and described
in Table 4. Each time, the hyperparameter K is strictly larger than the commonly used constant 2 and provides a low
value of FDR while maintaining the prediction performances given by m̂(2).

4.3 Towards the non-ordering variable selection

For most applications, no canonical order of variables is available and our algorithm cannot be applied directly. We
propose to generate candidate orders from random procedures to use our method in non-ordering variable selection.
More precisely, we first study the robustness to variable ordering of our method (Subsection 4.3.1) and provide some
procedures to construct variable orders in practice (Subsection 4.3.2). Our algorithm 1 is then applied from the generated
rankings in Subsection 4.4.

4.3.1 Robustness to variable ordering

We propose numerical experiments where the assumption of ordered variables is not fulfilled. The goal is to test the
robustness to variable ordering of our algorithm by measuring how this impacts its performances. We consider the toy
data set where the size of the true model is Dm∗ = 10 and we consider three collections which are the results of a
random permutation of the nested model collection (2.1) on respectively the first ten, the first twelve and the first fifteen
variables. Hence, active variables remain first in the first collection; perturbations may introduce non-active variables
among the first ten variables in the second collection, while in the third collection, some active variables can be pushed
far into the collection.

11



Trade-off between prediction and FDR for variable selection

FDR diff-PR

selected model per dim FDR and F̂DR as function of diff-PR and d̂iff-PR

Figure 3: Top : Curves of the empirical functions FDR
(
m̂(K)

)
(red) and diff-PR

(
m̂(K)

)
(blue), of the B(K, β̂m̂(4), σ̂

2)

functions (pink) and of d̂iff-PR
(
m̂(K)

)
(violet) for K ≥ 2 for the toy data set. Bottom : Curves of the Dm̂(K) as

function of K averaged over the 1000 data sets (left) and values of the empirical FDR
(
m̂(K)

)
and F̂DR

(
m̂(K)

)
as

functions of diff-PR
(
m̂(K)

)
and d̂iff-PR

(
m̂(K)

)
(right) for all K > 0 and for the toy data set.

To test the robustness to variable ordering of our algorithm, Figure 4 shows how the empirical FDR behaves in relation
to its estimated upper bound as well as the empirical and estimated differences in predictions for the three perturbed
collections. We observe that when the permutation concerns only the active variables (on the nested model collection
(2.1)), values of the empirical FDR are smaller than the values of B(K,β∗, σ2) and B(K, β̂m̂(4), σ̂

2) which are close.
For prediction, the diff-PR function has the same behavior than for the nested model collection (2.1).
When the permutation concerns the first twelve and the first fifteen variables, the empirical FDR is higher than
B(K,β∗, σ2) and B(K, β̂m̂(4), σ̂

2) as soon as K ≥ 2 and with an increasing deviation when the error on estimated
variable order increases. Moreover, we observe that the rate of the empirical FDR decay is much slower and values are
high whatever the value of K : above 0.13 and 0.28 for respectively the second and third perturbed model collection.
For prediction, the diff-PR function is stable for K ≥ 2.

12
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FDR diff-PR

Figure 4: Curves of the empirical functions FDR
(
m̂(K)

)
(red) and diff-PR

(
m̂(K)

)
(blue), of the B(K,β∗, σ2)

functions (blue), the B(K, β̂m̂(4), σ̂
2) functions (pink) and d̂iff-PR

(
m̂(K)

)
(violet) for the toy data set and for the

three perturbed collections.

Hence, permutations among only the active variables have no effect on FDR and PR. However, as soon as a non-active
variable is ranked before an active variable, the theoretical guarantees of Theorem 3.2 no longer hold and empirical
FDR can be high whatever the value of K. To tackle this problem, one solution consists of combining our algorithm
with a method discriminating active and non-active variables. We consider this direction for the rest of this section.

4.3.2 Random variable order

We consider four strategies to estimate variable orders. The Bolasso procedure [6] consists in solving the Lasso
equation (1.2), through the LARS algorithm [46], on several resamples and for different values of λ. Variables are
ranked according to their occurrence frequency in the models averaged over the λ’s and the resamples. The random
forests [43] are aggregation of several binary decision trees. The tree predictors are generated on bootstrap resamples and
on a subset of variables randomly chosen. Here, we combine the random forest with the recursive feature elimination
(RFE) algorithm [47] whose efficiency has been proved especially for correlated variables [48]. Variables are ordered
according to their importance defined by the random forest. The Sorted ℓ1 penalized estimator (SLOPE) [35] is obtained
by solving the Lasso equation (1.2) with λ a p-vector calculated from a multiple testing procedure. Lastly, the knockoff
method [24] consists in building a non-active copy X̃j of each Xj and solving the Lasso equation (1.2) for several
values of λ on the augmented matrix composed on the Xj and X̃j variables. Variables are then sorted according to the
values of

Wj = max
(
Zj , Z̃j

)
× sign

(
Zj − Z̃j

)
,

where Zj and Z̃j correspond to the largest λ for which Xj and X̃j are respectively selected. For each strategy, a random
model collection, on which model selection can be applied is defined from the estimated variable order. Bolasso and
random forest both provide a variable order from a prediction point of view, whereas SLOPE and the knockoff method
provide a variable order by considering both PR and FDR controls.

To quantify the ability to discriminate between active and non-active variables, we calculate the proportion of active
variables in models of size 5, 10, 15 and 20 of each random collection. Results are presented in Table 2 where each
value is the average over 100 independent iterations. With Bolasso, random forests and SLOPE, 50 resamples for the
construction of random collections are considered.
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Bolasso SLOPE random
forests

the knockoff
method

Dm = 5 0.99 0.99 0.98 1.00
Dm = 10 0.83 0.83 0.82 0.85
Dm = 15 0.92 0.92 0.90 0.90
Dm = 20 0.95 0.95 0.93 0.92

Table 2: Proportion of active variables in models of size 5, 10, 15 and 20 for random collections built with Bolasso,
SLOPE, random forest and the knockoff method. Each value is the average over 100 independent iterations.

The collection built by the knockoff method is the collection containing the fewest non-active variables in the models
of size 5 and 10. For models of size 15 and 20, Bolasso and SLOPE are slightly better and the proportion of active
variables is always larger than 0.9. We observe with the model of size 20 that there are active variables far away in the
collections, which is undesirable. In the following, we consider now the random collections built with the knockoff
method and Bolasso (since Bolasso is slightly better than SLOPE on scenarios described in Table 4 (see Subsection
7.3)).

4.4 Comparison with other variable selection methods

Performances of Algorithm 1 are compared with three variable selection procedures. The LinSelect penalty [16] is a
model selection criterion introduced in a non-asymptotic setting to take into account of the randomness of the model
collection. The penalty function provides a sharp oracle inequality. The V -fold cross-validation [49, 50, 51] is the most
popular, adaptive and simple variable selection method. The final selected model is the one with the best prediction
performance accuracy over the data sets obtained by splitting the initial data set into a training set and a validation set.
The last method is the knockoff method where the final variable subset is composed by Xj such that Wj ≥ T where T
is defined to satisfy a given control of FDR. LinSelect and V -fold cross-validation aim at providing a control of PR
while the knockoff method aims at providing a control of FDR.

We consider the 50-fold cross-validation and evaluate PR and FDR of our algorithm and of the three variable selection
procedures on the nested model collection (2.1) where the active variables are properly ranked before the non-active
variables and on random collections built with Bolasso and with the knockoff method.

Dm̂ PR(m̂) FDR(m̂)
nested model collection
LinSelect 8.86 1.35 0.01
50-fold CV 26.42 2.29 0.45
Knockoff
Our algorithm 9.37 1.25 0.00
Bolasso collection
LinSelect 10.17 1.93 0.07
50-fold CV 22.10 2.77 0.37
Knockoff
Our algorithm 13.96 1.59 0.25
the knockoffs collection
LinSelect 8.86 1.81 0.03
50-fold CV 20.85 2.45 0.35
Knockoff 0.00 14.10 0.00
Our algorithm 13.33 1.65 0.18

Table 3: Results of the dimension, PR and FDR of the selected models obtained by LinSelect, the 50-fold CV, the
knockoff method and our algorithm, applied on the nested model collection (2.1) and on random collections built
with Bolasso and the knockoff method. Each value is the average over 100 independent iterations. PR and FDR
of each selected model are the empirical quantities. Input parameters of our algorithm are fixed to γ = 0.1 and
α = 0.05. Note that the knockoff variable selection method is adapted for only the knockoff random model

collection.

Table 3 shows the performances of the four variable selection procedures. As the knockoff method is a procedure
for both collection generation and variable selection, the knockoff collection is only used with the knockoff variable
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selection method. On the nested model collection (2.1), our algorithm provides the smallest values in both FDR and PR
and the average of the selected model sizes is the closest to the true model size. LinSelect behaves in a similar way
while the 50-fold cross validation selects a model located in the over-fitting area providing a high value of both PR
and FDR. On random model collections, performances are deteriorated for all methods, as expected, and are slightly
better on model collections built with the knockoff method than with Bolasso. Our algorithm provides the smallest PR
but LinSelect provides the smallest FDR. While LinSelect is designed to control the PR theoretically, we remark that
it is apparently also a relevant candidate to control FDR and to achieve a trade-off between both PR and FDR. The
50-fold cross validation method provides poor results while the knockoff method selects the empty set of variable.
The size of the model selected by our algorithm is larger when the collections are random and provides high val-
ues of FDR. These results show that a meticulous choice of γ and α is important to improve our algorithm performances.

