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Abstract. This paper is devoted to Gaussian interpolation inequalities with endpoint cases corresponding
to the Gaussian Poincaré and the logarithmic Sobolev inequalities, seen as limits in large dimensions of
Gagliardo-Nirenberg-Sobolev inequalities on spheres. Entropy methods are investigated using not only heat
flow techniques but also nonlinear diffusion equations as on spheres. A new stability result is established for
the Gaussian measure, which is directly inspired by recent results for spheres.

Résumé. Cet article est consacré a des inégalités d’interpolation Gaussiennes, avec comme cas extrémes
I'inégalité de Poincaré Gaussienne et I'inégalité de Sobolev logarithmique, vues comme limites en grandes
dimensions des inégalités de Gagliardo-Nirenberg-Sobolev sur les spheéres. Les méthodes d’entropie sont
abordées en utilisant non seulement des techniques basée sur I’équation de la chaleur mais aussi sur des
équations de diffusion non-linéaires, comme pour les sphéres. Un nouveau résultat de stabilité est établi
pour les mesures Gaussiennes, qui s'inspire directement de résultats récents sur les spheres.
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1. Introduction and main results

Let us consider the Gagliardo-Nirenberg-Sobolev inequalities on the unit d-dimensional sphere
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forany p e [1,2)U(2,+00) if d =1, 2, and for any p € [1,2) U (2,2*] if d = 3. Here du 4 denotes the
uniform probability measure on $¢ c R4*! and, if d = 3, 2* = 2d/(d — 2) is the critical Sobolev
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exponent. By convention, we take 2* = +ocoif d = 1 or 2. The purpose of this paper is to clarify the
links of these interpolation inequalities with the family of Gaussian interpolation inequalities
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where the exponent p is taken in the range 1 < p < 2. Inequality (2) is intermediate between the
Poincaré inequality corresponding to p = 1 and the Gaussian logarithmic Sobolev inequality
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obtained as a limit case of (2) as p — 2_. Here dy(y) := (2m)~"/? ez VP dy denotes the centred
normalized Gaussian probability measure and the dimension 7 is any positive integer.

It is somewhat classical that, if we consider the Sobolev inequality on the sphere, i.e., Inequal-
ity (1) with p = 2* and d = 3, rescale it to the sphere of radius v/d and fix a function depend-
ing on n variables only on this sphere, since the curvature tends to 0 at the right order as one
takes the limit as d — +oo, then the sphere tends to the flat space with Gaussian measure. For
instance, we read (with adapted notations) from [9, p. 4818] that if we rescale this inequality so as
to be on a sphere of radius V'd and take the limit d — oo or p — 2 we obtain in the Poincaré limit
the Gross logarithmic inequality for the Gaussian measure since —(1/d) A on S% goes to —A + x -V
on the infinite-dimensional limit. The last part of the sentence refers to a result known as the
Maxwell-Poincaré lemma : see [37] and [39, Remark 4, p. 254] for some historical comments. The
statement of [9] has been made more precise later in [11,12] using a slightly different limit. How-
ever, to our knowledge, the infinite-dimensional limit has not been considered in the subcritical
range p <2*.

On the sphere, Inequality (1) follows from [4, 6] for any p > 1 if d = 1 and any p € [1,27] with
2% := (2d? +1)/(d - 1)? if d = 2. The proof in the range p € (2%,+00) if d = 2 and p € (2%,2*] if
d = 3 can be found in [15, Corollary 6.1], [16] and [10]. Also see [35] in the case p = 2*. In the
case of the Gaussian measure, we refer to [8] (also see [32]) for a first proof of Inequality (2). The
formal analogy of (1) and (2) is striking. Although computations are somewhat standard, our first
purpose is to make this point rigorous and recover (2) as a special limit of (1) as d — +oo.

Theorem 1. Let n be a positive integer, p € [1,2) and consider a function v € H'([R", dy) with
compact support. For any d = n, large enough, if uz(w) = v(wllx/a,wg/\/ﬁ,...,wn/\/a) where
w=(W1,ws,...,04+1) € RY 559 js such that |w| = 1, then
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The carré du champ method has frequently been applied to prove Gaussian interpolation
inequalities ranging between the logarithmic Sobolev inequality and the Poincaré inequality
like (2) using the linear flow associated with the Ornstein-Uhlenbeck operator; see [4], and [7]
for an overview. Still in the case of the Gaussian measure, we adopt here a new point of view by
using nonlinear diffusion equations in order to prove the same inequalities, but with different
remainder terms. This is a very natural point of view when dealing with inequalities like (1) on
the sphere, as shown for instance in [24] (see earlier references therein). In that case, linear flows
are indeed limited to exponents p < 27 if d = 2. To overcome this difficulty if either d = 2 and
p > 2" ord =3 and p € (2¥,2*], one has to consider fast diffusion flows. Before explaining the
results for the Gaussian measure, let us summarize the main known results on the sphere.
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On S, let us consider a positive solution u of
ou

ot

where A denotes the Laplace-Beltrami operator on $¢. In the case m = 1, uP solves the heat
equation and for this reason, we shall call it the linear case. Otherwise u” solves a nonlinear
diffusion equation corresponding either to a fast diffusion flow with m < 1 or to a porous media
equation with m > 1. In any case, we claim that

u PN+ (mp-1)

IVul?
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Let us define

my(d,p) =

1
———\|dp+2+y\/d(p-1)(2d—-(d-2 . 4
e Vdp-1(2d-( )p)) @)
The following result can be found in [20, 24] with additional details in [17,22, 25].

Proposition 2 ([20, 24]). Assume that d = 1, with either p € [1,2) U (2,+00) ifd =2 or p €
[1,2) U (2,2*] ifd = 3, and let m € [m_(d, p), m+(d, p)]. If u > 0 solves (3) with an initial datum
inl2NLP(S% dug), then

2 2 2
T2 VUl a .y, ~ P2 (” Ul sty | u”LZ(§d,dud))) =0 Vi>0.

The limit, as ¢ — 400, of any solution of (3) is a constant. This means that the deficit, that is, the
difference of the two sides in Inequality (1), converges to 0. Then, by Proposition 2, it follows that
the deficit is non-negative, which directly proves (1). The same monotonicity property applies to
the deficit of the logarithmic Sobolev inequality on the sphere

d ul?
||Vu||fz(§d_dﬂd) E—Ldlulzlog(— dug YueH' S dug)

2 ll ulli2 s
in the limit case corresponding to p = 2. The admissible values of the parameters are limited to
m_(d,p) < m<m.(d,p)and 1 < p <2* if d = 3. Moreover, at the endpoints, we have m. (d,1) =1
and m.(d,2*) = (d-1)/d if d = 3, while m, (d,2") = 1 so that m = 1 is admissible if and only
if 1 < p < 2* when d > 2. See Fig. 1. For appropriate initial data, it is shown in [25] that the
monotonicity property of the deficit along the flow of (3) is violated for any p € [2,2%) or p = 2% if
d = 3 as soon as either m < m_(d, p) or m> m.(d, p).

