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Abstract

In a plasma, the charged particles interact via long-range forces and this interaction causes the plasma to

exhibit collective effects. If the graininess or coupling parameter g goes to zero (ideal collisionless plasma),

two-body collisions are negligible while collective effects dominate the dynamics. In contrast, when g ≈ 1

collisions play a significant role. To study the transition between a collisionless and a collisional regime,

a N -body code was developed and used in this work. The code solves exactly, in one spatial dimension,

the dynamics of N infinite parallel plane sheets for both ion and electron populations. We illustrate the

transition between individual and collective effects by studying two basic plasma phenomena, the two-

stream instability and Langmuir waves, for different values of g. The numerical collision rates given by the

N -body code increase linearly with g for both phenomena, although with proportionality factors that differ

by roughly a factor of two, a discrepancy that may be accounted for by the different initial conditions. All

in all, the usual collision rates published in the literature (Spitzer collisionality) appear to compare rather

well with the rates observed in our simulations.
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I. INTRODUCTION

The most accurate way to simulate the many-body plasma dynamics is by solving the full N -

body system of Newton’s equations. But for a typical fusion or astrophysical plasmas, it is obviously

impossible to follow the trajectories of each one of the ≈ 1023 particles that constitute the plasma.

Hence the need for kinetic models, which are mean-field models that neglect microscopic two-body

collisions and only retain the macroscopic self-consistent electromagnetic fields. Kinetic models

typically solve the evolution equation (Vlasov equation) of a one-particle probability distribution

in the six-dimensional phase space, coupled to the Maxwell equations for the fields.

Rigourously, kinetic models can be derived from the full N -body dynamics through a BBGKY

hierarchy truncated to the lowest order, which amounts to neglecting two-body and higher-order

correlations between the particles. The smallness parameter that defines this hierarchy and justifies

the truncation procedure is the so-called coupling or “graininess” parameter g, which is propor-

tional to the ratio of the kinetic energy to the Coulomb energy. Ideal collisionless plasmas are

characterized by g ≪ 1, while strongly coupled plasmas have g ≥ 1.

Even though fusion plasmas are not collision-dominated, a collision operator is often needed for

simulating the plasma behavior on long timescales, for instance to take into account neoclassical

transport in tokamaks, which can be dominant when a transport barrier is triggered, or to model the

diffusion of high-Z impurities [1, 2]. For this purpose, the relevant Vlasov equations are augmented

by a collision term, often in the form of a simple Bhatnagar-Gross-Krook (BGK) operator [3]. The

collision rate involved in this collision operator is then given by some Spitzer-like formula [4].

However, this simple procedure is conceptually shaky. The Vlasov equation is already an av-

eraged equation, and the electromagnetic fields that appear there are mean macroscopic fields.

Hence, adding to this Vlasov equation a collision term based on the microscopic collision frequency

may lead to an incorrect estimation of the effects of the collisions. Recent works [4–6], based on a

weak-turbulence calculation starting from the Klimontovich equation and including all wave num-

bers, suggest a modification of the collision operator. Using this theory, it was estimated that the

collisional damping of Langmuir waves is up to two orders of magnitude smaller than the one pre-

dicted by a BGK operator [4]. In other works [7, 8] the authors solve either a Vlasov-like equation

with ad-hoc collision terms (eq. 1 in [7]) or a Fokker-Planck equation (eq. 6 in [8]).

The present work aims at investigating a simple one-dimensional (1D)N -body model, in order to

extract the exact collision rates and compare them to those given by the heuristic Spitzer formula.

We want to stress that our approach is based on the N -body Newton equations for the charged
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particles. Therefore, we have here a microscopic model that includes, at least potentially, all plasma

effects, both collective (such as Landau damping) and individual (such as collisional damping). We

will focus on two typical plasma phenomena, namely plasma Langmuir waves and the two-stream

instability. As our N -body model is 1D, whereas collision rates are usually estimated in 3D, the

comparison can only be approximate, and should be regarded as a first step aimed at clarifying

the predictions put forward in Refs. [4, 5].