The robustness of our algorithm to variable order, the construction of random model collections and performances of
the four variable selection procedures are studied on several data sets generated from various sets of parameters and
described in Table 4. Results are presented in Subsection 7.3 and Subsection 7.4 and the conclusions remain the same.

5 Conclusions.

The variable selection procedure in a high-dimensional Gaussian linear regression with sparsity assumption is commonly
used to identify a set of variables with prediction performances or with as few non-active variables as possible. For
prediction performances, the PR is usually controlled via a penalized least-squares minimization; to avoid the selection
of non-active variables, the FDR is usually controlled via a multiple testing approach. Controlling the PR tends to select
too many variables, including non-active ones, whereas controlling the FDR tends to select too few variables, leaving
out some active ones.

This work shows that a convenient trade-off between PR and FDR can be achieved in ordered variable selection.
The originality of this paper is to obtain this trade-off through a proper calibration of the hyperparameter K in the
penalty of the model selection (1.4). Firstly, theoretical results lead to non-asymptotic lower and upper bounds on
the FDR

(
m̂(K)

)
function when σ2 is known. Asymptotic behaviors suggest that bounds are optimal. Secondly, the

proposed methodology provides an algorithm to calibrate the hyperparameter K in the penalty function when σ2

is unknown. This algorithm is based on completely data-driven terms : the estimated difference in predictions and
the estimated upper bound on the FDR where the choices of estimators σ̂2 and β̂m̂(4) are derived from an extensive
simulation study. The hyperparameter K is calibrated from the dataset to ensure d̂iff-PR(m̂(K)) < γ × σ̂2 under the
constraint B(K, β̂m̂(4), σ̂

2) < α. Our algorithm is validated on an extensive simulation study and allows to obtain a
selected model ensuring a small value of both theoretical PR and FDR. The calibrated hyperparameter K is strictly
larger than the commonly used constant K = 2. Moreover, PR and FDR values of the selected model with our
algorithm are the smallest values compared with the existing variable selection procedures considered in the paper.
Lastly, we propose a preliminary response to construct a random model collection to extend our work in non-ordering
variable selection. The performances of our algorithm deteriorate as soon as a non-active variable is ranked before an
active one, but combined with procedures with high ability to discriminate between active and non-active variables, our
algorithm is competitive with some existing variable selection procedures.

If Dm̂(K) = q for one K > 1, the lower and upper bounds equal 0. This means that a distinction between Dm∗ = q
and Dm∗ < q is not possible without additional arguments. This is a limitation of our work.

The main perspective of our work is to generalize our theoretical results to non-ordering variable selection. The
ordered variable assumption is the key ingredient of our proofs and appears in the second line of the proof where the
ratio is fixed, allowing randomness only on m̂ that we control thanks to the ordered model selection theory. Hence,
relaxing this assumption requires new technical arguments and this is a real challenge for future work. Moreover, in
non-ordering variable selection, the penalty function (1.4) has to include a logarithmic term to take into account that all
possible models should be explored but this is computationally infeasible given the combinatorial nature of the problem.
In this case, two hyperparameters have to be calibrated. Another way to generalize our work in non-ordering variable
selection is to detect the value of K from which the theoretical FDR is larger than the theoretical upper bound on the
FDR and quantify the gap between the theoretical upper bound and the FDR.

One way to improve the performances of our algorithm can be a meticulous choice of the algorithm input parameters α
and γ, which are arbitrarily fixed in our work.
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Achieving a trade-off between FDR and PR is not trivial and investigating alternatives in this direction can be considered
in future work. In particular, satisfying some trade-offs between PR and FDR for each model of the generated collection
can be judicious in processing our variable selection then.
A possible opening is to study the potential characteristics of the hyperparameter K provided by our algorithm in a
theoretical point of view (dependence in β∗ and σ2). Another possible extension is to study the false negative rate
(FNR) function in the model selection procedure, similarly and in addition to the FDR one. This can provide a more
powerful method, similarly to [32, 33].
Finally, another generalization is to extend our theoretical results to unknown variance, random model collections or to
non-fixed designs, which are more general frameworks adapted to some application points of view. These extensions
are much more intricate.

6 Proofs of theoretical results.

This section contains proofs of all the theoretical results of this paper.

6.1 FDR expression in model selection.

Proof of Formula 3.1.
If D∗

m = q, then FP(m) = 0 for all m ∈ M and FDR(m) = 0 for all m ∈ M.
Let us now suppose that D∗

m < q. The FDP expression within the model selection procedure is :

∀K > 0, FDP(m̂(K)) =
FP(m̂(K))

max(Dm̂(K), 1)

=
(*)

Dm̂(K) −Dm∗

Dm̂(K)
1{Dm̂(K)>Dm∗}

=

q∑
r=1

r −Dm∗

r
1{r>Dm∗}1{Dm̂(K)=r}

=
(**)

q∑
r=Dm∗+1

r −Dm∗

r
1{m̂(K)=mr}

=
(***)

q∑
r=Dm∗+1

r −Dm∗

r
1 q

∩
ℓ=0
ℓ ̸=r

{critK(mr)<critK(mℓ)}


.

(*) and (**) are due to the fact that models (m)m∈M are nested and m∗ ∈ M. (***) is obtained since the critK function
is injective on M. Finally, by taking the expectation, we obtain the FDR expression (3.1).

Proof of Proposition 3.1.
Before proving Proposition 3.1, let us cite and prove two lemmas.

Lemma 6.1. For r ∈ {Dm∗ + 1, · · · , q} and for all ℓ ∈ {0, · · · , r − 1} :

||Y −Xβ̂mr
||22 − ||Y −Xβ̂mℓ

||22 = −
r∑

k=ℓ+1

⟨Y, uk⟩2.

Lemma 6.2. For r ∈ {Dm∗ + 1, · · · , q} and for all ℓ ∈ {r + 1, · · · , q} :

||Y −Xβ̂mr ||22 − ||Y −Xβ̂mℓ
||22 =

ℓ∑
k=r+1

⟨Y, uk⟩2.
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Proof of Lemma 6.1.
For r ∈ {Dm∗ + 1, · · · , q} and ℓ ∈ {0, · · · , r − 1} :

||Y −Xβ̂mr
||22 − ||Y −Xβ̂mℓ

||22 = ||Xβ̂mr
||22 − ||Xβ̂mℓ

||22 + 2⟨Y,Xβ̂mℓ
−Xβ̂mr

⟩
= ||Xβ̂mr

||22 − ||Xβ̂mℓ
||22 + 2⟨Y −Xβ̂mr

, Xβ̂mℓ
⟩

− 2⟨Y −Xβ̂mr , Xβ̂mr ⟩+ 2⟨Xβ̂mr , Xβ̂mℓ
⟩ − 2||Xβ̂mr ||22

= −||Xβ̂mr
||22 − ||Xβ̂mℓ

||22 + 2⟨Xβ̂mr
, Xβ̂mℓ

⟩ = −||Xβ̂mr
−Xβ̂mℓ

||22.

The last line is due to the fact that Y −Xβ̂mr
∈ (mr)

⊥ ⊂ (mℓ)
⊥ since mℓ ⊂ mr and Xβ̂mr

is the projection of Y
onto mr.
Then,

||Xβ̂mr −Xβ̂mℓ
||22 = ||Πmr (Y )−Πmℓ

(Y )||22
= ||ΠSpan(X1,··· ,Xr)(Y )−ΠSpan(X1,··· ,Xℓ)(Y )||22
=
(*)

||ΠSpan(u1,··· ,ur)(Y )−ΠSpan(u1,··· ,uℓ)(Y )||22

= ||ΠSpan(uℓ+1,··· ,ur)(Y )||22

= ||
r∑

k=ℓ+1

⟨Y, uk⟩uk||22

=
(**)

r∑
k=ℓ+1

⟨Y, uk⟩2.

(*) come from the definition of (u1, · · · , un) and (**) is obtained by Parseval’s identity.

Proof of Lemma 6.2.
For r ∈ {Dm∗ + 1, · · · , q} and l ∈ {r + 1, · · · , q} :

||Y −Xβ̂mr
||22 − ||Y −Xβ̂mℓ

||22 = ||Xβ̂mr
||22 − ||Xβ̂mℓ

||22 + 2⟨Y,Xβ̂mℓ
−Xβ̂mr

⟩
= ||Xβ̂mr ||22 − ||Xβ̂mℓ

||22 + 2⟨Y −Xβ̂mℓ
, Xβ̂mℓ

⟩
− 2⟨Y −Xβ̂mℓ

, Xβ̂mr
⟩+ 2||Xβ̂mℓ

||22
− 2⟨Xβ̂mℓ

, Xβ̂mr
⟩

=
(*)

||Xβ̂mr ||22 + ||Xβ̂mℓ
||22 − 2⟨Xβ̂mℓ

, Xβ̂mr ⟩

= ||Xβ̂mℓ
−Xβ̂mr

||22.

