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Introduction

The World Meteorological Organization defines fog as a suspension of very small, usually microscopic water droplets in the air, reducing visibility at the Earth's surface. Due to the visibility reduction, fog can affect human activities in many fields like free-space optical (FSO) communication, aviation or ground transportation [START_REF] Ismail Gultepe | Fog research: A review of past achievements and future perspectives[END_REF][START_REF] Gultepe | Marine Fog: A Review on Microphysics and Visibility Prediction[END_REF][START_REF] Price | Lanfex: A field and modeling study to improve our understanding and forecasting of radiation fog[END_REF]. In this latter field, adverse weather conditions are issues for the development of intelligent vehicle and autonomous driving since perceptive sensors like camera, radar and lidar are largely employed [START_REF] Vargas | An overview of autonomous vehicles sensors and their vulnerability to weather conditions[END_REF][START_REF] Miclea | Visibility enhancement and fog detection: Solutions presented in recent scientific papers with potential for application to mobile systems[END_REF][START_REF] Rosique | A systematic review of perception system and simulators for autonomous vehicles research[END_REF][START_REF] Fayyad | Deep learning sensor fusion for autonomous vehicle perception and localization: A review[END_REF][START_REF] Walker | Will weather dampen self-driving vehicles[END_REF][START_REF] Sajeed | The perception system of intelligent ground vehicles in all weather conditions: A systematic literature review[END_REF]. To evaluate the impact of these adverse conditions on optical sensors, the French research and technical center Cerema operates the European Rain and Fog PAVIN platform (Figure 1) in which optical sensors and cars can be submitted to controlled artificial fog and rain [START_REF] Cerema | Adverse weather platform[END_REF][START_REF] Colomb | An innovative artificial fog production device improved in the European project "FOG[END_REF][START_REF] Duthon | Methodology used to evaluate computer vision algorithms in adverse weather conditions[END_REF][START_REF] Duthon | Light Transmission in Fog: The Influence of Wavelength on the Extinction Coefficient[END_REF]. This platform allows to study human perception in adverse conditions [START_REF] Cavallo | Distance Perception of Vehicle Rear Lights in Fog[END_REF][START_REF] Quétard | Combined effects of expectations and visual uncertainty upon detection and identification of a target in the fog[END_REF], vision system capabilities in fog or rain conditions [START_REF] Bernardin | Measuring the effect of the rainfall on the windshield in terms of visual performance[END_REF][START_REF] Marchetti | Retrieving visibility distance in fog combining infrared thermography, Principal Components Analysis and Partial Least-Square regression[END_REF][START_REF] Pinchon | All-weather vision for automotive safety : which spectral band ?[END_REF][START_REF] Kutila | Automotive lidar performance verification in fog and rain[END_REF][START_REF] Li | What happens for a tof lidar in fog[END_REF] or computer vision algorithms for object and weather detection [START_REF] Dahmane | The Cerema pedestrian database : A specific database in adverse weather conditions to evaluate computer vision pedestrian detectors[END_REF][START_REF] Bijelic | Seeing Through Fog Without Seeing Fog: Deep Sensor Fusion in the Absence of Labeled Training Data[END_REF][START_REF] Dahmane | Weathereye-proposal of an algorithm able to classify weather conditions from traffic camera images[END_REF]. Many roadmaps [START_REF]United nations, economic and social council, economic commission for europe, new assessment/test method for automated driving (natm)[END_REF][START_REF]European ccam partnership, strategic research and innovation agenda[END_REF] of European and worldwide institutions responsible for transportation public policies highlight the driving scenario approach to demonstrate the safety of automated road transport systems, including scenarios based on realistic digital simulation taking into account adverse weather conditions. In order to achieve this objective, ITS research team of Cerema is involved in the Horizon Europe ROADVIEW project (Robust Automated Driving in Extreme Weather) [START_REF]European project ROADVIEW[END_REF] which aims to address the impact of harsh weather on automotive perception sensors and more particularly within the Work Package 3 devoted to the digital simulation. The major issue for the numerical simulation tools use concerns their realism even more so if they are used for autonomous driving security assessment. The simulation of perceptive sensors in fog conditions must take into account the modelling of the propagation of electromagnetic waves through a participating medium. The optical characteristics of this medium must be known in order to simulate the extinction of the radiation. The droplet size distribution for the fog case is a key parameter that governs these optical characteristics depending on the radiation wavelength [START_REF] Beier | Simulation of infrared detection range at fog conditions for enhanced vision systems in civil aviation[END_REF][START_REF] Grabner | The wavelength dependent model of extinction in fog and haze for free space optical communication[END_REF][START_REF] Duthon | Light Transmission in Fog: The Influence of Wavelength on the Extinction Coefficient[END_REF]. The aim of this paper is to propose a method for identifying this distribution from radiation measurements that are interpreted using the radiative transfer equation. We develop a method that allows the identification in a wide range of distributions encountered for natural fogs and artificial ones generated in the PAVIN platform. There is an extensive literature on modeled or measured fog droplet size and other characteristics like liquid water content, total concentration of drops, mean diameter [START_REF] Ismail Gultepe | Fog research: A review of past achievements and future perspectives[END_REF][START_REF] Stewart | A survey of fog and related optical propagation characteristics[END_REF][START_REF] Colomb | An innovative artificial fog production device improved in the European project "FOG[END_REF][START_REF] Colomb | Paramétrisation de la visibilité et modelisation de la distribution granulométrique à partir de données microphysiques[END_REF][START_REF] Bruce | Parameterization of droplet terminal velocity and extinction coefficient in fog models[END_REF][START_REF] Elias | Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog[END_REF][START_REF] Garland | Some fog droplet size distributions obtained by an impaction method[END_REF][START_REF] Kumai | Arctic Fog Droplet Size Distribution and Its Effect on Light Attenuation[END_REF][START_REF] Kunkel | Fog Drop-Size Distributions Measured with a Laser Hologram Camera[END_REF][START_REF] Fuzzi | A linear impactor for fog droplet sampling[END_REF][START_REF] Goodman | The Microstructure of California Coastal Fog and Stratus[END_REF][START_REF] Zak | Drop Size Distributions and Related Properties of Fog for Five[END_REF][START_REF] Kunkel | Comparison of Fog Drop Size Spectra Measured by Light Scattering and Impaction Techniques[END_REF][START_REF] García-García | Fine-scale measurements of fogdroplet concentrations: A preliminary assessment[END_REF][START_REF] Kunkel | Microphysical Properties of Fog at Otis AFB[END_REF][START_REF] Thies | The influence of drop size distributions on the relationship between liquid water content and radar reflectivity in radiation fogs[END_REF][START_REF] Colomb | An innovative artificial fog production device improved in the European project "FOG[END_REF][START_REF] Colomb | Paramétrisation de la visibilité et modelisation de la distribution granulométrique à partir de données microphysiques[END_REF][START_REF] Bruce | Parameterization of droplet terminal velocity and extinction coefficient in fog models[END_REF][START_REF] Elias | Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog[END_REF][START_REF] Garland | Some fog droplet size distributions obtained by an impaction method[END_REF][START_REF] Kumai | Arctic Fog Droplet Size Distribution and Its Effect on Light Attenuation[END_REF][START_REF] Kunkel | Fog Drop-Size Distributions Measured with a Laser Hologram Camera[END_REF][START_REF] Fuzzi | A linear impactor for fog droplet sampling[END_REF][START_REF] Goodman | The Microstructure of California Coastal Fog and Stratus[END_REF][START_REF] Zak | Drop Size Distributions and Related Properties of Fog for Five[END_REF][START_REF] Kunkel | Comparison of Fog Drop Size Spectra Measured by Light Scattering and Impaction Techniques[END_REF][START_REF] Meyer | Measurements of visual range and radiationfog ( haze) microphysics[END_REF][START_REF] García-García | Fine-scale measurements of fogdroplet concentrations: A preliminary assessment[END_REF][START_REF] Liu | Fog droplet size distribution and the interaction between fog droplets and fine particles during dense fog in tianjin, china[END_REF][START_REF] Duthon | Fog classification by their droplet size distributions: Application to the characterization of cerema's platform[END_REF][START_REF] Li | The evolution of cloud and aerosol microphysics at the summit of mt. tai, china[END_REF]. All the experimental studies show that fog droplet size ranges from a few tenths of a micron to a few tens of microns [START_REF] Pinnick | Vertical Structure in Atmospheric Fog and Haze and Its Effects on Visible and Infrared Extinction[END_REF][START_REF] Gerber | Microstructure of a radiation fog[END_REF][START_REF] Ismail Gultepe | Fog research: A review of past achievements and future perspectives[END_REF][START_REF] He | Analysis of the microphysical structure and evolution characteristics of a typical sea fog weather event in the eastern sea of china[END_REF][START_REF] Gultepe | Marine Fog: A Review on Microphysics and Visibility Prediction[END_REF][START_REF] Mazoyer | Experimental study on the evolution of droplet size distribution during the fog life cycle[END_REF][START_REF] Faisal | Seasonal and microphysical characteristics of fog at a northern airport in alberta, canada[END_REF][START_REF] Price | Radiation Fog. Part I: Observations of Stability and Drop Size Distributions[END_REF]. Other studies attempt to characterize the droplet size distribution (DSD) by modeling them. Two main categories of laws are used for fitting: shifted gamma laws [START_REF] Deirmendjian | Electromagnetic Scattering on Spherical Polydispersions[END_REF][START_REF] Shettle | Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties[END_REF][START_REF] Mallow | Empirical fog droplet size distribution functions with finite limits[END_REF][START_REF] Tampieri | Size distribution models of fog and cloud droplets in terms of the modified gamma function[END_REF] and log normal laws [START_REF] Shettle | Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties[END_REF][START_REF] Bernardin | Droplet distribution models for visibility calculation[END_REF][START_REF] Colomb | Paramétrisation de la visibilité et modelisation de la distribution granulométrique à partir de données microphysiques[END_REF]. In this paper we test our method on DSD obtained by measurement in natural conditions [START_REF] Haeffelin | PARISFOG: Shedding New Light on Fog Physical Processes[END_REF], artificial conditions [START_REF] Duthon | Fog classification by their droplet size distributions: Application to the characterization of cerema's platform[END_REF] and from models [START_REF] Shettle | Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties[END_REF].

