
HAL Id: hal-03977751
https://hal.science/hal-03977751

Submitted on 8 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reducing uncertainty in local temperature projections
Saïd Qasmi, Aurélien Ribes

To cite this version:
Saïd Qasmi, Aurélien Ribes. Reducing uncertainty in local temperature projections. Science Advances
, 2022, 8 (41), �10.1126/sciadv.abo6872�. �hal-03977751�

https://hal.science/hal-03977751
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Qasmi and Ribes, Sci. Adv. 8, eabo6872 (2022)     12 October 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 13

C L I M A T O L O G Y

Reducing uncertainty in local temperature projections
Saïd Qasmi* and Aurélien Ribes

Planning for adaptation to climate change requires accurate climate projections. Recent studies have shown that 
the uncertainty in global mean surface temperature projections can be considerably reduced using historical ob-
servations. However, the transposition of these new results to the local scale is not yet available. Here, we adapt 
an innovative statistical method that combines the latest generation of climate model simulations, global obser-
vations, and local observations to reduce uncertainty in local temperature projections. By taking advantage of 
the tight links between local and global temperature, we can derive the local implications of global constraints. The 
model uncertainty is reduced by 30% up to 70% at any location worldwide, allowing to substantially improve the 
quantification of risks associated with future climate change. A rigorous evaluation of these results within a per-
fect model framework indicates a robust skill, leading to a high confidence in our constrained climate projections.

INTRODUCTION
As the global mean temperature keeps rising and climate change inten-
sifies, there is a growing demand for local-scale monitoring of current 
and future climate change. Assessing and planning the adaptation 
to the expected unprecedented impacts of climate change on hu-
man activities, ecosystems, and the biosphere as a whole require an 
accurate local information with well-calibrated uncertainties. This 
need relates to estimates of warming to date and the future warming 
in response to set of scenarios of future greenhouse gas emissions.

It is unequivocal that human influence has warmed the atmo-
sphere, ocean, and land since preindustrial times (1). Concurrently, 
the anthropogenic influence is not detected everywhere at the local 
scale (2, 3). Natural climate variability can blur the emergence of the 
anthropogenic signal for the next few years at high latitudes, while a 
substantial warming is already reported in several tropical regions 
(4, 5). Regarding climate projections, the Intergovernmental Panel 
on Climate Change (IPCC) concluded in its fifth assessment report 
(AR5) (6) that “Future [human-induced] warming trends cannot be 
predicted precisely, especially at local scales”.

In the IPCC AR6 (7), a new generation of climate models (8) has 
been used to provide a range of projections in response to different 
socioeconomic scenarios (9). On the basis of this new dataset, various 
studies have recently shown that uncertainty in global mean warm-
ing can be considerably reduced using the information provided by 
recent observed warming trends via so-called “constraint” methods 
(10–13). These studies consistently point toward a downward revi-
sion of the expected warming in all emission scenarios (10, 12), with 
a decrease in model uncertainty of nearly 40% for end of century 
projections (11), and even more at shorter lead times. This is an 
important result as, until then, observations have failed to provide 
clear evidence in reducing the range of climate projections (14).

The next challenge is to transpose these new findings on global 
warming to regional and local scales. At the regional scale, a few studies 
have adopted the partitioning from the Special Report on Managing 
the Risks of Extreme Events and Disasters to Advance Climate Change 
Adaptation (SREX) (15) and have attempted to narrow model uncer-
tainty with sophisticated techniques with promising results (16, 17). 
However, the SREX regions are typically continental-wide and do 
not provide relevant information for local adaptation. At the local 

scale (defined as the size of a global climate model grid box of about 
200 km) and to the best of our knowledge, only a few studies have 
attempted to narrow climate model uncertainty, by using weighting 
methods to account for interdependencies between models (18, 19) 
or by focusing on specific and limited areas (20–22). In particular, 
although constrained projections of global mean temperature are 
now used in the IPCC AR6 (7), local climate projections are still 
solely based on a raw ensemble of available climate models (https://
interactive-atlas.ipcc.ch/), derived from global warming levels.

Here, we assess how much uncertainty in local temperature pro-
jections can be reduced. We first take advantage of the tight links that 
exist between local climate and global mean temperature (23, 24). 
Specifically, we describe the local implications of the recent advanc-
es in the reduction of the uncertainties in global mean temperature 
projections. We then provide a set of local-scale temperature pro-
jections, which encapsulate another source of information: the 
observed local warming to date. If compared to the global mean tem-
perature record, internal variability is larger in local observations. 
However, they still provide a useful source of information about 
both past and future trends, particularly over some specific regions. 
We discuss how much these two types of observations (global and 
local) narrow uncertainty on future warming ranges. Such a reduc-
tion is expected to provide more accurate information that becomes 
critical for policy-makers in the local climate risk management (25), 
as well as for the climate science community.