(*) is due to the fact that Y −Xβ̂mℓ
∈ (mℓ)

⊥ ⊂ (mr)
⊥ since mr ⊂ mℓ, and Xβ̂mℓ

is the projection of Y onto mℓ.
Then,

||Xβ̂mℓ
−Xβ̂mr ||22 = ||Πmℓ

(Y )−Πmr (Y )||22
= ||ΠSpan(X1,··· ,Xℓ)(Y )−ΠSpan(X1,··· ,Xr)(Y )||22
=
(*)

||ΠSpan(u1,··· ,uℓ)(Y )−ΠSpan(u1,··· ,ur)(Y )||22

= ||ΠSpan(ur+1,··· ,uℓ)(Y )||22

= ||
ℓ∑

k=r+1

⟨Y, uk⟩uk||22

=
(**)

ℓ∑
k=r+1

⟨Y, uk⟩2.

(*) come from the definition of (u1, · · · , un) and (**) is obtained by Parseval’s identity.
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Proof of Proposition 3.1.

Starting from (3.1), we decompose the event

{
q
∩
ℓ=0
ℓ ̸=r

{critK(mr) < critK(mℓ)}

}
by the intersection of these two events{

r−1
∩
ℓ=0

{critK(mr) < critK(mℓ)}
}

and
{

q
∩

ℓ=r+1
{critK(mr) < critK(mℓ)}

}
.

By using the definition of the critK function, we have for r ∈ {Dm∗ +1, · · · , q} and ℓ ∈ {0, · · · , r− 1, r+1, · · · , q} :{
critK(mr) < critK(mℓ)

}
=
{
||Y −Xβ̂mr

||22 +Kσ2r < ||Y −Xβ̂mℓ
||22 +Kσ2ℓ

}
=
{
||Y −Xβ̂mr

||22 − ||Y −Xβ̂mℓ
||22 < Kσ2(ℓ− r)

}
.

So, by applying Lemma 6.1, ℓ ∈ {0, · · · , r − 1} :{
critK(mr) < critK(mℓ)

}
=
{ r∑
k=ℓ+1

⟨Y, uk⟩2 > Kσ2(r − ℓ)
}
,

and by applying Lemma 6.2, ℓ ∈ {r + 1, · · · , q} :{
critK(mr) < critK(mℓ)

}
=
{ ℓ∑
k=r+1

⟨Y, uk⟩2 < Kσ2(ℓ− r)
}
.

In this way,

{
q
∩
ℓ=0
ℓ ̸=r

{critK(mr) < critK(mℓ)}

}
is decomposed by two events :

{
r−1
∩
ℓ=0

{
r∑

k=ℓ+1

⟨Y, uk⟩2 > Kσ2(r − ℓ)

}}
∩

{
q
∩

ℓ=r+1

{
ℓ∑

k=r+1

⟨Y, uk⟩2 < Kσ2(ℓ− r)

}}
.

Let us define U the n× n matrix such that uk is the k−th column of U . Since ε ∼ N (0, σ2In) and (u1, · · · , un) is an

orthonormal basis of Rn, we get UT ε =
(
⟨ε, u1⟩, · · · , ⟨ε, un⟩

)T
∼ N (0, σ2UInU

T ) = N (0, σ2In). Hence, random

variables (⟨Y, ui⟩)i∈{1,··· ,n} are independent with ⟨Y, ui⟩ ∼ N
(
⟨Xβ∗, ui⟩, σ2

)
for all i in {1, · · · , n}. Since the first

event of the previous decomposition depends only on random variables ⟨Y, ui⟩ for i ∈ {1, · · · , r − 1} whereas the
second one depends only on random variables ⟨Y, ui⟩ for i ∈ {r + 1, · · · , q}, the two events are independent. Hence,
from (3.1), we obtain for all K > 0 :

FDR(m̂(K)) =

q∑
r=Dm∗+1

r −Dm∗

r
P

(
r−1
∩
ℓ=0

{
r∑

k=ℓ+1

⟨Y, uk⟩2 > Kσ2(r − ℓ)

})

× P

(
q
∩

ℓ=r+1

{
ℓ∑

k=r+1

⟨Y, uk⟩2 < Kσ2(ℓ− r)

})
.

Moreover, since ⟨Xβ∗, uk⟩ = 0,∀k > Dm∗ and since r ≥ Dm∗ + 1, we have :
r∑

k=ℓ+1

⟨Y, uk⟩2 =

r∑
k=ℓ+1

⟨ε, uk⟩2.

So, for all K > 0 and for each r ∈ {Dm∗ + 1, · · · , q} :

P

(
q
∩

ℓ=r+1

{
ℓ∑

k=r+1

⟨Y, uk⟩2 < Kσ2(ℓ− r)

})
= P

(
q
∩

ℓ=r+1

{ ℓ∑
k=r+1

Z̃k
2
< Kσ2(ℓ− r)

})
,

where Z̃k
i.i.d.∼ N (0, σ2)

P

(
q
∩

ℓ=r+1

{
ℓ∑

k=r+1

⟨Y, uk⟩2 < Kσ2(ℓ− r)

})
= P

(
q
∩

ℓ=r+1

{ ℓ∑
k=r+1

Z2
k < K(ℓ− r)

})
,

where Zk
i.i.d.∼ N (0, 1).
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Hence, for all K > 0 and for each r ∈ {Dm∗ + 1, · · · , q},

P

(
q
∩

ℓ=r+1

{
ℓ∑

k=r+1

⟨Y, uk⟩2 < Kσ2(ℓ− r)

})
does not depend on the data and we deduce the Formula (3.2) with :

Pr(K) = P
(

q
∩

ℓ=r+1

{ ℓ∑
k=r+1

Z2
k < K(ℓ− r)

})
,

Qr(K,β∗, σ2) = P
(

r−1
∩
ℓ=0

{ r∑
k=ℓ+1

⟨Y, uk⟩2 > Kσ2(r − ℓ)
})

,

where Zk
i.i.d.∼ N (0, 1), ∀k ∈ {r + 1, · · · , q}.

6.2 General bounds.

Proof of Theorem 3.2.
We start from (3.2).

- bounds on the Qr terms.
For all K > 0 and for each r ∈ {Dm∗ + 1, · · · , q}, we recall that :

Qr(K,β∗, σ2) = P

(
r−1
∩
ℓ=0

{
r∑

k=ℓ+1

⟨Y, uk⟩2 > Kσ2(r − ℓ)

})
,

and since ⟨Xβ∗, uk⟩ = 0,∀k > Dm∗ , we have :

Qr(K,β∗, σ2)

= P

(
r−1
∩
ℓ=0

{
r∑

k=ℓ+1

(
⟨ε, uk⟩21k>Dm∗ + ⟨Y, uk⟩21k≤Dm∗

)
> Kσ2(r − ℓ)

})

= P
({

⟨ε, ur⟩2 > Kσ2
}
∩ · · · ∩

{
⟨ε, ur⟩2 + · · ·+ ⟨ε, uDm∗+1⟩2 > Kσ2(r −Dm∗)

}
∩
{
⟨ε, ur⟩2 + · · ·+ ⟨ε, uDm∗+1⟩2 + ⟨Y, uDm∗ ⟩2 > Kσ2(r −Dm∗ + 1)

}
∩ · · ·

∩
{
⟨ε, ur⟩2 + · · ·+ ⟨ε, uDm∗+1⟩2 + ⟨Y, uDm∗ ⟩2 + · · ·+ ⟨Y, u1⟩2 > Kσ2r

})
= P

({
cr > Kσ2

}
∩
{
cr + cr−1 > 2Kσ2

}
∩ · · · ∩

{
cr + cr−1 + · · ·+ c1 > rKσ2

})
(6.1)

where cℓ = ⟨Y, uℓ⟩2 for ℓ ∈ {1, · · ·Dm∗} and cℓ = ⟨ε, uℓ⟩2 for ℓ ∈ {Dm∗ + 1, · · · , r}.

Lower bound on Qr(K,β∗, σ2) for r ∈ {Dm∗ + 1, · · · , q} :
Lemma 6.3. Let us consider an integer s > 1, K > 0 and c1, · · · , cs s non-negative random independent quantities. We
define by Eℓ the event {cℓ > ℓKσ2} for ℓ ∈ {1, · · · , s} and by Fℓ the event {Kσ2 < cℓ ≤ ℓKσ2} for ℓ ∈ {2, · · · , s}.
Then : {

cs > Kσ2
}
∩
{
cs + cs−1 > 2Kσ2

}
∩ · · · ∩

{
cs + cs−1 + · · ·+ c1 > sKσ2

}
⊇ Es ⊔

(
Fs ⊓

(
Es−1 ⊔

(
Fs−1 ⊓

(
Es−2 ⊔ · · · ⊔ (F3 ⊓ (E2 ⊔ (F2 ⊓ E1)))

))))
,

where ∩ and ⊓ design respectively any intersection and a disjoint intersection of events, as well as ∪ and ⊔ designing
respectively any union and a disjoint union of events.

