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Abstract—In this paper, we propose an innovative meta-
heuristic characterized by a multi-dimensional chromosome
where each dimension is driven by a rational agent. These
agents have to communicate in order to implement evolving
and adaptive genetic operators to accelerate the convergence
towards the optimal solution. This cooperative approach is
applied to solve the patient scheduling problem in emergency
department (ED). This problem is NP-difficult due to the
permanent interference between three types of arrival: already
programmed patients, non-programmed patients and urgent
non-programmed patients. Our scheduling problem has to
integrate several dimensions such as medical dimensional, pa-
tient dimensional, temporal dimensional. The multi-dimensional
aspect of the chromosome is crucial to model the different
dimensions of the ED. The main goal of the simulation results
is to assess the performance of the proposed agent driven multi-
dimensional chromosome. The simulation results confirm that
the intra and inter chromosomal interactions allow to avoid the
blind aspect of the genetic operators and impacts the quality
of solutions. The agents’ cooperation and its ability to improve
efficiently the quality of the solutions by exploring intelligently
the research space are confirmed by the drop in average total
patient waiting time by 15.09%

Index Terms—Metaheuristics, Multi agent Systems, Coop-
eration, Hybridization, Combinatorial Optimization, Hospital
Logistics

I. INTRODUCTION

The ED is a complex system that interacts with the
downstream and upstream flows of hospital services. This
complexity is due to the stochastic features of the ED such
as arrival times, treatment times, admission rates, triage
categories and waiting time. In addition, the ED has limited
resources and stochastic demand, which makes the com-
binatorial optimization an ideal tool/model to improve the
healthcare system [1].
In this paper, we present a hybrid metaheuristics as an
innovative approach for optimization using a multi dimension
chromosome in with each dimension is modeled by an
autonomous agent. So that each chromosome is represent
by a multi agent system. This approach aims to help ED

managers in setting up strategies and management guidelines
to optimize the healthcare activity of ED while assigning a
dynamic priority to the patients. In this approach, each agent
acts independently in the solution search space through its
ability to manage its own dimension of the chromosome.
Agents cooperate with each other in order to make good
decisions while improving the quality of care provided for
patients. This cooperation is made thanks to the well defined
negotiation protocol. This protocol allows agents to make
appropriate decisions based on experiences gained in inter-
acting with other agents and the environment. This protocol
mainly exploits two knowledge databases detailed in [2].
• A declarative database for describing the objectives and

context of the negotiation. For example, to determine the
pathology of the patients and to define the appropriate
treatment rooms.

• A database for negotiation rules, for example, choosing
the adequate skills of medical staff to provide care
quality.

In our approach, the negotiation protocol is established
to represent the genetic operators such as mutation and
crossover. This protocol respects all the strong and the flexi-
ble constraints which are already fixed and published in our
previous work [3]. The objective is to determine a protocol
for the negotiation between agents allowing as to schedule
and re-schedule in real time care tasks while minimizing the
patient’s Average Total Waiting Time (ATWT). Thus, our
approach is based on the cooperation of agents to generate
a viable chromosome in order to provide a set of a good
solution in the final population.
Metaheuristics are used as one of the main methodologies to
solve highly complex optimizing problems for which there
is no method to efficiently find the optimal solution [28].
Metaheuristics are chosen not only for their versatility and
great adaptability to solve these problems, but also for their
ability to obtain, in limited computational time, good quality
solutions [5]. In our case we classify hospital systems as a
complex environment system since it is simultaneously inac-
cessible, no-deterministic, dynamic and continuous. To solve