RESULTS
The Kriging for Climate Change (KCC) method used by Ribes et al. 
(11, 16) is one of the statistical techniques that have led to a signifi-
cant reduction of uncertainty in probabilistic projections of global 
mean temperature by combining observations and models (7, 11). 
This Bayesian method involves three steps. First, the response to all 
external forcings for each climate model considered is estimated 
over the period 1850–2100, after filtering out internal variability as 
much as possible. Second, the sample of forced responses from 
available climate models is used as a prior of the real-world forced 
response for each grid point. This is done assuming that “models are 
statistically indistinguishable from the truth.” Third, observations 
are used to derive a posterior distribution, i.e., a constrained tem-
perature response, of the past and future forced response given ob-
servations, in a Bayesian way.
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Compared to many emergent constraint approaches in which 
observations are often summarized into one single variable (26, 27), 
the KCC method is able to take the full observed time series into 
account. Here, we further extend this technique to account for mul-
tiple time series and potential dependencies between them (see 
Materials and Methods). When applied to the global surface air 
temperature (GSAT) time series simulated by the models from the 
Coupled Models Intercomparison Project phase 6 (CMIP6) (8) models 
and the Shared Socioeconomic Pathway (SSP) 5 to 8.5 scenario, the 
amplitude of best estimate of the projected GSAT changes constrained 
by the observations is revised downward by 0.5°C by 2100, with a 
reduction in model uncertainty of nearly 40% (11). Here, we con-
sider global mean surface temperature (GMST; a blending of land 
air and ocean sea surface temperatures; see Materials and Methods) 
instead of GSAT, as GMST is more consistent with local observa-
tional record. Figure 1A offers an update of the GMST constraint: 
the warming of 5.3°C projected by CMIP6 is in this case revised 
downward by 0.4°C (best estimate) in 2100. Minor differences with 
Ribes et al. (11) are explained by 2 years of additional observations, 
by the addition of several CMIP6 models, which affect the prior dis-
tribution, and by the lower warming observed in GMST compared 
to GSAT (28, 29).

Constrain local climate projections with global observations
Climate models exhibit a strong correlation between future GMST 
and local warming over most regions of the globe (Fig. 1B). To take 
such a relationship into account, we extend the KCC method to con-
strain local temperature projections. Beyond the simple correlation 
shown in Fig. 1B, this method uses all the information contained in 
the entire observed GSAT time series to derive local warming (con-
sidering that the annual time series provides useful additional infor-
mation, e.g., to distinguish between greenhouse gases (GHG) and aerosol 
forcings). This is done by deriving the local warming conditional on 
the observed GMST record (hereafter the GMST-only case; see Ma-
terials and Methods). As an example, we consider the North Amer-
ican city of Dallas for which the simulated local temperature over the 
2022–2100 period is significantly correlated with future GMST (see 
the corresponding point in Fig. 1B). Consistent with GMST results, 
the local temperature range constrained by GMST observations in-
dicates a decrease in uncertainty of about 20% over the 2021–2040 
period, up to 30% over the 2081–2100 period (Fig. 2A) in the GMST- 
only case. The best estimate of local warming is revised downward 
by 0.4°C by 2100 compared to the unconstrained projections (here-
after the unconstrained case).

When the method is applied to any location worldwide, the re-
sults in the projected mean temperature and in model uncertainty 
show a clear relationship with the level of correlation between the 
local temperature and GMST (Figs. 3, B and D, and 1B). Note that 
the method is applied for each location separately, i.e., that it does 
not take advantage of spatial correlations and does not provide con-
strained projection at a larger regional scale. The reduction of un-
certainty in  local projections is the highest at the locations where 
the correlation with GMST is the strongest. For these locations, e.g., 
over several continental regions, the North Pacific and the Indian 
Ocean, a reduction of the ensemble spread of about 45% is obtained 
over the 2021–2040 period, with a downward revision of the best 
estimate warming between 0.2° and 1°C (Fig. 3, A and C). Conversely, 
for locations where the correlation is low, such as in southern Indian 
Ocean and the Barents Sea, the local temperature response is weakly 

constrained, with a reduction of the model uncertainty of 10% and 
a revision of the best estimate by 0.5°C or less. These revised ranges 
lead to a warming pattern at +2°C of global warming, considerably 
different from that assessed in the AR6 (Fig. 4, A and B, and fig. 
S1C). For example, the constrained local temperatures over North 
America are expected to be 0.4°C warmer compared to the uncon-
strained case. Note that, by construction, only the spatial pattern of 
warming is affected by the observational constraint in this case, 
since the +2°C warming level is let unchanged—so, the map of dif-
ferences necessarily mixes patches of positive and negative values 
here, even if warming ranges at a given date are all revised down-
ward (see caption of Fig. 4).

Added value of local observations to the constraints
Beyond the useful information provided by the historical GMST 
time series, it is insightful to assess the consistency between the ex-
pected local response (regardless whether observed GMST is accounted 
for) and local historical observations. Current and past warming is 

Fig. 1. GMST time series and its correlation with local temperature. (A) GMST 
annual observations from the HadCRUT5 (48) dataset (black points) are used to 
constrain concatenated historical and SSP5-8.5 scenario simulations of GMST. The 
unconstrained (pink) and constrained (red) ranges stand for the 5 to 95% confidence 
interval of the forced response as estimated from 27 CMIP6 models. The thick pink 
(red) line stands for the ensemble mean (best estimate). All values are anomalies 
with respect to the 1850–1900 period. (B) Intermodel correlation between simulated 
GMST trends over the 2022–2100 period and local temperature trends over the 
2022–2100 period. Stippling indicates regions with nonsignificant correlation 
(P > 0.05 based on a two-sided Student’s t test).
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spatially heterogeneous, and some regions such as the Arctic are 
warming faster than others (Fig. 3A) (30). Therefore, it is relevant 
to account for both GMST and local observations to provide local 
projections consistent with all available observations. Using recent 
local observations could particularly affect short-term projections 
(typically over the 2021–2040 period) and could provide a different 
picture of the constrained temperature ranges.

To make such a calculation, we derive a posterior of the expected 
local warming given local historical observations in addition to the 
GMST observations (hereafter the Local + GMST case; see Materi-
als and Methods). Following the example of Dallas considered in 
Fig. 2A, the constrained local temperature ranges become typically 
closer to long-term local observed variations (Fig. 2B compared to 
Fig. 2A). The constraint by local observations is found to influence 
the best estimate of future warming even on longer lead times. Re-
garding the uncertainty, the added value of local observations in the 
reduction of the model spread compared to the GMST-only case is 
limited in this example, with a decrease of about 10% of the confi-
dence range width compared to the GMST-only case. Two reasons 
contribute to this limited impact and must be considered for any 
location. First, the local signal-to-noise ratio can be small. This may 
happen if local internal variability or measurement uncertainty is 
large (i.e., local observations provide little insight on the externally 
forced response). Second, the global and local responses can be highly 
correlated with each other so that they partly provide the same in-
formation, leading to a limited impact of local observations on 
uncertainty ranges. In both cases, the model uncertainty will be 
only marginally reduced by local historical data (see Materials and 
Methods).