Proof. We prove Lemma 6.3 by a recurrence on s ≥ 1.
For s = 1, both sets correspond to E1, so the inclusion is obvious. Let s ≥ 1 and suppose that the inclusion is true for s.
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With the definitions of Es+1 and Fs+1, we obtain :{
cs+1 > Kσ2

}
∩
{
cs+1 + cs > 2Kσ2

}
∩ · · · ∩

{
cs+1 + cs + · · ·+ c1 > (s+ 1)Kσ2

}
=

(
Es+1 ⊔ Fs+1

)

∩

({
cs+1 + cs > 2Kσ2

}
∩ · · · ∩

{
cs+1 + cs + · · ·+ c1 > (s+ 1)Kσ2

})

=

(
Es+1 ∩

({
cs+1 + cs > 2Kσ2

}
∩ · · · ∩

{
cs+1 + cs + · · ·+ c1 > (s+ 1)Kσ2

}))

⊔

(
Fs+1 ∩

({
cs+1 + cs > 2Kσ2

}
∩ · · · ∩

{
cs+1 + cs + · · ·+ c1 > (s+ 1)Kσ2

}))
=
(*)

Es+1

⊔

(
Fs+1 ∩

({
cs+1 + cs > 2Kσ2

}
∩ · · · ∩

{
cs+1 + cs + · · ·+ c1 > (s+ 1)Kσ2

}))

⊇
(**)

Es+1 ⊔

(
Fs+1

∩
({

cs > Kσ2
}
∩
{
cs + cs−1 > 2Kσ2

}
∩ · · · ∩ {cs + cs−1 + · · ·+ c1 > sKσ2}

))

⊇
(***)

Es+1 ⊔

(
Fs+1 ∩

(
Es ⊔

(
Fs ⊓

(
Es−1 ⊔ · · · ⊔ (F3 ⊓ (E3 ⊔ (F2 ⊓ E1)))

))))

⊇
(****)

Es+1 ⊔

(
Fs+1 ⊓

(
Es ⊔

(
Fs ⊓

(
Es−1 ⊔ · · · ⊔ (F3 ⊓ (E3 ⊔ (F2 ⊓ E1)))

))))
.

(*) is true since ci are non-negative for all i ∈ {1, · · · , s+ 1} providing that Es+1 ⊂
({

cs+1 + cs > 2Kσ2
}
∩ · · · ∩{

cs+1 + cs + · · ·+ c1 > (s+ 1)Kσ2
})

, (**) comes from the inclusion
{
cs+1 > Kσ2

}
⊂ Fs+1. We obtain (***)

by applying the recurrence assumption at the step s. Independence of c1, · · · , cs+1 provides the independence between

Fs+1 and
(
Es ⊔

(
Fs ⊓

(
Es−1 ⊔ · · · ⊔ (F3 ⊓ (E3 ⊔ (F2 ⊓ E1)))

)))
which gets (****).

Thus, the property is true for s+ 1, which proves lemma.

By applying Lemma 6.3 on Formula (6.1) with s = r, we obtain :

Qr(K,β∗, σ2) ≥ P(Er)

+ P(Fr)

(
P(Er−1) + P(Fr−1)

(
P(Er−2) + · · ·+ P(F3)

(
P(E2) + P(F2)P(E1)

)))
.

By using that ⟨Y, uℓ⟩ ∼ N (⟨Xβ∗, uℓ⟩, σ2) for ℓ ∈ {1, · · · , Dm∗} and ⟨ε, uℓ⟩ ∈ N (0, σ2) for ℓ ∈ {1, · · · , r}, we get :
For ℓ ∈ {1, · · · , Dm∗} :

P(Eℓ) = P
({

⟨Y, uℓ⟩2 > ℓKσ2
})

= 2−
(
Φ
(√

ℓK − ⟨Xβ∗, uℓ⟩
σ

)
+Φ

(√
ℓK +

⟨Xβ∗, uℓ⟩
σ

))
= Gℓ.
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For ℓ ∈ {2, · · · , Dm∗} :

P(Fℓ) = P
({

Kσ2 < ⟨Y, uℓ⟩2 ≤ ℓKσ2
})

= Φ
(√

ℓK − ⟨Xβ∗, uℓ⟩
σ

)
+Φ

(√
ℓK +

⟨Xβ∗, uℓ⟩
σ

)
−
(
Φ
(√

K − ⟨Xβ∗, uℓ⟩
σ

)
+Φ

(√
K +

⟨Xβ∗, uℓ⟩
σ

))
= Hℓ.

For ℓ ∈ {Dm∗ + 1, · · · , r} :

P(Eℓ) = P
({

⟨ε, uℓ⟩2 > ℓKσ2
})

= 2

(
1− Φ

(√
ℓK
))

= Gℓ,

P(Fℓ) = P
({

Kσ2 < ⟨ε, uℓ⟩2 ≤ ℓKσ2
})

= 2

(
Φ
(√

ℓK
)
− Φ

(√
K
))

= Hℓ.

Hence, a lower bound on Qr(K,β∗, σ2) is obtained for all K > 0 :

f
r
(K,β∗, σ2) ≤ Qr(K,β∗, σ2) (6.2)

with :

f
r
(K,β∗, σ2) = Gr +Hr fr−1

(K,β∗, σ2)

and f
1
(K,β∗, σ2) = G1. (6.3)

Upper bound on Qr(K,β∗, σ2) for r ∈ {Dm∗ + 1, · · · , q} :
By using definitions of Lemma 6.3 and formula (6.1), we get :

Qr(K,β∗, σ2) ≤ min

(
P
({

cr > Kσ2
})

,P
({

cr + cr−1 > 2Kσ2
})

, · · · ,

P
({

cr + cr−1 + · · ·+ c1 > rKσ2
}))

. (6.4)

Since ⟨ε, ui⟩i∈{Dm∗+1,··· ,r}
i.i.d.∼ N

(
0, σ2

)
, we have for all j ∈ {Dm∗ + 1, · · · , r} :

P
({

cr + · · ·+ cj > (r − j + 1)Kσ2
})

= 1− Fχ2(r−j+1)

(
(r − j + 1)K

)
. (6.5)
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For all j ∈ {1, · · · , Dm∗},

P
({

cr + · · ·+ cj > (r − j + 1)Kσ2
})

= P
({

cr + · · ·+ cDm∗+1 + cDm∗ + · · ·+ cj > (r − j + 1)Kσ2
})

= P
({

cr + · · ·+ cDm∗+1 +
(
⟨Xβ∗, uDm∗ ⟩+ ⟨ε, uDm∗ ⟩

)2
+ · · ·

+
(
⟨Xβ∗, uj⟩+ ⟨ε, uj⟩

)2
> (r − j + 1)Kσ2

})
≤

(**)
P
({

cr + · · ·+ cDm∗+1 + 2⟨Xβ∗, uDm∗ ⟩2 + 2⟨ε, uDm∗ ⟩2 + · · ·

+ 2⟨Xβ∗, uj⟩2 + 2⟨ε, uj⟩2 > (r − j + 1)Kσ2
})

≤ P
({

2cr + · · ·+ 2cDm∗+1 + 2⟨ε, uDm∗ ⟩2 + · · ·+ 2⟨ε, uj⟩2 > (r − j + 1)Kσ2

− 2⟨Xβ∗, uDm∗ ⟩2 − · · · − 2⟨Xβ∗, uj⟩2
})

=
(***)

P
({

2σ2Z2
r + · · ·+ 2σ2Z2

Dm∗+1 + 2σ2Z2
Dm∗ + · · ·+ 2σ2Z2

j

> (r − j + 1)Kσ2 − 2⟨Xβ∗, uDm∗ ⟩2 − · · · − 2⟨Xβ∗, uj⟩2
})

,

where (Zℓ)ℓ∈{j,··· ,r}
i.i.d∼ N (0, 1)

= P
({

Z2
r + · · ·+ Z2

Dm∗+1 + Z2
Dm∗ + · · ·+ Z2

j

>
(r − j + 1)K

2
− ⟨Xβ∗, uDm∗ ⟩2

σ2
− · · · − ⟨Xβ∗, uj⟩2

σ2

})
= P

({
X >

(r − j + 1)K

2
− ⟨Xβ∗, uDm∗ ⟩2

σ2
− · · · − ⟨Xβ∗, uj⟩2

σ2

})
,

for X ∼ χ2(r − j + 1)

= 1− Fχ2(r−j+1)

(
(r − j + 1)K

2
− ⟨Xβ∗, uDm∗ ⟩2

σ2
− · · · − ⟨Xβ∗, uj⟩2

σ2

)
. (6.6)

(**) provides from (a+ b)2 ≤ 2(a2 + b2), ∀(a, b) ∈ R and (***) is true since ⟨ε, ui⟩i∈{1,··· ,r}
i.i.d.∼ N

(
0, σ2

)
.