the optimization problems in ED, a bibliographic review of
concepts and approaches can generally be categorized into 3
classes: (i) those that used metaheuristics in order to schedule
patient considering (or not) resources. Generally in this class,
researchers do not consider the evolution in real time of the
patient care state, (ii) those that use the multi agent system
to help staff to make a good decision in real time (or not),
and (iii) those that made a combination of two (or more)
approaches to effectively schedule patients in real time. Our
work belongs to this last category.
(i) In the literature, several researchers have adopted the
methaheuristics approach and they qualified it as part of
machine learning and soft computing technologies [6], [7],
[8]. Indeed, metaheuristics have been used by several recent
studies to solve healthcare system problem. For example,
In [9] the authors propose an original model based on an
evolutionary memetic algorithm in order to solve the often
contradictory multi-objective home care problems (which
require considerable time to obtain a fair and valid calendar)
minimizing the total working time of nurses while maxi-
mizing the quality of service. In [10], the authors, propose
a multiobjective stochastic genetic algorithm approach to
obtain a real-time, single-score-based prioritization scheme
optimization in the context of healthcare resource allocation.
In [11] a simulated annealing framework and an adaptive
large neighborhood search procedure are used to solve the
dynamic patient admission scheduling problem, they report
improvements in the range of 3–14% for the large instances.
Metaheuristics offers a solution to healthcare staff, however,
combined them with intelligent methods can further improve
its solution in order to provide needed services to any health
care organization.
(ii) Other research works focus on the multi agent system
(MAS) which is used to model, optimize and schedule
complex systems. For example, the authors in [12] pro-
posed a review offering several agent-based solutions in
the healthcare field, highlighting that such an approach can
generate advantages in terms of modularity, efficiency, decen-
tralization, flexibility, personalization, distributed planning,
monitoring, pro activity and security. In [13] the authors
present a medical decision support system for a rectal cancer
center. It is a multi agent system, able of manage the entire
radiomic process. Indeed, from medical images, the system
can extract a set of characteristics to be analyzed in order
to generate an optimized predictive model. In [14], the
authors propose a multi agent planning framework for the
automatic reconciliation of clinical directives dealing with
both medical interactions and patient preferences. In [15], an
agent approach is used to develop a personal health system
adapted to follow-up of first-level diabetic patients. Each
of these last three references is the result of international
effort and cooperation between researchers from different
institutions with healthcare institutions in different countries.
This underlines the need and the importance of implementing
such a system to solve optimization problems in hospitals.
Indeed, agents can communicate with each other in the
form of negotiation and coordination in order to accomplish
beneficial tasks to users. They are able to take initiatives
and perform actions proactively in order to reach their goal.
Agents work together using a cooperative and/or collabora-

tive strategy to solve problems. Therefore, the multi-agent
approach is considered as an effective approach to modeling
and implementing health care systems. On the one hand,
because of the complex environment of hospitals, on the
other hand, because of the need to establish constant and
effective coordination between different staff with several
skills and functions to provide effective care to patients.
(iii) In recent years, the combination of two or more ap-
proaches for solving optimization problems has been growing
[16] explaining the rising interest for this hybridization
method. In fact, the hybridization is considered as a good
technique to overcome the specific limitations of a single
evolution strategy in the evolutionary algorithms [17]. Hybrid
metaheuristics or hybrid evolutionary algorithms combine
features of different techniques in order to exploit the asset
of the several algorithms and get better algorithmic im-
provements [17]. There are some hybridizations proposed in
the literature, among them, several researchers highlight the
interest of combining optimization algorithms with MAS in
order to resolve complex problems such as in [18], [19],
[20], [21]. In this context, several researchers apply the
use of multi-agent concepts in the hybridization of meta-
heuristics through the collaborative strategy, such as in [22],
[18], [23], [17]. Authors in [22] used a multi-agent system
approach on a framework called Collaboration of Meta-
heuristic Algorithms. The results of their work show that
this collaboration method achieve better results for solving
problems of combinatorial optimization. Other researchers
realised this hybridization through the cooperative strategy,
such as [24], [25], [19]. In the literature the cooperation
strategy is defined as a set of highly autonomous programs,
each one implementing a particular solution method, and
then a cooperation scheme combining these programs into
a single solution strategy [26]. In this article, we focus
only on this type of hybridization where cooperation is
used in the context of optimization, through the use of
different agents working together by exchanging information
to achieve a common goal. Here, each agent participates
in problem solving autonomously. The originality of our
approach comes on one hand, from the development of a
Metaheuristics driven by Multi Agents Systems (MMAS). In
MMAS, the blockage in a local minimum is avoided thanks
to the cooperation between agents controlling the genetic
operators. This will limit, even eliminate the blind research
aspect in the MMAS steps by converging in the most efficient
way to the optimum solution. On the other hand, from the
application of our MMAS in the hospital field, and in the
ED in particular.