In the past, several computer experiments were performed with 1D N -body models, investi-

gating various phenomena such as Debye shielding and plasma oscillations [9, 10]. The relaxation

towards a Maxwellian distribution was also studied, revealing different scalings of the relaxation

time for sub-populations of the particles and for the overall population [11]. The relaxation times

were compared to the results of the Lenard-Balescu equation [12]. Other works investigated similar

relaxation problems for the dynamics of self-gravitating systems [13].

The present paper is organized as follows. The N -body model and corresponding computational

code are described in Sec. II. In Sec. III, we study the impact of collisions on the two-stream

instability and estimate the collision frequency by subtracting the observed N -body instability rate

from the theoretical collisionless instability rate. In Sec. IV, a similar analysis is performed for

Langmuir waves. Comparison with a Vlasov kinetic code allowed us to study the coexistence of

collisional damping and Landau damping. Finally, in Sec. V we summarize the preceding results

and discuss the dependence of the collision rates on the plasma coupling parameter g. Conclusions

are drawn in Sec. VI.

II. ONE-DIMENSIONAL N-BODY MODEL AND COMPUTATIONAL CODE

We consider a two-component plasma made of N electron sheets and N ion sheets with surface

charge density ±σ. The plasma is confined between two reflecting walls, separated by a distance

L, where L is the length of the box (see Fig. 1, top panel). There is no magnetic field. We consider

infinite sheets in the direction perpendicular to the x axis, hence the electric field between the

sheets is constant, and is equal to an integer multiple of σ/2ϵ0. Thus, the total electric field has a

step-like profile and the motion of the sheet is uniformly accelerated as long as it does not cross one

of its neighbors (Fig. 1, bottom panel). As the electric field is constant between two planes and

using Newton’s law, the equation of motion can be integrated exactly up to computer round-off

errors.

In the remainder of the paper, lengths are normalized to the Debye length λDe, times are
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FIG. 1: Schematic view of the 1D planar geometry of the simulations. Top panel: System of N

electron and N ion planar sheets, confined between two walls separated by a distance L. Bottom

panel: The total electric field has a step-like profile.

normalized to ω−1
pe , and velocities to the electron thermal velocity vTe. Starting from Newton’s

second law applied to one sheet labeled j, the normalized acceleration âj that the sheet experiences

is:

âj =
L̂

2N
cj
me

mj
[2Qgj + cj ], (1)

where L̂ is the length of the box normalized to the Debye length, 2N is the total number of sheets

(ions and electrons), me is the mass of one electron, mj is the mass of one particle that belongs to

the sheet j (ion or electron), Qgj is the number of sheets located on the left side of the considered

sheet j. The sign of the charge belonging to sheet j is cj , and is equal to cj = +1 for ion sheets

and cj = −1 for electron sheets.

As âj is constant between two sheets, we can evolve the dynamical variables vj and xj of a

single sheet by integrating the equations of motion, which can be done analytically in between

two successive collisions, as long as the j-th sheet does not cross one of its two neighbors. After

a crossing, the sheets experience a new constant field. Then the trajectories of the sheets in
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FIG. 2: Heap based algorithm, following [14]: Starting from the 2n = 2N crossing times at the

bottom of the heap, the crossing times are compared by pairs and the smallest one ends up at the

top of the heap.

phase space are known without any approximation except for the round-off errors due to the finite

number of digits to code real numbers the computer. We have checked that the total energy

remains constant, with a relative error close to 10−13. In this code, the sheets pass freely through

one another, interacting only via their coupling to the electric field, and, as particles interact via

long-range forces, two-body collisions as well as collective effects are both taken into account by

the model. We also consider that the sheets collide elastically with the walls so that they reverse

their velocities whenever they hit one of the walls.

The algorithm starts by computing the collision time of each sheet with its neighbor to the

right, or with the wall. Then the smallest crossing time is identified, and the system is evolved

up to just before this event. Actually only the two crossing sheets are evolved, while the others

are frozen. The time when a sheet last experienced a crossing is recorded in a table. Finally the

replacement on the index numbers j and j + 1 of the two sheets is performed.

The most time consuming operation in the code is the search of the minimum collision time. In

order to minimize this step, the collision times are ordered on a heap [14]. The crossing times in

the heap obey the following heap condition: each element in a child node is greater than or equal

to the elements in its parent node. The smallest time is located at the top of the heap (Fig. 2).