The application of the Local + GMST constraint to all grid points 
worldwide results in a projected warming pattern, which remains quite 
close to the GMST-only case (Fig.  3,  C  and  E) but with regional 

differences. On the one hand, for several regions over the Arctic, the 
warming is revised downward compared to the unconstrained case, 
making the projections more consistent with recent observations and 
implying a reduced warming compared to the GMST-only case. On 
the other hand, an upward revision is obtained over Eastern Asia, 
Greenland, the East Siberian region, and Southern oceans. The added 
value of local observations in the reduction of model uncertainty is 
largest over these regions where the correlation in Fig.  1 is low 
(Fig. 3F). The estimated projections for the 2081–2100 period can 
also be derived and are consistent with these results (fig. S2). Note 
that even if each grid point is treated independently from the others 
(see Materials and Methods), the global mean of the constrained local 
ranges (for both the GMST-only and the Local + GMST cases) is 
very close to the constrained GMST ranges shown in Fig. 1A, sug-
gesting a consistency between the different types of constraints.

The addition of local information can clearly modify the warm-
ing pattern at +2°C of global warming (Fig. 4, B and C; and fig. S1, 
B and C). For example, while a downward revision of the tempera-
ture change of −0.2°C is obtained over Europe in the GMST-only 
case, an upward revision of 0.3°C is obtained in the Local + GMST 
case. This change of sign is widespread over Eurasia. In the context 
of an urgent need of adaptation to the threat of climate change, our 
constrained warming pattern provides a revised and a more rele-
vant information for local adaptation planning.

Evaluation of the constrained projections
The robustness of these promising results is quantified within a so-
called perfect model framework, using a leave-one-out cross valida-
tion (see Materials and Methods). Each member of each model is 
considered as pseudo-observations over the 1850–2021 period. These 
are subsequently used to constrain the temperature projections, 
using all other models as a prior. The constrained temperature 

A B

Fig. 2. Observational constraints on historical and SSP5-8.5 local temperature changes in Dallas. (A) Constrained local temperature for the grid point at (48.75°N; 
11.25°E) (see blue point in Fig. 1B) in the GMST-only case. The 5 to 95% constrained spread of the simulated response to all external forcings is in red, the thick line stands 
for the best estimate. The spread in light blue and the associated thick line is relative to the unconstrained case. (B) Constrained local temperature in the Local + GMST 
case. The 5 to 95% constrained spread of the simulated forced response is in blue, the thick line stands for the best estimate. Black points are the observations. Note that 
because single-year observations are affected by internal variability, they often lie outside the 5 to 95% assessed ranges of the forced responses. The orange line stands 
for the smoothed observations time series using 6° of freedom. Unconstrained simulated ranges are identical between (A) and (B). All values are anomalies with respect 
to the 1850–1900 period.
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range is then compared to the projected warming simulated by the 
model from which pseudo-observations were taken. As making this 
evaluation for all the grid points is computationally expensive, this 
procedure is applied to several locations, considered as represent-
ative of the diversity of the worldwide climate. As for the real 
observations, we assess both the GMST-only and Local + GMST 
constraints. The continuous ranked probability skill score (CRPSS) 
(31) is used to measure the accuracy of the method, taking the 

unconstrained projections as a baseline as a first step (see Materials 
and Methods).

Figure 5A shows that the average of the CRPSS distribution based 
on all pseudo-observations is positive for every location in the GMST-only 
case with an improvement of about 30% over the 2021–2040 period. 
Depending on the location, the skill is remarkably improved by 10 
to 50% (for the average) (Fig. 5 and figs. S5 to S9). In the Local + 
GMST case, the average skill is also positive (Fig. 5C), and for most 

A

C

E

B

D

F

Fig. 3. Unconstrained and constrained local temperature projections over the 2021–2040 period. (A) Ensemble mean of the unconstrained local temperature 
changes. (B) Ensemble spread of the unconstrained local temperature changes, defined as the 5 to 95% confidence interval of the multimodel ensemble. (C) Difference 
of local temperature changes ensemble mean between the GMST-only case and the unconstrained case. (D) Relative difference of local temperature changes ensemble 
spread between the GMST-only case and the unconstrained case. (E) Same as (C) but for the Local + GMST case. (F) Relative difference of local temperature changes en-
semble spread between the Local + GMST case and the GMST-only case, illustrating how much incorporating local observations narrows uncertainty. All values are 
anomalies with respect to the 1850–1900 period.

D
ow

nloaded from
 https://w

w
w

.science.org on February 07, 2023



Qasmi and Ribes, Sci. Adv. 8, eabo6872 (2022)     12 October 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 13

locations, the CRPSS lies between 10 and 60% relative to the uncon-
strained case.

These results clearly demonstrate the performance of the method 
over short lead times (2021–2040). Moreover, the comparison be-
tween the Local + GMST and the GMST-only constraints indicates 
that the skill is slightly improved when adding local observations to 
constrain projections. The average of the CRPSS distribution is posi-
tive for 52 locations over 55 when comparing the Local + GMST and 
the GMST-only constraints (Fig. 5D and see boxplots in magenta in 
figs. S5 to S9) and is slightly negative for the remaining points. The 
significance of this result is assessed with a binomial test. Under the 
null hypothesis that adding local observations has no impact on 
the skill (i.e., that the GMST-only and Local + GMST cases are catego-
ries equally likely, such as a coin toss), the probability of getting this 
result by pure chance is less than 0.1%. This suggests that there is 
a clear added value in considering the constrained ranges derived 
from the Local + GMST case relative to the GMST-only case. A 
third case for which we only use local observations (Local-only case) 
to constrain projections indicates lower scores than in the Local + 
GMST case (Fig. 5B) and confirms that using the combination of 
global and local observations enhances the accuracy of the method. 