RN

0.5

1 2 3 4

Figure 1. Case d = 5. The admissible parameters p and m correspond to the grey area.
The boundary of the admissible set is tangent to the vertical lines p = 1 at (m, p) = (1,1) and
p=2*=10/3 at (m, p) = (4/5,10/3). Qualitatively, this figure does not change as d increases
but gets squeezed in the interval 1 < p <2 as d — +oo.



In view of the results of Theorem 1, it is natural to ask whether there is also a monotonicity
property of the deficit associated to the Gaussian interpolation inequalities (2) when we rely on a
nonlinear diffusion flow on R”. Let m.(p) :=limg_ ;o M. (d, p) and notice that

1
mi(p)=li;\/(p—1)(2—p). (5)

The diffusion operator associated to the Gaussian measure is the Ornstein-Uhlenbeck operator
% =A—-x-V and we consider now the nonlinear parabolic equation

ov IVol?

at
In the definition of £, A denotes the standard Laplacian on R”. The following result is new for
m # 1 while the case m = 1 follows from the method of the carré du champ developed by Bakry
and Emery in [4].

=y P Lyt (mp-1)

(6)

Theorem 3. Assumethatn=1, p €[1,2). Ifv> 0 solves (6) with m € [m_(p), m4(p)] for an initial
datum in1? nLP(R", dy), then

2 (joup? - (12 = lvlf =0 V>0
dt LRy p_2 LP ®R™,dy) L2®%dy)) ) = '

The limiting case p = 2 corresponding to the Gaussian logarithmic Sobolev inequality is also
covered but it is obtained as a standard application of the linear carré du champ method known
from [4] because m4 (2) = 1. See Fig. 2.

0.5 1.0 15 20

Figure 2. The admissible parameters p and m correspond to the grey area and are inde-
pendent of the dimension n. The boundary of the admissible set is tangent to the vertical
lines p =1 at (m,p) = (1,1) and p = 2 at (m, p) = (1,2). It is the limit set of the admissible
parameters for Proposition 2 as d — +oo.

Said in simple words, the result of Theorem 3 is that the admissible range of exponents of the
nonlinear flow, for which the deficit associated to (2) is monotone non-increasing, is obtained
as the limit of the range of the corresponding exponents on the sphere, in the large dimensions
limit. Moreover, p = 2 appears as a critical exponent for the Gaussian measure.

Let us now focus on stability results. The main result of [17] for the sphere is a constructive
stability estimate for Inequality (1), limited to the subcritical range p € (1,2*), which measures the
distance to optimal functions, and distinguishes the subspaces generated by constant functions,
spherical harmonic functions associated to the first positive eigenvalue of the Laplace-Beltrami
operator, and the orthogonal directions. Optimal exponents in the stability estimate measuring
the distance to the set of optimal functions differ, depending on the directions. Here we have the
exact counterpart in the Gaussian case. Let I1; denote the orthogonal projection of L2 (R", dy)
onto the (n + 1)-dimensional function space generated by 1 and x; withi =1, 2,...,n.
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Theorem 4. Foralln =1, and all p € (1,2), there is an explicit constant cy,p > 0 such that, for all
veHY(dy), it holds

1
2 2 2
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4
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Exponents 2 and 4 which appear in the right-hand side of the inequality are sharp and the
constant ¢y, has an explicit although complicated expression given in the proof. If p = 1, the
last term drops and the distance to optimal functions is measured only by

”V(Id_ Hl) V"iz(R",dy) )

and a decomposition on Hermite polynomials shows that the estimate cannot be improved. If
p =2 and n = 3, the recent stability result on Sobolev’s inequality on R” of [23], which quantifies
the estimate of Bianchi and Egnell in [14] can be translated into a stability result for (1) on §d, that
can be recast in the form of [17, Theorem 6]. By a large dimension argument, a stability on the
Gaussian logarithmic Sobolev inequality is also shown in [23], although the distance is measured
only by an L?(R", dy) norm. Whether a stronger estimate can be obtained in the limiting case
p =2, eventually under some restriction, is therefore so far an open question.

This paper is organized as follows. In Section 2, we give a new proof of Inequality (2) as a
consequence of Inequality (1) by taking a large dimensions limit, applied to the inequality written
for a function depending only on a fixed number n of real variables. To our knowledge, this is
new except for the limit case p = 2 of the logarithmic Sobolev inequality. Section 3 is devoted
to the proof of Theorem 3: we characterize the nonlinear diffusion flows of porous medium
or fast diffusion type such that the deficit is monotone non-increasing and recover the picture
known on the sphere in the large dimensions limit. Moreover, by the carré du champ method, we
establish improved inequalities that provide us with first stability results. The stability result of
Theorem 4 for the Gaussian measure is proved in Section 4 using a detailed Taylor expansion and
the improved inequalities of Section 3.

2. From subcritical interpolation inequalities on the sphere to Gaussian interpolation

In this section we explain how Inequality (2) can be seen as the limit of Inequality (1) in the large
dimensions limit, that is, as d — +o0o, and prove Theorem 1. Comments on the limit case p = 2
can be found at the end of this section.

The unit sphere $¢ is parametrized in terms of the stereographic coordinates by

2xj 1-|x/?

] . .
= if 1 < Sd and w = —F
1+ |x? J T X2

wj

where w = (w;,wy,...,w +1) denote the coordinates in R4l 5 84 and x = (x1, X2,...,Xq) are
Cartesian coordinates in R%. To a function u on Sd, we associate a function w on R? using the
stereographic projection such that

%

( 2 ) uw)=wkx VxeR?
T '

It is a standard result that
5(p) _
f |u|pdﬂd=27p|§d| lf (x)‘5(p)|w|pdx
§d R?



and that
f|Vu|2dud+;id(d—2)f Iulzdlud:|§d|_lf Vw|®dx.
sd sd R

where (x) := /1 +|x|2 and § (p) := 2d — p (d—2). Using the stereographic projection, Inequality (1)
can be written on the Euclidean space R? as the weighted interpolation inequality

ds 2 €, PG o 2

Vuwldes S20 [ TWF o Pl (f Ld dx)’” with 6,=27 d|s?"5. @
R” p—2 Rn (x) p—2 R" (x)a(P)

See [22] for details. Equality is achieved by the Aubin-Talenti function wy (x) := (x)?~%. Assume

that d = 4. Let us consider f = w/w, and notice that the inequality rewritten in terms of f is

4d * cgd' * %
L11|Vf|2widx+ﬁfw|f|2wi dxzp—_g(fwmpwi dJC) .

At this point, we may notice that for any d = 3, we can choose freely any p € [1,2) U (2,2*] if d = 3.
Since we are interested in the limit as d — +oo, in order to consider a fixed, given value of p, we
have no choice but to restrict p to the case 1 < p < 2.