II. MMAS DESCRIPTION FOR PATIENT SCHEDULIN

The patient scheduling in Adult ED (AED), as it is
mentioned in the literature, is an NP-hard combinational
optimization problem. In this context, each time a new patient
arrives to the AED, a sequence of healthcare treatment tasks
is updated and adapted to the care needs of new arrivals. This
involves generating real-time activity plans for each member
of the medical staff. Thus, a multidisciplinary medical team
is made up and a treatment role is then assigned to each
member of the medical team in one of the stuctures of the
AED. To solve the problem described above, the proposed



MMAS has a chromosome code adapted to the considered
problem. The main goal of MMAS is to optimize the patient
treatment process by assigning effectively the set of patients
to the right medical staff and the right stucture of the AED,
while minimizing the ATWT.

A. MMAS chromosome coding

In our approach, the chromosome is composed of a four-
dimensional hypercube with the following four axes (Medical
Staff), (Patients), (Time) and (ED Structure). The time axis
is defined by several optimization horizons. The idea of
dividing the time axis into many slots allow to assign each
resource (physician and box) to the right patient during
a given period. Each axis or dimension is controled by
autonomous agent (APA : Agent of the Patient Axis ; AMSA
: Agent of the Medical Staff Axis ; ASA : Agent of the ED
Structure Axis ; ATA : Agent Time Axis). Each agent knows,
thanks to the real database and the structural architecture
of the AED, the different characteristics of the points that
compose its axis. For example, the APA knows the arrival
time of each patient and his pathology, the AMSA knows in
real time the availability and skills of each medical staff, etc
(figure 1). These information are useful for the negotiation
protocol between the agents and the generation of a solution
population. Indeed, each agent thus has a dynamic knowledge
base enabling it to cooperate with the other agents to make
the population evolve over the generations.

B. MMAS initial population

The performance of our MMAS depends on many factors
such as population size, number of generations, crossover
and mutation operators, probability, etc. Generating a good
initial population is one of the important steps in MMAS. A
poor initial population may increase the search space or make
MMAS converge at a local optimum. We initially developed
two different initial population generation methods:
• random negotiation agents (figure 2): each chromosome

i is generated as follows: the APAi generates a list
of patients in a random way. This list is sent to all
the agents’ chromosome i, where each agent assigns
through negotiation, the appropriate medical staff in the
available slot and AED structure to this list.

• heuristic negotiation agents (figure 3): each chromo-
some i is generated as follows: each agent exploits
its own heuristic and negotiates with other agents to
generate viable solutions in the initial population. For
example, the APAi generates a list of patients by ap-
plying a heuristic. This generation is based on dynamic
priority rules [28].

Our main motivation is to use the agent knowledge basis to
analyze its empirical results in order to negotiate efficiently
with other agents.

C. Fitness function

The fitness function is essentially the objective function
for our patient scheduling problem. It provides a means of
evaluating the search chromosome. A well formulated fitness
function is necessary to reach success. The fitness value

Fig. 1. Multi agent system chromosome i

Fig. 2. Random negotiation agents to build the initial population (RNAIP)

Fig. 3. Heuristic negotiation agents to build the initial population (HNAIP)



of each multi-dimensional chromosome is computed by the
fitness function. A good solution is one that scores a high
fitness value.

In this paper, the fitness function is the average total
waiting time for patients belonging to a best scheduling s∗
noticed ATWTs∗, which is typically defined as:

ATWTs∗ = min
s

(

∑P
p=1

∑K
k=1 max(0, ts,p,k+1 − ts,p,k)

P
)

(1)
Where :
• s is the current schedule belong to the current popula-

tion to be assessed;
• P is the total number of patients to be treated;
• K is the total number of care tasks to be scheduled for

the patient p;
• ts,p,k is the ending time of the care tasks k for the

patient p in the current schedule s;
• ts,p,k+1 is the starting time of the care tasks k + 1 for

the patient p in the current schedule s;
According to the dynamic knowledge basis integrated into
the APAi, this agent has some information about the total
number of patients to be scheduled, the total number of care
tasks of each patient p, etc. Therefore, the APAi has the
ability to compute for each solution the fitness function as
mentioned above.