In a participating medium (fog) containing water particles, the light can be scattered or absorbed. There are numerous models that describe light propagation, such as the radiative transfer equation (RTE), which was introduced in astrophysics, nuclear reactors, and atmospheric science [START_REF] Case | Linear Transport Theory[END_REF][START_REF] Chandrasekhar | Radiative Transfer[END_REF][START_REF] Paletou | Une introduction au transfert de rayonnement astrophysique[END_REF]. The radiance is the power per unit area of radiation traveling or being emitted in a time t at a point s ∈ R 3 , and in a given direction u ∈ S 2 where S 2 is the unit sphere. The spectral radiance, denoted by L λ (expressed in W • m -2 • sr -1 • m -1 ), verifies the following equation [START_REF] Chandrasekhar | Radiative Transfer[END_REF]:

1 c ∂L λ ∂t (t, s, u) + u.∇ s L λ (t, s, u) + σ λ ext L λ (t, s, u) = σ λ sca 4π S 2 L λ (t, s, v)Φ λ (s, v, u) dv, (1.1)
where c is the light speed in the host medium, σ λ ext = σ λ sca +σ λ abs and σ λ sca denote the extinction coefficient and the scattering coefficient, respectively, with σ λ abs the absorbing coefficient at the wavelength λ. The phase function Φ λ describes the probability that a photon at a point s ∈ R 3 with directions v ∈ S 2 undergoes a collision: as a result a photon or a number of photons can appear in the u-directions. The phase function Φ λ is normalized in the following way:

∀s ∈ R 3 , ∀u ∈ S 2 , 1 4π S 2 Φ λ (s, v, u) dv = 1. (1.
2)

The isotropic case corresponds to a phase function Φ λ constant equal to one.

We are interested in the reconstruction of the optical properties (scattering coefficient, absorption coefficient and the phase function) in a time-independent case. Concerning the time-dependent case, we mention [START_REF] Addoum | Optical properties reconstruction using the adjoint method based on the radiative transfer equation[END_REF][START_REF] Guan | Optical tomography reconstruction algorithm based on the radiative transfer equation considering refractive index: Part 2. inverse model[END_REF][START_REF] Qiao | An efficient and robust reconstruction method for optical tomography with the time-domain radiative transfer equation[END_REF]. To reconstruct these properties, it is necessary to introduce the inverse problem of RTE, which is studied by several authors [START_REF] Mccormick | Methods for solving inverse problems for radiation transport-an update[END_REF][START_REF] Mccormick | Inverse radiative transfer problems: A review[END_REF]. Some authors use an exact method to reconstruct these properties [START_REF] Choulli | Reconstruction of the coefficients of the stationary transport equation from boundary measurements[END_REF] based on the knowledge of the Albedo operator, which maps the incoming flux to the outgoing flux under some conditions based on these properties. In [START_REF] Choulli | Reconstruction of the coefficients of the stationary transport equation from boundary measurements[END_REF], they only reconstruct the absorption and scattering coefficients in two dimensions, while in three dimensions they reconstruct all these properties. In dimension n ≥ 3, Bal and Jollivet [START_REF] Bal | Stability estimates in stationary inverse transport[END_REF] investigate the stability of the reconstruction of the scattering and absorption coefficients from the knowledge of the full Albedo operator. There are authors who reconstruct these properties using numerical approximation methods. We mention the work of Klose, Netz, Beuthan, and Hielscher [START_REF]Optical tomography using the time-independent equation of radiative transfer -part 1: forward model[END_REF] where they evaluated the radiative transfer equation in two dimensions. The authors present a number of tissue phantoms to investigate the sensitivity of the fluence (the integral of radiance) calculated using the radiative transfer equation and comparing it with experimental measurements. In their work, they used the Henyey-Greenstein scattering function (for the phase function). After several tests on various optical properties, the authors observe that without an accurate knowledge of the anisotropy factor of phase function, the measured data cannot be properly predicted. After this study, the authors have introduced the reconstruction of the absorption and scattering coefficients [START_REF] Klose | Optical tomography using the time-independent equation of radiative transfer-part 2: inverse model[END_REF] by assuming that the anisotropy factor of the phase function is known. Egger and Schlottbom [START_REF] Egger | Numerical methods for parameter identification in stationary radiative transfer jo -computational optimization and applications[END_REF] identify the scattering and absorption properties by assuming that the phase function is known in three dimensions. These authors use the Tikhonov regularization [START_REF] Lenzen | Tikhonov type regularization methods: History and recent progress[END_REF] in Banach spaces to provide a solution to this reconstruction problem. We also mention [START_REF] Bo | Image reconstruction for diffuse optical tomography based on radiative transfer equation[END_REF][START_REF] Feng | Levenberg-marquardt methods for parameter estimation problems in the radiative transfer equation[END_REF], where the authors reconstruct the optical properties by assuming that one or two of these properties are known, and by using a reconstruction algorithm based on the Levenberg-Marquardt regularization [START_REF] Levenberg | A method for the solution of certain non -linear problems in least squares[END_REF]. Finally, we mention [START_REF] He | Inverse estimation of the particle size distribution using the fruit fly optimization algorithm[END_REF][START_REF] He | Application of the lsqr algorithm in non-parametric estimation of aerosol size distribution[END_REF][START_REF] Sun | Anomalous diffraction approximation method for retrieval of spherical and spheroidal particle size distributions in total light scattering[END_REF][START_REF] Sun | Inversion of particle size distribution from spectral extinction data using the modified beta function[END_REF][START_REF] Yuan | Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization[END_REF], where the authors reconstruct some models of volume frequency distributions (Rosin-Rammler R-R, Log normal laws L-N, and Normal laws N-N) using Bouguer-Lambert law, L = L 0 e σext d , which expresses the attenuation of the luminous flux L 0 at the value of L as a function of the distance d and the extinction coefficient σ λ ext .

The main purpose of this article is to identify the droplet size distribution (DSD) of a fog by radiation measurements. We recall that DSD is the number of water particles per cm 3 for each radius r. The DSD is expressed in cm -3 µm -1 as a function of the radius r of water particles expressed in µm, and is denoted by N (r). The identification of the distribution N allows us to compute the optical properties by using Lorenz-Mie theory [START_REF] Deirmendjian | Electromagnetic Scattering on Spherical Polydispersions[END_REF]. In order to identify the droplet size distribution N , we introduce for all ε ≥ 0 the following least-squares problem:

inf

N ∈H(R + ) J ε (N ) := 1 2 I i=1 G l=1 F λ l (x i ) -M λ l (x i ) M λ l (x i ) 2 + ε 2 ∥ f N ∥ 2 H(R + ) , (1.3) 
where

H(R + ) = N ∈ L 2 (R + ), R + r 2 N 2 (r)dr < +∞
endowed with the inner product:

(N, N ) H(R + ) = R + r 2 N (r) N (r) dr.
J ε (N ) is the difference between the measured radiation M λ l (x i ) and the radiation calculated by the radiative transfer equation F λ l (x i ) at point x i for a wavelength λ l ; I and G represent the number of measurement points and wavelengths, respectively. The ε-term is a regularizing term as it ensures the well-posedness of the problem. Moreover, as a priori knowledge about the droplet size distribution N -almost zero for small radii -that we will identify, we introduce a positive function f in which explodes for small radii.

Figure 2 shows a diagram of the experimental protocol allowing to perform the identification: a spectrally continuous light source (assumed spatially infinite) illuminates a homogeneous foggy medium and spectral measurements are made in forescattering (left) and backscattering (right) situations. For numerical applications, we will consider a Lambertian source. In this work, we wish to investigate the reconstruction of the DSD with models that may involve a collision operator, and thus not limit ourselves to the basic Beer-Lambert solution.

With some anticipation of the following sections, Figure 3 shows the relative error

E λ = ∥L λ -L λ,0 ∥ L ∞ (X) ∥L λ ∥ L ∞ (X)
between the solution L λ of the radiative transfer equation with collision (3.4) and the solution L λ,0 without collision (Beer-Lambert case), with optical parameters given by one of the DSD of Figure 5 (a). We can observe that for different wavelengths between 300 nm and 2500 nm, we have an error of 50% between the two radiance which justifies the use of the collision operator. It is therefore needed to develop numerical procedures to solve the complete radiative transfer equation. We then exploit these procedures by using a gradient descent based method to solve our minimization problem: we will introduce an adjoint problem to the RTE allowing to easily calculate the cost function gradient. It is then important to note that the computing time of these procedures depends more on the discretization parameters to solve the integrodifferential equation (RTE) and its adjoint problem than the number of parameters describing the DSD: the method we detail in this article doesn't need to model the unknown DSD as that is made in [START_REF] He | Inverse estimation of the particle size distribution using the fruit fly optimization algorithm[END_REF][START_REF] He | Application of the lsqr algorithm in non-parametric estimation of aerosol size distribution[END_REF][START_REF] Sun | Anomalous diffraction approximation method for retrieval of spherical and spheroidal particle size distributions in total light scattering[END_REF][START_REF] Sun | Inversion of particle size distribution from spectral extinction data using the modified beta function[END_REF][START_REF] Yuan | Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization[END_REF].

The paper is organized as follows. In Section 2, we introduce the Lorenz-Mie scattering theory, which enables to express the optical properties with respect to the fog droplet size distributions. We detail in this section the DSD we will use to test the reconstruction method. In Section 3, we recall the existence and uniqueness of the solution of the stationary radiative transfer equation. We also give in this section some explicit solutions to the stationary radiative transfer equation allowing in Section 6 to validate our numerical tools and to study the influence of the numerical parameters used to discretize the RTE. The gradient descentbased inverse problem and the cost function are presented together with their properties in Section 4. We give in this section the expression of the cost function gradient in terms of an adjoint problem to the RTE. In Section 5, we recall Yvon's method [START_REF] Case | Linear Transport Theory[END_REF][START_REF] Yvon | La diffusion macroscopique des neutrons une methode d'approximation[END_REF] to solve the stationary radiative transfer equation and the Barzilai-Borwein algorithm [START_REF] Barzilai | Two-point step size gradient methods[END_REF] to minimize the cost function J ε . Numerical results on the DSD identification using synthetic measurements (output of simulations with real DSDs and some DSDs models as input) in Beer-Lambert modelling case (without multiple scattering), isotropic and anisotropic collision operator cases are presented in Section 7. We end the paper by a conclusion and some perspectives in Section 8.