Similar results are obtained when we consider the 2081–2100 period 
(fig. S11).

The rare cases where the CRPSS is negative are due to the large 
low-frequency variability in few CMIP6 models. This is a topic of 
concern, as several CMIP6 model are characterized by clear mul-
tidecadal and even centennial internal variability in GMST (32, 33). 
Figures S12 to S16 show that models associated with a strong decadal 
variability (e.g., CNRM-CM6-1, EC-Earth3, and IPSL-CM6A-LR) 
are those contributing negatively to the CRPSS in most cases. The 
assumptions used in the KCC method to statistically model internal 
variability might explain the failure to capture such a slow internal 
variability, resulting in overconfidence. Excluding those specific 
models from the evaluation process leads to a clear increase in the 
CRPSS by 15% both in the GMST-only and Local + GMST cases 
(fig. S17). Discussing the realism of these particular models requires 
further analyses on internal variability (34, 35) and climate sensitiv-
ity (36), which are beyond the scope of this study. Still, regardless of 
whether the real system contains such low frequency variability, the 
CRPSS distributions remain mostly positive across locations for the 
three types of constraint, even if models with large internal variability 
are included. Both distributions in fig. S17 (excluding models with 

B

A

C

Fig. 4. Warming pattern at +2°C of GMST warming. (A) Ensemble mean of the unconstrained local temperature changes. (B) Difference of local temperature changes 
between the GMST-only case (best estimate) and the unconstrained case (ensemble mean). (C) Difference of local temperature changes between the Local + GMST case 
(best estimate) and the unconstrained case (ensemble mean). By construction, global averaged differences are zero, as the GMST threshold remains at +2°C with or with-
out constraint (contrary to Fig. 3). All values in (A) to (C) are anomalies with respect to the 1850–1900 period.
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large internal variability) are above the distributions (including all 
models) in fig. S10, which themselves show mostly positive values 
(see the median value). Last, the relevance and reliability of our method 
seems robust to including all CMIP6 models and would be even 
strengthened if low-variability models were proven less realistic.

This is supported by a second evaluation criterion of the method 
based on coverage probabilities, which lead to similar conclusions 
(see Supplementary Discussion). From all of these evaluation results, 
we retain the Local + GMST case to provide guidance in constrain-
ing local projections. The evaluation of the KCC method suggests 
that the constrained temperature ranges are reliable and demon-
strate that relying on unconstrained projections to assess the local 
future climate is no longer the best approach.

DISCUSSION
We have shown, using a statistical method combining the entire 
temperature observation records with model simulations, that un-
certainty in  local temperature projections can be substantially 
narrowed. Local projections constrained by both global and local 
observations exhibit a reduction of the uncertainty of 40% on aver-
age by 2100. This demonstrates the benefits of merging model sim-
ulations with observations to provide the best picture of future 

climate change. Figure 6 offers a complementary perspective to the 
AR6 (7) conclusions that were solely based on raw (unconstrained) 
projections. For each location, a temporal evolution from 1850 to 
2100 of the constrained temperature and its uncertainty can be de-
rived, with revised projections for the near and the long-term time 
scales. In particular, the KCC method provides a way out of the con-
cept of global warming levels, by estimating the uncertainty for a 
given date. This fills the gap in the IPCC atlas (only based on un-
constrained projections) and provides a considerable revision of the 
local exposure to the consequences of the on-going climate change 
(37). An online tool that implements the method and illustrates the 
constrained temperature ranges for every point over a horizontal 
grid of 2.5° resolution is available via the following demonstrator: 
https://saidqasmi.shinyapps.io/KCC-shinyapp/.

Promising prospects exist to improve the constrained projec-
tions. CMIP5 (38) and CMIP6 (8) ensembles sample model uncer-
tainty in a probabilistic way using all climate models as an “ensemble 
of opportunities” (39,  40). This approach has several limitations 
that can bias the estimation of climate uncertainty (41). First, they 
are not designed to sample uncertainty comprehensively (42), e.g., 
no models are being intentionally built to have low or high climate 
sensitivities. Forcing uncertainty is also poorly sampled in the 
CMIP6 ensemble, e.g., the magnitude of the aerosol forcing in 2014 

A

C

B

D

Fig. 5. Spatial distribution of the CRPSS for the constrained temperature projections. The values indicate the average values from the CRPSS distributions (based on 
all pseudo-observations; see Materials and Methods) for the GMST-only (A), Local-only (B), and Local + GMST (C) constraints, respectively, compared to the unconstrained 
case for 55 locations (number in black over each point). (D) The added value of the local observations and stands for the CRPSS average in the Local + GMST case com-
pared to the GMST-only case. For each location, the average is weighted by the number of members in each model. Calculations are made over the 2021–2040 period.
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(43). Second, each model output is considered as independent and 
contributes equally to the multimodel ensemble, although it is known 
that many CMIP6 models share common components and param-
etrizations (44). This “model democracy” paradigm has been largely 
used to summarize projection information in IPCC assessment re-
ports (6), although it can be criticized (45). Therefore, using a sub-
set of models qualified as independent a priori or weighting the 
models in this way (46, 47), before applying the observational con-
straint, may provide even more reliable results.

