
HAL Id: hal-03978176
https://hal.science/hal-03978176v1

Preprint submitted on 8 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Everything you Need to Know About Reduced Mixed
Precision Computation in Numerical Programs

Dorra Ben Khalifa, Matthieu Martel

To cite this version:
Dorra Ben Khalifa, Matthieu Martel. Everything you Need to Know About Reduced Mixed Precision
Computation in Numerical Programs. 2023. �hal-03978176�

https://hal.science/hal-03978176v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Springer Nature 2021 LATEX template

Everything you Need to Know About
Reduced Mixed Precision Computation in

Numerical Programs

Dorra Ben Khalifa1* and Matthieu Martel1,2*†

1*LAMPS laboratory, University of Perpignan 52 Avenue Paul Alduy,
Perpignan, 66100, , France.

2Bureaux du Polygone, Numalis, 256 Avenue Bureaux du Polygone,
Montpellier, 34000, , France.

*Corresponding author(s). E-mail(s): dorra.ben-khalifa@univ-perp.fr;
matthieu.martel@univ-perp.fr;

†These authors contributed equally to this work.

Abstract
In the recent decade, precision tuning becomes one of the key techniques to
obtain significant gains in performance and energy efficiency. This process con-
sists of substituting smaller data types to the original data types assigned to
floating-point variables in numerical programs in such a way that accuracy
requirements remain fulfilled. In face of the huge amount of precision tuning
tools, we present in this article a survey on the approaches proposed in the
bibliography. Besides, we point out the differences between these approaches
and our own tool POP which avoids the usual trial-and-fail paradigm. POP
implements a static analysis method relying on constraints derived from the mod-
elling of the program errors propagation and accuracy specifications. We also
extend the functionalities of POP by experimenting several optimization crite-
ria to our system of constraints as a means to achieve the best performance
improvements. We validate our results on a new set of numerical benchmarks
and we report that in all cases we are able to accomplish better optimization
by keeping the introduced numerical error below the given tolerance threshold.

Keywords: Precision optimization, computer arithmetic, performance metrics, error
estimation.

1

Springer Nature 2021 LATEX template

2 Reduced Mixed Precision Computation in Numerical Programs

1 Introduction
As science tries to answer bigger and deeper questions, data is growing faster than
Moore’s law [41], and the cost involved in developing new technology nodes is ris-
ing day after day. Not surprisingly, the increasing communication bandwidth entails
more sophisticated protocols and higher speeds. Consequently, this will translate in
increased power consumption up to the point where it becomes technically and eco-
nomically unfeasible to further increase the communication bandwidth. For instance,
the Top5001 project report shows that supercomputer performance is approximately
doubling every year, whilst power consumption is also rising. As of June 2020, the
most powerful supercomputer Fugaku, number 1 of the Top500, is nowadays able to
reach around 400 petaFLOPS (400× 1015 FLOPS) in terms of computation power.
This equates to assembling tens of millions of laptops together against the 148.6
petaFLOPS of the predecessor supercomputer, Summit.

To tackle this problem, designing reliable and energy efficient applications
remains a real challenge to explore. In other words, designers seeking to reduce the
energy usage should be helped in choosing the best implementations of their appli-
cations with regards to the targeted infrastructure. Consequently, energy-efficient
heterogeneous supercomputers need to be coupled with software stacks able to
exploit a range of techniques to trade-off between power, performance, and other
metrics of quality to achieve the desired goals without exceeding the power envelope.

In these recent years, the precision tuning technique, which consists of using
reduced precision number representations in numerical programs, has been widely
recognized as one of the promising tools in the designer’s arsenal. For instance, using
FP32 single precision formats is often at least twice as fast as the FP64 double preci-
sion ones. By way of illustration, on AMD Opteron 246, IBM PowerPC 970, and Intel
Xeon 5100, the single precision peak is twice the double precision peak [5]. By doing
so, it can be possible to save memory and to have a positive impact on the footprint of
programs concerning energy consumption, bandwidth usage and computation time.

In this context, various tools of precision tuning have been proposed recently
to help developers select the most appropriate data representation. Such tools may
integrate different approaches but their common goal is still to automatically or semi-
automatically adapt an original code given in higher precision to the selected lower
precision type. In our tool POP [2]2, no trial-and-fail method is employed. Instead,
the accuracy of the arithmetic expressions assigned to variables is determined by
semantic equations, in function of the accuracy of the operands. By reasoning on
the number of significant bits of the variables of the program and by knowing the
weight of their most significant bit thanks to a range analysis performed before the
tuning phase, POP is able to reduce the problem to an Integer Linear Problem (ILP)
which can be optimally solved in one shot by a classical linear programming solver.
Concerning the number of variables, the method scales up to the solver limitations
and the solutions are naturally found at bit level, making the number of data types
considered for the tuning irrelevant. An important point is that the optimal solution
to the continuous linear programming relaxation of our ILP is a vector of integers.

1(https://www.top500.org/)
2Code source available at https://github.com/benkhelifadorra/POP-v2.0

https://www.top500.org/
https://github.com/benkhelifadorra/POP-v2.0

Springer Nature 2021 LATEX template

Reduced Mixed Precision Computation in Numerical Programs 3

By consequence, we may use a linear solver among real numbers whose complexity
is polynomial [52] contrarily to the linear solvers among integers whose complexity
is NP-Hard.

In this article, we focus on improving the efficiency of POP in several manners.
We focus on experimenting different optimization criteria to the system of constraints
generated by our tool in order to achieve the best compromise between performance
and memory saving. Next, these optimization criteria are expressed as cost func-
tions that the solver has to optimize. The first criteria optimizes only the sum of
the accuracy of the variables assigned in the program. The second criteria is related
to minimize the largest data type in the tuned programs. The third criteria corre-
sponds to minimize the number of bits needed for each operation performed in the
programs. The fourth optimization function aims to avoid type conversions of the
same variables in the same program. We verify the effectiveness of these cost func-
tions on a meaningful set of floating-point benchmarks coming from FPBench [19].
In all the benchmarks we considered, we show that were able to significantly reduce
the amount of type cast operations and to limit the number of formats and the num-
ber of bits of operations, without significantly compromising the accuracy of the
computation, which remains within a satisfactory threshold provided by the user.

The remainder of this article is as follows. We first review in Section 2 necessary
background about finite-precision arithmetic which is an important building block
for precision tuning, in particular, the IEEE754 Standard of floating-point arithmetic
and the fixed-point arithmetic. An exhaustive survey about the precision tuning tools
is given in Section 3. Section 4 details the approach implemented in our tool of pre-
cision tuning and introduces its new functionalities. An experimental evaluation of
our extended approach is provided in Section 5. Finally, in Section 6 we draw some
conclusions and propose future research directions.

2 Background on Computer Arithmetic
There exists several representations for approximating real numbers. Out of these
representations, we will focus in this section on the floating-point (FP) arithmetic and
fixed-point arithmetic.

2.1 Floating-Point Arithmetic
Currently, FP numbers are the most common representation used in numeric appli-
cations. Therefore, optimizing the use of FP formats is often a key to obtain high
performance. In the following, we will focus on these formats, and in particular on
the IEEE754 ones.

2.1.1 Normalized IEEE754 Binary Floating-Point

The IEEE754 Standard [4]is a technical standard for FP computation created by the
Institute of Electrical and Electronic Engineers (IEEE). The standard formalizes a
binary FP number x in base β , generally β = 2, as a triplet made of a sign, a mantissa
and an exponent as shown in Equation (1), where s ∈ {-1,1} is the sign, m represents

Springer Nature 2021 LATEX template

4 Reduced Mixed Precision Computation in Numerical Programs

Format Name p e bits emin emax
FP16 Half precision 11 5 −14 +15
FP32 Single precision 24 8 −126 +127
FP64 Double precision 53 11 −1122 +1223

FP128 Quadruple precision 113 15 −16382 +16383
FP256 Octuple precision 237 19 −262142 +262143

Table 1: Parameters defining the IEEE754 floating-point formats.

the mantissa, m = d0.d1...dp−1, with the digits 0 ≤ di < β , 0 ≤ i ≤ p− 1, p is the
precision (length of the mantissa) and the exponent e ∈ [emin,emax].

x = s.m.β e−p+1 (1)

We refer the reader to the Handbook of Floating-Point Arithmetic by Muller et
al. [43] for a detailed and formal reference on the general subject of FP arithmetic.

2.1.2 Round-off Errors

Any result of a finite precision computation is subject to rounding errors. Conse-
quently, this result that appears to be reasonable may therefore contain errors, and it
may be difficult to judge how large the error is. For instance, if we have to compute
the following operations on a typical calculator. First, x =

√
2, then y = x2 and finally

z = y− 2, i.e, the result should be z = (
√

2)2 − 2, which obviously is 0. The result
reported by the calculator is z =−1.38032020120975×10−16. Let us note that when
operands of arithmetic operations have themselves been subject to previous round-
ing, catastrophic loss of significant digits may happen and consequently the result
may be completely false. While these errors are individually small, they propagate
through a computation and can make its results meaningless [1].