Droplet size distribution, extinction and Mie theory

The World Meteorological Organization (WMO) [START_REF]Guide to Instruments and Methods of Observation[END_REF] defines the meteorological visibility as the greatest distance at which a black object of suitable dimensions can be seen and recognized against the horizon sky during daylight or could be seen and recognized during the night if the general illumination were raised to the normal daylight level. Meteorological visibility V m (expressed in m) is defined by Koschmieder in 1923 as follows [START_REF]Guide to Instruments and Methods of Observation[END_REF]:

V m = 3 σ ext (2.1)
where σ ext is the extinction coefficient of the fog for a wavelength of 550 nm (green). We will see in Section 2.1 how to rely this coefficient with the droplet size distribution N of the fog.

As mentioned in Section 1, our work is motivated by ITS application and then we will focus on road fogs which are characterized by a meteorological visibility less than 400 meters, that is thanks to (2.1):

σ ext ≥ 7.5 × 10 -3 . (2.2) 
Considering front vehicle lights emitting around 10 3 cd/m 2 and a scotopic human vision (night conditions) detection threshold around 10 -4 cd/m 2 , we will consider fogs with transmittance greater than 10 -7 or equivalently with optical thickness τ verifying:

τ ≤ -Ln 10 -7 ≃ 16.

(2.3) Numerical applications of Section 7 will illustrate our DSD identification method with τ = 4 and DSD we detail in Section 2.2. In the following subsection we present the Mie theory allowing to rely DSD and extinction.

Lorenz-Mie scattering theory

The Lorenz-Mie theory [START_REF] Deirmendjian | Electromagnetic Scattering on Spherical Polydispersions[END_REF] solves the electromagnetic equations of Maxwell by describing the elastic scattering of an electromagnetic wave by a spherical particle with its diameter and its complex refractive index , m = n + ik, with n and k denoting the refractive and absorption indices, respectively. In our work, we use the wavelengths with the Segelstein indices [START_REF] Segelstein | The Complex Refractive Index of Water[END_REF]. In light scattering solved by Mie theory, a monochromatic plane wave with wave vector k = 2π/λ propagates in a medium with refractive index m 1 . This incident wave encounters a sphere of radius r. As a result of the interaction, a wave is diffused by the sphere throughout space. Lorenz-Mie theory allows us to compute the scattering properties of a single homogeneous, spherical particle embedded in an homogeneous medium.

The extinction and scattering coefficients are expressed in terms of the droplet size distribution N as follows:

σ λ ext (N ) = +∞ 0 Q λ ext (r) π r 2 N (r) dr ; σ λ sca (N ) = +∞ 0 Q λ sca (r) π r 2 N (r) dr. (2.4)
Similarly, the phase function can be expressed by the following form:

σ λ sca (N ) ϕ λ (µ, N ) = +∞ 0 Q λ sca (r)ψ λ (r, µ) π r 2 N (r) dr, (2.5) 
where the scattering and extinction cross sections are given by:

Q λ sca (r) = λ 2 2 π 2 r 2 +∞ n=1 (2n + 1) |a n (r, λ)| 2 + |b n (r, λ)| 2 ,
(2.6)

Q λ ext (r) = λ 2 2 π 2 r 2 +∞ n=1 (2n + 1)Re (a n (r, λ) + b n (r, λ)) , (2.7) 
and ψ λ given by

ψ λ (r, µ) = λ 2 2 π 2 r 2 Q λ sca (r) |S 1 (µ)| 2 + |S 2 (µ)| 2 .
(2.8) S 1 and S 2 are the scattering amplitude functions given by:

S 1 (µ) = +∞ n=1 2n + 1 n(n + 1) (a n (r, λ)π n (µ) + b n (r, λ)τ n (µ)) , (2.9) 
S 2 (µ) = +∞ n=1 2n + 1 n(n + 1) (b n (r, λ)π n (µ) + a n (r, λ)τ n (µ)) , (2.10) 
where the sequence of polynomials (π n ) n≥0 and (τ n ) n≥0 are defined by the recurrences:

   π 0 (z) = 0, π 1 (z) = 1, ∀ n ≥ 2 , π n (z) = z 2n -1 n -1 π n-1 (z) - n n -1 π n-2 (z), τ 0 (z) = 0, τ 1 (z) = z, ∀ n ≥ 2 , τ n (z) = z(τ n (z) -τ n-2 (z)) -(2n -1)(1 -z 2 ) τ n-1 (z) + τ n-2 (z).
The coefficients a n and b n in equations (2.6) and (2.7) are complex numbers called the Lorenz-Mie coefficients, which are composed of the spherical Bessel functions. For more details on a n and b n , we refer to [START_REF] Deirmendjian | Electromagnetic Scattering on Spherical Polydispersions[END_REF].

The functions Q ext and Q abs are represented in function of the particle radius r in Figure 4 for different wavelengths (one in the visible 0.55 µm and three in infrared 8, 10, 12 µm). The numerical computations of the series introduced above require a truncation. The most commonly used truncation, taking into account the numerical difficulties encountered with Bessel functions, is that of Wiscombe [START_REF] Wiscombe | Improved mie scattering algorithms[END_REF]:

E(v) =      v + 4v 1/3 + 1 if 0.02 ≤ v ≤ 8, v + 4.05v 1/3 + 2 if 8 < v ≤ 4200, v + 4v 1/3 + 2 if 4200 < v ≤ 20000, (2.11) 
where E(v) is the truncation function of the size parameter v = 2πr/λ.

Droplet size distributions

We will test our identification method on different fog droplet size distributions, which have been measured in the PAVIN platform or in natural conditions. We will also consider some common DSD models. The measurements were carried out with the PALAS WELAS particle size analyzer [START_REF] Duthon | Fog classification by their droplet size distributions: Application to the characterization of cerema's platform[END_REF]. For numerical applications (Section 7), all the DSD are normalized in order to have:

τ ≡ Dσ ext = 4.0 (with D = 1) ⇔ V m = 0.75. (2.
12)

The DSD of artificial fog produced in the PAVIN platform are represented in Figure 5(a). The DSD for a real fog (see Figure 5(b)) were acquired during an episode of fog in the night of March 13 to 14, 2007 on the French Palaiseau site (Paris-Fog campaign [START_REF] Bergot | Paris-fog : des chercheurs dans le brouillard[END_REF]). In order to take into account DSD with bigger droplets, we consider in Figure 5(c) modified Gamma law based models of radiation fogs given by Shettle and Fen [START_REF] Shettle | Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties[END_REF]): Table 1: Coefficients given in [START_REF] Shettle | Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties[END_REF] for modified Gamma laws (2.13).

N (r) = c r β e -dr γ , r ≥ 0, ( 2 
where r m represents the peak position for each model.

One-dimensional stationary radiative transfer equation

We are interested in the stationary radiative transfer equation in one-dimensional space (stationary linear Boltzmann equation): for a wavelength λ,

µ ∂ Lλ ∂x (x, µ, N ) + σ λ ext (N ) Lλ (x, µ, N ) = K Lλ (x, µ, N ) + q λ (x, µ), (x, µ) ∈ [0, +∞) × [-1, 1] (3.1) with the following boundary conditions: L(0, µ, N ) = L + (µ) for µ > 0 ; lim x→+∞ L(x, µ, N ) = 0 for µ < 0, (3.2) 
where µ = cos(θ) denotes the cosine of the propagation angle, N ∈ L 2 (R + ) is the droplet size distribution, and

             σ λ ext (N ) = σ λ abs (N ) + σ λ sca (N ), KL λ (x, µ, N ) = σ λ sca (N ) 2 1 -1 Φ λ (µ, µ ′ , N ) L λ (x, µ ′ , N ) dµ ′ , ∀ (µ, µ ′ ) ∈ [-1, 1] 2 , Φ λ (µ, µ ′ , N ) = 1 2π 2π 0 ϕ λ (µµ ′ + 1 -µ 2 1 -µ ′2 cos(ω), N ) dω. (3.3) The condition (1.2) in one-dimensional space becomes ∀ µ ∈ [-1, 1], 1 2 1 -1 Φ λ (µ, µ ′ , N ) dµ ′ = 1.
According to the results of Case-Zweifel [START_REF] Case | Linear Transport Theory[END_REF] and Dautray-Lions [START_REF] Lions | Mathematical Analysis and Numerical Methods for Science and Technology: Volume 6 Evolution Problems II[END_REF], the problem (3.1)-(3.2) has a unique solution which decreases exponentially towards 0 as x tends to infinity. In the squel, we will restrict the space domain to [0, D] and the radiative transfer equation (3.1) posed in [0, D] is given by the following problem [START_REF] Agoshkov | Boundary value problems for transport equations[END_REF][START_REF] Allaire | Transport et diffusion[END_REF]:

   µ ∂L λ ∂x (x, µ, N ) + σ λ ext (N )L λ (x, µ, N ) = KL λ (x, µ, N ) + q λ (x, µ), (x, µ) ∈ X L λ (0, µ, N ) = L + λ (µ) for µ > 0 and L λ (D, µ, N ) = L - λ (µ) for µ < 0, (3.4) 
where

X = [0, D] × ([-1, 0) ∪ (0, 1]
). L - λ is the spectral radiance value at x = D which is small if D is large enough. For the numerical applications, we will use L - λ = 0.