So, from (6.4), (6.5) and (6.6), we deduce that for all K > 0 and for each r ∈ {Dm∗ + 1, · · · , q} :

Qr(K,β∗, σ2) ≤

min

(
1− Fχ2(1)(K), · · · , 1− Fχ2(r−Dm∗ )

(
(r −Dm∗)K

)
,

1− Fχ2(r−Dm∗+1)

(
(r −Dm∗ + 1)K

2
− ⟨Xβ∗, uDm∗ ⟩2

σ2

)
,

1− Fχ2(r−Dm∗+2)

(
(r −Dm∗ + 2)K

2
− ⟨Xβ∗, uDm∗ ⟩2

σ2
−

⟨Xβ∗, uDm∗−1
⟩2

σ2

)
,

· · · ,

1− Fχ2(r)

(
rK

2
− ⟨Xβ∗, uDm∗ ⟩2

σ2
−

⟨Xβ∗, uDm∗−1
⟩2

σ2
− · · · − ⟨Xβ∗, u1⟩2

σ2

))
.
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Hence, an upper bound on Qr(K,β∗, σ2) is obtained for all K > 0 :

Qr(K,β∗, σ2) ≤ fr(K,β∗, σ2)) (6.7)

with :

fr(K,β∗, σ2) = 1−max

(
max

ℓ∈{1,··· ,r−Dm∗}

(
Fχ2(ℓ)(ℓK)

)
,

max
ℓ∈{r−Dm∗+1,··· ,r}

(
Fχ2(ℓ)

(ℓK
2

−
Dm∗∑

k=r−ℓ+1

⟨Xβ∗, uk⟩2

σ2

)))
. (6.8)

- bounds on the FDR.
By combining (3.2), (6.2), (6.3), (6.7), (6.8) and (3.3), we obtain :

q∑
r=Dm∗+1

(
r −Dm∗

r
Pr(K)f

r
(K,β∗, σ2)

)
≤ FDR(m̂(K))

and

FDR(m̂(K)) ≤
q∑

r=Dm∗+1

(
r −Dm∗

r
Pr(K)fr(K,β∗, σ2)

)
,

which allows us to obtain Theorem 3.2 with ∀K > 0,

b(K,β∗, σ2) =

q∑
r=Dm∗+1

(
r −Dm∗

r
Pr(K)f

r
(K,β∗, σ2)

)

and

B(K,β∗, σ2) =

q∑
r=Dm∗+1

(
r −Dm∗

r
Pr(K)fr(K,β∗, σ2)

)
.

6.3 Strictly positive FDR.

Proof of Corollary 3.3.
From Theorem 3.2, we have ∀K > 0,

FDR(m̂(K)) ≥
q∑

r=Dm∗+1

(
r −Dm∗

r
Pr(K) f

r
(K,β∗, σ2)

)
. (6.9)

For the rest of the proof, we use the following Lemma :

Lemma 6.4 (Frank R. Kschischang [52]). The complementary error function, erfc(x), is defined, for x ≥ 0, as :

erfc(x) = 2
(
1− FN (0, 12 )

(x)
)

where FN (0, 12 )
designs the cumulative function of the centered Gaussian with the variance equals 1

2 .
Then,

∀x ≥ 0,
2e−x2

√
π
(
x+

√
x2 + 2

) ≤ erfc(x) ≤ e−x2

√
πx

.
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We remark that for all x ≥ 0, 1− Φ(x) = 1
2erfc

(
x√
2

)
. Then, for each r ∈ {Dm∗ + 1, · · · , q},

f
r
(K,β∗, σ2) = Gr +Hr

(
Gr−1 +Hr−1

(
Gr−2 + · · ·+H2G1

))
≥ Gr

= 2

(
1− Φ

(√
rK
))

= ercf
(√rK

2

)
≥

(**)

2
√
π
(√

rK
2 +

√
rK
2 + 2

)e− rK
2

=
2
√
2

√
π
(√

rK +
√
rK + 4

)e− rK
2 . (6.10)

(**) is provided by Lemma 6.4. So, from (6.9) and (6.10), we obtain :

∀K > 0, FDR(m̂(K)) ≥
q∑

r=Dm∗+1

(
r −Dm∗

r
Pr(K)

2
√
2

√
π
(√

rK +
√
rK + 4

)e− rK
2

)
.

This lower bound is strictly positive and since the Pr(K) terms are all strictly positive too, we deduce that the FDR
function is a strictly positive function.

6.4 Asymptotic analysis.

Proof of Corollary 3.4.
For all r ∈ {Dm∗ + 1, · · · , q} and by using the definitions from Theorem 3.2,
for ℓ ∈ {1, · · · , Dm∗} :

Gℓ = 2−
(
Φ
(√

ℓK − ⟨Xβ∗, uℓ⟩
σ

⟩
)
+Φ

(√
ℓK +

⟨Xβ∗, uℓ⟩
σ

))
−→

K−→+∞
0;

for ℓ ∈ {2, · · · , Dm∗} :

Hℓ = Φ
(√

ℓK − ⟨Xβ∗, uℓ⟩
σ

)
+Φ

(√
ℓK +

⟨Xβ∗, uℓ⟩
σ

)
−(

Φ
(√

K − ⟨Xβ∗, uℓ⟩
σ

)
+Φ

(√
K +

⟨Xβ∗, uℓ⟩
σ

))
−→

K−→+∞
0;

and for ℓ ∈ {Dm∗ + 1, · · · , r} :

Gℓ = 2

(
1− Φ

(√
ℓK
))

−→
K−→+∞

0,

Hℓ = 2

(
Φ
(√

ℓK
)
− Φ

(√
K
))

−→
K−→+∞

0;

which provides that f
r
(K,β∗, σ2) −→

K−→+∞
0.

Moreover, fr(K,β∗, σ2)) −→
K−→+∞

0. So, Qr(K,β∗, σ2) −→
K−→+∞

0. In the same way, Pr(K) −→
K−→+∞

1. So,

Pr(K)Qr(K,β∗, σ2) −→
K−→+∞

0.

Finally, for each r ∈ {Dm∗ + 1, · · · , q}, we deduce from (3.2) that

FDR(m̂(K)) −→
K−→+∞

0.
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For each r ∈ {Dm∗ + 1, · · · , q} Pr(K) −→
K−→+∞

1, we deduce that for all C1 ∈]0, 1[, there exists L̃C1 > 0 such that

∀K > L̃C1
and ∀r ∈ {Dm∗ + 1, · · · , q}, we have C1 ≤ Pr(K). For the following, we fix C1 ∈]0, 1[.

By using (6.2), (6.7) and Pr(K) ≤ 1 for each r ∈ {Dm∗ + 1, · · · , q}, we deduce that :

∀K > L̃C1
, FDR(m̂(K)) ≥ C1

q∑
r=Dm∗+1

(
r −Dm∗

r
f
r
(K,β∗, σ2)

)
(6.11)

and

∀K > 0, FDR(m̂(K)) ≤
q∑

r=Dm∗+1

(
r −Dm∗

r
fr(K,β∗, σ2))

)
. (6.12)

- Upper bound on fr :
For each r ∈ {Dm∗ + 1, · · · , q} and for all K > 0 :

fr(K,β∗, σ2)) = 1−max

(
max

ℓ∈{1,··· ,r−Dm∗}

(
Fχ2(ℓ)(ℓK)

)
,

max
ℓ∈{r−Dm∗+1,··· ,r}

(
Fχ2(ℓ)

(ℓK
2

−
Dm∗∑

k=r−ℓ+1

⟨Xβ∗, uk⟩2

σ2

)))

= min

(
min

ℓ∈{1,··· ,r−Dm∗}

(
P
(
Xℓ > ℓK

))
,

min
ℓ∈{r−Dm∗+1,··· ,r}

(
P
(
Yℓ >

ℓK

2
−

Dm∗∑
k=r−ℓ+1

⟨Xβ∗, uk⟩2

σ2

)))
,

with Xℓ ∼ χ2(ℓ) and Yℓ ∼ χ2(ℓ)

= min

(
min

ℓ∈{1,··· ,r−Dm∗}

(
P
(
Xℓ − ℓ > ℓK − ℓ

))
,

min
ℓ∈{r−Dm∗+1,··· ,r}

(
P
(
Yℓ − ℓ >

ℓ(K − 2)

2
−

Dm∗∑
k=r−ℓ+1

⟨Xβ∗, uk⟩2

σ2

)))
,

with Xℓ ∼ χ2(ℓ) and Yℓ ∼ χ2(ℓ). (6.13)

So, for each r ∈ {Dm∗ + 1, · · · , q} and for all K > 0 :

fr(K,β∗, σ2)) ≤ min
ℓ∈{1,··· ,r−Dm∗}

(
P
(
Xℓ − ℓ > ℓK − ℓ

))
, with Xℓ ∼ χ2(ℓ).