However, one limitation of the FP arithmetic is that it requires dedicated support,
either in hardware or in software, and depending on the application, this support
may be too costly. Thus, the fixed-point arithmetic is an alternative which can be
implemented with integers only.

2.2 Fixed-Point Arithmetic
A fixed number of digits is assigned to the sign, integer and fractional parts of the
number within the data type format. As integer data types can be signed or unsigned,
the sign field can be omitted also in fixed-point numbers. This is the case of unsigned
fixed-point numbers, which represent the absolute value of the real number defined in
Equation (2). Note that the binary point in fixed-point representation and the number
of bits of each part are fixed. Thus, the scale factor of the associated data is con-
stant and the range of the values that can be represented does not change during the
computation.

(−1)sign × integer · f ractional (2)

Let us also mention that many implementations of the fixed-point arithmetic use
a two’s complement representation instead of Equation (2). To be brief, Figure 1
presents the general representation of a number in fixed-point format composed of a

Springer Nature 2021 LATEX template

Reduced Mixed Precision Computation in Numerical Programs 5

s bm-1 bm-2 b1 b0 b-1 b-2 b-n+1 b-n.
m bits n bits

Integer part Fractional part

b bits

Fig. 1: Fixed-point representation of a signed number.

sign bit s (the most significant bit) and b−1 bits divided between the integer and the
fractional parts. m and n represent the position of the radix point respectively to the
most significant bit (MSB) and to the least significant bit (LSB).

Note that the recent version of POP [10] is able to apply the conversion from
floating-point to fixed-point types by finding directly the minimal number of bits
needed at each control point to get a certain accuracy on the results. Consequently,
applying our method directly in hardware implementation on FGPAs and for imple-
mentation on processors with no floating-point hardware units is a very feasible task
.

3 State-of-the-Art: Tools for Precision Tuning
In recent years, precision tuning is emerging as a new trend to save the resources on
the available processors, especially when new error-tolerant applications are consid-
ered [13].For example, many applications can tolerate some loss in quality during
computation, as in the case of media processing, data mining, machine learning, etc.
In addition, as we have showed in Section 2, almost all numerical computations are
performed using floating-point operations to represent real numbers, the precision
of the related data types should be adapted in order to guarantee the desired overall
rounding error and to strengthen the performance of programs.

Consequently, designers should be helped to obtain the best trade-off between
precision and performance by allocating some program variables in low precision
(e.g. FP16 and FP32) and by using high precision (e.g. FP64 and FP128) selectively.
For this reason, various tools have been proposed to help developers select the most
appropriate data representations. Such tools may integrate different approaches but
their common goal is still to automatically or semi-automatically adapt an original
code given in higher precision to the selected lower precision type. The purpose of
the present section is to review the existing literature on techniques and tools con-
cerning precision tuning. What makes our review original is that we go further by
incorporating the most recent tools and examining the strengths and shortcomings of
each tool in comparison to our tool POP. After taking a closer look on the behaviour
of each tool, we deduce two main classifications: static and dynamic analysis tools.

3.1 Static Analysis Tools
The main insight of the tools of this category is that they are able to extract addi-
tional knowledge from the program source code without executing it with input data.
Rosa [20] is a source-to-source compiler which takes as input a real-valued pro-
gram with error specifications and synthesizes code over an appropriate floating-point
(FP32, FP64, FP128, and an extended format with 256 bit width) or fixed-point data

Springer Nature 2021 LATEX template

6 Reduced Mixed Precision Computation in Numerical Programs

type (8, 16, 32 bit) which fulfills the specification. Rosa operates on a subset of
the Scala programming language. In particular, the programmer writes the program
in a real-valued specification language and makes numerical errors explicit in pre-
and post-conditions. It is then up to Rosa to determine an appropriate data type
which fulfills the specification and to generate the corresponding code. In addition,
Rosa internally exploit the Z3 SMT solver [42] to process the precision constraints
derived from the program accuracy specifications. However, Rosa handles condi-
tional statements soundly by assigning only uniform precision to the variables of their
programs.

Based on the Symbolic Taylor Expansion method, FPTuner [16] exposes a user-
defined threshold for the amount of type casts that the tool may insert into the code.
Let us state that the approach deployed by FPTuner is close to the one implemented
in POP, especially in the constraint generation step. However, FPTuner relies on a
local optimization procedure by solving quadratic problems for a given set of can-
didate data types. Contrarily to POP , FPTuner is limited to straight-line programs
(without conditionals and loops). Unfortunately, it also requires a certain user skill
for choosing which mixed-precision variants are more efficient and is thus not fully
automated. Furthermore, its tuning time can be prohibitively large whereas we will
show that the method embodied in POP is more fast and efficient even in the case of
large codes.

In the context of precision tuning tool-chains, the TAFFO tool [15] is a LLVM-
based tool-chain, which is packaged as a set of plugins for the Clang compiler. Its
strategy is to collect statically annotations from the source code and it converts them
into LLVM-IR metadata with the goal to replace floating-point operations with fixed-
point operations to the extent possible. TAFFO is based on affine arithmetic [54].
This analysis is used to project on the output the error introduced by each fixed-point
instruction. The advantage of TAFFO is that it supports both C and C++ programs
and it can be provided as a plugin for LLVM which are feasible to be extended in
POP in future work. In contrast to TAFFO, POP is able to return solutions at bit-level
suitable for the IEEE754 floating-point arithmetic, the fixed-point arithmetic and the
MPFR library for non-standard precision.

3.2 Dynamic Analysis Tools
A considerable share of precision tuning tools are based on dynamic analysis. The
main insight of these techniques is to lower the precision of the values in the program
and observe the error on the output of a testing run. Consequently, their majority
apply a trial-and-fail paradigm to precision tuning. We distinguish tools which are
based on search algorithms, tools oriented for GPU kernels and for neural networks.

3.2.1 Search Algorithm Based Tools

Precimonious [49] is a dynamic automated search-based tool that leverages the
LLVM framework to tweak variable declarations to build and prototype mixed-
precision configurations within a given error threshold. Precimonious is based
on the delta-debugging algorithm search [56] which guarantees to find a local

Springer Nature 2021 LATEX template

Reduced Mixed Precision Computation in Numerical Programs 7

1-minimum if one exists. A configuration is said to be 1-minimal if lowering
any additional variable (or function call) leads to a configuration that produces
an inaccurate result, or is not faster than the original program. Despite the fact
that Precimonious can handle any program, including programs with loops, it
presents several gaps. Unlike POP which optimizes all the variables of the program,
Precimonious optimizes only the precision of declared variables. It uses external
description files (JSON or XML) to declare which variables in the source code should
be explored and which data types have to be investigated. Moreover, it estimates
round-off errors by dynamically evaluating the program on several random inputs.
By doing so, we can deduce that this approach is not sound because of the large
number of program executions needed for a reasonably confident error bound. Com-
paring to POP which takes several seconds per benchmark, Precimonious uses
dynamic evaluation to estimate the expected running time. However, this approach
is not entirely reliable as running times can vary substantially between runs. Last of
all, Precimonious does not use any knowledge on the structure of the program to
identify potential variables of interest. This latter limitation has made the subject of
several work which extended Precimonious in several manners.

Blame Analysis [50] is a dynamic technique which aims at reducing the
space of variables of Precimonious. It performs shadow execution to identify
variables that are numerically insensitive and which can consequently be excluded
from the search space before tuning. The analysis finds a set of variables that can be
in single precision, while the rest of the variables are in double precision. However,
the output configurations may or may not improve performance, so to use the analysis
in practice one must perform runs of the program to determine which configurations
actually improve performance.

Another dynamic tool sharing some objectives and methodologies of
Precimonious is called PROMISE [28]. It is written in Python and it relies on
the CADNA software [32] to implement the Discrete Stochastic Arithmetic (DSA)
verification in C, C++, and Fortran program source code. PROMISE automatically
modifies the precision of variables taking into account an accuracy requirement on
the computed result. Based on the delta-debugging search algorithm which reduces
the search space of the possible variables to be converted, it provides a subset of
the program variables which can be converted from FP64 to FP32 only. Meanwhile,
PROMISE is able to tune programs only in FP32 single precision and it remains a
time-intensive tool.

HiFPTuner [29] is another extension of the Precimonious tool which uses
a hierarchical search approach. It combines a static analysis to create the hierar-
chical structure in order to minimize the number of type cast operations whereas
the dynamic profiling highlights the hottest dependencies. A major limitation is
that HiFPtuner’s configurations are dependent on the tuning inputs, and no accu-
racy guarantee is provided for untested inputs. Besides, It can be used to tune
medium-sized programs only.