Existence and uniqueness of the solution of stationary radiative transfer equation

In this section, we review the existence and uniqueness of the solution of stationary radiative transfer equation (3.4). Theorem 3.1. [START_REF] Allaire | Transport et diffusion[END_REF] Assume σ λ abs (N ) > 0 and suppose that

σ λ sca (N ) 2 Φ λ ∈ C b (([-1, 0) ∪ (0, 1]) 2 × R + ) and q λ ∈ L ∞ (X) , L + λ ∈ L ∞ ((0, 1]), L - λ ∈ L ∞ ([-1, 0))
, where C b is the space of bounded continuous functions. The problem (3.4) has a unique solution in C b (X) which satisfies the following estimate

∥L λ ∥ L ∞ (X) ≤ max ∥L - λ ∥ L ∞ ([-1,0)) , ∥L + λ ∥ L ∞ ((0,1]) , 1 σ λ abs (N ) ∥q λ ∥ L ∞ (X) .
(3.5)

Some explicit solutions of the stationary radiative transfer equation

In some cases, we provide exact solutions for the stationary radiative transfer equation used in the sequel to check our numerical approximations.

3.2.1.

Case without collision operator (KL λ ≡ 0) and q λ ≡ 0 We are interested in the following system, with σ λ ext (N ) > 0:

   µ ∂L λ ∂x (x, µ) + σ λ ext (N )L λ (x, µ) = 0, (x, µ) ∈ X L λ (0, µ) = L + λ (µ), µ > 0 and L λ (D, µ) = 0, µ < 0. (3.6)
It is easy to show the solution of (3.6) is:

L λ (x, µ) = L + λ (µ) e -σ λ ext (N ) x µ 1 1 µ>0 . (3.7) 3.2.2.
Case with a source expressed by a Dirac measure We are interested in the following system, with σ λ ext (N ) > 0 and 0 < c < D real numbers:

   µ ∂L λ ∂x (x, µ) + σ λ ext (N )L λ (x, µ) = f (µ)δ c (x), (x, µ) ∈ X L λ (0, µ) = 0, µ > 0 and L λ (D, µ) = 0, µ < 0. (3.8)
The solution of (3.8) is :

L λ (x, µ) = f (µ) |µ| e -σ λ ext (N ) (x -c) µ 1 1 (x-c)µ>0 .
(3.9)

3.2.3. Case with phase function Φ λ ≡ 1 and source term q λ expressed by the Dirac measure We are interested in the problem discussed in paragraph 4 of [START_REF] Lions | Mathematical Analysis and Numerical Methods for Science and Technology: Volume 6 Evolution Problems II[END_REF] with 0 < c < 1:

     µ ∂L λ ∂x (x, µ) + L λ (x, µ) = c 2 1 -1 L λ (x, µ ′ )dµ ′ + 1 2 δ(x), x ∈ R, µ ∈ [-1, 0) ∪ (0, 1], L λ (-∞, µ) = 0, µ > 0 ; L λ (+∞, µ) = 0, µ < 0. (3.10)
The solution is expressed by applying the Fourier transform to the variable µ, and by using Cauchy's theorem of complex analysis.

The expression of T (x) := L(x, µ) dµ, according to [START_REF] Lions | Mathematical Analysis and Numerical Methods for Science and Technology: Volume 6 Evolution Problems II[END_REF] is:

∀ x > 0, T (x) = ξ 0 c 1 -ξ 2 0 ξ 2 0 + c -1 e -ξ 0 x + +∞ 1 e -tx 2t 1 -c 2t log t+1 t-1 2 + cπ 2t 2 dt, (3.11) 
where 0 < ξ 0 ≤ 1 verifies iξ 0 -c atan(iξ 0 ) = 0. We give in table 2 some values of ξ 0 according to c. c 0.25 0.5 0.75 0.9 ξ 0 9.993×10 -1 9.575×10 -1 7.755× 10 -1 5.254×10 -1 

Identification of the DSD by a least-squares optimization method

In this section, we present the inverse problem for identifying the droplet size distribution N from radiation measurements.

The cost function and the minimization problem

The measurements at wavelength λ l , at a point x i of the x-axis is determined by:

M i l ≡ M λ l (x i ) = b a L ⋆ λ l (x i , µ) dµ , ∀ 1 ≤ i ≤ I, 1 ≤ l ≤ G, (4.1) 
where I and G represent the numbers of measurement points and wavelengths, respectively. The two parameters a and b are defined as follows:

a = cos θ ′ + α 2 ; b = cos(θ ′ ) (4.2)
where α designates the aperture angle of the sensor, and θ ′ is the position angle of the sensor relative to the source (θ ′ = 0 • for forescattering measurements, and θ ′ = 180 • for backscattering measurements). L ⋆ λ (x, µ) is the "real" spectral radiance in the direction µ, at point x and for the wavelength λ. For the numerical applications, we will use synthetic measurements obtained by (7.1) and by:

L ⋆ λ (x, µ) = L λ (x, µ, N ⋆ ), (4.3) 
that is L ⋆ λ is the solution of the stationary radiative transfer equation (3.4) with a known droplet size distribution N ⋆ measured in the PAVIN platform, in natural foggy conditions or coming from DSD modelling recalled in the Introduction and detailed in Section 6. In order to identify the droplet size distribution N , we introduce for all ε ≥ 0 the following least-squares problem: inf

N ∈H(R + ) J ε (N ), (4.4) 
where

J ε (N ) = J 1 (N ) + ε 2 ∥ f N ∥ 2 H(R + ) , (4.5) 
and

J 1 (N ) = 1 2 I i=1 G l=1     b a L λ l (x i , µ) dµ -M λ l (x i ) M λ l (x i )     2 . (4.6)
The cost function defined in (4.5) represents the difference between the synthetic measurements and the model output, including the regularity term. Proof. It is easy to check that the cost function J ε defined in (4.5) is continuous, differentiable, and strictly convex. Then our problem admits a unique minimum.

The cost function gradient and the adjoint problem

Here we show the differentiability of the cost function and express its gradient thanks to the adjoint problem associated to the radiative transfer equation.

Proposition 4.1. For all ε ≥ 0, the function J ε is differentiable and the directional derivative is as follows:

DJ ε (N ) • N = (∇J ε (N ), N ) H(R + ) = +∞ 0 r 2 (∇J ε (N ))( r) N (r) dr,
where

∇J ε (N ) = -π G l=1 Q λ l ext W λ l (N ) + π 2 G l=1 Q λ l sca R λ l (N ) + εf N, (4.7) 
with for all wavelengths λ,

W λ (N ) = 1 -1 D 0 p λ (x, µ, N ) L λ (x, µ, N ) dx dµ, (4.8) R λ (N ) = 1 2π 1 µ=-1 D 0 p λ (x, µ, N ) 1 µ ′ =-1 L λ (x, µ ′ , N ) 2π 0 ψ λ (r, µ 0 )dω dµ ′ dx dµ.
L λ verifies (3.4), and p λ verifies the adjoint problem defined by

     -µ ∂p λ ∂x (x, µ, N ) + σ λ ext (N ) p λ (x, µ, N ) = Kp λ (x, µ, N ) + q λ (x, µ, N ), (x, µ) ∈ X p λ (0, µ, N ) = 0, µ < 0 and p λ (D, µ, N ) = 0, µ > 0, (4.9) 
with

q λ (x, µ, N ) = I i=1     b a L λ (x i , µ, N ) dµ -M λ (x i ) (M λ l (x i )) 2     1 1 (a,b) (µ) δ x i (x).
(4.10)

Proof. The directional derivative of the cost function (4.5) according to N is given by the following form (see Appendix A):

DJ ε (N ) • N = - G l=1 σ λ l ext (N ) 1 -1 D 0 p λ l (x, µ, N ) L λ l (x, µ, N ) dx dµ + 1 2 G l=1 σ λ l sca (N ) 1 µ=-1 D 0 p λ l (x, µ, N ) 1 µ ′ =-1 L λ l (x, µ ′ , N )Φ λ l µ, µ ′ , N dµ ′ dxdµ + ε +∞ 0 r 2 f (r) N (r) N (r) dr. (4.11)
Moreover,

σ λ l sca (N ) Φ λ (µ, µ ′ , N ) = 1 2π 2π 0 σ λ l sca (N ) ϕ λ (µµ ′ + 1 -µ 2 1 -µ ′2 cos(ω), N ) dω, (4.12)
by (2.5), and noting that µ 0 = µµ ′ + 1 -µ 2 1 -µ ′2 cos(ω), we have

σ λ sca ϕ λ (µ 0 , N ) = +∞ 0 Q λ sca (r)ψ λ (r, µ 0 ) π r 2 N (r) dr, (4.13) 
then

σ λ l sca (N ) Φ λ (µ, µ ′ , N ) = 1 2π 2π 0 +∞ 0 Q λ sca (r)ψ λ (r, µ 0 ) π r 2 N (r) dr dω, (4.14) 
where ψ λ is defined in (2.8). By injecting (2.4) and (4.14) in (4.11), we get

DJ ε (N ) • N = -π G l=1 +∞ 0 Q λ l ext (r) E λ l (N ) r 2 N (r) dr + π 2 G l=1 +∞ 0 Q λ l sca (r) R λ l (N )r 2 N (r) dr + ε +∞ 0 r 2 f (r) N (r) N (r) dr, (4.15 
) then, we obtain the formula (4.7).

Numerical schemes to approximate the RTE and its adjoint problem

In this section, we present the approximation of one-dimensional stationary radiative transfer equation by using Yvon's method [START_REF] Yvon | La diffusion macroscopique des neutrons une methode d'approximation[END_REF]. In order to use this method, we need to decompose the phase function on the Legendre polynomials basis. In the following, we give the minimization algorithm to minimize the cost function J ε .

Decomposition of the phase function on Legendre basis

In this part, we present the decomposition of the phase function Φ λ on Legendre polynomials basis [START_REF] Fowler | Expansion of mie-theory phase functions in series of legendre polynomials[END_REF]. We recall that the Legendre polynomials are defined for all µ ∈ [-1, 1] by the following recurrence (see [START_REF] Lagrange | Polynômes et fonctions de Legendre[END_REF]):

     P 0 (µ) = 1 , P 1 (µ) = µ, ∀ n ≥ 1, P n+1 (µ) = (2n + 1) (n + 1) µ P n (µ) - n (n + 1)
P n-1 (µ).