With g(x) = f(x/v/d), we obtain after changing variables that

p-2
2
4t (11 L) pm2SRe T (1 )t 4d(p=2) (T (141 14p2)

Let us assume that 7 > 1 is a given integer and take d > max{n, 3}. With x = (y,z) € R” xR?~" = R%,
we also assume that the function g depends only on y. In other words, we write g = g; where
84(y,z) = v(y) for some function v defined on R”, that is,

g, =v(y) V()2 eR"xRI" 8)

Here we use an index d in order to emphasize that g; has to be considered as a function on R%.
Let us define

2
p

a T'(d/2)
Cq = (dm)2 W

Lemma 5. Let n be a positive integer, p € [1,2), consider a function v € H' (R", dy) with compact
support and define g4 according to (8). Then we have

lim 1 gl dx
d d—2
d—+oo 4 cg Jrd (1+%|x|2)
ar=2 >
1 ) 1| Gapd ?r » dx 2 dx
+2lelm |7 aa d|gd| T adl| T d|8d| L d
p d—+oo Cg R (1+E|x|2) R (1+3|x|2)

1
_ 2 - 2 _ 2
=1V =5 (1002 ) = 10 g ) -

In other words, we prove that the infinite dimensional limit of (7), for functions depending only
on a finite number n of real variables, is (2). The assumption of compact support can be removed
if g4 is square integrable with respect to the measure (1+ % |x|2) “ dxand Vg, is square integrable

with respect to the measure (1 + % lez)z_d dx, at least for some d € N large enough.

Proof. Using

2-d _

2—-d _ _ z
(L 3P = (14 L (1yP+127)) =1+ S0P 1+ 109" with ¢ =

V 1+ 21y
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we can integrate with respect to z and obtain
2-d 2-din 2-d
fRd_n(1+§|x|2) dz=(1+%1y?)" 2 fRd_n(HéW) dc.

Let dy(y) := @m) "2 e 2¥* dy be the centred normalized Gaussian probability measure. We
recall that |S¥~1| = 27%/2/T (k/2) for any k € N\ {0} and

roo aL(5)T(b-35)
a—1 1 5 2
1+ Par=af —2___ 2/
j(; ret(1+ 4 Var 2T
if 0 < a <2 b. Applying these formulas with a=k=d - nand b=d -2 > 2 — n, we find that

r M—z)
1 n2-d _ d—n ( 2
fw,n(”d'“) d = (dm? 2=

Applying these formulas with a = b= k = d = 2, we find that

fRn (1+% |x|2)_d dx=cg

and, as a consequence
4

. 1 2-d
lim — (1+%|(|2) d(:W

d—+oo Cq Jrd-n
using Stirling’s formula. Since

. 2—dgn 1,2
lim (1+2(y?)" 2 =e2V",
d—+o0
we obtain

lim —f IVgaI* (1+ 5 1x ) dx:4fRn|Vl}|2dY.

d—+oo
Similar computations show that

_ _d+n _
fRn|gd(y)|2(1+5|x|2) ddx:fRn|gd(J’)|2(1+$|y|2 : dyf 1+5|(|2) ‘a,

lim —f 18P (1+ 4 1)~ f lv*dy,
d—+o0o R
and
—d _din —d
fRn|gd(y)|”(1+§|x|2) dxszlgd(y)lf’(1+§|y|2) : dyf (iR a,
d’”z
. ngp
i ] o ([ ]
This completes the proof of Lemma 5. U

Proof of Theorem 1. Applied to the function 1,4, Inequality (1) is transformed into Inequality (7)
applied to
— 2y _ n d-n
ga(x) =uy — Vx=(y,2) eR" xR .
1+ q |x|2
Since the right-hand side uniformly converges to v(y) for any smooth and compactly supported
function v, the same conclusion holds for Theorem 1 as for Lemma 5. O

It is a natural question to ask what happens in (1) to the marginals depending only on a
finite number #n of variables if p = 2 or in the case 2 < p < 2* = 2d/(d — 2). We may notice that
limy_.,o2d/(d —2) = 2 and it is known, for instance from [9], that one recovers the Gaussian
logarithmic Sobolev inequality as a limit case of Sobolev’s inequality on $¢ corresponding to
p = 2% when d — +oo. This is also true if we consider a sequence (pg)gen With 1 < pyg < 2%,



depending on 4, if its limit is also 2, as shown next. By convention, when p; = 2, we consider the
Gaussian logarithmic Sobolev inequality instead of (2).

Proposition 6. Let n be a positive integer and consider a function v € H'[R",dy) with com-
pact support. For any d = n, large enough, let uz(w) = v(an/\/ﬁ, wz/\/a,...,wn/\/a) where w =
(w1, w2,...,04) € R4+ 584 js such that |w| =1, as in Theorem 1. Then we have

d lugl?
lim d(uwdnzz p ——f |ud|210g(— dpa
d—+oo L2S%dua) 2 Jea [ ud”iz(gd)

lv|?

1
_ 2 _ = 2
= IVVI2@n gy 2fwlvl log HE dy.
L2®",dy)

If (pa) a=3 is a sequence of real numbers such that pg € (1,2) U (2,2%) andlimg_. ;o pg = 2, then

d
. 2 2 2
dl_l,I}.lood(”vud“Lz(dedﬂd) 2= pa (II Udllizsd g, = | ud”LPd(Sd'dud)))

lv|?
2

1
_ 2 _ L 2
= 1V0I2gn gy, 2fn|u| log
R I ]
L2(R",dy)

vl

Proof. The proofis an adaptation of the proof of Theorem 1 and, in the case p; # 2, relies on the
standard observation that

2 )
. ”U”Lp(Rn,dY) ”vHLZ(Rn,dY) 1 2 |U|2
III% > :E lv|” log —_— dy.
p— p- R || V”LZ([R”,dy)
As this computation raises no special difficulty, details are omitted. O

3. Entropy methods and nonlinear flows for Gaussian measures

In this section, we prove the result of Theorem 3 for the Gaussian measure dy and extend it to the
slightly more general framework of a uniformly strictly log-concave measure dp, before drawing
some consequences. Most of the results are similar to computations usually done on the sphere,
but we are not aware of the use of nonlinear flows (m # 1) in the context of Gaussian measures.
This approach is very natural in the perspective of spheres in the large-dimensional limit.

3.1. Gaussian interpolation inequalities: a proof by the carré du champ method

On R”, let us consider the probability measure

du=7"'e?dy with Z:f e Pdy 9
Rn
and redefine the Ornstein-Uhlenbeck operator by
L =A-V¢-V (10)

on12(R" d ). This generalizes the case of the harmonic potential ¢(y) = % | y|2 considered in the
introduction. We assume that ¢ satisfies the Bakry-Emery condition

Hess¢p = A, Id a.e. (11)

for some A, > 0. The harmonic potential corresponds to the equality case with 1, = 1. Under
Assumption (11), it is well known (see for instance [7, Section 7.6.2]) that, with A = A, and for any
pell2),

A
IV F 12 @y = 7 (||f||iz(Rn,,,,m - ||f||iw,dm) vV feH' (R", dp) (12)



Giovanni Brigati and Jean Dolbeault and Nikita Simonov 9

and also, by taking the limit as p — 2_, that

A |fI?
2 2 1pn
IV F 2 @n gy = Efwlfl log(”ﬂlz—)dﬂ VfeH R",dy).