Springer Nature 2021 LATEX template

8 Reduced Mixed Precision Computation in Numerical Programs

3.2.2 Similar Search-Based Tool

CRAFT [36] is a framework that performs an automated search of a program’s
instruction space, determining the level of precision necessary in the result of each
instruction to pass a user-provided verification routine assuming all other operations
are done in high precision such as FP64 double precision. CRAFT relies on the well-
established Dyninst binary analysis toolkit to provide instrumented and mixed
precision code. The original implementation of the CRAFT framework known as a
binary mode version, relies on binary instrumentation and considers the whole pro-
gram as its scope. Recently, its newer version is able to process the source code of the
program and focus only on user-defined variables known as the variable mode ver-
sion. Like Precimonious, CRAFT uses external description files (JSON or XML)
to declare the variables and the data types to explore. While it uses heuristics to sam-
ple a fraction of the search space, it can be very time consuming even for very small
programs. Finally, a tool called fpPrecisionTuning [30] performs a search over
the mixed-precision search space using a user-given error bound, but this tool uses
MPFR [26] and source code modification to simulate non-standard precision.

In summary, all the search-based approaches used for identifying valid mixed-
precision configurations are time-intensive. In addition, their approaches does not
scale with the number of possible number representations that can be used. Fur-
thermore, discontinuities in the program can trick a greedy algorithm into a local
optimum, which may be considerably distant from the global optimum.

3.2.3 GPU Applications Based Tools

Angerd et al. [3] have described a framework for precision tuning for GPU appli-
cations. They investigate an approximation of floating-point values in computer
graphics kernels using three different low-precision formats: the IEEE754 formats
(specifically FP16 and FP32), the mantissa truncation in which the data types are
obtained by truncating mantissa bits from the basic IEEE754 formats, and finally a
dynamically selected exponent and mantissa width, which are data types with vari-
able bit width but constant ratio between the number of mantissa bits and that of
exponent bits. Angerd et al. [3] extend LLVM with the custom defined data types
and transparently converts the floating-point values. While these custom defined
data types are not guaranteed to be supported by the target hardware, the proposed
approach entails wrapping every memory access instruction to unpack and to pack
the data from and to such data types. Consequently, this work is particularly perti-
nent for architectures where the cache and the memory size are critical, e.g. HPC
accelerators. Although the main focus of this framework operates on hardware-
heterogeneity-aware programming languages, such as OpenCL, they process the
whole computational kernel and do not satisfy any user accuracy requirement on the
output.

Not too far from this work concept, the work described by Nobre et al. [46]
presents a LARA-based approach [12] for precision-tuning. It takes an OpenCL ker-
nel as input and it generates and evaluates multiple versions of the input kernel. Those
versions exploit mixed-precision data types to achieve performance improvements

Springer Nature 2021 LATEX template

Reduced Mixed Precision Computation in Numerical Programs 9

over the original kernel, while they satisfy a user-defined constraint on the quality
of the output. A similar work proposed by Rojek [48] presents a machine-learning
based method for the dynamic selection of the precision level for GPU computa-
tion. It implements a modified version of the random forest algorithm to decide
whether a variable type should be in FP32 or FP64 floating-point (no other data
types are considered). Broadly speaking, the tools proposed by Nobre et al. [46] and
by Rojek [48] operate on GPU kernels by using OpenCL/CUDA programming lan-
guages whereas Angerd et al. [3] propose a GPU-oriented approach while working
within the intermediate representation of the compiler.

Other tools perform a static data flow analysis with a dynamic profiling on
the source code. In this setting, AMPT-GA [33] is a tool oriented to GPU applica-
tions which combines static analysis for casting-aware performance modeling with
dynamic analysis for enforcing precision constraints. Particularly, it performs a pro-
file run of the application to identify the hottest computational kernels which may
especially benefit from the precision reduction and a static analysis that only aims at
identifying strongly connected variables in the dependency graph to attempt to assign
the same data type to group of variables instead of acting on single variables.

GPUMixer [35] is one more tool designed for GPU kernels. This tool accepts
CUDA kernels as input in the form of NVVM-IR intermediate representation, which
can be generated by the Clang compiler front-end, and replaces the FP64 floating-
point operations with FP32. It decides whether to apply the conversion to a code
region or not depending on a tunable metric, which is based on the ratio between the
number of affected arithmetic instructions and the number of type cast instructions.
However, the tool is limited by the fact that the NVIDIA CUDA C programming
guide does not specify the cost of all GPU operations.

Autoscaler for C [34] is a source-to-source compiler that complies with
the ANSI C programming language. Its purpose is to convert every variable to fixed-
point by using a data size which guarantees the absence of overflow. It performs
an exploratory run over the original floating-point code to obtain an estimation of
the dynamic range for each variable. Since the input and output of this translator
are ANSI C compliant programs, it can be used for any fixed-point Digital Signal
Processors (DSP) that supports ANSI C compiler. Another work not particularly dif-
ferent from the one implemented in [34] is described in [14]. The proposed method
automates the floating-to-fixed point conversion by re-targeting the existing source-
to-source compiler GeCos framework (Generic Compiler Suite), designed for use
with hardware implementations, to produce code suitable for execution in HPC
environments.

ADAPT [40] uses the reverse mode of algorithmic differentiation [45] to deter-
mine how much precision is needed in a program inputs and intermediate results
in order to achieve a desired accuracy in its output, converting this information
into precision recommendations. As the algorithmic differentiation approach views a
computer program as a composition of a sequence of arithmetic operations, ADAPT
uses this data to capture the propagation of errors through the data flow graph
of the computation. It performs aggregation and analysis on this data along with

Springer Nature 2021 LATEX template

10 Reduced Mixed Precision Computation in Numerical Programs

the original computation to determine the floating-point sensitivity of all the vari-
ables and operations in the program. Although the fact that ADAPT considers only
IEEE754-compliant formats, it provides mixed-precision recommendations that sat-
isfy a specified error threshold without requiring any search-based strategies. Later,
ADAPT alongside CRAFT [36] and another tool called Typeforge have been
incorporated in a framework named FloatSmith [38]. Broadly speaking, ADAPT
provides the dynamic analysis of the code, CRAFT looks for the best precision tun-
ing configuration, and Typeforge implements the source-to-source conversion for
C/C++ code.

AMP [44] is a profile-driven tool that profiles applications to measure undesirable
numerical behavior at the floating-point operation level. AMP takes a single precision
application as input and its output is a mixed-precision application in which precision
have been chosen to improve accuracy. The limitation of this tool is that it accepts
only applications in which all operations are at the minimum precision. Otherwise,
they should downgrade all the operations in higher precision (e.g. double precision)
to single precision before applying their profiling. Indeed, although AMP monitor and
locate numerical faults, it is infeasible to trace and quantify error propagation through
every computational sequence of operations.

STOKE [51] is a general stochastic optimization and program synthesis tool to
handle floating-point computation. Beginning from floating-point binaries produced
either by a production compiler or written by hand, the tool shows that through
repeated application of random transformations it is possible to produce high perfor-
mance optimizations that are specialized both to the range of live-inputs of a code
sequence and the desired precision of its live-outputs.

More recently, a tool called PyFloaT [11] has presented a methodology for
tuning the precision of full fledged scientific applications written using multiple pro-
gramming languages: Python, C++, CUDA and Fortran. It uses an instruction-centric
analysis that uses call stack information and temporal locality to address the large
scale of HPC scientific programs. We end up the list of the precision dynamic tools by
the approach proposed by Yesil et al. [55] which is based on a proof concept for DPS
(Dynamic Precision Scaling). The purpose of DPS is to run the program on reduced
precision floating-point functional units whenever the data can tolerate the degrada-
tion, and to dynamically switch to the original floating-point data types when there is
the need to preserve the accuracy. Moreover, we cite FloPoCo [24] an open source
C++ framework written in C++ that generates VHDL code to design custom arith-
metic data path of floating-point cores. Also, it generates a synthetizable hardware
description according to the parameters specified via C++ code.

3.2.4 Precision Tuning for Neural Networks

Arnault et al. [31] introduced a static method for minimizing the precision in which
the neurons of a neural network compute. Their method models the propagation of
the round-off errors through a set of linear constraints among integers which can
be solved by linear programming. Recently, the precision tuning of neural networks
using fixed-point arithmetic has been studied in [9]. The fixed-point precision of each
neuron is determined, taking into account a certain error threshold.