Our results demonstrate that available observations offer valu-
able information to reduce uncertainty in climate projections over 
the next decades. Even with the continuous improvement of climate 

models, the intermodel spread is not necessarily reduced for several 
variables from one CMIP generation to the next (1). In this sense, 
the contribution of observations and constraint methods is expected 
to improve the reliability of the projections. Therefore, it is critical 
to account for this new source of information and to regularly 
bridge the gap between monitoring recent changes and predicting 
future changes.

The KCC method itself can also be improved. Although it can be 
used on larger areas to easily derive constrained projections, e.g., on 
the SREX regions (16), the current implementation does not take 
into account the spatial dependence in the climate variability be-
tween locations. Taking the spatial dimension fully into account 

Fig. 6. Mean temperature change at a +2°C GMST warming. Best estimate of the constrained local temperature changes in the Local + GMST case. Similarly to Fig. 2B, 
the constrained and unconstrained temperature ranges are shown for several world capitals cities over the 1850–2100 period. All values are anomalies with respect to the 
1850–1900 period.
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could bring additional useful information and would result in con-
sistent uncertainties at all spatial scales. This requires dealing with 
much larger covariance matrices. Estimating those matrices is a key 
challenge, as the number of models is much smaller than the number 
of grid points and years. Reducing the dimension of the problem, 
with methods used in data assimilation or considering spatio-
temporal principal components may help to regularize these high- 
dimensional matrices.

Generalizing the method to other variables of high societal im-
pacts, e.g., extreme precipitation, droughts, and snow cover, some 
of which are also tightly related to GMST, would also be very rele-
vant. For some of these variables, the observed data are sparse, which 
requires finding well-sampled covariables over the historical period. 
In addition, variables such as sea ice or precipitation do not neces-
sarily follow Gaussian distributions, which makes it necessary to 
adapt the KCC method to other types of distributions. In this way, 
the climate science community could take a step forward toward 
a more accurate assessment of past and future human-induced 
climate change.

MATERIALS AND METHODS
Observational dataset and models
The temperature observations are from the HadCRUT5 (48) data-
set over the 1850–2021 period. The temperature field comes from a 
blending of near-surface temperature and sea surface temperature 
using land sea mask and sea ice concentration. The measurement 
uncertainty of the HadCRUT5 dataset is estimated from an ensem-
ble of 200 equiprobable realizations. Most of the other observational 
products are included in the temperature range estimated by this 
ensemble, which confirms our choice to consider the HadCRUT5 
dataset as a reference.

CMIP6 models are selected according to the availability of the 
following data: at least 200 years of a preindustrial control (piControl) 
simulation; at least one member of a historical simulation and one 
member of a projection simulation for the SSP5-8.5 scenario. To 
constrain the simulated temperatures at a grid point scale in a con-
sistent way, a blended temperature field Tblend is computed in each 
CMIP6 model based on the formulation of Morice et al. (48)

    {    
 w  air   = (1 −  f  ocean   ) +   f  ocean    f  ice      

 T  blend   =  w  air    T  air   + (1 −  w  air   )  T  ocean  
    (1)

where Tair, Tocean, fice, and focean are for each grid point near-surface 
air temperature, sea surface temperature, sea ice concentration, and 
sea area fraction. The 27 models for which these variables are available 
and which satisfy the above criteria are listed in Table 1.

We define the GSAT as the global mean of Tair and the GMST 
as the global mean of Tblend. Several studies have shown that GMST 
and GSAT clearly differ as GMST warms less than GSAT (28, 29).

Models are interpolated on a common horizontal grid of 2.5° 
resolution before calculating blended temperatures and applying 
the constraining method. This choice is motivated by a compro-
mise between the different resolutions of the CMIP6 models (be-
tween 1.5° and 2.5°). Note that the KCC method can be applied to 
finer resolutions if observations are available at this scale. For tem-
perature, for which the spatial autocorrelation is high, the reduc-
tion in the uncertainty is expected to be the similar as for the 2.5° 
resolution.

Statistical method
The statistical method is based on the same one used by Ribes et al. 
(11), whose formulation and principle is similar to kriging, which is 
a method originally developed to interpolate geophysical data based 
on prior covariances. In Ribes et al. (11), this method is applied to 
the analysis of time series from climate simulations of CMIP5 and 
CMIP6 models and is used for several purposes: (i) reducing model 
uncertainty on past and future global warming estimated by CMIP 
and ScenarioMIP (9) simulations, (ii) reducing uncertainty on warm-
ing attributed to several external forcings via the Detection and 
Attribution Model Intercomparison Project (DAMIP) (49) models, 
and (iii) complete or statistically reconstruct missing simulations 
from other physically relevant simulations (e.g., using the so-called 
1% CO2 simulations in which the CO2 concentration increases by 
1% each year, to reconstruct DAMIP historical simulations in which 
greenhouse gases follow their historical concentrations, while other 
forcings are kept constant). Here, we apply this method of KCC to 

Table 1. List of the available CMIP6 models and the associated 
number of members in the historical and SSP5-8.5 simulations used 
to constrain temperature projections.  

Model simulation Historical + SSP5-8.5

ACCESS-CM2 1

ACCESS-ESM1-5 3

BCC-CSM2-MR 1

CanESM5-CanOE 3

CanESM5 50

CESM2 2

CESM2-WACCM 1

CNRM-CM6-1 6

CNRM-CM6-1-HR 1

CNRM-ESM2-1 5

EC-Earth3 7

EC-Earth3-Veg 3

FGOALS-g3 1

FIO-ESM-2-0 3

GFDL-ESM4 1

HadGEM3-GC31-LL 1

INM-CM4-8 1

INM-CM5-0 1

IPSL-CM6A-LR 6

MIROC6 3

MIROC-ES2L 1

MPI-ESM1-2-HR 2

MPI-ESM1-2-LR 10

MRI-ESM2-0 1

NESM3 1

NorESM2-MM 1

UKESM1-0-LL 5

27 models 121 members
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reduce the model uncertainty in the past and future temperature 
changes simulated by CMIP6 models at each grid point. Note that a 
confusion can be made with techniques based on so-called emergent 
constraints methods (26, 27). Emergent constraints would usually 
consider the sole observed global warming trend (a single scalar); 
e.g., over the 1980–2021 period, to constrain the simulated tempera-
ture changes in the future. The KCC method has several advantages 
compared to this approach. Instead of simply constraining a trend 
over a subperiod, it uses the entire observed time series of tempera-
ture, which avoids ignoring useful information. In addition, the 
method takes into account the model temporal pattern uncertainty 
and provides confidence ranges specifically for the forced response, 
while many other studies also include internal variability.