By the exponential inequality of [53] for X ∼ χ2(ℓ) and ℓ ∈ N∗ :

∀x ≥ 0, P
(
X − ℓ > 2

√
ℓx+ 2x

)
≤ e−x. (6.14)

We apply (6.14) for each ℓ = 1, · · · , (r −Dm∗) with x = ℓ
4

(
1−

√
2K − 1

)2
which is one solution of 2

√
ℓx+ 2x =

ℓK − ℓ when K > 1. We obtain for all K > 1 :

min
ℓ∈{1,··· ,r−Dm∗}

(
P
(
Xℓ − ℓ > ℓK − ℓ

))
≤ min

ℓ=1,··· ,(r−Dm∗ )

(
e−

ℓ
4

(
1−

√
2K−1

)2)
≤ e

(r−Dm∗ )
√

2K−1

2 e−
(r−Dm∗ )K

2 . (6.15)

25



Trade-off between prediction and FDR for variable selection

So, from (6.12) and (6.15), we obtain for each r ∈ {Dm∗ + 1, · · · , q} and for all K > 1 :

FDR(m̂(K)) ≤
q∑

r=Dm∗+1

(
r −Dm∗

r
e

(r−Dm∗ )
√

2K−1

2 e−
(r−Dm∗ )K

2

)

≤ e−
K
2

q∑
r=Dm∗+1

(
r −Dm∗

r
e

(r−Dm∗ )
√

2K−1

2

)
.

For all η > 0 and r ∈ {Dm∗ + 1, · · · , q}, e
(r−Dm∗ )

√
2K−1

2 = o
K−→+∞

(
eηK

)
.

Hence, ∀η > 0

FDR(m̂(K)) = o
K−→+∞

(
e−K( 1

2−η)
)
,

which allows to obtain (3.6).

Proof of Remark 3.6 :
The inequalities (6.11) and (6.12) are also true when K −→ +∞ and σ −→ 0 with 1

σ = o
σ−→0

(
√
K). To obtain the

finest asymptotic upper bound (3.9), we start from the equation (6.13) and we consider the second term. Similar to
previously, we apply (6.14) for each ℓ = r −Dm∗ + 1, · · · , r with

x =
ℓ

4

(
1−

√√√√K − 1− 2

ℓ

Dm∗∑
k=r−ℓ+1

⟨Xβ∗, uk⟩2
σ2

)2

,

which is one solution of

2
√
ℓx+ 2x =

ℓ(K − 2)

2
−

Dm∗∑
k=r−ℓ+1

⟨Xβ∗, uk⟩2

σ2

when σ2(K − 1) > 2
r−Dm∗+1

Dm∗∑
k=1

⟨Xβ∗, uk⟩2 + 2. This condition is valid since σ −→ 0 with 1
σ = o

σ−→0
(
√
K)

leading to 1
σ2 = o

σ−→0
(K) and so σ2(K − 1) −→ +∞ when K −→ +∞. We obtain for all K > 0 such that

σ2(K − 1) > 2
r−Dm∗+1

Dm∗∑
k=1

⟨Xβ∗, uk⟩2 + 2 :

min
ℓ∈{r−Dm∗+1,··· ,r}

(
P
(
Yℓ − ℓ >

ℓ(K − 2)

2
−

Dm∗∑
k=r−ℓ+1

⟨Xβ∗, uk⟩2

σ2

)))

≤ min
ℓ∈{r−Dm∗+1,··· ,r}

(
e

− ℓ
4

(
1−

√√√√K−1− 2
ℓ

Dm∗∑
k=r−ℓ+1

⟨Xβ∗,uk⟩2

σ2

)2)

≤ e
1
2

Dm∗∑
k=1

⟨Xβ∗,uk⟩2

σ2

e
r
2

√
K−1− 2

r

Dm∗∑
k=1

⟨Xβ∗,uk⟩2

σ2

e−
rK
4 . (6.16)

(*) come from the fact that a minimum into a set is smaller than any value in the set. We choose the value corresponding
for ℓ = 0.
So, from (6.12), (6.15) and (6.16), we obtain for each r ∈ {Dm∗+1, · · · , q} and for all K > 1 respecting σ2(K−1) >
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2
r−Dm∗+1

Dm∗∑
k=1

⟨Xβ∗, uk⟩2 + 2 :

FDR(m̂(K)) ≤
q∑

r=Dm∗+1

(
r −Dm∗

r
min

(
e

(r−Dm∗ )
√

2K−1

2 e−
(r−Dm∗ )K

2 ,

e
1
2

Dm∗∑
k=1

⟨Xβ∗,uk⟩2

σ2

e
r
2

√
K−1− 2

r

Dm∗∑
k=1

⟨Xβ∗,uk⟩2

σ2

e−
rK
4

))

= min

(
q∑

r=Dm∗+1

(
r −Dm∗

r
e

(r−Dm∗ )
√

2K−1

2 e−
(r−Dm∗ )K

2

)
,

q∑
r=Dm∗+1

(
r −Dm∗

r
e

1
2

Dm∗∑
k=1

⟨Xβ∗,uk⟩2

σ2

e
r
2

√
K−1− 2

r

Dm∗∑
k=1

⟨Xβ∗,uk⟩2

σ2

e−
rK
4

))

≤ min

(
e−

K
2

q∑
r=Dm∗+1

(
r −Dm∗

r
e

(r−Dm∗ )
√

2K−1

2

)
,

q∑
r=Dm∗+1

(
r −Dm∗

r
e

r
2

√
K−1− 2

r

Dm∗∑
k=1

⟨Xβ∗,uk⟩2

σ2

)
e
−
(

(Dm∗+1)K

4 − 1
2σ2

Dm∗∑
k=1

⟨Xβ∗,uk⟩2
))

. (6.17)

For all η > 0 and r ∈ {Dm∗ +1, · · · , q}, e
(r−Dm∗ )

√
2K−1

2 = o
K−→+∞

(
eηK

)
, independently of the value of σ2. Hence,

the first term in (6.17) is o
(
e−K( 1

2−η)
)
,∀η > 0 when K −→ +∞ and σ −→ 0 with 1

σ = o
σ−→0

(
√
K).

For all r ∈ {Dm∗ + 1, · · · , q}, e
r
2

√
K−1− 2

r

Dm∗∑
k=1

⟨Xβ∗,uk⟩2

σ2 ≤ e
r
2

√
K . Moreover, for all η̃ > 0 and r ∈

{Dm∗ + 1, · · · , q}, e
r
2

√
K = o

K−→+∞

(
eη̃K

)
, independently of the value of σ2. Hence, the second term in (6.17) is

o

(
e
−
(
K

(Dm∗+1−η̃)

4 − 1
2σ2

Dm∗∑
k=1

⟨Xβ∗,uk⟩2
))

, ∀η̃ > 0 when K −→ +∞ and σ −→ 0 with 1
σ = o

σ−→0
(
√
K).

Hence,

FDR(m̂(K)) ≤ min

(
o
(
e−K( 1

2−η)
)
, o

(
e
−
(
K

(Dm∗+1−η̃)

4 − 1
2σ2

Dm∗∑
k=1

⟨Xβ∗,uk⟩2
)))

= o

(
e
−
(
K

(Dm∗+1−η̃)

4 − 1
2σ2

Dm∗∑
k=1

⟨Xβ∗,uk⟩2
))

.

∀(η, η̃) > 0 when K −→ +∞ and σ −→ 0 with 1
σ = o

σ−→0
(
√
K); which allows us to obtain (3.9).

- Lower bound on f
r

:
From (6.10) and (6.11), we obtain :

∀K > L̃C1
, FDR(m̂(K)) ≥ C1

q∑
r=Dm∗+1

(
r −Dm∗

r

2
√
2

√
π
(√

rK +
√
rK + 4

)e− rK
2

)

≥ C1
2
√
2

√
π
(√

qK +
√
qK + 4

) 1

Dm∗ + 1

q∑
r=Dm∗+1

(
e−

rK
2

)

≥
(*)

C1
2
√
2

√
π
(√

qK +
√
qK + 4

) 1

Dm∗ + 1
e−

(Dm∗+1)K

2

=
2
√
2C1√

π(Dm∗ + 1)

1√
qK +

√
qK + 4

e−K
(Dm∗+1)

2 .
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(*) is true since each term in the sum is positive, so, the sum is larger than one of them.
For all η > 0, ∃C̃η > 0, ∃L̃η > 0 such that ∀K > L̃η , we have C̃ηe

−ηK ≤ 1√
qK+

√
qK+4

.
So,

∀η > 0, ∃C̃η > 0, ∃L̃η > 0, ∀K > max
(
L̃C1

, L̃η

)
,

FDR(m̂(K)) ≥ 2
√
2C1√

π(Dm∗ + 1)
C̃ηe

−K

(
Dm∗+1+2η

2

)
,

which gives (3.7) with Cη = 2
√
2C1√

π(Dm∗+1)
C̃η and Lη = max

(
L̃C1

, L̃η

)
.

Formula (3.8) automatically follows from (3.6) and (3.7).

6.5 General bounds.

Proof of Corollary 3.7.
By taking uj = Xj , ∀j ∈ {1, · · · , q}, then (X1, · · · , Xq, uq+1, · · · , un) is an orthonormal basis of Rn. Consequently,
∀j ∈ {1, · · · , q}, ⟨Xβ∗, uj⟩ = ⟨Xβ∗, Xj⟩ = β∗

j , which concludes the proof.