Springer Nature 2021 LATEX template

Reduced Mixed Precision Computation in Numerical Programs 11

Tool Input Language Output Language Data Types Framework Licence

ADAPT [40] C/C++, Fortran description FP32, FP64 CodiPack GNU GPL v3.0

AMPT-GA [33] C/C++ description IEEE754 LLVM proprietary

Angerd et al. [3] LLVM-IR description FP32, custom LLVM 3.5 proprietary

AMP [53] LLVM-IR LLVM-IR IEEE754 LLVM 3.4 proprietary

Autoscaler for C [34] ANSI C C++ fixed SUIF proprietary

CRAFT [36, 37] x86 binary, C/C++ description, C/C++ FP32, FP64 Dyninst GNU LGPL v3.0

FPTuner [16] FPCore FPCore IEEE754 Gurobi 6.5 MIT

FloatSmith [38] C/C++ description FP32, FP64 CRAFT, ADAPT GNU GPL v3.0

fpPrecisionTuning [30] C MPFR IEEE754, fixed C2mpfr BSD, MIT

FloPoCo [24] C++ VHDL custom - proprietary

GPUMixer [35] NVVM-IR NVVM-IR FP32, FP64 LLVM 4.0 proprietary

HiFPTuner [29] LLVM-IR description FP32, FP64, FP128 Precimonious BSD-3 Clause
LLVM 3.8

Precimonious [49] LLVM-IR description FP32, FP64, FP128 LLVM 3.0 BSD-3 Clause

PROMISE [28] C/C++ C/C++ FP32 and FP64 CADNA for C/C++ GNU LGPL v3.0

PyFloaT [11] Python, C++ description IEEE754 GOTCHA MIT
CUDA, fortran

Rojek [48] CUDA CUDA FP32 and FP64 – proprietary

Rosa [20] Scala Scala IEEE754, fixed Z3 BSD-2 Clause

STOKE [51] x86 binary fixed x86−64 IEEE754, fixed JIT assembler Apache2.0

TAFFO [15] LLVM-IR LLVM-IR fixed LLVM 8.0 MIT

Table 2: Precision tuning tools properties.

The work presented in [25] considers tuning the precision of an already trained
neural network. Their methodology employs the PROMISE tool in order to obtain
the lowest precision for each of its parameters, while keeping a certain accuracy on
its results. The results obtained are compared for different neural networks.

3.2.5 Combining Tools

The automated tools of precision tuning are very often combined with other tools
interested in error analysis and rewriting-based methods. In this section, we illustrate
the benefits of composing complementary floating-point tools to achieve results nei-
ther tool provides in isolation. Our study reports combining tools for analysis and
optimization and for rewriting and tuning.

Springer Nature 2021 LATEX template

12 Reduced Mixed Precision Computation in Numerical Programs

Combining Tools for Analysis and Optimization
The first work that was interested in the combinations of tools is undoubtedly the
Daisy tool [21]. It provides in a single tool the main building blocks for accu-
racy analysis of floating-point and fixed-point computations which have emerged
from recent related work. In particular, Daisy extends the approach implemented in
Rosa [20] by integrating the rewriting capabilities of Xfp [22]. Daisy integrates
several techniques for sound analysis and optimization of finite-precision compu-
tations. Its is also able to provide a mixed precision solution that considers both
floating-point and fixed-point data making it generally applicable to both scientific
computing and embedded applications. Unlike our tool POP which is able to tune
programs with expressions, loops, conditionals and even arrays, Daisy does not
address conditional-based programs.

The authors of Daisy and Herbie have worked together to combine their tools
in [6]. While Herbie optimizes the accuracy of straight-line floating-point expres-
sion, it employs a dynamic round-off error analysis and thus cannot provide sound
guarantees on the results. Consequently, its combination with Daisy can help to
check whether its unsound optimizations improved the worst-case round-off error or
not. Meanwhile, this method do not handle loops and conditionals yet.

Combining Tools for Rewriting and Tuning
The main insight of rewriting techniques is to search through different evaluation
orders to find one which minimizes the round-off error at no additional run-time
cost. The mixed-precision tuning techniques aim to choose the smallest data type
which still provides sufficient accuracy in order to save valuable resources like time,
memory or energy. In this context, Anton is the first fully automated tool [23] that
combines these two techniques in one single tool. The rewriting step is inspired from
the xfp tool [22]. For the mixed-precision tuning step, Anton uses a variation of the
delta-debugging algorithm used by Precimonious [49]. It starts with all variables
in the highest available precision and attempts to lower variables in a systematic way
until it finds that no further lowering is possible while still satisfying the given error
bound. Although Anton tried to reduce its search space by using a static sound error
analysis as well as a static performance cost function, the technique is limited to
rather small programs that can be verified statically.

Another study to find an efficient precision with a better accuracy of variables
of programs was presented in [18]. It consists of the former work of Martel [39]
combined with the Salsa optimizing tool [17]. The principle of this study is to apply
the forward and backward error analysis by abstract interpretation approach [39] to
compute the least floating-point formats on the benchmarks of Salsa. Similarly
to the Anton [23] tool, their rewriting technique is performed before the mixed-
precision tuning.

The Pherbie also performs precision tuning and rewriting at the same time.
Also, it adapts and extends techniques from the Herbie tool to automatically gener-
ate a set of candidate implementations, and derive a Pareto-optimal accuracy versus
speed trade-off, for a given floating-point expression. Pherbie implements preci-
sion tuning by introducing rewrites that cast candidate sub-expressions to different

Springer Nature 2021 LATEX template

Reduced Mixed Precision Computation in Numerical Programs 13

Parser

Range
analysis

Integer Linear
Problem (ILP)
formulation

Policy
Iteration (PI)

GLPK

Annotations
+

Original
program

Tuned
program

 +
MPFR program

Fig. 2: Overall architecture of POP.

precision. Unlike our work, the analysis time of this tool can be exponential in the
case of large programs containing a lot of expressions to rewrite which results in
many new candidate implementations to manage and many calls to the Herbie tool.

The most challenging aspects of the precision tuning tools described in this
section are outlined in Table 2. In particular, we report the input and output language
of each tool, the supported formats considered by each tool, the framework and the
licence.

To summarize, existing methods for precision tuning suffer from several lim-
itations. The major drawback of the static analysis tools is fundamentally their
incapacity to tune large codes with conditionals and loops. Nevertheless, a large
amount of the dynamic tools follow a trial-and-fail strategy by reducing the precision
of arbitrary chosen variables and executing or analyzing statically the program to see
the new accuracy. In the next section, we introduce our tool POP and we demonstrate
its new functionalities .

4 POP: A Precision Tuner Based on Formal Methods

4.1 POP in a Nutshell
Figure 2 summarizes the basic analysis steps of our tool POP [2, 8]. First, POP parses
the input program and generates its equivalent syntactic tree thanks to the ANTLR
parser generator v4.7.1[47]. While POP achieves only precision tuning, it uses a
dynamic analysis which produces an under-approximation of the ranges of the vari-
ables for inputs taken randomly in user defined ranges. More precisely, what we use
in the tuning is the unit in the first place of the values of the program defined hereafter
in Equation (3).

ufp(x) =

{
min{i ∈ Z : 2i+1 > |x|}= ⌊log2(|x|)⌋ if x ̸= 0
emin if x = 0

(3)

Some post-conditions added to the source code, e.g. the statement require nsb(x,20),
inform POP that the user wants to get on variable x an amount of 20 significant bits.
In order to propagate the user information, POP will generate semantic equations
modelling the propagation of the errors throughout the program source. The unknown
variable to compute is the minimal number of significant bits needed for the input
and intermediate variables of the program. This integer quantity is denoted by nsb.

Springer Nature 2021 LATEX template

14 Reduced Mixed Precision Computation in Numerical Programs

1 a = 1 . 0 ;
2 i = 1 . 0 ;
3 x = 0 . 0 ;
4 w h i l e (i < 1 0 . 0) {
5 a = a + 1 . 0 ;
6 x = x + a ;
7 i = i + 1 . 0 ;
8 } ;
9 require nsb(x,20) ;

Simple C program

1 a∥19∥ = 1 . 0∥19∥ ;
2 i = 1 . 0 ;
3 x∥20∥ = 0 . 0∥20∥ ;
4 w h i l e (i <10.0){
5 a∥20∥ = a∥19∥ +∥20∥ 1 . 0∥20∥ ;
6 x∥20∥ = x∥20∥ +∥20∥ a∥20∥ ;
7 i = i + 1 . 0 ;
8 } ;
9 require nsb(x,20) ;

Program annotated with precision

Fig. 3: A straightforward C program before and after POP analysis.

Formally, if we consider that x̂ is the approximation of a real number x in finite
precision and if we have ε(x) = |x− x̂| be the absolute error, then we have

ε(x)≤ 2ufp(x)−k+1 . (4)

Once the semantic equations are generated, POPcalls the GLPK linear solver.
Finally, POP generates the optimized program annotated with the new number of sig-
nificant bit nsb for each variable in the program with respect to accuracy desired by
the user. A second method that optimizes the previous ILP formulation is also imple-
mented in POP for In this method, we go one step further by introducing a second set
of semantic equations. These new equations make it possible to tune even more the
precision by being less pessimistic on the propagation of carries in arithmetic opera-
tions. However, the problem does not reduce any longer to an ILP problem (min and
max operators are needed). Then we use policy iteration method to find efficiently
the solution. In this article, we omit details about this second method and we only
consider the pure ILP formulation.