L2(R",dp)
The classical proof by the carré du champ, as in [3-5], relies on the Ornstein-Uhlenbeck flow
0:p = Zp applied to the solution with initial datum p(tz = 0,-) = | f|P. Here we consider a more
general strategy and compute as in the carré du champ method using the nonlinear diffusion

flow
op 1 m p
5, == Lp™ V=0, p(t=0)=If". (13)
Our goal is to understand the range of m for which we have a monotonicity property of the deficit
as in the case m = 1. Let m..(p) be defined as in (5).

Theorem 7. Assumethatn=1, p €[1,2) and m € [m_(p), ms(p)]. We consider the measure dy as
in (9) such that (11) holds for some A, > 0. If p > 0 solves (13) with £ defined by (10) for an initial
datump(t=0,") =|fI? in 2P AL RY, du), then

A
1/p2 * 1/p2 2lp
V0" P i~ 5 =y (10 e = 10

4|, )) <0 V>0.

dat

The result of Theorem 7 is new for m # 1. Theorem 3 corresponds to the special case of the
harmonic potential ¢(y) = %I y|?> with v = p'/P in Theorem 7. The range of the admissible
parameters (m, p) is the same in Theorem 7 and shown in Fig. 2. With the additional observation
that p(t,-) converges to a constant as ¢t — +oo so that the limit of the deficit is 0, the monotonicity
of the deficit of Theorem 7 provides us with a proof of (12).

Proof of Theorem 7. In order to do computations, a very convenient reformulation is obtained
with the flow

a_w = w22 ($w+1< (14)

ot
for any ¢ = 0, with initial datum w(¢=0,-) = Iflllﬁ, where

IVWIZ)

2
2-p(l-m)’
A first computation shows that [g» wh? dp = Jgn |17 dp is independent of ¢ because

d Vwl|?
—f wﬁpdyzﬁpf w“($w+1<| wl
dt R R~

A second useful computation goes as follows:

1 d 2 Ak
_ LA (igwpre M Zﬁ)d
252 dtfn(l wi™+ =5 W | du

kK:=f(p-2)+1 and f=

)duzO.

Vw? A,w

= A -1)——
/W( wHp-1 w B(p-2)

=/ ($w)2dp+(1<+ﬁ—l)f (Zw)
R” R”

Vw2
)($w+1<| wl )d,u
w

IVw|?

w

Vwl*
w

d,u+1<(,6—1)f > du—)t*f IVw|?du.
Rn Rﬂ
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The purely technical purpose of introducing the exponent f is to make the last line of the above
computation 2-homogeneous in w, which makes the discussion easier to read. Inserting the two
following estimates,

f (.Zw)zdyz—f Vw'V(fw)d,uz—f Vw-(i’Vw)d,u+f Vw-[Z,Viwdu
Rn [Rn Rﬂ Rn
=f ||Hessw||2dp+f Vw- (L, Viwdu
R R"
:f ||Hessw||2dp+f Hess¢p: Vw e Vwdu
R R"

zf ||Hessw||2dp+it*f Vw|*>dpu
R R

and

IVw|? VweVw f Vw|*
¥ du=-— H T du+ du,
(L) — = dp | Hessw: — ut |, e Ak

we obtain that
dt
if, for any function w, we have

d / (|Vwﬁ|2+L wzﬁ)duso
R” p

\Y \Y%
Qﬁ[w] :=f ||Hessw||2d,u—2(1<+,6—1) Hessw:Md
R R w
\vi 4
+(1<(ﬁ—1)+1<+,6—1)f Vwl du=0.
Rn

A sufficient condition is obtained if the reduced discriminant is negative, that is, if
kK+B-1*—(k(B-1)+x+p-1)<0.
Altogether, this gives the condition

1+\/(p-12-p)

1-(p-D2-p)

B-(p)=P=pP+(p) with Bi(p):= 15

See Fig. 3.

20+

0.5 1.0 15 2.0

Figure 3. The admissible parameters p and § correspond to the grey area and are inde-
pendent of the dimension n. The boundary of the admissible set is tangent to the vertical
lines p=1at(B,p)=(1,1) and p =2 at (B, p) = (1,2). This figure corresponds to Fig. 2 up to
the transformation of m — 8 = 2/(2 -p- m)).

Equivalently, written in terms of m, the condition is m_(p) < m < m4(p) with m.(p) defined
by (5). Summarizing our computations, we learn that

*
AT e 523 (u W p @ gy = | w||§z(Rn,dy,)) = -2 25wl <0
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because 25[w] is non-negative under Condition (15).
To make these computations rigorous, one has to justify all integrations by parts. This is by
now rather standard and can be done using the following scheme.

(1) Let h > 0 be large enough and consider Qj, := {x € R" : ¢(x) < h}. We can consider the
evolution equation restricted to Qj, with no flux boundary conditions. Then apply the
carré du champ method and keep track of the boundary terms. Since Qj, is a bounded
convex domain, these terms have a sign due to Grisvard’s lemma: see for instance [27,
Lemma 5.2], [36, Proposition 4.2], [21,29] and [31, Lemma A.3].

(2) Extend Inequality (12) written on Qj, to R? by taking the limit as # — +oo and then argue
by density.

This completes the proof of Theorem 7. U

Remark 8. For any p € [1,2), if the condition m_(p) < m < m, (p) is not satisfied, then one can
find a positive initial datum such that the solution v of (6) is such that

IIVUII >0.

d
LZ(Rn d[,t) (” U”IzJp(Rn'du) ” U”LZ(R” du)))
p-2 =0

See [25] for a similar statement on the sphere and its proof.

3.2. Improved inequalities based on the carré du champ method

In the proof of Theorem 7, using only 2g[w] = 0 is a crude estimate. Let us explain how one can
obtain improved estimates by making a better use of Qplw] = 0. Under Condition (15), we can
indeed rewrite 2g[w] as an integral of a sum of squares,

2piw)= |
plwl .

S:=k(f-D+x+P—1-+p-12=(B—-p_(»)(B+(p)—B)>0. 17
Asin [2, Theorem 2], let us consider the special case m = 8 = 1 of the linear flow. Let us define the
entropy and the Fisher information by

VweVw

Hessw— (k+f—-1) ——— (16)

with

1 2
£[w1:=r(nwuymm 10 g gp) and Fw]:= 1V, g0 -

Inequality (12) amounts simply to
Flw]-AEw]=0.
We can now state a first improved entropy—entropy production inequality.

Proposition 9. Let n be any positive integer. We consider the measure du as in (9) such that (11)
holds for some Ay > 0. For any p € (1,2), let (s) := 1 + s — (1 + s)P~L. With the above notations, we

have
2-p) &If]

) VfeH' ®R", dy). (18)
11 e ap

Ak
Llfl= )2 ”f”Lp(Rn dy)(p(
Since p € (1,2), the function ¢ is convex with ¢ (0) = 0 and ¢’ (0) = 2— p, which implies in particular

that ¢(s) = (2 - p) s for any s = 0, so that Inequality (18) is stronger than (12). Inequality (18)

amounts to

A - -
2 * 2 _ 2(p-1) 2(2-p)
"vf”LZ(R”,d/J) = (2_p)2 (”f”LZ([RZ”,du) ”f”LZ(R”,dp) ”f”Lp(R",d[J))
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and can also be rewritten as

2
IV F 12 o gy~ (n PPy =V an)

/1* 2 2(p-1) 2(2-p)
z(z_p)( DI gy + @ = DYV B = 1 Wit 1 W) - (19)

We claim no originality in either Proposition 9 or Inequality (19) and refer to [2, Theorem 2] and [1,
Ineq. (3.3)] for earlier results. Also see [22, Theorem 2.1] for an improved inequality like (19) in the
case of the sphere. However, let us give a proof for completeness.