7 Extensive simulation study to justify the observable estimations.

This section is a complement to Section 4 and presents an extensive simulation study.

7.1 Description of the simulation protocol

Description of the data simulation. Given values of n and p, we simulate Y ∼ N (β∗, In) where β∗ is a vector
satisfying β∗

j ≥ β∗
j+1 for all j ∈ {1, · · · , Dm∗−1} to get ordered active variables. We consider four scenarios, described

in Table 4, where values of Dm∗ , β∗, n and σ2 vary and where the number of variables p is always equal to 50.

The scenario (i) allows us to evaluate the impact of the sparsity of the parameter β∗. The scenario (ii) allows us to
evaluate how the values of the non-zero coefficients in β∗ complicate the identification of the active variables. In
particular, the non-zero coefficients are close and, in the second configuration, some of them are smaller than the noise
level σ. The scenario (iii) allows us to evaluate the behavior of our method in a high-dimensional context through
the variation of the number of observations n, either smaller, equal or larger than the number of variables p. The last
scenario (iv) allows us to evaluate the impact of the noise amplitude through different values of σ2.
Note that for a fair comparison, the datasets where n = 30 in scenario (iii) are inlcuded in those where n = 50 which are
included in those where n = 300. Moreover, for the sake of reproducibility, the seed of the random number generator is
identically fixed for each scenario.

The toy data set. We call the toy data set the data set where n = p = 50, Dm∗ = 10, β∗
10 = 2 and ∀j ∈ {1, · · · , 9},

β∗
j ∼ Unif(β∗

j+1 + 0.5, β∗
j+1 + 1.5). It corresponds to the reference data set in all scenarios.

Empirical estimations. For the empirical estimations, we simulate D a set of 1000 data sets for each scenario.
For each d ∈ D and for all K > 0, the selected model m̂d(K) is obtained from (Y d, Xd). Since m∗ is known, the
quantity FDP(m̂d(K)) is calculable for each d ∈ D and the empirical estimator of FDR(m̂(K)) is the average of the
FDP(m̂d(K)). Concerning PR, we simulate D̃ a new set of 1000 data sets for each scenario. New Ỹ d are generated on
D̃, from the model (1.1), and by using the Xd on D to respect the fixed design assumption. The selected models m̂d(K)

and the β̂d
m̂(K) estimators are extracted by solving (2.2) from the training sets (Y d, Xd) on D. The PR is evaluated

from the validation sets (Ỹ d, Xd) on D̃ by the mean squared error :

MSE(m̂d(K)) =
1

n

n∑
i=1

(
Ỹ d
i −

p∑
j=1

xd
ij β̂m̂d(K)j

)2
. (7.1)

The empirical estimator of PR(m̂(K)) is the average of the MSE(m̂d(K)).
To validate the quality of the empirical estimations, the central limit theorem is applied to get the 95% asymptotic
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confidence intervals : [
FDR(m̂(K))− 1.96

σ̂√
1000

,FDR(m̂(K)) + 1.96
σ̂√
1000

]
and [

PR(m̂(K))− 1.96
σ̂√
1000

,PR(m̂(K)) + 1.96
σ̂√
1000

]
,

where σ̂ is the unbiased empirical estimator of the standard deviation σ. Since their width do not exceed 0.011 and 0.07
for respectively the FDR and the PR, they are tight, meaning that the empirical estimations are close to the theoretical
quantities FDR(m̂(K)) and PR(m̂(K)).

7.2 Estimation of the theoretical FDR

This subsection completes Subsection 4.1. We present the slope heuristic principle and an analyse of the σ̂2, obtained
by the slope heuristics, is processed. Then, a large simulation study is performed to justify the choice of β̂m̂(4) to
estimate β∗ in the upper bound of the FDR.

The FDR bounds of Theorem 3.2 depend on the Pr, the f
r
(K,β∗, σ2) and the fr(K,β∗, σ2) quantities. Concerning

the Pr quantities, they do not depend on the data as soon as r is given. They can be estimated once and for all
without any dataset. For each 1 ≤ r ≤ q, Pr is estimated by generating 5000 independent standard Gaussian vectors(
Zk

)
k∈{r+1,··· ,q}

and by counting for each vector the number of times that Z2
k < K(ℓ−r) for each ℓ ∈ {r+1, · · · , q}.

Concerning the f
r
(K,β∗, σ2) and fr(K,β∗, σ2) quantities, they depend on β∗ and σ2, both unknown.

Scenario
with
p = 50

Active
variable
number

Non-zero coefficient amplitude
in β∗

Number of
observa-
tions

Noise
amplitude

(i)
Sparsity

Dm∗ ∈
{1, 10, 20}

β∗
Dm∗ = 2,

∀j ∈ {1, · · · , Dm∗ − 1}
β∗
j ∼ Unif(β∗

j+1 + 0.5, β∗
j+1 +

1.5)

n = 50 σ2 = 1

(ii)
Com-
plexity

Dm∗ =
10

β∗
10 = 2 with

∀j ∈ {1, · · · , 9}
β∗
j ∼ Unif(β∗

j+1 + 0.5, β∗
j+1 +

1.5)

β∗
10 = 2

10 with
∀j ∈ {1, · · · , 9},
β∗
j ∼ Unif(β∗

j+1 + 0.05, β∗
j+1 +

0.15)

β∗
10 = 2 with

∀j ∈ {1, · · · , 9}
β∗
j ∼ Unif(β∗

j+1 + 0.05, β∗
j+1 +

0.15)

n = 50 σ2 = 1

(iii)
High-
dimension

Dm∗ =
10

β∗
Dm∗ = 2,

∀j ∈ {1, · · · , 9}
β∗
j ∼ Unif(β∗

j+1 + 0.5, β∗
j+1 +

1.5)

n ∈
{30, 50, 300} σ2 = 1

(iv)
Noise

Dm∗ =
10

β∗
Dm∗ = 2,

∀j ∈ {1, · · · , 9}
β∗
j ∼ Unif(β∗

j+1 + 0.5, β∗
j+1 +

1.5)

n = 50
σ2 ∈
{0.1, 1, 4}

Table 4: Description of the four scenarios.
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The slope heuristic to estimate σ2. The slope heuristic principle, introduced in [13], is that when Dm is large
enough, the empirical least squares values 1

n ||Y −Xβ̂m||22 are almost equal to − 1
2nKσ2Dm plus an additive constant

independent of n and m. Hence, it is possible to estimate σ2 from the dataset by the multiplicative coefficient of the
affine behavior between the empirical least squares and − K

2nDm for Dm large enough. We use the function capushe of
the R package capushe (version 1.1.1) [14] with parameters set to the default values.

Some substitutes of β∗. According to [13], β̂m̂(K) is a good estimator of β∗ in a predictive point of view when K is
equal or close to 2. We propose to test the estimators β̂m̂(K̃) for K̃ ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, log(n)} to replace
β∗ in the lower and upper bounds b(K,β∗, σ2) and B(K,β∗, σ2).
To determine the best constant K̃ among {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, log(n)}, we evaluate all b(K, β̂m̂(K̃), σ̂

2) and

B(K, β̂m̂(K̃), σ̂
2) on the sets D from the four scenarios described in Subsection 7.1. To take into account the random-

ness of b(K, β̂m̂(K̃), σ̂
2) and B(K, β̂m̂(K̃), σ̂

2), the model collection generation and model selection given by (2.2) are
processed on a new data set independent of D for the four scenarios.
To evaluate the error by replacing b(K,β∗, σ2) and B(K,β∗, σ2) with their estimation b(K, β̂m̂(K̃), σ̂

2) and

B(K, β̂m̂(K̃), σ̂
2), we propose to evaluate the relative changes defined by : ∀K > 0,

b(K, β̂m̂(K̃), σ̂
2)− b(K,β∗, σ2)

b(K,β∗, σ2)

for the lower bound and by :
B(K, β̂m̂(K̃), σ̂

2)−B(K,β∗, σ2)

B(K,β∗, σ2)

for the upper bound. To ensure that B(K, β̂m̂(K̃), σ̂
2) values are larger than the B(K,β∗, σ2) values and so larger than

the FDR ones, positive relative change values and as close to 0 as possible are expected. Concerning the lower bounds,
negative relative change values are expected to ensure that b(K, β̂m̂(K̃), σ̂

2) values are smaller than B(K,β∗, σ2) values

and so smaller than the FDR ones. To take into account randomness of the b(K, β̂m̂(K̃), σ̂
2) and B(K, β̂m̂(K̃), σ̂

2)

terms, we evaluate for all K the relative standard deviation, defined by the standard deviation divided by the mean,
by calculated the variance of bounds b(K, β̂m̂(K̃), σ̂

2) and B(K, β̂m̂(K̃), σ̂
2) evaluated on 100 new data sets generated

independently of D. The relative standard deviation values are expected to be as close to 0 as possible.
Figures 5-7 are plotted from the toy data set. In Figure 5, the empirical estimation of the FDR

(
m̂(K)

)
and the quantities

b(K,β∗, σ2), B(K,β∗, σ2), b(K, β̂m̂(K̃), σ̂
2) and B(K, β̂m̂(K̃), σ̂

2) are plotted on a grid of positive K. Relative

changes and relative standard deviations for the lower bounds b(K, β̂m̂(K̃), σ̂
2) and upper bounds B(K, β̂m̂(K̃), σ̂

2) are
plotted in Figure 6 and 7. The graphs of all others D of the 4 scenarios described in Subsection 7.1 are provided in the
supplementary material available in 1.