Let us consider the simple C program of Figure 3. In this example, we suppose
that all variables are in double precision before analysis (FP64). The original pro-
gram is depicted in the top part of Figure 3. Some points can be highlighted about
this example. For instance, we have the statement require nsb(x,20) (Line 9) which
informs the tool that the user wants to get on variable x only 20 significant bits. After
analysis, we obtain in the bottom part of Figure 3 the minimal precision needed for
the inputs and intermediary results satisfying the user assertion.

Since, in this example, 20 bits only are required for x, the result of the addition x+
a also needs 20 accurate bits only as shown in the bottom part of Figure 3 (precision
are given in blue). If we want these precision in the IEEE754 mode, the nsb obtained

Springer Nature 2021 LATEX template

Reduced Mixed Precision Computation in Numerical Programs 15

at bit-level is approximated by the upper number of bits corresponding to a IEEE754
format. For example, variable at Line 6 we have nsb(x) = 20 bits, then x is tuned
to the FP32 single precision. Also, our recent tool POPiX [10] transforms a given
numerical floating-point program into semantically equivalent one that exploits fixed-
point computations with integers only3.

4.2 Integer Linear Programming with Multiple Objective
Functions

To obtain the optimal solution to our system of constraints, cost functions are given
to the linear solver as optimization objective functions [7]. Depending on which cost
function is used by POP, different criteria may be considered for the tuning. Below
we propose four optimization criteria. The first criterion is the default cost function
used by our tool. It consists in minimizing the sum of the nsb quantities of all the vari-
ables assigned in the program. The remaining functions constitute the new extension
of POP. They are related to the largest data type, the number of bits needed for each
operation and the prohibition of type conversions. We underline the fact that since
POP is based on a system of constraints, assigning to it new optimization objectives
can be done easily, without a deep refactoring of the tool.

4.3 Minimize the Sum of Number of Significant Bits of the
Variables

The default cost function in POP is to minimize the sum of the precision of the
assigned variables in the program. More formally, let Lab denotes the set of labels
of the program and let T : Lab → N be a tuning assigning to each control point ℓ ∈
Lab an integer precision. We denote T the set of correct tuning. This cost function,
denoted by F0, is given as shown in Equation (5).

F0 = min
T∈T

{
∑

ℓ∈Lab
T (ℓ)

}
(5)

However, this cost function may lead to cases where some variables have large
formats and others small ones (e.g. from FP16 half precision to FP64 double) which
makes difficult hardware optimizations.

4.4 Minimize the Number of the Largest Data Type
The purpose of this cost function is to find the minimal number of bits of the great-
est format needed in the program. For instance, the question that we may answer
with this technique is the following: if the user wants to obtain a result with only
18 significant bits, will all variables be defined as single precision numbers (FP32)?
Consequently, this cost function is very useful when using processors with limited
formats. We denote by F1 The cost function for maximal precision that we aim to
compute as shown in Equation (6).

F1 = min
T∈T

{
max
ℓ∈Lab

T (ℓ)
}

(6)

3https://github.com/sbessai/popix

https://github.com/sbessai/popix

Springer Nature 2021 LATEX template

16 Reduced Mixed Precision Computation in Numerical Programs

4.5 Minimize of the Operations Number of Bits
Our third cost function F2 focuses on the operators instead of the variables of the
program. We aim at minimizing only the number of bits used in the arithmetic oper-
ations, without considering what is used for variables. The interest is to minimize the
hardware needed to run the programs. Also, this optimization is particularly relevant
for circuit implementations, e.g. using FPGAs [27]. Formally, let Op ⊆ Lab be the
subset of labels attached to operators such as additions, multiplications, elementary
functions, etc. Here, we aim at computing

F2 = min
T∈T

{
∑

ℓ∈Op
T (ℓ)

}
. (7)

In the present work, we assign the same weight to each operation (i.e. its number
of bits). However, it would be interesting to assign different weights, for instance to
take into account that a multiplication is more costly than an addition at the hardware
level (same for elementary functions.)

4.6 Minimize type conversions for the Occurrence of the Variable
Mixed precision tuning, as done by POP, offers the advantage of optimizing the pre-
cision of a variable at each of its occurrences. However, from a performance point
of view, this introduces type conversions which may slow down the programs. Let
V : Var → wp(Lab) be a function mapping each variable x of a program to the set
of labels corresponding to the occurrences of x and let Dom(V) denote the definition
domain of V . We add this new cost function in POP, denoted by F3, which enforces
it to produce an uniform tuning by adding the constraints

∀x ∈ Dom(V), ∀ℓ1, ℓ2 ∈ V (x), T (ℓ1) = T (ℓ2) . (8)

Let us remark that, in this mode, POP still achieve bit-level precision tuning. However
this tuning is uniform and only one precision is returned for each variable which
avoids type conversions.

5 Experimental Evaluation
The main goal of this experimental evaluation is to answer the following research
questions:

RQ1. Which cost function is more efficient in terms of precision tuning optimization?
RQ2. Which cost function can give us the optimal type configurations of the variables in

floating-point arithmetic?
RQ3. What is the impact of the precision loss parameter of the trigonometric functions

on the POP tuning results for the different cost functions used for our benchmarks?
RQ4. Which cost function achieves the best performance improvements in terms of

measured relative error and analysis time?

5.1 Experimental Setup
We evaluate POP on a new set of applications coming from FPBench, a synthetic
benchmark for floating-point performance. These benchmarks are coming from

Springer Nature 2021 LATEX template

Reduced Mixed Precision Computation in Numerical Programs 17

F0 F1 F2 F3

Benchmarks call 8bits 16bits 32bits 8bits 16bits 32bits 8bits 16bits 32bits 8bits 16bits 32bits
azimuth 7 77 62 31 50 50 ✗ 77 62 31 14 12 9

carbonGas 0 84 71 ✗ 45 45 ✗ 84 71 ✗ 28 27 ✗
CRadius 1 81 66 36 45 45 ✗ 81 66 36 28 23 13
CTheta 1 82 67 37 45 45 ✗ 81 66 36 28 23 13

doppler1 0 86 71 41 45 45 ✗ 86 71 41 23 21 18
doppler2 0 88 73 42 45 45 ✗ 88 73 42 23 22 19
doppler3 0 86 71 41 45 45 ✗ 86 71 41 22 21 18

instantCurrent 3 84 72 42 47 47 ✗ 83 70 40 19 19 18
jetEngine 0 79 64 33 51 51 ✗ 79 64 33 13 13 12

LowPassFilter 0 81 68 40 49 49 ✗ 96 96 96 19 19 19
CX 1 80 65 35 46 46 ✗ 80 65 35 14 12 8
CY 1 80 65 35 46 46 ✗ 80 65 35 14 12 8

triangle12 1 77 62 32 49 49 ✗ 77 62 32 17 15 10
turbine1 0 84 70 41 46 46 ✗ 84 70 41 17 16 13
turbine2 0 84 69 38 45 45 ✗ 84 69 38 5 5 5
turbine3 0 85 71 44 46 46 ✗ 85 71 44 17 17 15

Table 3: Percentage of POP optimization in 4, 8 and 16 bits for the synthesized
program for the different cost functions.

different domains such as: mathematical libraries, Internet of Things, embedded sys-
tems, etc. Each program is evaluated with three accuracy requirements arbitrarily
chosen by the user: 4, 8 and 16 bits which bound the relative error of the result.
We use the optimization criteria F0, F1, F2 and F3 that we have already defined in
equations (5), (6), (7) and (8) respectively, (see Section 4).

We run all our experiments on an Intel Core i5-8350U CPU cadenced at 1.7GHz
on a Linux machine with 8 GB RAM.