(5.1)

Lemma 5.1. The phase function Φ λ defined in (3.1) can be decomposed as follows:

∀ (µ, µ ′ ) ∈ [-1, 1] 2 , ∀ N ∈ L 2 (R + ), Φ λ (µ, µ ′ , N ) = +∞ k=0 A λ,k (N ) P k (µ) P k (µ ′ ), (5.2) 
with

A λ,k (N ) = 1 σ λ sca (N ) +∞ 0 Q λ sca (r) Ãλ,k (r) π r 2 N (r) dr, (5.3) 
and

∀ r > 0, Ãλ,k (r) = λ 2 (2k + 1) 4 π 2 r 2 Q λ sca (r) +∞ i=0 +∞ j=0 (α i α j + β i β j ) 1 -1 P i (µ) P j (µ) P k (µ) dµ, (5.4) 
where α, β ∈ C are determined in Appendix B. α, β are the complex conjugates of α, β and we have [START_REF] Adams | On the expression of the product of any two Legendre's coefficients by means of a series of Legendre's coefficients[END_REF]:

1 -1 P i (µ) P j (µ) P k (µ) dµ =    0 if i + j < k or j + k < i or i + j + k is odd 2 (2s -2i)(2s -2k)(2s -2j) (2s -1)! s! (s -i)!(s -j)!(s -k)! else, with s = (i + j + k)/2.
Proof. Let us assume that the functions S 1 and S 2 defined in (2.9)-(2.10) are decomposed on the Legendre basis (P k ) k≥0 as follows:

∀ µ ∈ [-1, 1], S 1 (µ) = +∞ i=0 α i P i (µ) ; S 2 (µ) = +∞ i=0 β i P i (µ). (5.5) 
From (2.8), we deduce that

ψ λ (r, µ) = λ 2 2 π 2 r 2 Q λ sca (r) +∞ i=0 +∞ j=0 (α i α j + β i β j ) 1 -1 P i (µ) P j (µ) dµ = +∞ k=0 Ãλ,k (r) P k (µ) (5.6) 
Moreover,

ϕ λ (µ, N ) = 1 σ λ sca (N ) +∞ 0 Q λ sca (r)ψ λ (r, µ) π r 2 N (r) dr = 1 σ λ sca (N ) +∞ 0 Q λ sca (r) +∞ k=0 Ãλ,k (r) P k (µ) π r 2 N (r) dr = +∞ k=0 A λ,k (N ) P k (µ), (5.7) 
where

A λ,k (N ) = 1 σ λ sca (N ) +∞ 0 Q λ sca (r) Ãλ,k (r) π r 2 N (r) dr. (5.8) Then, Φ λ (µ, µ ′ , N ) = 1 2π 2π 0 ϕ λ (µµ ′ + 1 -µ 2 1 -µ ′2 cos(ω), N ) dω = 1 2π +∞ k=0 A λ,k (N ) 2π 0 P k (µµ ′ + 1 -µ 2 1 -µ ′2 cos(ω))dω,
(5.9) using Legendre's polynomial addition theorem [START_REF] Lagrange | Polynômes et fonctions de Legendre[END_REF]: for all n ≥ 1,

∀ (µ, µ ′ ) ∈ [-1, 1] 2 , ∀w ∈ [0, 2π], P n µµ ′ + 1 -µ 2 1 -µ ′2 cos w = P n (µ)P n (µ ′ ) + 2 n m=1 (n -m)! (n + m)! P m n (µ)P m n (µ ′ ) cos(mw),
which results in

∀ (µ, µ ′ ) ∈ [-1, 1] 2 , 1 2 π 2π 0 P n µµ ′ + 1 -µ 2 1 -µ ′2 cos w dw = P n (µ)P n (µ ′ ) .
Then, from (5.9) and Legendre's polynomial addition theorem, we obtain:

Φ λ (µ, µ ′ , N ) = +∞ k=0 A λ,k (N ) P k (µ) P k (µ ′ ).

Approximation of the stationary radiative transfer equation using Yvon's method

To solve the stationary radiative transfer equation, we use Yvon's method [START_REF] Yvon | La diffusion macroscopique des neutrons une methode d'approximation[END_REF] which is a decomposition method based on the double basis of Legendre polynomials (P n (2 • -1)) n≥0 for µ ∈ [-1, 0) and (P n (2 • +1)) n≥0 for µ ∈ (0, 1]. Yvon's method begins by splitting the L λ into two functions, one ℓ + λ corresponds to photons having a µ > 0, the other ℓ - λ corresponds to photons having a µ < 0, and consider each of these parts as a separate function. The radiance L λ , for K Legendre polynomials, is decomposed as follows [START_REF] Yvon | La diffusion macroscopique des neutrons une methode d'approximation[END_REF]:

L λ (x, µ) =              K j=0 (2j + 1)ℓ - λ,j (x, N )P j (2µ + 1) if µ < 0 K j=0 (2j + 1)ℓ + λ,j (x, N )P j (2µ -1) if µ > 0, (5.10) 
and suppose that the source term q λ in (3.1) is decomposed as follows:

q λ (x, µ) = K i=0
q λ,i (x) P i (µ).

(5.11)

By injecting (5.9), (5.10), and (5.11) into (3.1), we get two systems of size K + 1 that verify the functions ℓ + λ,j , ℓ - λ,j [START_REF] Yvon | La diffusion macroscopique des neutrons une methode d'approximation[END_REF]:

                                       1 2 j 2j + 1 dℓ + λ,j-1 dx (x, N ) + 1 2 j + 1 2j + 1 dℓ + λ,j+1 dx (x, N ) + 1 2 dℓ + j dx (x, N ) + σ λ ext (N )ℓ + j (x, N ) = 1 2 σ λ sca (N ) K n=0 (2n + 1) Γ α,β j,n ℓ - λ,n (x, N ) + Γ α,α j,n ℓ + n (x, N ) + K n=0 q λ,n (x)α n,j , 0 ≤ j ≤ K - 1 2 j 2j + 1 dℓ - λ,j-1 dx (x, N ) - 1 2 j + 1 2j + 1 dℓ - λ,j+1 dx (x, N ) - 1 2 dℓ - j dx (x, N ) + σ λ ext (N )ℓ - λ,j (x) = 1 2 σ λ sca (N ) K n=0 (2n + 1) Γ β,β j,n ℓ - λ,n (x, N ) + Γ β,α j,n ℓ + λ,n (x, N ) + K n=0 q λ,n (D -x)β n,j , 0 ≤ j ≤ K ∀x ∈ [0, D], ℓ - λ,K+1 ′ (x, N ) = ℓ + λ,K+1 ′ (x, N ) = 0, ℓ + λ,j (0, N ) 0≤j≤K and ℓ - λ,j (D, N ) 0≤j≤K
given,

(5.12) where we put ℓ

± λ,k (•, N ) = ℓ ± λ,k (D -•, N ), and ∀j ≥ 0, ∀n ≥ 0, Γ u,v λ,j,n ≡ Γ u,v λ,j,n (N ) = K k=0 A λ,k (N ) u k,j v k,n ,
for any real families (u p,q ) p≥0,q≥0 , (v p,q ) p≥0,q≥0 while A λ,k is defined in (5.3), and ∀k ≥ 0, ∀n ≥ k, α n,k = Eventually, our system (5.12) reads in a compact form as follows:

   A L ′ λ (x) + B L λ (x) = C 1 L λ (x) + C 2 L λ (D -x) + E(x), 0 < x < D, L λ (0) given, (5.14) 
with A, B, C 1 and C 2 some matrices of size (2K +2)×(2K +2), A tridiagonal and B diagonal, E a vector of size 2K + 2.

In order to solve (5.14), we use the so-called "source iteration method" [see 7, chapter 5 section 2] combined with the implicit Euler scheme.

To use the same discretization for the adjoint problem (4.9), we make a change of variable of x = D -x to obtain a problem similar to the radiative transfer equation. Then, we obtain

p λ (x, µ) =                K k=0 (2 k + 1) d - λ,k (x, N )P k (2 µ + 1) if µ < 0, K k=0 (2 k + 1) d + λ,k (x, N )P k (2 µ -1) if µ > 0.
(5.15)

Approximation of the gradient

By injecting (5.10) and (5.15) into (4.7), and by using the trapezoidal rule for the integral in x, the gradient for K Legendre polynomials is given as follows:

∇J ε (N ) ≈ -π G l=1 Q λ l ext W λ l (N ) + π 2 G l=1 Q λ l sca R λ l (N ) + ε f N (5.16) with ∀ 1 ≤ l ≤ G W λ l (N ) ≈ S i=0 w i K j=0 (2 j + 1) d - λ,j (x i , N ) l - λ,j (x i , N ) + d + λ,j (x i , N ) l - λ,j (x i , N ) , R λ l (N ) ≈ S i=0 w i K j=0 (2 j + 1) d - λ l ,j (x i , N ) B λ,j (x i , N ) + d + λ,j (x i , N ) C λ,j (x i , N ) ,
where ω i is the weights, and

∀ 0 ≤ i ≤ S, ∀ 0 ≤ j ≤ K B λ,j (x i , N ) ≈ K n=0 (2 n + 1)( Γβ,β λ,j,n l - λ,j (x i , N ) + Γα,β λ,j,n l + λ,j (x i , N )), C λ,j (x i , N ) ≈ K n=0 (2 n + 1)( Γα,β j,n l - λ,j (x i , N ) + Γα,α λ,j,n l + λ,j (x i , N )),
where l + λ,j , l - λ,j are defined in (5.12), and Γu,v λ,j,n are defined by:

∀j ≥ 0, ∀n ≥ 0, Γu,v λ,j,n ≡ Γu,v λ,j,n (r) = K k=0 Ãλ,k (r) u k,j v k,n ,
with Ãλ,k is defined in (5.4), and u, v are defined in (5.13).