For a given grid point, we define   y loc  *    as the yearly time series of 
the real (and unknown) temperature response to external forcings 
over the 1850–2021 period and yloc as the observed yearly tempera-
ture time series over the same period. Similarly, we define for the 
GMST the vectors   y glo  *    and yglo as the unknown response to external 
forcings and the observed time series, respectively. They constitute 
the following y* and y vectors, both of size 2ny where ny = 170

    y   *  =  
(

    
 y loc  *  

  
 y glo  *  

  
)

  ,  y   *  =  
(

    
 y  loc     y  glo    )

     (2)

Assuming that the observed temperature total variability can be 
decomposed as the sum of a term of forced variability and a term 
including both internal variability and measurement errors, y takes 
the following form

  y =  y   *  + 𝛜  (3)

where ϵ = (ϵloc, ϵglo) is a vector of size 2ny and corresponds to the 
local and global terms of measurement errors and observed internal 
variability. Further assuming that models are indistinguishable from 
the truth, i.e., that observations and models are exchangeable (50–52), 
observations y can be rewritten

    
{

     x =  (    
 x  loc     x  glo    )     

y = Hx + 𝛜
    (4)

where xloc and xglo are the yearly time series over the 1850–2100 
period of the local and global temperature responses to external 
forcings estimated in CMIP6 models, respectively, i.e., vectors of 
size nx = 251. H is an observation operator of size 2ny × 2nx, which 
extracts the part of x that is observed in y, i.e., the forced response 
from 1850 to 2021, and whose form depends on the type of the 
applied constraint (using only GMST observations or both GMST 
and local observations; see eq. S21). Note that the assumption of 
exchangeability between observations and models has been sug-
gested as well supported by observations, especially for tempera-
ture (50, 53).

For a given CMIP6 model m listed in Table 1, we choose to estimate 
the simulated response to all external forcings xm,glo, by decompos-
ing the simulated GMST over 1850–2100 into an anthropogenic 
response xm,ant,glo, and a natural response xm,nat,glo. Therefore, after 
averaging all available members of the model m, the simulated GMST 
time series over 1850–2100 xm,glo writes

   x  m,glo   =  x  m,nat,glo   +  x  m,nat,glo   +  𝛜  m    (5)

where ϵm is a random term for internal variability.
To estimate xm,nat,glo and xm,ant,glo in the model m, we use a 

generalized additive model (GAM) to compute the response to all 
external forcings, xm,glo (recall that xm,glo follows Eq. 4)

    
{

    
 x  m,glo   =  x  m,all,glo   +  𝛜  m  

    x  m,all,glo   =       m   e 
⏟

   
 x  m,nat,glo  

   +     f(t) 
⏟

    
 x  m,ant,glo  

      (6)

where m is an unknown scaling factor. e is a vector of size nx and is 
the temperature response to the natural forcings computed from 
a two-layer (atmosphere-ocean) energy balance model (EBM) fol-
lowing equations 1 and 2 of Geoffroy et al. (54), using the historical 
and SSP5-8.5 natural forcings between 1850 and 2100 estimated by 
the Priestley Center (55) as a radiative term. Here, e is calculated 
using an average of EBM parameters fitted to the CMIP6 ensemble 
and aims at estimating rapid year-to-year variations of natural forc-
ings. f(t) is a time series [with t = (1850, …,2100)] and refers to an 
assumed smoothed response of GMST to the anthropogenic forcings 
(i.e., a smoothed response of xm,glo). The function f corresponds to 
smoothing splines to filter out part of internal variability, with 6° of 
freedom (a value that was selected as a bias-variance trade-off). The 
total forced responses as estimated by this procedure are illustrated 
in fig. S18.

We apply the exact same procedure to estimate the local forced 
responses as simulated by each CMIP model. For each grid point 
from the model m, we consider xm,loc, the average of all available 
members, to estimate the local forced response, xm,all,loc. We assume 
that the local natural response scales linearly with the globally aver-
aged natural forcings time series, as the EBM response e used to cal-
culate xm,nat,glo is also used when we fit the GAM to compute the 
local natural response xm,nat,loc. Thus, xm,nat,glo and xm,nat,loc only 
differ by their scaling factor m. We believe that our results are not 
sensitive to this choice given the reduced strength of, and uncertainty 
in, the natural response compared to the anthropogenic response.