5.2 Results Analysis
Table 3 shows the percentage of optimization given for each cost function tested
by POP for all the user accuracy requirements. The first left-most column headed
”call” refers to the number of elementary functions in the code. This information
is very useful if we want to show the impact of manipulating the loss of precision
parameter in functions as we have done in Figure 4. The ✗ symbol denotes that no
feasible solution was returned by the solver for a given user accuracy. We assume that
100% is the percentage of all variables initially in FP64 double precision. The first
observation is that with functions F0 and F2 we obtain almost the same optimization
results for all the benchmarks in 8, 16 and 32 bits. Also, it is clear that the percentage
of optimization decreases as the user accuracy requirements increase. For instance in
”doppler1”, 88% is the percentage of optimization with F0 for 8 bits of requirements
against only 41% for 32 bits. Our second observation concerns F1. For 32 bits of
requirements, POP is not able to tune the programs with this cost function. What
explains this result is that for this given accuracy of 32 bits, minimizing the largest
type of data is equivalent to tuning all variables in double precision which is the

Springer Nature 2021 LATEX template

18 Reduced Mixed Precision Computation in Numerical Programs

8 bits 16 bits 32 bits

Benchmarks cost H S D % H S D % H S D %
F0 11 7 0 69% 0 18 0 54% 0 0 18 0%

azimuth F1 0 3 15 9% 0 3 15 9% 0 11 7 33%
F2 11 7 0 69% 0 18 0 54% ✗ ✗ ✗ ✗
F3 2 0 16 8% 0 2 16 6% 0 0 18 0%
F0 12 0 0 82% 1 12 0 59% ✗ ✗ ✗ ✗

carbonGas F1 0 0 14 0% 0 0 14 0% ✗ ✗ ✗ ✗
F2 12 0 0 82% 1 12 0 59% ✗ ✗ ✗ ✗
F3 2 1 11 15% 1 2 11 13% ✗ ✗ ✗ ✗

F0 6 0 0 79% 0 6 0 54% 0 0 6 0%
CRadius F1 0 0 6 0% 0 0 6 0% ✗ ✗ ✗ ✗

F2 6 0 0 79% 0 6 0 54% 0 0 6 0%
F3 2 0 4 26% 0 2 4 18% 0 0 6 0%
F0 10 0 0 79% 0 10 0 54% 0 0 10 0%

doppler1 F1 0 0 10 0% 0 0 10 0% ✗ ✗ ✗ ✗
F2 10 0 0 79% 0 10 0 54% 0 0 10 0%
F3 1 0 9 7% 0 1 9 5% 0 0 10 0%
F0 16 9 0 73% 8 19 0 63% 0 9 19 17%

instantCurrentF1 0 0 28 0% 0 0 28 0% ✗ ✗ ✗ ✗
F2 16 9 0 73% 6 21 0 61% 0 7 21 13%
F3 1 2 25 6% 0 3 25 5% 0 2 26 3%
F0 17 14 0 68% 0 26 5 45% 0 0 31 0%

jetEngine F1 0 11 20 19% 0 11 20 19% ✗ ✗ ✗ ✗
F2 17 14 0 68% 0 26 5 45% 0 0 31 0%
F3 1 0 30 2% 0 1 30 1% 0 0 31 0%
F0 18 12 0 78% 0 20 0 58% 0 0 20 0%

lowPassFilter F1 0 0 22 0% 0 0 22 0% ✗ ✗ ✗ ✗
F2 18 2 0 78% 0 20 0 58% 0 0 20 0%
F3 0 0 20 0% 0 0 20 0% 0 0 20 0%
F0 7 0 0 79% 0 7 0 54% 0 0 7 0%

CX F1 0 0 7 0% 0 0 7 0% ✗ ✗ ✗ ✗
F2 7 0 0 79% 0 7 0 54% 0 0 7 0%
F3 1 0 6 11% 0 1 6 7% 0 0 7 0%
F0 7 6 0 67% 0 13 0 54% 0 0 13 %

triangle12 F1 0 3 10 12% 0 3 10 12% ✗ ✗ ✗ ✗
F2 7 6 0 67% 0 13 0 54% 0 0 13 0%
F3 2 0 11 12% 0 2 11 8% 0 0 13 0%
F0 18 0 0 80% 0 18 0 57% 0 0 18 0%

turbine1 F1 0 0 19 0% 0 0 19 0% ✗ ✗ ✗ ✗
F2 18 0 0 80% 0 18 0 57% 0 0 18 0%
F3 2 0 16 13% 0 2 16 11% 0 0 18 0%

Table 4: Analysis results and performance. The column ”cost” gives the cost function
activated in POP For each selected user accuracy requirement (8, 16 and 32 bits),
we give the type configuration found in half precision ”H”, single precision ”S” and
double precision ”D” and the percentage of optimization ”%”.

Springer Nature 2021 LATEX template

Reduced Mixed Precision Computation in Numerical Programs 19

	0

	10

	20

	30

	40

	50

	60

	70

	80

azimuth CRadius CTheta instantCurrent CX CY 	triangle12

%
	o

f	o
pt

im
iza

tio
n	

at
	b

it-
le

ve
l

δ	=	6
δ	=	9

δ	=	15

F0

	0

	10

	20

	30

	40

	50

	60

	70

	80

azimuth CRadius CTheta instantCurrent CX CY 	triangle12

%
	o

f	o
pt

im
iza

tio
n	

at
	b

it-
le

ve
l

δ	=	6	bits
δ	=	9	bits

δ	=	15	bits

F3

	0

	10

	20

	30

	40

	50

	60

	70

	80

azimuth CRadius CTheta instantCurrent CX CY 	triangle12

%
	o

f	o
pt

im
iza

tio
n	

at
	b

it-
le

ve
l

δ	=	6	bits
δ	=	9	bits

δ	=	15	bits

F1

	0

	10

	20

	30

	40

	50

	60

	70

	80

azimuth CRadius CTheta instantCurrent CX CY 	triangle12

%
	o

f	o
pt

im
iza

tio
n	

at
	b

it-
le

ve
l

δ	=	6	bits
δ	=	9	bits

δ	=	15	bits

F2

Fig. 4: Percentage of optimization at bit-level measured by varying the parameter of
loss of precision ϕ of the elementary functions during the analysis.

initial case for these programs. Finally, by interpreting the results obtained with the
cost function F3, we can deduce that the optimization rate is not as important as that
of the other functions. This means that our programs analyzed do not contain many
occurrences of the same variable.

Table 4 translates the precision found by POP in bit-level into the IEEE754 for-
mats. The key point is to approximate the precision obtained by the upper number of
bits corresponding to a IEEE754 format. For instance, in the analysis of the ”carbon-
Gas” program with F0 and with 8 bits requirement by the user, we obtain that 12%
are converted from FP64 double precision (initially) into Half precision giving a total
of 82% of overall optimization.

The elementary functions such as the natural logarithm, the exponential functions
and the hyperbolic and trigonometric functions are not included in any arithmetic
Standard when compared to the square root function which is included in the
IEEE754 Standard. For this reason, each implementation of these functions has its
own accuracy which we have to know. The purpose of the experimentation showed
in Figure 4 is to consider that each elementary function introduces a loss of preci-
sion of ϕ bits, where ϕ ∈ N is a parameter of the analysis. We notice in Figure 4
that we only evaluate programs that contain elementary functions (identified thanks
to the ”call” column in Table 3). Let us note that in this experimentation we have
fixed the user accuracy requirement to 16 bits. By varying the parameter ϕ = 6, 9
and 15 bits, we get different results for each of our cost functions. In the top left side
of Figure 4, we observe that for ϕ = 6 bits, we obtain a better optimization for the
majority of the programs reaching up to 72% for the ”instantCurrent” program. This

Springer Nature 2021 LATEX template

20 Reduced Mixed Precision Computation in Numerical Programs

	0

	1x10-5

	2x10-5

	3x10-5

	4x10-5

	5x10-5

	6x10-5

	7x10-5

	8x10-5

	9x10-5

	0.0001

azimuth

CRadius

CTheta
doppler1

doppler2

doppler3

jetEngine

CX CY triangle12

turbine1

turbine2

turbine3

	0.01

	0.02

	0.03

	0.04

	0.05

	0.06

	0.07

	0.08

	0.09

	0.1

Re
la

tiv
e	

Er
ro

r	M
ea

su
re

m
en

t	(
%

)

An
al

ys
is	

Ti
m

e	
(s

)

Relative	Error Analysis	Time
F0

	0

	1x10-5

	2x10-5

	3x10-5

	4x10-5

	5x10-5

	6x10-5

	7x10-5

	8x10-5

	9x10-5

	0.0001

azimuth

CRadius

CTheta
doppler1

doppler2

doppler3

jetEngine

CX CY triangle12

turbine1

turbine2

turbine3

	0.01

	0.02

	0.03

	0.04

	0.05

	0.06

	0.07

	0.08

	0.09

	0.1

Re
la

tiv
e	

Er
ro

r	M
ea

su
re

m
en

t	(
%

)

An
al

ys
is	

Ti
m

e	
(s

)

Relative	Error Analysis	Time
F1

	0

	1x10-5

	2x10-5

	3x10-5

	4x10-5

	5x10-5

	6x10-5

	7x10-5

	8x10-5

	9x10-5

	0.0001

azimuth

CRadius

CTheta
doppler1

doppler2

doppler3

jetEngine

CX CY triangle12

turbine1

turbine2

turbine3

	0.01

	0.02

	0.03

	0.04

	0.05

	0.06

	0.07

	0.08

	0.09

	0.1

Re
la

tiv
e	

Er
ro

r	M
ea

su
re

m
en

t	(
%

)

An
al

ys
is	

Ti
m

e	
(s

)

Relative	Error Analysis	Time
F2

	0

	1x10-5

	2x10-5

	3x10-5

	4x10-5

	5x10-5

	6x10-5

	7x10-5

	8x10-5

	9x10-5

	0.0001

azimuth

CRadius

CTheta
doppler1

doppler2

doppler3

jetEngine

CX CY triangle12

turbine1

turbine2

turbine3

	0.01

	0.02

	0.03

	0.04

	0.05

	0.06

	0.07

	0.08

	0.09

	0.1

Re
la

tiv
e	

Er
ro

r	M
ea

su
re

m
en

t	(
%

)