III. MULTI AGENT GENETIC OPERATORS

The multi agent system used to limit/even eliminate the
blind research aspect of the evolutionary algorithm steps.
The idea is that each agent searches iteratively among the
solutions neighboring to its axis for the best solution and then
communicates it to all agents through the agent negotiation
protocol. The generation of neighboring solutions is carried
out by keeping the same neighborhood (the same axis) and
by varying only one component at a time of the solution
(change of coordinates) or by changing the axis (change
of neighborhood) until the obtaining a local optimum. The
crossover and mutation operators are applied to generate
new solutions. These steps are controlled by the agents’
negotiation protocol where each agent manages a full part
of chromosome gene, thanks to the multi agent coding. The
cooperation takes place through the exchange of information
of axes, avoiding premature convergence.

A. Mutation operator

In order to diversify the solution population; four different
mutation algorithms are developed based on neighborhood
approach. The idea is that we choose randomly one multi-
dimensional chromosome i and one agent within it to search
a neighborhood solution through its axes and decide if it
keeps this solution or not. Indeed, the mutation operator
proceeds on intra-chromosome. Therefore, the agent that was
chosen to generate the neighboring solution is called the
mutation director agent.
• swap-intra-chromosome i when the mutation director

agent is APAi: neighborhood function that performs
the exchange move of the patient with another patient
of the same solution.

• shift-intra-chromosome i when the mutation director
agent is APAi: neighborhood function that performs

the relocation move of one patient to another position
into the same schedule.

• reassignment-intra-chromosome i when the mutation
director agent is AMSAi: neighborhood function that
performs the exchange move of the medical staff with
another medical staff who has the same skills of the
same solution. For example, if the care task is to give
a shot to a patient who has been assigned to a doctor
through this mutation this task is assigned to a nurse
so that the doctor’s skill is used to perform another
consultation task.

• location-change-intra-chromosome i when the mutation
director agent is ASAi: neighborhood function that
performs the exchange move of a medical structure with
another medical structure into the same zone or into
another zone of the same solution.

B. Crossover operator
In the literature there are many crossovers operators used

for combinatorial problems whose solutions are represented
by the order sequences, especially in TSP and scheduling
problems. Among these crossover operators we cite: partially
mapped crossover (PMX) [29], order crossover (OX) [30]
and cycle crossover (CX) [31]. The PMX manages the
important similarities of parents and the child generation
and needs a correction process to generate a viable solution.
The OX crossover emphasizes that the sequence order is
very crucial and no correction process is needed. The CX
crossover reserves the absolute position of the elements in
child’s generation. In the literature it is indicated that OX is
11% better than PMX and 15% better than CX [31].
So, in our crossover operator the director crossover agent
is the APAi for multi-dimensional chromosome i and uses
the OX crossover operator. During the search process of
the offsprings, the agents of MMAS should explore a multi
agent system environment. In this case, the multi agent
environment is defined by the chromosome search space. We
choose randomly 2 chromosomes i and j which represent
the parents in crossover. The latter produces offsprings by
recombining parental genetic material. In this paper, the
crossover operators are made by the protocol negotiation
between agents. Figure 4 details this negotiation. In fact, it
is mainly based on the request to crossover OX from APAi

to APAj . Once the APAj confirms this request, it sends a
crossover operator solution. Based on this confirmation the
APAi selects randomly two crossover points and executes
OX crossover operator, then it sends that to APAj for
confirmation. Once again confirmed by APAj the intra
and inter chromosome negotiations will start as described
into the same figure until the building of two new viable
offsprings. At the end of the protocol negotiation the newly
formed offsprings replace the 2 chromosome parents. This
means that the agents constituting the chromosomes parent
are destroyed.

C. MMAS algorithm
In the MMAS approach, the multi agent environment is

characterized by a solution search space of the addressed
problem, as presented in figure 5. The perception and action
capabilities of the agents are determined in this environment
as:



Fig. 4. Negotiation agents protocol for the crossover operator

• perception of the environment: thanks to the knowledge
basis integrated in agent memories the agents are able
to access information about the patient scheduling prob-
lem;

• positioning: thanks to their autonomy, agents are able to
precise their positions in the environment and to build
a new solution or choice of available solutions;

• move: the ability of the agent to move from one
solution to another in both intra-chromosome and in
inter-chromosome;

• cooperation: is the main characteristic of our approach,
it shows the ability of the agents to share and provide
a partial solution (gene) for the other agents of our
approach.