Iterative minimization algorithm

The purpose of this part is to present and analyze a numerical algorithm to approximate the solution of the previously studied minimization problem (4.4)-(4.5). We consider the Barzilai-Borwein minimization algorithm [START_REF] Barzilai | Two-point step size gradient methods[END_REF]:

N 0 , N 1 given, N 0 ̸ = N 1 , g 0 = ∇J ε (N 0 ) and g 1 = ∇J ε (N 1 ),
and for all n ≥ 1

           ∆N n-1 = N n -N n-1 ; ∆g n-1 = g n -g n-1 , N n+1 = N n - (∆N n-1 , ∆g n-1 ) H(R + ) (∆g n-1 , ∆g n-1 ) H(R + ) g n , g n+1 = ∇J ε (N n+1 ).
We also mention the conjugate gradient method [START_REF] Hager | A survey of nonlinear conjugate gradient methods[END_REF], which is notably used by [START_REF] Klose | Optical tomography using the time-independent equation of radiative transfer-part 2: inverse model[END_REF] in our context.

Numerical study of the stationary radiative transfer equation discretization

In this section, we study the numerical approximations presented in Section 5 with an analysis of their convergence on the explicit cases given in Section 3.2. We start by a nondimensionalization step in order to reduce the number of parameters.

Nondimensionalization of the radiative transfer equation

The first step is to normalize in (3.4) the spatial domain [0, D] by [0, 1] thanks to the change of variable x = x/D. Introducing the new functions:

L(x, µ) = L(x, µ), qλ (x, µ) = q λ (x, µ), σλ sca = Dσ λ sca , σλ abs = Dσ λ abs , σλ ext = Dσ λ ext , (6.1)
then L is the solution to:

   µ ∂ Lλ ∂x (x, µ, N ) + σλ ext (N ) Lλ (x, µ, N ) = K Lλ (x, µ, N ) + qλ (x, µ), (x, µ) ∈ X Lλ (0, µ, N ) = L + λ (µ) for µ > 0 and Lλ (1, µ, N ) = L - λ (µ) for µ < 0, (6.2) 
where X = [0, 1] × ([-1, 0) ∪ (0, 1]) and:

K Lλ (x, µ, N ) = σλ sca (N ) 2 1 -1 Φ λ (µ, µ ′ , N ) Lλ (x, µ ′ , N ) dµ ′ . (6.3) 
As mentioned in Section 1, we will focus our numerical experiments on a Lambertian source, leading to put, without loss of generality:

∀ µ > 0, L + λ (µ) = 1. (6.4)
Moreover, choosing D large enough, we will use the following boundary condition in all the sequel: ∀ µ < 0, L - λ (µ) = 0. (6.5)

In order to lighten the notations, all tildes will be omitted and D = 1.

Convergence error w.r.t. spatial discretization and Legendre series truncation

The case of the Beer-Lambert solution (Section 3.2.1) is investigated here in order to analyze the convergence of our numerical procedure of Section 5. Considering the problem (6.2) with K = 0, qλ = 0 and with boundary conditions (6.4)-(6.5), the solution is then given by (3.7):

L(x, µ) = exp(-σ ext x/µ) if µ > 0 0 if µ ≤ 0, (6.6) 
For a stepsize ∆x defining a partition 0 = x 0 < x 1 < • • • < x N = 1 and a number K of keeped terms in the Legendre series truncation, we denote by L K ∆x the approximate radiance of L obtained by the numerical method of Section 5. The cost function defined in (4.6) requiring the calculation of b a L(x, µ)dx, we consider the following numerical error:

E(σ ext , K, ∆x) = sup 0≤i≤N b a L(x i , µ)dµ -L K ∆x (x i , µ) dµ b a L(x i , µ)dµ . (6.7)
For the numerical simulations, we will use, as in Section 7: We can observe in Figure 6 that the error decreases as the step ∆x decreases and as the truncation threshold K increases. The sensitivity to K is nevertheless very low for high extinction coefficients.

For the general case (K ̸ = 0), we plot in Figure 7 the relative error (6.7). The calculations are done with one of the DSD of Figure 5(a). The "exact" solution, which is unknown, is assumed to be given by L K ∆x with K = 100 and ∆x = 2 -18 ≃ 3.8 × 10 -6 . We can observe in Figure 7 a higher sensitivity to K, especially if the stepsize ∆x is small. We will keep in the sequel: K = 50 and ∆x = 10 -3 =⇒ E(σ ext , k, ∆x) ≤ 10 -2 . (6.10)

We end this study by plotting in Figure 8 the numerical and explicit radiance with respect to x and µ with ∆x = 10 -3 , and 50 Legendre polynomials, for the Beer-Lambert case and the collision case (in this latter, the explicit solution is given by L K ∆x with K = 100 and ∆x = 2 -18 ≃ 3.8 × 10 -6 ). 

Study for the adjoint problem of the RTE

The adjoint problem (4.9) involves Dirac sources. We apply our numerical scheme on the simple model (3.8) whose solution is given by (3.9). We then consider the following problem:

   µ ∂L ∂x (x, µ) + σL(x, µ) = δ 1/2 (x), 0 < x < 1, -1 < µ < 1 L(0, µ) = L(1, -µ) = 0, µ > 0, (6.11)
whose solution is given by:

L(x, µ) = 1 |µ| e σ(x-1/2)/µ 1 (x-1/2)µ>0 (µ). (6.12)
We plot in Figure 9(a) the numerical and explicit radiances with respect to x and µ with ∆x = 10 -3 , and 50 Legendre polynomials for the problem (6.11) with σ = 4.0. We can observe a very good agreement between numerical and explicit solutions. In order to take into account a collision operator which appears in the adjoint problem, we consider the Dautray-Lions solution (3.11) of problem (3.10). Since the Dautray-Lions solution (3.11) does not give the radiance but its integral over µ, we consider the following numerical error associated to the discretization of (3.10): 

E(∆x, K, c) = R 1 -1 L(x, µ) -L K ∆x (x, µ) dµdx R 1 -1 L(x, µ)dµ , ( 6 

Droplet size distribution identification results

In this part, we present some numerical identification of the distribution N by using synthetic measurements. We investigate the reconstruction method for different radiative transfer modellings and for the 3 types of DSD presented in Figure 5. The identification is done in the following four cases:

1. Beer-Lambert case with forescattering measurements (θ ′ = 0 • and α = 1 • ); 2. Isotropic collision operator case with forescattering measurements (θ ′ = 0 • and α = 1 • ); 3. Isotropic collision operator case with backscattering measurements (θ ′ = 180 • and α = 1 • ); 4. Anisotropic collision operator case with backscattering measurements (θ ′ = 180 • and α = 1 • ).

From a target distribution function, noted N ⋆ , the measurements are reconstructed as follows:

∀ 1 ≤ i ≤ I, 1 ≤ l ≤ G, M λ l (x i ) = b a L ⋆ λ l (x i , µ, N ⋆ ) dµ (7.1)
for I = 1, x 1 = 0.5 (forescattering), x 1 = 0 (backscattering) and for G = 50 wavelengths equally distributed between 300 nm and 2500 nm:

∀ 1 ≤ l ≤ 50, λ l = 300 + 44 * (l -1) nm. (7.2)
In order to study the convergence of the minimization algorithm, we calculate at each iteration k the relative error RE of the minimizer and the relative cost RC

                       RE(k) = (N k -N ⋆ , N k -N ⋆ ) H(R + ) (N ⋆ , N ⋆ ) H(R + ) = R i=1 [r i (N k (r i ) -N ⋆ (r i ))] 2 1/2 R i=1 (r i N ⋆ (r i )) 2 1/2 RC(k) = J 1 (N k ) J 1 (N 0 )
where R denotes the number of sub-intervals which the particle size range [r min , r max ] is divided into; J 1 is defined in (4.6), N ⋆ is the target DSD and N 0 is the initial DSD for the minimization algorithm. This algorithm is initialized by the two vectors

N 0 = (1, • • •, 1)
and N 1 = N 0 -0.1 ∇J ε (N 0 ) in all the numerical results shown in this section. The actual measurements have a noise level η, such as:

∀ λ ∈ [300 nm, 2500 nm], ∥M η λ -M λ ∥ L ∞ ([0,D]) ≤ η
where M η λ = (1 + η U )M λ represents the measurements (with a relative noise level η ≥ 0 and U a random variable with uniform law on (0, 1)) and M λ represents the true measurements corresponding to the target distribution N ⋆ . We perform our simulations with a Lambertian source, where the radiance at x = 0 is constant and is independent of µ (i.e we take L(0, µ) = L + (µ) = 1 and L(D, µ) = L -(µ) = 0). We fix two choices for the couple (ε, f (r)) depending on the locations of the DSD's peak. We refer to Table 3 for the (ε, f (r)) choices after some preliminar experiments.

Conditions

ε f (r) DSD with a peak location r m < 1 µm 10 -14 1/r 9 DSD with a peak location r m > 1 µm 10 -6 1/r 4 Table 3: Choices of the (ε, f ) parameters of the cost function.

Determination of the best descent algorithm

We determine the descent algorithm having the best performances by a comparison on the Beer-Lambert modelling case (see Section 3.2.1). Forescattering measurements are carried out (θ ′ = 0 • , α = 1 • ). We recall, for all ε ≥ 0, the cost function:

J ε (N ) = 1 2 I i=1 G l=1     b a e -σ λ l ext (N ) x i µ dµ -M λ l (x i ) M λ l (x i )     2 + ε 2 ∥ f N ∥ 2 H(R + ) . (7.3) 
In this case (Beer-Lambert explicit solution to the RTE), we can simply compute the gradient of J ε :

DJ ε (N ) • N = - G l=1 σ λ l ext (N ) I i=1 x i B λ l (x i ) b a 1 µ e -σ λ l ext (N ) x i µ dµ + ε +∞ 0 r 2 f (r)N (r)N (r) dr (7.4) with B λ l (x i ) =     b a e -σ λ l ext (N ) x i µ dµ -M λ l (x i ) (M λ l (x i )) 2     , 1 ≤ i ≤ I ; 1 ≤ l ≤ G.
We then obtain:

∇J ε (N ) = -π G l=1 Q λ l ext I i=1 x i B λ l (x i ) b a 1 µ e -σ λ l ext (N ) x i µ dµ + ε f N. (7.5) 
A Gauss's integration formula is used to compute the integral in (7.5).