It is not necessary to update all the states of particles while processing the heap. For a large

number of sheets, i.e. a large value of N , the operation count is dominated by the cost of reordering

the heap after each crossing, which goes asymptotically as logN [14]. We introduce an indexing

array, mapping the position in the heap to the position of the sheets in space. Therefore, this

algorithm determines the smallest crossing time at a low numerical cost, but also maps the crossing

times in the heap to the spatial positions of the sheets. In the end, the overall duration of a typical

run scales as N logN .
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III. TWO-STREAM INSTABILITY

As a first example, we consider the case of two cold oppositely-directed electron streams with

velocities ±v0, and heavy ions (mi ≫ me) with zero velocity. The ions will hardly move on the elec-

tronic time scales relevant to this study, and only act as a homogeneous neutralizing background.

A random generator is used to distribute the positions of the sheets at t = 0. This two-stream

configuration can then be unstable under certain conditions. The growth rate of the instability

may be derived from the linearized Vlasov-Poisson equations for the electrons:

∂fe
∂t

+ vx
∂fe
∂x

− eE

me

∂fe
∂vx

= 0, (2)

∂E

∂x
=

e

ε0

(
n0 −

∫ +∞

−∞
fedvx

)
, (3)

with n0 the ion density, here assumed to be constant and equal to the electron plasma density at

equilibrium, e = +1.6 × 10−19 C, me = 9.1 × 10−31 kg, E the electric field, ε0 is the dielectric

constant in vacuum. The initial electron distribution function is taken as fe(x, vx, t = 0) =f0(v) =

1
2n0[δ(vx−v0)+ δ(vx+v0)], where δ denotes the Dirac delta function, i.e. the streams are assumed

to be cold. Linearizing the Vlasov-Poisson equations and expanding in plane waves ∼ ei(kx−ωt), we

obtain the instability growth rate γ as the imaginary part of the frequency ω:

γ =

√√√√√−2k2v20 − ω2
pe + ω2

pe

√
1 +

8k2v20
ω2
pe

2
, (4)

where k is the wave number and ωpe is the electron plasma frequency.

As the beams are initially cold, their thermal velocity is zero. However, for long times (t → ∞)

the electron population will eventually relax to an equilibriumMaxwellian distribution with thermal

velocity vTe. At thermal equilibrium, all the initial drift kinetic energy of the streams (12mev
2
0)

will be converted into thermal energy (kBTe =
1
2mev

2
Te, where kB is the Boltzmann constant and

vTe the electron thermal speed), so that vTe = v0. The effective Debye length is then defined as

λDe = vTe/ωpe.

From Eq. (4), the maximum linear growth rate of the instability is γmax = 0.3536 ωpe, with

kmaxλDe = 0.6124. The initial perturbation is provided by the intrinsic numerical noise. The

length of the box is chosen to be L = 10.2606λDe, so that the first mode is the most unstable one,

i.e., kmax = 2π/L. Hereafter this linear collisionless growth rate will be denoted γno−coll = γmax,
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and will be compared to the instability growth rate obtained from the N -body code, denoted γNB.

As the total potential energy of the two-stream system is expected to increase exponentially with

time (exp(2γNBt)) during the linear phase of the instability, γNB can be easily extracted from the

calculated data.

In Fig. 3, 2γNB is plotted as a function of N . The horizontal line corresponds to the expected

value when collisions are neglected (2γNB = 2γno−coll = 0.7071). For values of N smaller than

2000, the linear growth rate of the two-stream instability is smaller than the one expected without

collisions. The instability is slowed down by collisions, as expected [15].

FIG. 3: Measured linear instability growth rate 2γNB plotted against the number of sheets N .

The horizontal blue line corresponds to the expected value when collisions are neglected.

Here, our working hypothesis is that the growth and damping rates are additive. Therefore, the

collision rate due to two-body Coulomb collisions, denoted γcollNB
, can be written as the difference

between the theoretical collisionless growth rate (γno−coll) and the observed numerical growth rate

of the instability (γNB):

γcollNB
= γno−coll − γNB. (5)

The dependence of γcollNB
on N is shown in Fig. 4.