Fig. 5. Agent interaction

All these characteristics are included in the behaviors of
agents handled by our MMAS algorithm 1.

Algorithm 1: MMAS algorithm
input : RNAIP (figure 2), HNAIP (figure 3), N is

the global size of initial population
output: a set of N good scheduling solutions

1 Initialization : generate a NL feasible RNAIP
solution

2 generate a N-NL feasible HNAIP solution
3 Merging of NL feasible RNAIP and a N-NL feasible

HNAIP (N agents multi-dimension chromosome is
obtained)

4 while stop criterion is not reached do
5 for i = 1 to N do
6 caculate the fitness function in the behaviour

of APAi
7 end
8 select randomly 2 parentes P1 and P2;
9 Apply a protocol negotiation between concerned

agents to execute crossover operator with a
probability Pcross in order to obtain offspring 1
and offspring 2 (figure 4) ;

10 Apply a protocol negotiation between concerned
agents to execute mutation operator with a
probability Pmut;

11 Select N new chromosome and built a new
population;

12 update the stopping criterion
13 end

IV. RESULTS

A. MMAS implementation

In order to implement MMAS the use of a software
infrastructure adopted as an environment for executing
and deploying agents is required. Indeed, there are several
multi agent platforms, such as JADE, AgentBuilder, Jack,
ZEUS, Madkit. In this context, we must choose the multi
agent platform that best adapts not only to the healthcare
constraints, but also which is growing and has possibilities
to be extended in the future. So, for the development of our
system and to obtain the simulation results of our MMAS
we chose JADE (java agent development framework). The



Fig. 6. multi dimension chromosome solution after crossover and mutation
operators

Fig. 7. Current practice solution for the simple test instances

main reason for this choice is that JADE is one of the
best modern agent environments [32] and it has interesting
characteristics such as the extension of a good medium
for content languages and ontologies. This framework
is a middleware that enables flexible implementation of
interoperability between agents through efficient transfer
of Agent Communication Language (ACL) messages,
according with FIPA norms, which is in perfect adequacy
with the proposed approach.

The communication between agents and their behaviors in
JADE are presented by graphical tools, which are themselves
agents:

• remote management agent (RMA) : represents the main
administrative interface;

• introspector : allows viewing for an agents, the
sent/received messages, the active/inactive behaviors
and controls its life cycle;

• sniffer: allows to interactively view the sequence of
messages (ACL) and the correction of protocols (fig-
ure 10);

• directory facilitor agent (DF): it is the main container,
manages the yellow pages service and allows the as-
sociation between description of proposed services and
agents.

Fig. 8. MMAS solution for the simple test instances

Fig. 9. Comparison of ATWTs∗ using MMAS vs. AG and current practice

B. Computational results

The communication protocol between agents search to
continuously improve the current solution by comparing
it with the neighboring solution into each axis thanks to
the crossover and mutation operators. In our case, we can
find four types of neighboring solution, i.e. we can change
the assignment of medical staff or we can switch patients
and thus check if they are better compared to the current
solution. For example, the transition from solution S to S′ in
figure 6, shows that for the patient p changing the solutions
on the 2 axes (AMSAi and ASAi) allowed improvements
in terms of waiting time (ATAi).

To perform the simulation studies, we firstly define
the genetic algorithm parameters which are the size of
population (set by 30), the number of generations (set by
5000), the crossover probability (Pcross : set by 70%), the

Fig. 10. Sniffer tool



TABLE I
SIMPLE TEST INSTANCES

Patients task 1 task 2 task 3 task 4 task 5
P1 C1*2 C1 and C2 C1 and C3 C1 and C2*2 C4, C5*2 and

C6
P2 C2 and C3 C2 and C3 C2 - -
P3 C3*2 C3 - - -
P4 C4*2 C5 and C6 C6*2 C4*2 C1 and C2
P5 C2*2 C5 C5 and C6 C4 and C5 C3
P6 C1 C4 C6 - -
P7 C6*2 C1 C5 and C6 C3 -
P8 C3 and C5 C2 and C5 C3 and C6 C6 -
P9 C5 C4 C1 - -
P10 C4 C4 and C5 C1 and C2 C4 -