An
al

ys
is	

Ti
m

e	
(s

)

Relative	Error Analysis	Time
F3

Fig. 5: Measured relative error and analysis time with respect to the activated cost
function and the user defined accuracy.

observation changes for the F3 cost function when the percentage of optimization
does not exceed 25% while the parameter ϕ = 15 bits give the best optimization. For
the cost function F1, no solution was found for the ”azimuth” program for the three
parameters. Also, for ϕ = 15 bits, there is no optimization for the majority of the
benchmarks with the F1 function. for the remaining cost function F2, the behavior of
POP is similar to the results obtained for F0. The measured relative errors and anal-
ysis time are reported in Figure 5. We consider that a result has n significant bits if
the relative error between the exact and approximated results is less than 2−n. Noting
that in this experiment, we assume that n = 16 bits (given by the user). The rela-
tive error is measured with respect to the original program where all variables are in
double precision and the program returned by POP with the optimized precision. For
the majority of the benchmarks and for all the cost functions tested, we can see that
the relative error measure remains below the given user tolerance threshold. Also,
we achieve best performance improvements when using the F1 and F3 optimization
criteria. For instance, with F1 the errors measured are very small and can even be
cancelled for some benchmarks. Concerning the time of analysis spent by POP, The
histogram bars in the Figure 5 show that our method is very fast and the analysis time

Springer Nature 2021 LATEX template

Reduced Mixed Precision Computation in Numerical Programs 21

remains negligible for analyzing our medium to large programs and for finding the
new optimized formats. This is an advantage of POP over the other state-of-the-art
tools that consume a lot of time and memory consuming.

6 Conclusion and Perspectives
In this article, we reviewed research work related to the precision tuning tools. Also,
we have extended our tool POP with new optimization criteria in order to obtain
trade-offs between, precision, analysis time and memory consumption. This exten-
sion have showed that several factors are important to optimize the accuracy of
numerical programs such as the manipulation of optimization criteria and the imple-
mentation of elementary functions. We have evaluated our method on a new set of
benchmarks. The results discussed show that for the majority of our benchmarks and
with respect to the accuracy requirements given by the user, our tool succeeded in
minimizing the number of significant bits of the variables, limiting the number of for-
mats, the number of bits of operations and the number of type conversions between
the variables. We shed the light that these results are helpful in the hardware level,
especially for some processors that are limited to specific formats.

In future work, our efforts will focus on exploiting the fixed-point numerical
representation by considering the fact that some architectures are more suited to
fixed-point computations than others. The case studies for this point will belong to
control applications. Also, we will generalize our technique to Deep Neural Networks
for which it is important to save memory usage and computational resources.

7 Data Availability
The datasets generated during the current study are on publicly available on https:
//github.com/dbenkhal/POP-v2.0. The Fixed-point version of POP is available on
https://github.com/sbessai/popix. However, the new functionnalities including the
cost functions are available from the corresponding author on reasonable request.

References
[1] (1992) Patriot missile defense: Software problem led to system failure at

dhahran, saudi arabia. Tech. Rep. GAO/IMTEC-92-26, General Accounting
office

[2] Adjé A, Ben Khalifa D, Martel M (2021) Fast and efficient bit-level precision
tuning. In: Static Analysis - 28th International Symposium, SAS 2021, Chicago,
Illinois. Springer, Lecture Notes in Computer Science

[3] Angerd A, Sintorn E, Stenström P (2017) A framework for automated and con-
trolled floating-point accuracy reduction in graphics applications on gpus. ACM
Trans Archit Code Optim 14(4):46:1–46:25

https://github.com/dbenkhal/POP-v2.0
https://github.com/dbenkhal/POP-v2.0
https://github.com/sbessai/popix

Springer Nature 2021 LATEX template

22 Reduced Mixed Precision Computation in Numerical Programs

[4] ANSI/IEEE (2008) IEEE Standard for Binary Floating-point Arithmetic.
ANSI/IEEE, std 754-2008 edn.

[5] Baboulin M, Buttari A, Dongarra JJ, et al (2009) Accelerating scientific compu-
tations with mixed precision algorithms. Comput Phys Commun 180(12):2526–
2533

[6] Becker H, Panchekha P, Darulova E, et al (2018) Combining tools for optimiza-
tion and analysis of floating-point computations. In: Formal Methods - 22nd
International Symposium, FM 2018, Held as Part of the Federated Logic Con-
ference, FloC 2018, Oxford, UK, July 15-17, 2018, Proceedings, Lecture Notes
in Computer Science, vol 10951. Springer, pp 355–363

[7] Ben Khalifa D, Martel M (2022) Constrained precision tuning. In: 8th Interna-
tional Conference on Control, Decision and Information Technologies, CoDIT
2022, Istanbul, Turkey, May 17-20, 2022. IEEE, pp 230–236

[8] Ben Khalifa D, Martel M, Adjé A (2019) POP: A tuning assistant for
mixed-precision floating-point computations. In: Formal Techniques for Safety-
Critical Systems - 7th International Workshop, FTSCS 2019, Communications
in Computer and Information Science, vol 1165. Springer, pp 77–94

[9] Benmaghnia H, Martel M, Seladji Y (2022) Code generation for neural net-
works based on fixed-point arithmetic. ACM Trans Embed Comput Syst Just
Accepted

[10] Bessaı̈ S, Ben Khalifa D, Benmaghnia H, et al (2022) Fixed-point code synthe-
sis based on constraint generation. In: Design and Architecture for Signal and
Image Processing - 15th International Workshop, DASIP 2022, Budapest, Hun-
gary, June 20-22, 2022, Proceedings, Lecture Notes in Computer Science, vol
13425. Springer, pp 108–120

[11] Brunie H, Iancu C, Ibrahim KZ, et al (2020) Tuning floating-point precision
using dynamic program information and temporal locality. In: Proceedings
of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA,
November 9-19, 2020. IEEE/ACM, p 50

[12] Cardoso JMP, Carvalho T, Coutinho JGF, et al (2012) LARA: an aspect-oriented
programming language for embedded systems. In: Proceedings of the 11th
International Conference on Aspect-oriented Software Development, AOSD
2012, Potsdam, Germany, March 25-30, 2012. ACM, pp 179–190

[13] Cherubin S, Agosta G (2020) Tools for reduced precision computation: A
survey. ACM Comput Surv 53(2)

Springer Nature 2021 LATEX template

Reduced Mixed Precision Computation in Numerical Programs 23

[14] Cherubin S, Agosta G, Lasri I, et al (2017) Implications of reduced-precision
computations in HPC: performance, energy and error. In: Parallel Computing is
Everywhere, Proceedings of the International Conference on Parallel Comput-
ing, ParCo 2017, 12-15 September 2017, Bologna, Italy, Advances in Parallel
Computing, vol 32. IOS Press, pp 297–306

[15] Cherubin S, Cattaneo D, Chiari M, et al (2020) TAFFO: tuning assistant for
floating to fixed point optimization. IEEE Embed Syst Lett 12(1):5–8

[16] Chiang W, Baranowski M, Briggs I, et al (2017) Rigorous floating-point mixed-
precision tuning. In: Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January 18-
20, 2017. ACM, pp 300–315

[17] Damouche N (2016) Improving the numerical accuracy of floating-point
programs with automatic code transformation methods. (amélioration de la
précision numérique de programmes basés sur l’arithmétique flottante par les
méthodes de transformation automatique). PhD thesis, University of Perpignan,
France

[18] Damouche N, Martel M (2018) Mixed precision tuning with salsa. In: Pro-
ceedings of the 8th International Joint Conference on Pervasive and Embedded
Computing and Communication Systems, PECCS 2018, Porto, Portugal, July
29-30, 2018. SciTePress, pp 185–194

[19] Damouche N, Martel M, Panchekha P, et al (2016) Toward a standard bench-
mark format and suite for floating-point analysis. In: Numerical Software
Verification - 9th International Workshop, NSV, Revised Selected Papers, pp
63–77

[20] Darulova E, Kuncak V (2017) Towards a compiler for reals. ACM Trans
Program Lang Syst 39(2):8:1–8:28

[21] Darulova E, Volkova A (2019) Sound approximation of programs with elemen-
tary functions. In: Computer Aided Verification - 31st International Conference,
CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part II,
Lecture Notes in Computer Science, vol 11562. Springer, pp 174–183

[22] Darulova E, Kuncak V, Majumdar R, et al (2013) Synthesis of fixed-point pro-
grams. In: Proceedings of the International Conference on Embedded Software,
EMSOFT 2013, Montreal, QC, Canada, September 29 - Oct. 4, 2013. IEEE, pp
22:1–22:10