The hypothesis of Eq. (5) is in agreement with the linear theory of the Vlasov equation aug-

mented by a BGK collision operator (∂fe/∂t)coll = −ν(fe−fM ), where ν is the BGK collision rate

and fM is the Maxwellian distribution [15], which predicts that the effective linear growth rate
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is lowered by the collision rate. This property was also verified by numerical simulations of the

Vlasov-BGK equation using a semi-lagrangian Vlasov code [15, 16].

The importance of collective versus individual two-body effects can be measured using the

so-called graininess or coupling parameter g, which for our 1D model reads as [17]:

g =
1

nλDe
=

1
N
L λDe

=
L̂

N
, (6)

where n = N/L is the plasma density and L̂ = L/λDe is the normalized length of the computational

box (L̂ ≈ 10 in the present case). When the graininess parameter is of order unity or larger, the

plasma is dominated by individual effects, i.e. two-body collisions. Again, we observe that the

two-body collisions can be neglected when N is larger than 1000 (g <∼ 10−2).

FIG. 4: Collision rate γcollNB
obtained from the N -body code for the two-stream instability, as a

function of the number of sheets N .

Finally, it should be mentioned that, on longer timescales, the two streams are destroyed by the

instability and the system evolves towards thermal equilibrium. This occurs over a characteristic

time that scales as g−2 ∼ (nλDe)
2, in agreement with earlier results [9, 11, 12].
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IV. LANGMUIR WAVES

We now consider the phenomenon of plasma oscillations and Langmuir waves. If we shift the

electrons with respect to the positive ions, the mutual attraction of the two species acts as a

restoring force that causes the electrons to oscillate relative to the ions at a certain frequency ω.

The well-known Bohm-Gross dispersion relation [18] quantifies this effect:

ω2 = ω2
pe + 3k2v2Te (7)

If the wave number k is equal to zero (homogeneous perturbation), the electrons should oscillate

at the plasma frequency. We shall first consider this case.

FIG. 5: Electron (red) and ion (blue) phase-space distribution function (left panel) and electron

velocity distribution (right panel) for vkick = 0.5 vTe.

At t = 0, the distribution of the electrons is a Maxwellian. In order to excite the plasma

oscillations, we adopt the same procedure as described in [10]: we impart to all the electrons a

positive velocity kick, meaning that each vj is instantaneously changed to vj+vkick. This procedure

is equivalent to applying a large and almost instantaneous electric field to the electrons between

t = 0 and t = τ , which induces a velocity change eEτ/me = vkick, with E → ∞, τ → 0, but Eτ

finite (Fig. 5).

In order to assess the plasma oscillations, we study the evolution of v̄e(t), the spatial average of

the electron velocities. Indeed v̄e(t) is much less sensitive to thermal fluctuations than the density

or the electric potential. As a first check, we measured the oscillation period for different values

of N and different lengths L of the box. As expected, we found a period equal to 2π/ωpe with a

relative discrepancy less than 5%.
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FIG. 6: Measured collision rate γNB plotted against the number of sheets N , in the case of

plasma oscillations, for four different values of the kick (0.3, 0.5, 0.75 and 1.0 vTe). In this case

γNB = γcollNB
because the mode k = 0 is considered (plasma oscillations with no Landau

damping).

Next, we estimate the damping rate by plotting the amplitude of the oscillations on a semi-

logarithmic scale and determine its slope using a least squares method. As in this case there is

neither instability nor Landau damping (k = 0), the observed damping rate directly represents the

collision rate γcollNB
. The results are presented in Fig. 6. The collision rate is plotted for four

values of the kick ranging from 0.3 vTe to 1.0 vTe, with L = 100λDe. We observe that the collision

rates depend little on the initial kick. Again, as observed in the case of the two-stream instability,

collisional damping becomes significant for values of N below N ≈ 2000 (g > 5× 10−2).

Finally, in order to investigate the influence of collisions on the total damping of Langmuir

waves, we consider modes with k ̸= 0. In order to excite a particular wave number, we modulate

the initial velocity of each particle as follows:

vj = vj,Maxwell + v0 sin

(
m
2π

L
xj

)
(8)

where vj,Maxwell is the velocity of the sheet j, located at x = xj , before the kick, and m is the mode

number. The wave number k is then equal to 2πm/L. The amplitude v0 is chosen to be 0.1 vTe.
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FIG. 7: Measured damping rates γNB plotted against the number of sheets N , for Langmuir

waves. The horizontal lines correspond to the Landau damping rates given by the Vlasov code

COBBLES [16] and PIC code [19]. We have γNB = γcollNB
+ γLandau. For large values of N , the

collision rate becomes negligible.