Proof. With § = 1, notice that (16) holds with 6 = (2 - p) (p — 1). Using the Cauchy-Schwarz
inequality, we obtain

2 4
(J[w])zz(f Ilezd,u) sf lezduf IVugl d
R Rn RT W

and, with M := ([ [w|? dp)*'”?, we can also write that

f lwldu=@2-p)Elwl+M.
Rn

Altogether, with e(f) := 2 - p) M1 &[w(t, "), if w solves (14) with B =1, then we have the

differential inequality )
!
(e >0,

e +20.¢ - (p- 1)

We claim that 2 - p)e’ +24, (1+e—-(1+e)’ 1) <0, Wthh follows from the observation that the
equation

2
y'+ay -b W) =0
1+y
can be solved using the ansatz y' = ;27 ¢(y) with ¢(0) = 0 if
o - b% —1-b. 20)

It is straightforward to check that the unique solution is ¢(s) =1+s—(1+ s)b. Witha=2A4 and
b= p—1, we obtain

(’+ﬁ ()),>( _1)e_/(/+% ())
e 2_p(pe =(p +ee 2_p(pe .

204

o,e= 0 and lim;_.;o€' () =

By integrating from ¢ = 0 to +oo using the facts that e’ < 0, e’ + 2=
lim;_. ;o0 e(#) = 0, we conclude with M = ”f”ip(w,dm that

2- A M 2-p)& 1
—p(,ﬂ[w]— - (p(( P) [w]))=——(e’ )20 Vi=0
M (2-p)? M 2 2—
See [17, Appendix B.4] for a more detailed proof in the similar case of the sphere. U

Inspired once more by the results on the sphere (see [22] and earlier references therein), it is
a very natural question to wonder if improved entropy-entropy production inequalities can be
achieved with 8 # 1. The answer goes as follows. Let us consider the function ¢g given by

6(p)2—p

—(1- _ b(p)
=0 b(ﬁ))(1+s (1+5) ) where () = =5° =

and () is defined by (17).
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Proposition 10. Let n be any positive integer. We consider the measure du as in (9) such that (11)
holds for some A« > 0. For any p € (1,2), take f € [1,B+(p)]. With the same notations as in
Proposition 9 and y g as above, we have

”f”i”(R",dp)Xﬁ (lfzp—)éa[f])sy[f] VfEHl([Rn,du). 1)
f ”LP(R" dw
Proof. With the notations
3 I wﬁ”iz(w,du) o [V(w?) “iZ(R”,du)
[ Wﬁ”ip(w,dm I wﬁ”iv(w,du) y

we have now to consider the differential inequality

g A |Vawl|*
‘- ——e|=-0 2[ ——du.
(' 2-p ) g wz

The key ingredient is to replace an estimate due to Demange in the case of the sphere for p > 2
(see [19,20] and also [Lemma 15, (iii)]) by its counterpart for log-concave measures and p € (1, 2).
Compared to the linear case, the Cauchy-Schwarz inequality in the proof of Proposition 9 has to
be replaced by the Holder inequalities

IVwl|? IVw* % g1
fwl wl“dp I s L B u IwI H
1 |V wl? Ile4 2 72551 1
2 . 26-1 2 e
g ot [ (S ans [ S5 aul ([ w2 a) 75

after observing that = f_(p) = -(3/2) =2/3 > 1/2, so that

f IVwl* du>fRnIlezd/,tfRn|Vw’5|2d/,t:_ ie'
Rt W2 - B2 foon w?P dps ptl+e)’

Hence .
A * 6 | e,

(-5 =i
2-p B2 1l+e
Let us compute

2—pX a 2-p

on the condition that y solves

A 5 ¢ (A
7= (e-x@) < o= (i - T*)((e))

Y =1+—"—"2"" 1(0)=0.

The solution y(s) = (1-b) ¢(s) is such that ¢ solves (20) with b = § 872 (2— p)/ A, which shows that
x = xp- The proof then follows from the same considerations as for Proposition 9 (also see [17,
Appendix B.4] for details). O

If ¢(y) = |y|?/2 is the harmonic potential so that du = dy, by testing (2) with f:(y) = 1+ ey,
where y; denotes the first coordinate of y = (y1, y2, ..., ¥») € R", we find that
1 1
IV felE2 gn gy = 57 (nfgniz(w,dy) - ||ﬁg||iw,dw) =S (P-De'+0E") as e—0.  (22)
This is the standard computation for checking that A = 1, = 1 is the optimal constant in (2). Since
2-p) &[]

1
) == (p—1)2£4+0(£5) as £€—0,
”fE”Lp(Rn d)/)

1
_fé’ )2 ”fE”Lp(Rn dy)(P(
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we also learn that (18) involves the optimal exponent at least in the limit as ¢ — 0. After observing
that |V f; ||L2 ®,dy) = £2, we may wonder whether the deficit

2
191 )~ 5= (||f||L2(Rndy) 11 a)

measures the distance in terms of |V f 14 The detailed answer is not limited to the case

L2R",dy)"
1=y and goes as follows. For simplicity, we take f = 1 and consider ¢(s) := 1+s— (1+5)”" ! asin
Proposition 9. We recall that ¢ is monotone increasing and convex on R*, such that ¢'(0) =2 - p,
hence invertible of inverse ¢! such that /() := t — (2— p) ¢~ (¢) is also a convex, non-negative,

monotone increasing function.

Corollary 11. Let p € (1,2) and n be a positive integer. We consider the measure dy as in (9) such
that (11) holds for some Ay > 0. With v as above, for any f € H! (dy) we have

, PR 2= p IVFI2 n gy
”Vf”LZ(Rn dﬂ) (”f”L2(Rn du) "f”Lp(R",dy)) = z_p ”f”Lp(Rn'd”)uj A* “f”ip(an 4 ) *
sy
Moreover, there is some x > 0 such that
V2 * 2 2 K”vf”LZ(R" au)
IV Reqnan = 3= (1712 gy = 1V ) = T Py
L2(R", d,u) L2(R",dp)

The constant x depends only on p and its value is estimated in the proof below.

Proof. LetM=|f IIL,, ®n,dp)° We deduce from Proposition 9 that
2—p)? 2-p)&
i:=( P) Ffl=@e) where e::(zp—)[f],
A* M ”f"Lp(R",du)

which is equivalent to —e = — ¢~ 1(i), so that
i—2-pe=i—-C-pe i) =y
and, as a consequence,

A M /I*M P /I*M 2_p 2
FIf1-AEf] = —)2( (Z—P)e)zmll/(l)—(z_p)zw m"vf||L2(andﬂ) .