TABLE II
COMPLEX TEST INSTANCES

2*Instances Number of
patients

Practice Genetic algorithm MMAS approach

ATWTs∗
(min)

ATWTs∗
(min)

Computation
time (s)

ATWTs∗
(min)

Computation
time (s)

1 56 278.39 188.46 9.76 159,63 8.78
2 67 247.52 195.16 11.02 165.31 9.91
3 64 301.81 211.59 81.83 179.28 73.64
4 59 406.83 274.01 126.69 232.10 114.02
5 64 244.32 181.30 14.62 153.57 13.15
6 117 345.62 266.40 126.27 225.65 113.64
7 82 261.76 204.34 84.98 173.08 76.48
8 52 306.10 205.17 97.27 173.78 87.54
9 39 345.84 255.57 73.74 220.80 66.36
10 42 237.50 172.21 10.07 145.87 9.06

mutation probability (Pmut : set by 4%), the number of
instances (set by 10). Here, we chose to define two types of
simulation tests, a simple test instances with a sample of 10
patients (small size optimization problem) and a complex
test instances with a larger number of patients (big size
optimization problem).

Table I presents a simple test instances presenting a
sample of 10 patients based on the real database provided
by the AED of Lille in France which is our partner in
this work. Into this test, we simplify the execution of the
MMAS by fixed input of the algorithm in matrix form
(id-patient, num-task) which set by APAi allowing the
AMSAi to fix the required skills. This matrix fixes the
order of healthcare tasks and its needed skills thanks to
the knowledge databases of APAi and the AMSAi. For
example, the first care task for patient 6 requires a medical
personnel skills C1 to be executed and the first care task
for patient 1 requires two medical staff members who
have the same skills C1. This task must be treated in two
successive slots. Figure 7 and 8 reflect: on the abscissa,
time (5 min/slot). In ordinate, there are the skills needed
(doctor, nurse, etc.). Each color represents a patient, and the
numbers represent the healthcare task corresponding to each
patient. Figure 7 presents the solution in current practice
(according to the AED database used by the medical staff).
This solution is based on triage process which gives a
simple scheduling without taking into account dynamic
information such as, the evolution of the patient healthcare
status. By applying MMAS, and thanks to the crossover and
mutation operators based on the negotiation protocol the
best scheduling among the solutions of the final population
is selected. In fact, MMAS chooses the optimal neighboring
solution, which corresponds to the scheduling closest to

the predetermined criteria (fitness function). The results
obtained into figure 8 show that MMAS reduces the total
treatment time of all patients by 25 min, which implies a
decrease in terms of waiting time.

The complex test of instances is shown by simulated 10
instances of randomly generated problems with a different
number of patients. These instances were generated from the
real database of AED of Lille. To evaluate the performance
of our MMAS we compare the results obtained with those
obtained in practice (according to the database) and with
those generated by the genetic algorithm (table II).

Table II shows that the proposed approach works much
better than the genetic algorithm in terms of computation
time and works better than current AED practice as well
as the genetic algorithm in terms of ATWT which has
drop of 15.09% (figure 9). The MMAS computation time is
much shorter in the majority of cases than that of the GA.
Table II also, indicates that the difference in computation
time between the MMAS approach and the GA is less
than one minute. This time gap is sufficient to allow our
approach to generate high-quality solutions minimizing the
ATWT, by exploring other research areas.

V. CONCLUSIONS

In this paper, we have produced a multi dimensional
chromosome driven by multi agent system integrated in
our metaheuristic to solve patient scheduling in the ED.
This approach models each dimension by autonomous agents
making a chromosome more alive and ready to cooperate.
Our metaheuristic based on agents cooperating in the search
space is an important and original concept in scheduling



optimization in health care systems. The proposed approach,
called MMAS, uses agents as a link between different chro-
mosomes and defines the interaction and negotiation between
them in order to obtain a final population of good solutions.
The originality of our MMAS consists of the development of
mutation and crossover operators as a negotiation protocol
which ensures the convergence to an optimal solution. To
evaluate our approach, a two simulation tests of the ATWT
before and after applying MMAS are done and show a
decrease of 15.09% in the ATWT within the AED. Future
work will focus on the improvement of agents’ interactions
by using the concepts to reinforcement learning resulting
from past experience.
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