[23] Darulova E, Horn E, Sharma S (2018) Sound mixed-precision optimization
with rewriting. In: Proceedings of the 9th ACM/IEEE International Conference
on Cyber-Physical Systems, ICCPS 2018, Porto, Portugal, April 11-13, 2018.
IEEE Computer Society / ACM, pp 208–219

Springer Nature 2021 LATEX template

24 Reduced Mixed Precision Computation in Numerical Programs

[24] de Dinechin F, Pasca B (2011) Designing custom arithmetic data paths with
flopoco. IEEE Des Test Comput 28(4):18–27

[25] Ferro Q, Graillat S, Hilaire T, et al (2022) Neural network precision tuning using
stochastic arithmetic. In: Software Verification and Formal Methods for ML-
Enabled Autonomous Systems - 5th International Workshop, FoMLAS 2022,
and 15th International Workshop, NSV 2022, Proceedings, Lecture Notes in
Computer Science, vol 13466. Springer, pp 164–186

[26] Fousse L, Hanrot G, Lefèvre V, et al (2007) Mpfr: A multiple-precision binary
floating-point library with correct rounding. ACM Trans Math Softw 33

[27] Gao X, Constantinides GA (2015) Numerical program optimization for high-
level synthesis. In: Proceedings of the 2015 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, Monterey, CA, USA, February
22-24, 2015. ACM, pp 210–213

[28] Graillat S, Jézéquel F, Picot R, et al (2019) Auto-tuning for floating-point
precision with discrete stochastic arithmetic. J Comput Sci 36

[29] Guo H, Rubio-González C (2018) Exploiting community structure for floating-
point precision tuning. In: Proceedings of the 27th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam,
The Netherlands, July 16-21, 2018. ACM, pp 333–343

[30] Ho N, Manogaran E, Wong W, et al (2017) Efficient floating point precision
tuning for approximate computing. In: 22nd Asia and South Pacific Design
Automation Conference, ASP-DAC 2017, Chiba, Japan, January 16-19, 2017.
IEEE, pp 63–68

[31] Ioualalen A, Martel M (2019) Neural network precision tuning. In: Quantitative
Evaluation of Systems, 16th International Conference, QEST 2019, Glasgow,
UK, September 10-12, 2019, Proceedings, Lecture Notes in Computer Science,
vol 11785. Springer, pp 129–143

[32] Jézéquel F, Chesneaux JM (2008) CADNA: a library for estimating round-off
error propagation. Comput Phys Commun 178(12):933–955

[33] Kotipalli PV, Singh R, Wood P, et al (2019) AMPT-GA: automatic mixed pre-
cision floating point tuning for GPU applications. In: Proceedings of the ACM
International Conference on Supercomputing, ICS. ACM, pp 160–170

[34] Kum KI, Kang J, Sung W (2000) Autoscaler for c: an optimizing floating-point
to integer c program converter for fixed-point digital signal processors. IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal Processing
47(9):840–848

Springer Nature 2021 LATEX template

Reduced Mixed Precision Computation in Numerical Programs 25

[35] Laguna I, Wood PC, Singh R, et al (2019) Gpumixer: Performance-driven
floating-point tuning for GPU scientific applications. In: High Performance
Computing - 34th International Conference, ISC High Performance 2019,
Frankfurt/Main, Germany, June 16-20, 2019, Proceedings, Lecture Notes in
Computer Science, vol 11501. Springer, pp 227–246

[36] Lam MO, Hollingsworth JK, Stewart GW (2013) Dynamic floating-point
cancellation detection. Parallel Comput 39(3):146–155

[37] Lam MO, Hollingsworth JK, de Supinski BR, et al (2013) Automatically adapt-
ing programs for mixed-precision floating-point computation. In: International
Conference on Supercomputing, ICS’13, Eugene, OR, USA - June 10 - 14,
2013. ACM, pp 369–378

[38] Lam MO, Vanderbruggen T, Menon H, et al (2019) Tool integration for source-
level mixed precision. In: 2019 IEEE/ACM 3rd International Workshop on
Software Correctness for HPC Applications (Correctness), Denver, CO, USA,
November 18, 2019. IEEE, pp 27–35

[39] Martel M (2017) Floating-point format inference in mixed-precision. In: NASA
Formal Methods - 9th International Symposium, NFM, pp 230–246

[40] Menon H, Lam MO, Osei-Kuffuor D, et al (2018) ADAPT: algorithmic dif-
ferentiation applied to floating-point precision tuning. In: Proceedings of the
International Conference for High Performance Computing, Networking, Stor-
age, and Analysis, SC 2018, Dallas, TX, USA, November 11-16, 2018. IEEE /
ACM, pp 48:1–48:13

[41] Moore GE (1965) Cramming more components onto integrated circuits. Elec-
tronics 38(8)

[42] de Moura LM, Bjørner N (2008) Z3: an efficient SMT solver. In: Tools and
Algorithms for the Construction and Analysis of Systems, LNCS, vol 4963.
Springer, pp 337–340

[43] Muller J, Brisebarre N, de Dinechin F, et al (2010) Handbook of Floating-Point
Arithmetic. Birkhäuser

[44] Nathan R, Anthonio B, Lu S, et al (2014) Recycled error bits: Energy-efficient
architectural support for floating point accuracy. In: International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2014,
New Orleans, LA, USA, November 16-21, 2014. IEEE Computer Society, pp
117–127

[45] Naumann U (2012) The Art of Differentiating Computer Programs - An Intro-
duction to Algorithmic Differentiation, Software, environments, tools, vol 24.
SIAM

Springer Nature 2021 LATEX template

26 Reduced Mixed Precision Computation in Numerical Programs

[46] Nobre R, Reis L, Bispo J, et al (2018) Aspect-driven mixed-precision tuning tar-
geting gpus. In: Proceedings of the 9th Workshop on Parallel Programming and
RunTime Management Techniques for Manycore Architectures and 7th Work-
shop on Design Tools and Architectures for Multicore Embedded Computing
Platforms, PARMA-DITAM@HiPEAC 2018, Manchester, United Kingdom,
January 23-23, 2018. ACM, pp 26–31

[47] Parr T (2013) The Definitive ANTLR 4 Reference, 2nd edn. Pragmatic Book-
shelf

[48] Rojek K (2019) Machine learning method for energy reduction by utilizing
dynamic mixed precision on gpu-based supercomputers. Concurr Comput Pract
Exp 31(6)

[49] Rubio-González C, Nguyen C, Nguyen HD, et al (2013) Precimonious: tun-
ing assistant for floating-point precision. In: International Conference for High
Performance Computing, Networking, Storage and Analysis, SC’13. ACM, pp
27:1–27:12

[50] Rubio-González C, Nguyen C, Mehne B, et al (2016) Floating-point precision
tuning using blame analysis. In: Proceedings of the 38th International Confer-
ence on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016.
ACM, pp 1074–1085

[51] Schkufza E, Sharma R, Aiken A (2014) Stochastic optimization of floating-
point programs with tunable precision. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, Edinburgh,
United Kingdom - June 09 - 11, 2014. ACM, pp 53–64

[52] Schrijver A (1998) Theory of linear and integer programming. John Wiley &
Sons

[53] Seetharam K, Keh LOCT, Nathan R, et al (2013) Applying reduced preci-
sion arithmetic to detect errors in floating point multiplication. In: IEEE 19th
Pacific Rim International Symposium on Dependable Computing, PRDC 2013,
Vancouver, BC, Canada, December 2-4, 2013. IEEE Computer Society, pp
232–235

[54] Stolfi J, Figueiredo LHD (2003) An introduction to affine arithmetic. Trends in
Applied and Computational Mathematics 4:297–312

[55] Yesil S, Akturk I, Karpuzcu UR (2018) Toward dynamic precision scaling.
IEEE Micro 38(4):30–39

[56] Zeller A, Hildebrandt R (2002) Simplifying and isolating failure-inducing
input. IEEE Trans Softw Eng 28(2):183–200

	Introduction
	Background on Computer Arithmetic
	Floating-Point Arithmetic
	Normalized IEEE754 Binary Floating-Point
	Round-off Errors

	Fixed-Point Arithmetic

	State-of-the-Art: Tools for Precision Tuning
	Static Analysis Tools
	Dynamic Analysis Tools
	Search Algorithm Based Tools
	Similar Search-Based Tool
	GPU Applications Based Tools
	Precision Tuning for Neural Networks
	Combining Tools
	Combining Tools for Analysis and Optimization
	Combining Tools for Rewriting and Tuning

	POP: A Precision Tuner Based on Formal Methods
	POP in a Nutshell
	Integer Linear Programming with Multiple Objective Functions
	Minimize the Sum of Number of Significant Bits of the Variables
	Minimize the Number of the Largest Data Type
	Minimize of the Operations Number of Bits
	Minimize type conversions for the Occurrence of the Variable

	Experimental Evaluation
	Experimental Setup
	Results Analysis

	Conclusion and Perspectives
	Data Availability