The multimodel ensemble of the local and global simulated re-
sponses to all external forcings is used to derive a distribution of x, 
noted (x) ∼ N(, Σmod), built from all xm,glo and xm,loc.  = (loc, 
glo) is a vector of size 2nx and is the multimodel ensemble mean of 
the concatenated local and global forced responses. Σmod is a variance- 
covariance matrix of size 2nx × 2nx that describes the model spread, 
with the following form

    Σ  mod   =  [    
 Σ  mod,loc     Σ  mod,dep   ′    

 Σ  mod,dep  
   Σ  mod,glo     ]     (7)

where Σmod,loc and Σmod,glo are the sample covariance matrices of 
size nx × nx modeling local and global model spread within xloc and 
xglo, respectively. Σmod,dep is the covariance matrix modeling the de-
pendence between xloc and xglo

In our Bayesian framework, (x) is a first (probabilistic) esti-
mate of x, which makes no use of observations, and is only based on 
climate models. We want to update this estimate by incorporating 
the observational evidence provided by y. Following the Bayesian 
theory, the calculation of the posterior distribution p(x∣y) is required. 
A prerequisite is to define the observational uncertainty, i.e., the 
covariance matrix associated with y.
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Modeling of observational uncertainty
Given Eq. 4, we assume that ϵ ∼ N(0, Σobs), where Σobs = Σmeas. + Σiv 
is the observation error covariance matrix. Σmeas. and Σiv are both of 
size 2ny × 2ny and describe the measurement error and internal 
variability, respectively. Σmeas. is estimated as the sample covariance 
matrix over the 200-member ensemble of the HadCRUT5 dataset (48).

Σiv is estimated using observed annual time series of global and 
local temperature over the 1850–2021 period. First, we compute the 
global observational residuals by subtracting the CMIP6 response 
to all external forcings glo(1,…,ny) from the observations yglo. Sim-
ilarly, we derive local residuals by subtracting loc(1,…,ny) from yloc. 
These residuals constitute a first estimate of global and local inter-
nal variability, noted     ̂  𝛜   iv,loc,1  ,    ̂  𝛜   iv,glo,1   , respectively.

We define Σiv as a matrix of size 2ny × 2ny of the following form

    ∑ iv     =  [    
 Σ  iv,loc     Σ  iv,dep   ′    

 Σ  iv,dep  
   Σ  iv,glo     ]     (8)

where Σiv,loc and Σiv,glo are the covariance matrices of size ny × ny 
modeling local and global internal variability within yloc and yglo, 
respectively. Σiv, dep is the covariance matrix modeling the dependence 
between local and global internal variability, i.e., ϵiv,loc and ϵiv,glo.

To compute Σiv, we take into account decadal internal variability 
that exists in the global (56), regional (57), and even local (58) ob-
servations, using a mixture of two autoregressive processes or order 1 
(AR1), hereafter mixture of autoregressive processes (MAR), as done 
by Ribes et al. (11). The MAR formulation includes a fast (f) and a 
slow (s) components such that global internal variability ϵiv,glo within 
the GMST residuals writes at a time t

    

⎧
 

⎪
 ⎨ 

⎪
 

⎩
    

 ϵ  iv,glo  (t ) =  ϵ  iv,f,glo  (t ) +  ϵ  iv,s,glo  (t ) ,
     ϵ  iv,f,glo  (t ) =    f,glo    ϵ  iv,f,glo  (t − 1 ) +  Z  f,glo  (t ) ,     

 ϵ  iv,s,glo  (t ) =    s,glo    ϵ  iv,s,glo  (t − 1 ) +  Z  s,glo  (t)
     (9)

where the parameters s,glo and f,glo are the lag 1 coefficients of the 
AR1 processes and s,glo ≥ f,glo by convention.    Z  s,glo  (t )  ∼ N (  0,   s,glo  2    ) 
and    Z  f,glo  (t ) ∼ N (  0,   f,glo  2    ) are white noises associated with the two 
AR1. The slow component is able to generate a dependence on time 
scales of typically one decade, while the fast component accounts 
for interannual variability. Following the principle of parsimony, 
only four coefficients  (  f,glo  2  ,    f,glo  ,   s,glo  2  , and     s,glo  )  are thus needed 
to characterize internal variability at the global scale and to make 
Σiv,glo invertible. We fill the covariance matrix Σiv,glo following the 
calculations of each of its coefficients, as detailed in eq. S8. In prac-
tice, we apply a maximum likelihood procedure to the local and 
global residuals according to the statistical model from Eq. 9. 
Uncertainty related to these coefficients is not taken into account. 
Then, we make the same assumptions, and estimate four other pa-
rameters,  (  f,loc  

2  ,    f,loc  ,   s,loc  
2  , and    s,loc  ) , to characterize fast and slow 

components in local internal variability ϵiv, loc and to compute Σiv, loc.
The initial estimate of Σiv, noted    ̂  Σ   iv,1    is solely based on the resid-

uals     ̂  𝛜   iv,loc,1    and     ̂  𝛜   iv,glo,1    derived from the unconstrained forced re-
sponse. This first estimate is likely flawed as the real (and unknown) 
forced response y* is not necessarily consistent with the uncon-
strained forced response estimated by . In addition, as  can be by 
construction different from the best estimate of the constrained 
forced response   ̂     1     (the mean of the posterior distribution p(x∣y), 

see section bellow), the residuals     ̂  𝛜   iv,loc,1  ,    ̂  𝛜   iv,glo,1    before constraint 
are not always coherent with the residuals     ̂  𝛜   iv,loc,2  ,    ̂  𝛜   iv,glo,2    computed 
as the  y −  ̂     1     difference.

Hence, to ensure an accurate estimation of internal variability in 
the constraint procedure, an iterative algorithm is applied to find 
the MAR parameters that fit the residuals from the constrained 
forced response

   
y −    residuals   ⎯ ⟶      ̂  𝛜   iv,1     constraint   ⎯⎯ ⟶     ̂     1  

    y −   ̂     1     residuals   ⎯ ⟶      ̂  𝛜   iv,2     constraint   ⎯⎯ ⟶     ̂     2      

y −   ̂     n−1     residuals   ⎯ ⟶      ̂  𝛜   iv,n     constraint   ⎯⎯ ⟶     ̂     n  

   (10)

where, for each iteration n,   ̂     n     and     ̂  𝛜   iv,n    are estimates of the forced 
response and internal variability, respectively. The termination cri-
terion is based on the Frobenius norm ‖. ‖F. Hence, we consider that 
the algorithm converges at the iteration n, i.e., that     ̂  𝛜   iv,n   →  𝛜  iv   , when the 
relative difference between   ‖  ̂  Σ   iv,n  ‖  F    and   ‖  ̂  Σ   iv,n−1  ‖  F    is inferior to 1%, 
meaning that the MAR parameters values have also converged. In 
practice, n varies between 2 and 4 depending on the location.