The lower bounds : For K̃ > 1, the relative change values are positive until achieving more than 2 for large K
(Figure 6 (top)) and the estimated lower bounds curves can be larger than the theoretical one. The relative standard
deviation functions increase quickly whatever the value of K̃ suggesting that fluctuations around the mean are not
negligible (Figure 7 (top)).

The upper bounds : For K̃ > 1, the relative change functions are always positive and do not exceed 0.11 meaning
that the B(K, β̂m̂(K̃), σ̂

2) curves are close to B(K,β∗, σ2) for all K > 0 (Figure 6 (bottom)). For data sets D other
than the toy data set (Figures are available in Supplementary material 1), the relative change values are always small but
can be negative. However, it happens very rarely for K̃ ≥ 4 and in this case, values are low enough (smaller than
−0.02%) to ensure that the empirical FDR estimation curves do not exceed the B(K, β̂m̂(K̃), σ̂

2) terms. Concerning
the relative standard deviation functions (Figures 7 (bottom) and in Supplementary material 1), the larger K̃, the
smaller the values, except for the scenario (ii) with the third configuration where values increase after K̃ ≥ 4.5. For
K̃ ≥ 3.5, the relative standard deviation values are around 0.2 for all the scenarios except for scenario (ii) with
the second configuration (can achieve 0.8) and with the third configuration (can achieve 1). Thus, for a value of
K̃ ∈ {3.5, log(n), 4, 4.5, 5} and eventually except for the two extreme scenarios, fluctuations around the mean are

1https://github.com/PerrineLacroix/Trade_off_FDR_PR
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small, meaning that the upper bound estimations are stable.

To conclude, we drop the lower bound to implement our data-driven algorithm for hyperparameter calibration since
b(K, β̂m̂(K̃), σ̂

2) functions can be larger than the theoretical FDR one. To control the FDR, only an upper bound

control is sufficient. The best results for B(K, β̂m̂(K̃), σ̂
2) are obtained with the hyperparameter K̃ = 4, where the

relative change values are almost always positive, small enough to guarantee that the B(K, β̂m̂(4), σ̂
2) are larger than

the theoretical FDR, and the relative standard deviation values are the smallest ones whatever the scenarios. So, the
estimator used in our algorithm to replace β∗ in the upper bound of the FDR is β̂m̂(4). A natural estimator of Dm∗ is
Dm̂(4). The value of the hyperparameter K̃ = 4 is not surprising since the value of Dm̂ has to be small enough in (3.5)
to get an upper bound B(K, β̂m̂(K̃), σ̂

2) larger than the theoretical upper one. So, the penalization function has to be
large enough in (2.2).

7.3 The non-ordering variable selection

This subsection completes Subsection 4.3 about the assessment of our approach in non-ordering variable selection by
considering scenarios described in Table 4. Figures and tables are provided in the supplementary material available in 2.

Figures S-13 to S-15 (available in Supplementary material 2), show similar results about the robustness to variable
ordering. This confirms that being able to discriminate between active and non-active variables is crucial. For scenario
(ii), B(K, β̂m̂(4), σ̂

2) values begin to diverge from those of B(K,β∗, σ2) for the second and the third configurations
where the coefficients of β∗ are close to each other. Concerning the second configuration, B(K, β̂m̂(4), σ̂

2) and
B(K,β∗, σ2) values are both larger than the empirical FDR ones which is expected. When permutations of the first
twelve and fifteen variables are processed, FDR values are, in most cases, even higher along the collections than for
the toy data set, especially for scenario (ii) configuration (iii) and for scenario (iv) with σ2 = 4 for which distinction
between variables is more difficult; the PR values increase faster than for the toy data set. A meticulous study on the
choice of the parameters γ and α is required to get low values of both PR and FDR.
Table S-1 (available in Supplementary material 2) show the proportion of active variables in models of size 5, 10, 15
and 20 for random collection built with Bolasso, SLOPE, random forest and the knockoff method. Among the random
model collections, the knockoff method provides the highest values for all scenarios except scenario (iv) with σ2 = 0.1
and some models of size 20 where Bolasso is the best method. Results deteriorate for specific scenarios : around 0.8 for
scenario (iv) with σ2 = 4, 0.6 for scenario (ii) with the third configuration and 0.8 for scenario (ii) with the second
configuration for which the discrimination between active and non-active variables is naturally less obvious.

7.4 Application of algorithm 1

This subsection completes Subsection 4.2 and Subsection 4.4 by comparing Algorithm 1 and the three variable selection
methods (presented below) on scenarios described in Table 4 and from the different considered model collections.
With the nested model collection (2.1) and with α = 0.05 and γ = 0.1, algorithm 1 provides K = 2.8 for scenario (i)
with D∗

m = 20 and K = 3.3 for all others except for scenario (i) with D∗
m = 1, for scenario (ii) with the second and

the third configurations and for scenario (iv) with σ2 = 4. Concerning these last four scenarios, the intersection of
I1 and I2 is empty. The minimum of I1 equals 4.8 for scenario (i) with D∗

m = 1 and for scenario (ii) with the second
configuration, and equals 3.3 for scenario (ii) with the third configuration and for scenario (iv) with σ2 = 4. To get a
non-empty intersection, γ or α has to be higher. In all these examples, we observe that the value of K provided by
taking min(I1 ∩ I2) coincides with min(I1), so increasing the value of γ does not change K. However, increasing
the value of α provides smaller values for K. When α = 0.1 and γ = 0.1, the intersection of I1 and I2 is empty and
the obtained values of K from min(I1) are 3.8 for scenario (i) with D∗

m = 1 and for scenario (ii) with the second
configuration and 2.8 for scenario (ii) with the third configuration and for scenario (iv) with σ2 = 4. Hence, these four
cases are typical examples where the choice of K depends strongly on the chosen balance between PR and FDR. In all
cases, we always notice that whatever the given balance, the K provided from algorithm 1 coincides with the one given
by the trade-off between the two empirical quantities of PR and FDR.
When we compare our algorithm application with the three considered existing variable selection methods (see Tables S-
2 to S-4 (available in Supplementary material 2)), all observations mentioned in Subsection 4.4 remain valid over the
different scenarios

2https://github.com/PerrineLacroix/Trade_off_FDR_PR
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Lower bound Upper bound

Figure 5: Top : Comparison of the empirical FDR, the functions b(K,β∗, σ2) (left) and B(K,β∗, σ2) (right) for the
orthogonal design matrix X and the functions b(K, β̂m̂(K̃), σ̂

2) (left) and B(K, β̂m̂(K̃), σ̂
2) (right) with respectively

β̂m̂(1), β̂m̂(1.5), β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n)). The terms b(K, β̂m̂(K̃), σ̂
2)

and B(K, β̂m̂(K̃), σ̂
2) are calculating from a single data set, independent of those used for the empirical estimations;

for a better readability, we plot curves only for K ≥ 2. Bottom : Same comparison and estimation only with K̃ = 4.
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Lower bound

Upper bound

Figure 6: Curves of the relative change values between the function b(K,β∗, σ2) (top) and B(K,β∗, σ2) (bottom)
and the functions b(K, β̂m̂(K̃), σ̂

2) (top) and B(K, β̂m̂(K̃), σ̂
2) (bottom) with respectively β̂m̂(1), β̂m̂(1.5), β̂m̂(2),

β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n)), where estimators are calculated from a single data
set.

9 Supplementary data

All the R scripts are available at https://github.com/PerrineLacroix/Trade_off_FDR_PR.
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Lower bound

Upper bound

Figure 7: Curves of the relative standard deviation (standard deviation normalized by the mean)
of the functions b(K, β̂m̂(K̃), σ̂

2) and B(K, β̂m̂(K̃), σ̂
2) obtained from 100 data sets. With each

one, β̂m̂(1), β̂m̂(1.5), β̂m̂(2), β̂m̂(2.5), β̂m̂(3), β̂m̂(3.5), β̂m̂(4), β̂m̂(4.5), β̂m̂(5) and β̂m̂(log(n)) are calculated given
b(K, β̂m̂(K̃), σ̂

2) and B(K, β̂m̂(K̃), σ̂
2), variance of the 100 b(K, β̂m̂(K̃), σ̂

2) and B(K, β̂m̂(K̃), σ̂
2) functions and

then the relative standard deviation with respect to K.

The graphs for the bounds B(K, β̂m̂(K̃), σ̂
2) applied on the 4 scenarios described in Subsection 7.1, as well as the

study of the robustness of variable ordering, of the construction of random model collections and of the comparison
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of our algorithm with other variable selection procedures, are provided in the supplementary material available
in https://github.com/PerrineLacroix/Trade_off_FDR_PR. It is complementary to Subsections 7.2, 7.3
and 7.4.
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