The measured damping rates are shown in Fig. 7 for modes m = 5 and m = 6. The simulations

were repeated several times, more than five hundred times for the smaller values of N , in order

to reduce statistical errors by ensemble averaging. In the case of Langmuir waves with k ̸= 0,

Landau damping can compete with collisional damping. To investigate this competition between

Landau and collisional damping, a Vlasov code (COBBLES [16]) and a Particle-In-Cell (PIC) code

[19], without any collision operators, were used to determine the Landau damping rates for the

m = 5 and m = 6 modes. Both codes yield γLandau = 0.028 for m = 5 and γLandau = 0.061 for

m = 6, with the same initial conditions as those used in the N -body code. In Fig. 7, the horizontal

lines correspond to the Landau damping rates given by the Vlasov and PIC codes.

Again, for small values of g (g < 5×10−2), i. e. large values of the number of sheets (N > 2000),

the effect of Coulomb collisions can be neglected when compared to the Landau damping rate. For

both modes m = 5 and m = 6 the transition is located at the same values of N (and therefore of

g).
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V. TWO-BODY COLLISION RATES

In the preceding sections, we found that – in all three cases considered here of plasma waves

(k = 0), Langmuir waves (k ̸= 0), and two-stream instability – collisional effects start playing a

role for g >∼ 10−2. The agreement of the three results suggests the method we used to determine

the two-body collision rate can be trusted to deduce some general laws.

Fig. 8 summarizes the findings detailed in the preceding sections, augmented by some further

simulations performed with different parameters, such as different stream velocities or box lengths.

The red and blue lines represent linear regression fits of the collision rates with the coupling

parameter, γcollNB
∝ g, with slopes equal to 0.326 (coefficient of determination, R2 = 0.97) for the

two-stream instability, and 0.135 (R2 = 0.98) for the plasma oscillations. This linear dependence on

g appears to be rather natural, as two-body collisions are a first-order effect (in g1) in a BBGKY

hierarchy, where the mean-field Vlasov approximation holds at the lowest order (g0). We will

address shortly the discrepancy between the collision rate observed for the two-stream instability

and for plasma waves.

FIG. 8: Measured collision rates γcollNB
as a function of the coupling parameter g, in the case of

the two-stream instability (blue) and plasma oscillations (in red). The solid lines correspond to

the linear fits (γcollNB
∝ g), with a slope equal to 0.326 for the two-stream instability, and 0.135

for plasma oscillations. The solid green line corresponds to Eq. (10).
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The comparison with the standard collision rates published in the literature is not straight-

forward, because usual estimations are done for realistic 3D plasmas, whereas our model is 1D.

Nevertheless we attempt a comparison in order to fix the ideas and check that the 1D results are

not too far from reality.

For an electron with a velocity v passing throughout many ions, the electron-ion collision rate

is [20, 21]:

νeisingle
=

ne4

4πϵ20m
1/2
e (kBTe)3/2

ln Λ, (9)

where n is the plasma density, lnΛ = ln (λDe/λL) is the Coulomb logarithm, and λL is the smallest

impact parameter – i.e., two-body collisions that lead to large deflection angles have been neglected

in the calculation. λL is equal to 2e2/(4πϵ0mev
2
Te), and therefore lnΛ = ln(2π/g). Nevertheless,

we stress that the notions of impact parameter and Coulomb logarithm have no counterpart for 1D

collisions, as approaching particles will always cross each other, and the electric force is constant

rather that decreasing as the square of the distance.

Normalizing to the electron plasma frequency yields:

γsingle
ωpe

=
νeisingle

ωpe
=

g

4π
ln

(
2π

g

)
. (10)

The above collision rate is plotted on Fig. 8 (green line), and reproduces quite well the results for

the two-stream instability. This seems rather natural, as Eq. (9) applies to electrons all having the

same velocity, which is indeed the case for our monochromatic streams. Nevertheless, it should be

noted that the expression of νeisingle
given in Eq. (10) takes into account the Coulomb logarithm

and its g ln g dependence on the coupling parameter g, whereas the blue and red lines in Fig. 8

are simply proportional to g. Although the order of magnitude given by Eq. (10) is in agreement

with the collision rates measured from the N -body simulations, we emphasize that the comparison

is not straightforward as the Coulomb logarithm has no counterpart for 1D collisions.