A comparison between the Barzilai-Borwein minimization algorithm and the two conjugate gradient algorithms CG-Polak Ribiere and CG-Daniel [START_REF] Hager | A survey of nonlinear conjugate gradient methods[END_REF] is shown in Figure 10 for one of the DSD of Figure 5(a). relative cost relative error Barzilai-Borwein 8.478×10 -10 7.263×10 -13 2.555×10 -2 CG-Polak Ribiere 3.816×10 -6 1.228×10 -4 4.052×10 -1 CG-Daniel 1.253×10 -6 4.035×10 -5

3.217×10 -1

Table 4: The cost J 1 , the relative cost RC, and the relative error RE, after 30 000 iterations for various minimization algorithms with ε = 10 -14 and f (r) = 1 r 9 .

After 30 000 iterations, from Table 4 and in comparison to N ⋆ , our approximated N by the Barzilai-Borwein algorithm has an error of 2.5%, is less than the error obtained by CG-Polak Ribiere algorithm 40% and CG-Daniel algorithm 32%. Figure 10 confirms that the identification of the distribution N by the Barzilai-Borwein algorithm is the best among the three algorithms used. We give in Table 5 the relative error: We observe a very small difference between the spectral radiance calculated from target N ⋆ and the approximated N . In the sequel, we shall use the Barzilai-Borwein algorithm to identify the distribution N .

E 2 λ = ∥L ⋆ λ -L a λ ∥ L ∞ (X) ∥L ⋆ λ ∥ L ∞ (X) between the radiance L ⋆ λ calculated from N ⋆ ,

Beer-Lambert case

Figure 11 shows the identification results for various droplet size distributions measured at the Cerema PAVIN Platform. Table 6 presents the values of the relative cost and the relative error of these tests after 30 000 iterations, which suggest that the identification is satisfactory.

Tests J 1 (N ) relative cost relative error Test 1 (top left) 1.892×10 -9 8.597×10 -12 2.830×10 -2 Test 2 (top right)
1.312×10 -10 3.896×10 -13 1.492×10 -2 Test 3 (bottom left)

1.006×10 -9 1.627×10 -12 2.237×10 -2 Test 4 (bottom right) 2.965×10 -10 7.416×10 -13 2.105×10 -2 Table 6: The cost J 1 (N ), the relative cost RC, and the relative error RE after 30 000 iterations with ε = 10 -14 and f (r) = 1 r 9 corresponding to Figure 11.

Figure 12 shows the identification results for various droplet size distributions measured on Paris-Fog campaign [START_REF] Bergot | Paris-fog : des chercheurs dans le brouillard[END_REF] (see Figure 5(b)). Table 7 presents the values of the relative cost and the relative error of these tests after 100 000 iterations. These figures and this table suggest that the identification is satisfactory with an error ranging between 4,7% or 8%. Table 7: The cost J 1 (N ), the relative cost RC, and the relative error RE after 100 000 iterations with ε = 10 -14 and f (r) = 1 r 9 corresponding to Figure 12.

We now test the method on the Shettle and Fenn models of Table 1. The identification results are presented in Figure 13. Table 8 shows the relative cost and the relative error of the identifications presented in Figure 13. Table 8: The cost J 1 (N ), the relative cost RC, and the relative error RE after 10 000 iterations with ε = 10 -6 and f (r) = 1 r 4 .

Isotropic collision operator case

We introduce here a collision operator in the radiative transfer modelling thanks to the isotropic phase function Φ λ ≡ 1 and we then apply the DSD reconstruction method. Note that this case does not have a very physical meaning since we prescribe a given phase function when it should depend on the DSD. Nevertheless, it has the merit of testing our method in a more complex case than the Beer-Lambert case allowing to consider backscattering measurements. According to Figure 14, we observe a good approximation of N ⋆ with either forescattering or backscattering measurements with a relative cost less than 10 -7 and a relative error less than 5 %. Table 9: The cost J ε (N ), the relative cost RC, and the relative error RE after 2000 iterations for forescattering and backscattering measurements in the isotropic case.

Anisotropic collision operator case

In this part, we identify the distribution N in the anisotropic case when the phase function in the collision operator is calculated from the distribution N . From aour numerical testing, the forescattering measurements do not properly identify the droplet size distribution. However, backscattering measurements allow to well reconstruct the DSD. Figure 15 shows the identification of DSD in backscattering measurements after 5000 iterations. The peak of 0.5 µm is reached. Table 10 shows a relative cost less than 10 -7 and a relative error around than 7 % (slightly larger than in the isotropic case). Table 10: The cost J ε (N ), the relative cost RC, and the relative error RE after 5000 iterations backscattering measurements in the anisotropic case.

Noise adding on the measurements

To study the robustness of the DSD identification method, we add to the measurements a noise level of 1% and 3%. We gather in Figure 16 the reconstructed DSD with different noises for the following cases: forescattering and backscattering measurements in isotropic conditions and backscattering measurements in anisotropic conditions. Table 11 details values of the cost J ε (N ), the relative cost RC and the relative error RE for different modellings, measurement types and noise levels on the measurements. According to Figure 16, the identification results are correct for 1% noise level: in particular, the peak at 0.5 µm is reached. For a 3% noise level, the reconstruction begins to change. For 1% and 3% noise levels on the measurements, the reconstructed N has respectively about 25% error and 50% with the target DSD N ⋆ . We can observe the same behavior for the gap between the approximation N η app obtained with a noise η and the approximation N 0 app with η = 0: 

Gap = ∥N η app -N 0 app ∥ H(R + ) ∥N 0 app ∥ H(R + ) (7.6)

Conclusion

The droplet size distribution (DSD) in a fog or cloud has an impact on the optical properties of the medium and its knowledge is therefore necessary to take into account clouds or fogs in meteorological models for example. We developped this work of identifying DSDs for another application than meteorology, namely the evaluation of optical sensors such as cameras, radars or lidars in adverse weather conditions for applications to intelligent transport systems. We proposed an identification method based on radiation measurements at different wavelengths in the 0 nm -2500 nm spectral band and the inversion of radiative transfer models. We assumed that the medium in which the measurements were made could be considered as optically homogeneous and that the radiative transfer within it could be modelled by a one-dimensional space equation. We then considered a complete modelling of the radiative transfer equation by taking into account a collision operator provided by the DSD via the Mie theory.

A least-squares method combined with the Barzilai Borwein algorithm has been used to identify the droplet size distribution (DSD) from radiation measurements. The minimization of the cost function required to calculate its gradient with respect to the DSD, what was done thanks to the resolution of an adjoint problem to the radiative transfer equation. Inspired by Yvon's works, a decomposition method on the double Legendre basis has been used to approximate the stationary radiative transfer equation and its adjoint. The numerical method has been evaluated and validated on several explicit solutions of the stationary radiative transfer equation. In addition, an extensive numerical study was carried out to determine the convergence errors in the proposed numerical methods. A comparison between the Barzilai-Borwein algorithm and two algorithms based on the conjugate gradient was performed. It concluded that the Barzilai-Borwein method was more efficient than the other two and all numerical applications were performed with this algorithm. Various models describing fog DSDs (Shettel and Fenn) and real DSD measured in natural conditions (Paris Fog campaign) or in artificial conditions (Cerema PAVIN platform) are used to compute synthetic radiation measurements via Mie theory and the radiative transfer equation under different assumptions (Beer-Lambert modelling, isotropic or anisotropic collision operator). Afterwards, the identification of the DSDs was carried out using these three radiative transfer modellings. In the Beer-Lambert case, the DSD reconstruction was successful by using forescattering measurements. In case of a modelling with an isotropic collision term, forescattering or backscattering measurements led to well reconstruct the DSD. From our numerical experiments, the identification method in the anisotropic case requires backscattering measurements. We explored in the last section the robustness of the method and constated that the DSD reconstruction is very sensitive with respect to the noise adding on measurements. For a 3% noise level, the identification is poorly approached.

Particle size distribution identifications are a wide area of research, and various issues remain unsolved that require additional investigation of light scattering theory and particle size distribution inversion approaches. Based on this present works, the inversion of fog particle size distributions using real measurements will be considered in further studies. We will also consider the case of 3D modelling which may be necessary to interpret the real measurements. Furthermore, it will be interesting to consider other types of sources such as collimated sources for example. Finally, other wavelengths such as thermal infrared could be considered to improve the method.

Appendix A. Gradient of the cost function

To compute the expression of the gradient of the cost function J ε (4.5), we define the Lagrangian L as follows: where

L(N, L, p) = 1 2 I i=1 G l=1     b a L λ l (x, µ, N ) dµ -M λ l (x i ) M λ l (x i )     2 + ε 2 ∥ f N ∥ 2 H(R + ) + G l=1 1 -1 H 0 µ ∂p ∂x (x, µ, N )L λ l (x, µ, N ) dx dµ - G l=1 σ λ l ext (N ) 1 -1 H 0 p λ l (x, µ, N )L λ l (x, µ, N ) dxdµ + G l=1 1 -1 H 0 p λ l (x, µ, N ) 1 -1 L(x, µ ′ , N )f λ (µ, µ ′ , N )dµ ′ dxdµ - G l=1 1 0 µ p λ l (D, µ, N ) L λ l (D, µ, N ) dµ - 0 -1 µ p λ l (D, µ, N ) L - λ l (µ) dµ
K(x i , λ l ) =     b a L λ l (x i , µ) dµ -M λ l (x i ) (M λ l (x i )) 2     .
To simplify the gradient expression, we need to determine the second term in (A.3). For that, we multiply (4.9) by L(x, µ) and (A.2) by p λ l (x, µ) and by integrating on X, we obtain 
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 1 Figure 1: Representation of the evolution of optical sensors at the Cerema's platform in presence of fog.
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 2 Figure 2: Diagram of the protocol for the measurements.

Figure 3 :

 3 Figure 3: Relative error E λ between radiance with and without collision operator in function of wavelengths.
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 4 Figure 4: Extinction cross section Q ext (left) and absorption cross section Q abs (right) for four wavelengths in function of particle radius.

Figure 5 :

 5 Figure 5: Droplet size distributions N (a) measured at Cerema PAVIN platform, (b) during the Paris-Fog campaign and (c) coming from Shettle and Fenn models.
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Theorem 4 . 1 .