Since ¢(s) ~ s as s — 400, we deduce that ¢ (#) ~ (p— 1) t as t — +oo. On the other hand, since
(pl/( )
(¢'))’

we learn that ¢ (0) = (p —1)/(2— p) > 0 and ¢ — " (¢) is non-increasing because ¢’(s)° ¢ (¢) =
@'(5) " (s) — ¢"(5)*> < 0. This allows us to define

v'(H=2-p) ——= with s=¢ (1),

k:=inft 21+ Dy(r).
>0

Using ¥(0) = ¢'(0) = 0, we know that ¥ > 0 and y(#) = x t>/(1 + ) concludes the proof using
1l @ a < 1 F 2 dgo- -

Remark 12. If ¢p(y) = |y|2/2 is the harmonic potential so that du = dy, then A = A, =1 is
the optimal constant in (2) and the results of Proposition 9 and Corollary 11 are both stability
estimates. Even in the general case of a measure dy as in (9) such that (11) holds for some 1, >0,
Proposition 9 and Corollary 11 provide improvements to the basic inequality with a (generically
non-optimal) constant A,.
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3.3. From the carré du champ method to Obata’s theorem

As a side result, we consider an improvement of the carré du champ method as in [34, Theo-
rem 2.1] or [24], which goes as follows. Let us consider the optimal constant A; > 0 in the Poincaré
inequality
f Ilezd,uZ/llf Iw—LDIZdu YweH (R",dy), 23)
R R"

where i := [, wdp. By expanding [y, (Lw + A1 (w— ))* du = 0, we obtain

f(ﬁw)zdyz/llf Ilezdu.
Rﬂ RH

On the other hand, by the computation of Section 3.1 with 8 = p = 1, we know that
1d 2, M 2) f 2 f 2
- — \Y — du= Lw)du—-2 Vwl“dpu=2 =0,
Zdtfw(l wl +p_2w u Rn( w) dp—Ax WI wldp=2[w] =

which proves that
Al = A* .

Lemma 13. Assume that n = 1, p € [1,2) and consider the measure du as in (9) such that (11)
holds for some A, > 0. Then (12) holds with
A=R2-p)hi+(p-1Ak. (24)

As a consequence, we have A = A, with equality for the optimal value of A in (12) if and only if
Ay = A1 and Gp(y) = s |y — yo|%/2 for some y, € R™.

Proof. The carré du champ method applied as in Section 3.1 with p = 1 shows that 1; = A,.
Coming back to the computations of Section 3.1, we can rearrange the integrals in the expression
2glw] differently and get
1 d A
-— —f (|Vwﬁ|2 +— wzﬁ) du
2062 dt Jpr p-2
! —0)[ (zw)zdu—af IVw|*du
R" R"
? IVawl|*

w2

IVw

+0f ($w)2dp+(1<+ﬁ—1)f (Lw) du+1<(ﬁ—1)f du
R” R” R”

w
=(1-0H1 +9/1*—)L)[ IVwl*du
Rn

+H(f ||Hessw||2du+ﬂt*f Ilezdp)
Rn Rﬂ

IVaw|*

w2

VweVw

_2(K+ﬁ_l)ju;nHESSW:
With the choice of 6 such that
kK+B-1*-0(x(B-1+x+p-1)=0,
which means 8 = 6(f) with

du+(1<(ﬁ—1)+1<+ﬁ—l)f du.
Rn

_1)282
o= — L0

(p-2)p*+2p-1
we can write that

VweV Vw|*
Hf ||Hessw||2du—2(1<+,6—l)/ Hessw : we wd,u+(1<(,6—l)+1<+ﬁ—1)/ |uL/{;| du
R R" R"
-1) VweVw|?
=0 Hessw—ﬁ(pt9 ) Vw w du=0.
Rn
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Altogether, we have shown that
d A
—f (|Vwﬁ|2+— wzﬁ)dyso
dt Jrn p-2

if A = (1-6)A; +0A.. Notice that 8(f+(p)) = 1 for any p € [1,2). The observation that
minge(g_(p), 6, (m1 0(B) = 8(1) = p— 1 completes the proof of (24).

With =1 and p = 1, the computation in the proof of Theorem 7 shows that, if the initial
datum w(t =0, ) is an optimal function for the Poincaré inequality (23), then

d
0= Ef (IVwl* - A, w?)du=-2 (921 (w] +f (Hess¢p— A, 1d): Vwe Vwdpu
R" R"

at £ = 0. Here we keep all terms and in particular do not use the fact that Hess¢p — 1,Id = 0 a.e. in
the sense of positive matrices. Since Vw # 0 a.e. and 2; [w] = 0, we find that Hess¢p— A, Id =0 a.e.
This completes the proof in the equality case 1, = 1;. d

Remark 14. The proof of Lemma 13 is reminiscent of [24, 34]. The result when A, = A; points
in the direction of Obata’s theorem (also known as the Obata-Lichnerowicz theorem) and in
some sense, it is the analogue for Gaussian measures of the result of [33, p. 135] (also see for
instance [13, p. 179]) on the sphere. The case A, = 1, is easy to understand in dimension d = 1:
with 8 =1 and p = 1, we apply the computation of the proof of Lemma 13 to a function u in
the eigenspace associated with A; and obtain that ©” = 0 almost everywhere. This means that
u(y) = ay+Db for some real constants a # 0 and b, and there is no loss of generality if we take a = 1.
Using now the eigenvalue equation £ u + A; u = 0, we read that ¢'(y) = A; (y — b), which means
that ¢ is an harmonic potential. In higher dimensions, one has to remember that Inequality (12)
can be tensorized on product spaces: see for instance [18, 26, 32]. This is however responsible for
some technicalities, which are dealt with in greatest generality, e.g., in [28].

3.4. Improved inequalities under orthogonality conditions

Let IT; be the L?(R", dy)orthogonal projection onto the space generated by the constants and
the coordinate functions, corresponding to the Hermite polynomials of order less or equal
than 1. The following result was recently proved in [17, Appendix A] on the basis of Nelson’s
hypercontractivity estimate in [38, Theorem 3] and its relation with Gross’ logarithmic Sobolev
inequality in [30] (also see [1,32] for earlier results).

Proposition 15. Letn=1andp¢€|[l,2). Forany f € Hl(IR",dy), we have

1 1
2 2 2 2
IV o0~ 55 (17120 ) = 1 B 2n ) 2 5 2= PV IVA =TI f I

Compared to (2), this result provides us with an improved entropy-entropy production inequali-
ties under orthogonality conditions. As noted in [17], such an improvement is not optimal. There
are other possible approaches. For instance, a finer analysis of entropy methods has been used
in [25] on the sphere, that could probably be adapted to the case of the Gaussian measure. Alter-
natively, the convex interpolation of [32], with the possible advantage that the result would not
degenerate in the limit as p — 2 using the recent stability result of [23, Theorem 2].

4. Stability results for the Gaussian measure in the subcritical range
The whole Section is devoted to the proof of Theorem 4. We split it in four lemmas. The key
estimate is obtained in Lemma 19.

@ Let us start with the easy case, far away from the optimizers of (2) in the sense that for some
0 >0, we assume

”vf”IZJZ(Rnde) = 0 ||f||iz(R",dY) . (25)
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By homogenity of the inequalities, we can fix || f 12 =1 without loss of generality.