The autocorrelations from this MAR model suggest that our sta-
tistical representation of internal variability effectively captures 
decadal variability (typically between lag 5 and lag 10) in the GMST 
and local temperature time series, e.g., for the Atlantic, African, and 
South American regions (Fig. 7). We are aware that initial condition 
large ensembles and long piControl simulations provide a nice sam-
pling of internal variability and could also be used to estimate this 
variability. However, we choose to not directly rely on it because of 
the huge discrepancies between models in terms of their simulated 
internal variability (56). Figures S20 to S30 illustrate this aspect with 
the piControl simulations from the CMIP6 models, including those 
used to build large ensembles. In all cases, the models do not converge 
to a consistent estimate of internal variability. For instance, over the 
Atlantic ocean, many models exhibit clear pseudo-periodic low fre-
quency variability, while other models do not simulate decadal variability.

Modeling of the dependence between local and global 
internal variability
As impacts from Pacific and Atlantic decadal variability (and po-
tential other modes of variability) on GMST have been reported 
over the historical period (59, 60), we need to allow a potential de-
pendence between global and local internal variability in Σiv,dep. 
Therefore, finding a simple and parsimonious dependence model 
that is compatible with the MAR structure is required. Allowing the 
covariances Cov [ϵs,glo(t), ϵs,loc(t)] and Cov [ϵf,glo(t), ϵf,loc(t)] to be 
nonzero is not trivial, and these terms need to be quantified to fill 
the covariance matrix Σiv,dep. Note that the fast and slow compo-
nents remain always independent and that Σiv is computed for each 
location separately, as the spatial dependence among various loca-
tions is not considered in the method. To compute Σiv,dep, we intro-
duce a ninth parameter  accounting for some correlation between 
the local versus global components in the MAR modeling. The for-
mulation of the covariances is slightly different in this case, and the 
calculations are detailed in the Supplementary Materials.

Calculation of p(x∣y)
As (x) and ϵ are assumed to follow normal distributions, the Gaussian 
conditioning theorem is applicable to derive the posterior or the 
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“constrained” distribution p(x∣y). Its formulation (detailed in eq. 
S23) indicates that the method is conservative: The uncertainty in 
p(x∣y) is never larger than that in (x). Therefore, if observed inter-
nal variability is very large, then the model uncertainty in p(x∣y) will 
remain very close to that in (x).

Perfect model evaluation
We evaluate the performance of the KCC method within a perfect 
model framework, following a leave-one-out cross-validation:

1) For a given model, we consider a single member as pseudo- 
observations y over the 1850–2021 period (the historical simula-
tion is extended by the SSP5-8.5 simulation over the 2015–2021 
period).

2) We use the other 26 models to derive the prior (x) ∼ 
N(, Σmod).

3) As there is no measurement uncertainty in models, Σmeas. is 
null; therefore, Σobs = Σiv. As done with the real observations, inter-
nal variability within the pseudo-observations is estimated from the 
difference between the pseudo-observations time series and the 
forced temperature response estimated by the ensemble mean of 
the 26 other models. Σiv is then derived from the MAR fitted on the 
obtained residuals.

4) We apply the KCC method using the inputs y, Σobs, , Σmod to 
calculate projected changes constrained by pseudo-observations.

5) These four steps are repeated for each available member of the 
considered model and for all available models.
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Fig. 7. Estimation of observed internal variability. (A) Autocorrelation function (ACF) of the GMST observations (bars) after applying the iterative algorithm (see Mate-
rials and Methods) to the CMIP6 multimodel mean forced response and the GMST observed time series. The ACF of the MAR processes fitted to the same residual time 
series according to Eq. 9 is in red. (B to L) Same as (A) but for local residuals from 11 selected points (see Fig. 5).
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Continuous ranked probability score
We use the CRPS (31) to quantify the performance of the KCC 
method. It is defined as the quadratic measure of discrepancy be-
tween (i) 1(x ≥ ypobs), the empirical cumulative distribution func-
tion (CDF) of a scalar pseudo-observation ypobs simulated by one 
model and averaged over the future period, and (ii) the projected 
CDF Gcons of p(x∣y) (derived from all of the other models) over the 
same period

   CRPS  cons  ( G  cons  ,  y  pobs   ) =  ∫ 
ℝ

      [ G  cons  (x ) − 1(x ≥  y  pobs   ) ]   2  dx  (11)

where 1 is the indicator function (note that x is here a bound 
variable in the integral, different from the vector x in Eq. 4). Simi-
larly, we define a reference CRPS, CRPSref based on Gref, the CDF of 
(x), the unconstrained distribution, and ypobs. We can compute 
the CRPSS, which quantifies the performance of the KCC method if 
compared to the reference

  CRPSS = 1 −    CRPS  cons   ─  CRPS  ref  
    (12)

The CRPSS is computed over all available pseudo-observations 
(121 values; see Table 1). CRPScons is calculated in both GMST-only 
and Local + GMST cases. Therefore, the quantity  1 −   CRP  S  cons  (Local + GMST)  _______________  CRP  S  cons  (Global − only)    
allows quantifying the added value from local observations com-
pared to the sole use of GMST observations. A positive (negative) 
value, indicates an improvement (deterioration). The higher the 
CRPSS (bounded at 1), the better the performance.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abo6872
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