For the case of plasma oscillations, the starting distribution function is a Maxwellian. In that

case, the electrons with velocities larger than vTe experience fewer collisions with the ions (as νei

is proportional to 1/v3). Hence, the collision rate has to be averaged over the electron distribution

function [21], which yields [22]:

⟨νei⟩ =
√

2

π
νeisingle

≈ 0.8 νeisingle
. (11)

A further correction factor to ⟨νei⟩ should be included to take into account the distortion of

the electronic distribution that appears in the presence of an electric field [21, 23–25]. Electrons of
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different velocities respond differently to the combined effect of an electric field and collisions with

ions. The faster electrons are less collisional and therefore are more effectively accelerated by the

field, which modifies the shape of the distribution function. When all these effects are included,

the net result is the Spitzer collisionality, about twice as small as the simple Maxwellian-averaged

estimate:

γSpitzer ≈ 0.5 ⟨νei⟩ ≈ 0.4 νeisingle
. (12)

The Spitzer rate, which takes into account the Maxwellian distribution and other corrections,

should be more relevant to the collisional damping of plasma waves. Indeed, the ratio between

the Spitzer and the single-particle collision rates γSpitzer/γsingle ≈ 0.4 is similar to the ratio of the

observed collision rates for the two-body instability (monochromatic velocity distribution) and for

the plasma waves (Maxwellian distribution): 0.135/0.326 = 0.41 (see Fig. 8).

To test the above ideas, a further series of numerical experiments was performed for plasma

oscillations with cold monochromatic electrons. The slope of the damping rate as a function of g

was found to be equal to 0.364 (R2 = 0.99), close to the one obtained for the two-stream instability

(0.326). Therefore, the same factor ≈ 0.4 is observed between the slope of the damping rate of

plasma oscillations for cold monochromatic electrons and the slope of the damping rate of the same

plasma oscillations for a Maxwellian distribution. This is a further hint that the different observed

slopes are indeed due to the different types of velocity distributions used in the simulations.

To conclude, we underline that the usual 3D collision rates published in the literature, such

as Eq. (10), appear to compare rather well with the rates observed in our simulations. Although

the substantial difference between 1D and 3D plasmas precludes a definite conclusion from these

numerical experiments, these results seem in contradiction with a recent theoretical analysis [4, 5]

where both collective and individual effects were incorporated from first principles. Further work

will be necessary to elucidate this discrepancy.

VI. CONCLUSION

The purpose of this work was to provide an estimation of the collision rates by performing

computer experiments with a 1D N -body plasma model. The advantage of this model is that

it contains both collective and collisional effects, and that the relevant equations of motion can

be integrated exactly (up to round-off errors). Therefore it provides an ideal tool to compare

theoretical estimates with measured collision rates.
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We implemented such comparison for three relevant cases involving basic plasma phenomena:

the two-stream instability, simple plasma waves at the plasma frequency, and Langmuir waves

obeying the Bohm-Gross dispersion relation. When collisional effects were competing with either

an instability or with collisionless Landau damping, the collision rate was obtained by simply

subtracting the collisionless rate from the observed one.

The collision rates observed in all three cases were of comparable magnitude, pointing at an

intrinsic collisional origin, independent on the details of the phenomena at play. The collision rate

for the case of plasma oscillations was found to be slightly smaller (by a factor 0.4) compared to the

collision rate for the two-stream instability. This discrepancy was explained in terms of the initial

conditions used: Maxwellian distribution for the former case and monochromatic beams for the

latter. Using the corrective factors provided in the literature, we could justify this small difference.

The observed collision rates were also well approximated by the standard “Spitzer-like” [24, 25]

rates usually published in the literature, in contrast to what was suggested by recent theoretical

results in 3D [4, 5]. Further work remains to be done to extend the present results to a more

realistic 3D scenario.
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