L2(R™,dy)
Lemmal6. Letn=1and0 € (0,1). For any function f € H! (R",dy) such thatIIfIILz(Rn,dy) =1land
IIVfIILZ(Rn ay) >0, we have the estimate
1
2 2 2 2
IV S Regmnan = 5= (11 gy = 1 F W pn apy) = 15 OV IV F1 g
In case (25), this already proves the result of Theorem 4 with ¢, , < cﬁ,ll)p =K« (0).
Proof. From Corollary 11 and its proof applied with 1, =1, we obtain

1
2 2 2
IV iemnan = 5= (112 gy = 1 F Vo gn )
2

"f”Lp R",d 1 ”Vf”Lz R™. d
% ((2 p) 9) 2-p) _ L"®%dy)
p 10 g
1 ”vf”Lz([R dy)
~@-p)y(2-p8) 5 =1, (6) IV 1% o
2 ”f”Lp(Rn d)/)
with x4 (0) = %(2 -py ((2 -p) 6) 0 because ¢ — ' (r) is non-increasing, IVfIILz(Rn an = >0 and

2
”f”Lp(R",dY) = ”f”LZ([Rn,dY)'

@ From now on we work in a neighbourhood of the constants which, by homogeneity of the
inequalities, is defined as

IV F T2 @ ay) S O IT2 @0 gy, - (26)
With 6 > 0 small, we claim that [, f dy is close to 1 if 1l @n,ay) =1

Lemma 17. Letn=1and0 € (0,1). For any function
fe Hl([RZ” dy) such that ”f”LZ“Rn dy = =1 and ||Vf||

we have the estimate

LZ(R” dy) = 9 (27)

\/1—95f fdy<1.
Rn
Proof. With f:= Jgn f dy, the result follows from the Gaussian Poincaré inequality according to

1= 11 e g gy = fR Af =Ry + P <UVFIfagn gy + 2 <O+ 2.

3 Assume that f is as in (27) and let us decompose uf(x) := f(x)/ [gn f dy as
upx)=l+ex-v+nrx

where v € $"! is such that ev = f[Rn xup(x) dy with € > 0, n is a positive number and r is a

function in H' (R", dy) n (Id - ) L*(R", dy) such that [Vrll;2@n 4y = 1 and II7ll;2@n ay) < 1/2 by

the Gaussian Poincaré inequality after taking into account the additional orthogonality condition

Jgnrxidy=0foranyi=1,2,...,n

Lemma 18. Letn =1 and0 € (0,1). Let f € H'(R", dy) be such that (27) holds. With the above

notations, we have

0
2 2, 2
||uf||L2(Rn,d7) 1+e*+n? ||r||L2(R,, dy)_1+0 and IIVquILZ(W ap=E TN =74

and, ifn > t&? for some t > 0, then
et )

1 1
”v”f”LZ(Rﬂdy) o_ (”uf“LZ(R"dy) ””f”LP(Rndy)) 2@~ p)( 1+e2 12
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By homogeneity, if (27) holds and 1 > t €2 for some given ¢ > 0, using Lemma 17, we obtain

2
1912 )~ 5= (||f||Lg(Rndy) 1F12 ) n ap)

21V Dl gy,
=

1
~@-p)A-0) [ IVad~11)) fIZ,
4 v dY) ”vf”LZ(R” dy) + ||f”LZ([R” dy)

This case already covers the result of Theorem 4 with ¢, < cff)p = i (2-p) (1 -0)minf{z, 1}.

Proof. The result follows from Proposition 15 and from the chain of elementary inequalities
et

1 1
22— (nP+rtet z—(2+—
" 2(77 )zn 1+e2+7?

O
@ The next part of the proof relies on a Taylor expansion of || uf”%n(nqz", ap" With no loss of
generality, by rotational invariance, we can assume that v = (1,0,...,0) so that with Cartesian
coordinates x = (x1, X,...,X;) € R", we write ur(x) =1+ex; +nr(x). The following result is at

the core of our strategy. It heavily relies on the Gaussian logarithmic Sobolev inequality and new
estimates for the remainder terms based on the boundedness of [, r?logr?dy.

Lemmal9. Letn=1landf e HY(R", dy) be a non-negative function such that (27) holds. We keep
the same notations as in Lemma 18 and further assume thatn < t&* for some t > 0. Then there is a
constant € > 0, depending only on n, p and t, such that

” uf"i”(lR”,d}/) =1+ (P - 1) (82 + n2”r||i2(R",dy))
1 €et
+(p—1)(2—p)(—£4+£21]f xfr(x)d}f)——gl as €—0,.
2 R" log(3)
Proof. This proofis elementary although a little bit lengthy. Let us split it into three steps.

Step 1. Let us start with a list of preliminary remarks.
o Let B, be the centred ball of radius 1/(2¢), that is,

Be:={xeR":2¢|x|<1}
and let Bf =R"\ B,. We observe that
2 1
y(BS) = |S"~ 1|f r" e T dr=c,e* e 82 (1+0(e?)) as e—0,
1/(2¢)
with ¢, = 222 T (n/2). Let £ := supe (0,172 € > (¥(BH))* P2, Hence we have

@-p)i2
f 1817 Ay <181, g 1) (FBO) S P2 <6 1 €
for any g € L2(R", dy), by Holder’s inequality and, as a consequence,

p p p p 5
fBglgI ar=| g dySfBglgI Ay +Ep gL, g ) € VEE(0,1/2). 28)

From now on, we assume without further notice that x € B, unless it is specified.
« An expansion in Taylor series of (1 + s)? for s < 0 shows that all terms are non-negative:

1
(1+s)”2l+ps+§p(p—1)s2 Vse(-1,0].
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Applied to uy =1+¢ex; +nr whenever 1 +¢x; >0and r <0, we obtain

p nr_\?
lupl? =(1+exy+nr)’ =Q+ex)? 1+

1+ex;
=(1+ex)? |1+ o7 +l ( —1)( nr )2)
- ! p1+£x1 pr l+ex;

1
=Q+ex)P+pA+ex)?! nr+§p(p—1)(1+£x1)’”72 nre.
e Let us consider the case 1+ € x; >0 and r > 0. The function

1 1 )
p():==|0+9P-1-ps—=p(p-1s"| Vs=0
N 2
is bounded. Let us extend p by 0 on (—1,0) and define

Yenr(X):=(L+ex)??p

nrx) )
l+ex;)’
With this definition, using u¢ = 0 by hypothesis, we obtain

lupl? = (1+ex +nr)?
1 1
=Q+ex)P+pQ+ex)? nr+ Ep(p— DA+ex)P2n?r’+ Ep(p— l)nzr(x)zwg,n,r(x)

with equality whenever r = 0.
Asn— 04, Y., converges a.e. to 0 on B, uniformly with respect to € € (0,1/2). The dominated
convergence theorem is enough to conclude that

lim r(x)? Wenr(X)dy=0
n—0+ JB,

for a given function r, but this is not enough to conclude uniformly with respect to r. To do this,
we need more detailed estimates. Notice however that

1Wenrliies,) < M:=22P [l plliso@s)
where M is independent of ¢, 7 and r.
* Since [ x2kdy > s, X% Kl dy =0and fgn x2F dy = [pu x2¥* dy = 0 for any k €N, an expansion
in Taylor series of (1 + € x;)” gives

1 1
f (1+Ex1)pdyzf (1+—p(p—l)szxf+—p(p—l)(p—Z)(p—3)x‘11£4 dy
R" R" 2 24

:1+%p(p—1)£2+%p(p—l)(p—Z)(p—3)£4.
By applying (28) with g = 1+ ¢ x1, we obtain
fwll+ex1|”dys/3 N+exPdy+Ep(1+62)"% 65
Summing up with £? < 0, we have E
I1+ex1l”dyz1+%p(p—l)e%%p(p—1)(p—2)(p—3)84—5p(1+9)'9’255.