 41 For all ε ≥ 0, the least squares problem (4.4)-(4.5) admits a unique solution in H(R + ).
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  1 (forescattering measurement with 1 o aperture angle).(6.8) We plot in Figure6the relative error (6.7) for the following values: σ ext ∈ {6.25 × 10 -2 , 1.0, 4.0, 16.0}, K ∈ {10, 30, 50, 70, 90}, ∆x ∈ {2 -i , 5 ≤ i ≤ 18}.(6.9) 

Figure 6 :

 6 Figure 6: Error (6.7) in the Beer-Lambert case with σ ext equal to 6.25× 10 -2 (a) , 1.0 (b), 4.0 (c) and 16.0 (d).

Figure 7 :

 7 Figure 7: Error (6.7) in the general case with σ ext equal to 6.25× 10 -2 (a) , 1.0 (b), 4.0 (c) and 16.0 (d).

Figure 8 :

 8 Figure 8: Numerical and explicit radiances with respect to x and µ with ∆x = 10 -3 , and 50 Legendre polynomials, for the Beer-Lambert case ((a) and (b)) and the collision case ((c) and (d)).

  .13) where c is the parameter of the Dautray-Lions problem. We plot in Figure9(b) the numerical and explicit function T (see 3.11) with respect to x with ∆x = 10 -3 , and 50 Legendre polynomials for the problem (3.10) with c = 0.5. In this case, we then find E(2 -16 , 100, 0.5) = 3.53 × 10 -2 .

Figure 9 :

 9 Figure 9: Numerical and explicit radiances with respect to x and µ with ∆x = 10 -3 , and 50 Legendre polynomials for the problem (6.11) with σ = 4.0 (a). Numerical and explicit function T (see 3.11) w.r.t. x with ∆x = 10 -3 and 50 Legendre polynomials for the problem (3.10) with c = 0.5.

Figure 10 :

 10 Figure 10: Reconstructed DSDs obtained by Barzilai-Borwein, CG-Polak Ribiere and CG-Daniel minimization algorithms after 30 000 iterations, and PAVIN platform target DSD with θ ′ = 0 • , α = 1 • , x = 0.5 and η = 0%.
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 22 and the radiance L a λ calculated from the approximated N by the Barzilai-Borwein algorithm. 284×10 -5 1.174×10 -4 5.496×10 -5 3.735×10 -5 2.250×10 -5 9.236×10-6 

Figure 11 :

 11 Figure 11: Identification results obtained after 30 000 iterations with θ ′ = 0 • , α = 1 • , x = 0.5 and the noise η = 0% for 4 PAVIN platform DSDs.

Figure 12 :

 12 Figure 12: Identification results obtained after 100 000 iterations with θ ′ = 0 • , α = 1 • , x = 0.5 and the noise η = 0% for 4 Paris-Fog DSDs.

Figure 13 :

 13 Figure 13: Identification results obtained after 10 000 iterations with θ ′ = 0 • , α = 1 • , x = 0.5 and the noise η = 0% for Shettle and Fenn DSD models.

Figure 14 :

 14 Figure 14: Identification results obtained after 2 000 iterations with forescattering measurements (left) and backscattering measurements (right) for a PAVIN platform DSD.

Figure 15 :

 15 Figure 15: Identification results obtained after 5 000 iterations with backscattering measurements (right) for a PAVIN platform DSD in the anisotropic case.
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Figure 16 :

 16 Figure 16: Identification results with noise adding (1% on the left, 3% on the right) in forescattering and isotropic case (first line), backscattering and isotropic case (second line) and backscattering and anisotropic case (third line).
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 111111 l (0, µ, N ) L λ l (0, µ, N ) dµ + l (0, µ, N ) L + λ l (µ) dµ(A.1)where p λ is the Lagrange multiplier that verifies (4.9) andf λ (µ, µ ′ , N ) = σ λ sca (N ) 2 Φ λ (µ, µ ′ , N ) (r)ψ λ (r, µµ ′ + 1 -µ 2 1 -µ ′2 cos(w))r 2 N (r)drdw, σ λ l ext (N ) = π +∞ 0 Q λ ext (r) r 2 N (r) dr.Let N η = N + ηN we haveL λ (x, µ, N η ) = L λ (x, µ, N ) + ηL λ (x, µ, N ) + o(η 2 ).By using (3.4) andµ ∂L λ ∂x (x, µ, N η ) + σ λ ext (N η ) L λ (x, µ, N η ) = λ (x, µ ′ , N η )f (µ, µ ′ , N η )dµ ′ ,we obtain the following problem satisfied byL λ : µ, N ) + σ λ ext (N ) L λ (x, µ, N ) + σ λ ext (N ) L λ (x, µ, N ) = λ (x, µ ′ , N )f λ (µ, µ ′ , N )dµ ′ + λ (x, µ ′ , N )f λ (µ, µ ′ , N )dµ ′ L λ (0, µ, N ) = 0 if µ ∈ (0, 1] L λ (D, µ, N ) = 0 if µ ∈ [-1, 0). (A.2) But DJ ε (N ) • N = lim η→0 J ε (N η ) -J ε (N ) η = ε R +r 2 f (r) N (r) N (r) dr + λ l (x i , µ, N )dµ(A.3)
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 1101111011011011110111101111011110112110111231111212222 µ, N )L λ (x, µ, N ) dxdµ + p λ (x, µ, N )L(x, µ, N )dxdµ = λ (x, µ, N ) (x, µ ′ , N )f λ (µ ′ , µ, N )dµ ′ dxdµ + λ (x, µ, N )I i=1 K(x i , λ)1 1 (a,b) (µ) δ x i (x) dx dµ λ (x, µ, N ) ∂L λ ∂x (x, µ, N ) dx dµ + ext (N ) p λ (x, µ, N ) L λ (x, µ, N ) dx dµ p λ (x, µ, N ) L λ (x, µ, N ) dx dµ = λ (x, µ ′ , N )f λ (µ, µ ′ , N )dµ ′ dx dµ + λ (x, µ, N ) λ (x, µ ′ , N )f λ (µ, µ ′ , N )dµ ′ dx dµ (A.5)by using the integration by part and that λ (x, µ, N) λ (µ, µ ′ , N )L λ (x, µ ′ , N )dµ ′ dxdµ = λ (x, µ, N ) (x, µ ′ , N )f λ (µ ′ , µ, N ) dµ ′ dxdµ λ (x, µ, N ) I i=1 K(x i , λ)1 1 (a,b) (µ) δ x i (x)dxdµ = I i=1 K(x i , λ) b a L λ (x i , µ, N )dµand by comparing (A.4) and (A.5), we obtain ext (N )p λ l (x, µ, N )L λ l (x, µ, N )dxdµ+ λ l (x, µ ′ , N )f λ l (µ, µ ′ , N )dµ ′ dxdµ .(A.6) Then, by (A.6) we obtainDJ ε (N ) • N = ε +∞ 0 (r)N N drλ l (x, µ, N ) σ λ l ext (N ) L λ l (x, µ, N ) dx dµ + G l=1 λ l (x, µ, N ) λ l (x, µ ′ , N ) f λ l (µ, µ ′ , N ) dµ ′ dx dµ . (A.7)Appendix B. Computation of the decomposition of S 1 and S 2 on the basis of Legendre polynomialTo compute the decomposition (5.5) of S 1 and S 2 on the basis of Legendre polynomial, we express the polynomials π n and τ n occurring in (2.9)-(2.10) in function of the Legendre polynomials (P n ) n≥0 . We recall thatπ n (µ) = P ′ n (µ), τ n (µ) = -µπ n (µ) + n(n + 1)P n (µ),in addition, by (5.1) and∀ n ≥ 2, P ′ n (µ) = P n-2 (µ) -(2n -1) P ′ n-1 (µ), (B.1)we obtain the following decomposition:π 0 = 0, et ∀n ≥ 1, π 2n = P 1 , τ 2n = (2n) 2 -1)P 2k , τ 2n-1 = (2n -1)By injecting (B.2),(B.3) in (2.9),(2.10), and (5.5), we obtain after some computations:∀k ≥ 0, (n, k) = -(4n + 1)(4k + 1) 2n(2n + 1) b 2n + (4n -1)(4k + 1) 2n(2n -1) a 2n-1 , 0 ≤ k ≤ n -(n, k) = -(4n + 1)(4k + 3) 2n(2n + 1) a 2n -(4n -1)(4k + 3) 2n(2n -1) b 2n-1 , 0 ≤ k ≤ n -2 i 1 (n, n -1) = (4n + 1)(4n -1) 2n(2n + 1) a 2n + 4n -1 2n(2n -1) (2n -1) 2 b 2n-1 (n, k) = -(4n + 1)(4k + 1) 2n(2n + 1) a 2n + (4n -1)(4k + 1) 2n(2n-1) b 2n-1 , 0 ≤ k ≤ n -(n, k) = -(4n + 1)(4k + 3) 2n(2n + 1) b 2n -(4n -1)(4k + 3) 2n(2n -1) a 2n-1 , 0 ≤ k ≤ n -(n, n -1) = (4n + 1)(4n -1) 2n(2n + 1) b 2n + 4n -1 2n(2n -1) (2n -1) 2 a 2n-1 .

Table 2 :

 2 Approximation of ξ 0 for several values of c.

Table 5 :

 5 Relative error E 2 λ between the radiance calculated by N ⋆ and by the approximated N (obtained by BB algorithm) w.r.t. wavelength λ.

Table 11 :

 11 The cost J ε (N ), the relative cost RC and the relative error RE for different modellings, measurement types and noise levels on the measurements.

Table 12

 12 shows the gap (7.6) obtained on the approximated N with respect to the noise level applied on the measurements.Modelling Measurement type Noise η on M λ Gap on N

	Isotropic	Backscattering	1%	24.08 %
	Isotropic	Backscattering	3%	44.17 %
	Anisotropic	Backscattering	1%	21.77 %
	Anisotropic	Backscattering	3%	38.44 %

Table 12 :

 12 The gap obtained on N in function of the noise applied on M λ .
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