Be

p

* Let us estimate [|ufll;  gn dy)

using

u’”dzfupd
fw|f| vzl dy
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and
fluflpdyzf 1+ex11” dy
B B,
1
+”"f (“”1)"_1de+§19(;9—1)an A+ex)P? 2 dy
Be Be
L 1 2
+splp=1hn Br(x) Yen,r(x)dy.
We obtain
1 1
fRn|uf|pd721+Qp(p_1)52+gP(P—1)(P—Z)(P—3)£4—§p(1+9)”/285
1
+pnf (1+5x1)p_lrdY+§P(P—l)lef (L+ex)P % rPdy
B, B,
1 5 )
+5P(p_1)77 B r(x) WE,n,r(x)d'y.

Step 2. We prove that ° [ _1(xX)* W p,r (x) dy is of order o(e*) as n < re* — 0 for a given ¢ > 0.
« By the logarithmic Sobolev inequality,

/hzloghzd)/st IVhlzdy+f hzdylog(f hzdy),
Rll Rll Rn Rn

applied to h =1+ (r — 1), we learn that

f hzlogh?‘d}/52f |Vr|2dy+(1+f rzdy) log(1+f rzd)/)SZIOg(Ze).
[RTL [Rn Rn Rﬂ

Let x := Tjp> for any so > 1 and consider Ay, 1,5, := {x € B¢ : 7(x) < So}. Then we have

fhzloghzdyzf h? logh? dy = /}(hzlogh2 y>log( )f)(r dy
R" e\AEnrso

because h =1 a.e. and h > so/n on B\ A¢ 5, 1,5, and, as a consequence,

log(2e) M
172 r(x)zu/g,n,r(x) dy=- _osee M 2,
Bg\Ae,n,r,sO log So+ log (%)
e Let us notice that o(s)|
s PO
s>0 log(1+5s)
is finite. This allows us to write that
n? r(x)zwg,n,r(x) dy=-2P.u 7 r?log(1+2n Nlgpso dy,

As,r],r,so As,r],r,so
where the restriction to the set {r > 0} comes from the fact that v ; » (x) = 0 whenever r(x) < 0.
Now we estimate log(1 + 27 r) by

1
log(1+2nr)<log(l1+2/7 if 0sr=—,
( ) 7

log(1+2 1
10g(1+21)r)5wlogr2 if —srss—o,
=0 a7

and conclude using [pn r?dy < 1 and fgnr?logr?dy < 2 [uIVri?dy = 2 by the logarithmic
Sobolev inequality that

2log(1+2
n’ r(0)? We,r(x)dy = —227P 0 910g(1+2\/ﬁ)+M
Ae,n,r,so log (%)
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Step 3. We compute the contribution of
1
pn[ (1+ex)’ ' rdy and > p(p- l)nzf A+ex)P2r2dy
B B
to the expansion of [y, [us|” dy.
« Using (28) applied to g = |7|'/? and the orthogonality constraints on r, we obtain

pnf (1+£x1)”_1rdy2pn(f (1+£x1)’”_1rdy—21_”6p85)
B, R"

1
2pnez(E(p—l)(p—Z)IRnx%rdy—cles—21_’96,,65)

where c; := V15 SUP e (—1,0)U(0, +00) |(1 + s)”‘1 -1-(p-1s- % (p—-1D(p-2) sz| /s3
» A similar computation shows that

1 _ 1
Ep(p_l)HZLE (]_+€)C1)p zrzdy:5p(p—l)nz(”rHiZ(Rnde)_CZE)

where ¢z 1= SUPyc (1 0)u(0,+00) | (1 + P2 = 1| /s

Step 4. Collecting all terms, we have

P dy =142 p(p-De2+ L p(r-1 (-2 (p-3e* + - p(p- D IrI?
R f Y_ 2 p p 8p p p p 2 p p T] LZ(Rn,d}’)
e
log(¢)
for some constant C > 0 that is explicitly given in terms of ¢, {,, M, .4, c; and c;. In order to

1
+§p(p—l)(p—2)n82 fwxfrdy— c

2
conclude, we notice that for anys>—1,;—;(1+s)p > 0 implies that
A+97 21+ 254 L Rop-——@-pU-ps
HP=1l+—s+—=2-p)s ———=2- -p)s°.
p P gp3 < TP

Applied to

14
”uf”ip(Rnde):(‘[Rn (].+EJC1 +17r)pd}’ y
this completes the proof of Lemma 19. O

Proof of Theorem 4. Up to the replacement of f by |f|, there is no restriction in assuming that f
is non-negative: we can rely on Lemma 19, which is the main ingredient of the proof. The strategy
is now very similar to the proof of [17, Theorem 7]. Let is consider the Hermite polynomial
hi(x) := xf —1 and decompose r according to

r(x):=ah(x)+pF(x)

with [|Fll2@n gy = 1 so that ||r||iz(W i) = a’+ f? < 1/2 and [pa X3 r(x)dy = a. With these
notations we have

2 2, .2

"vuf”Lz([R”,d}/) =&+,
2 _ 2, 202, a2

Netf 2 gn gy = 1+E +1 (a®+6°),

€ et

log(2)’

1
N f s @n gy = 1+ (p=1) (2 +n* (@® + %)) + (1) 2~ p) (5 e* +a62n) -
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where the estimate of || u £l

ip ®n,ay) COMES from Lemma 19. Hence, for some A > 0 to be fixed,

1 2 et
2 2 2 2
1Vt Iean = 5= (e D ) B (’7 ’ m)
p-1 At? )

Get
- T2 z—:4+(p—l)ouszn———1
2 1+e%+7n 2—plog(g)

(1—a2—ﬁ2—/1)+(

>n?

1 1 €
>P(1-?-F-20)+p-Dat+=(p-1)—- —— ——— | &*.
( ( B )+ (p S 27 o)

By writing

t

for

1-

2(1—a2—ﬁ2—2/1)+(p—1)at+%(p—l)

11 1
=t2(1—p7a2—ﬁ2—21 +3(p-D+a)’

1 1
2Zt2(3—p—8)L)+5(p—1)(1+0¢t)2,

any given ¢ >0 and A < (3 - p)/8, if € > 0 is small enough, we obtain the result with ¢;,, =
o). O
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