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A B S T R A C T

The ability to identify reliable and sensitive physiological signatures of psychological dimensions is key to de-
veloping intelligent adaptive systems that may in turn help to mitigate human error in complex operations. The
challenge of this endeavor lies with diagnosticity. Despite different underlying causes, the physiological corre-
lates of workload and acute psychological stress manifest in rather similar ways and can be easily confounded.
The current work aimed to build a diagnostic model of mental state through the simultaneous classification of
mental workload (varied through three levels of the n-back task) and acute stress (the presence/absence of
aversive sounds) with machine learning. Using functional near infrared spectroscopy (fNIRS) and electro-
cardiography (ECG), the model's classifiers was above-chance to disentangle variations of mental workload from
variations of acute stress. Both ECG and fNIRS could predict mental workload level, the best accuracy resulted
from the two measures in combination. Stress level could not be accurately diagnosed through ECG alone, only
with fNIRS or ECG and fNIRS combined. Individual calibration may be important since stress classification was
more accurate for those with higher subjective state anxiety, perhaps due to a greater sensitivity to stress. Mental
workload and stress were both better classified with activity in lateral prefrontal regions of the cortex than the
medial areas, and the HbO2 signal generally lead to better classification than HHB. The current model represents
a step forward to finely discriminate different mental states despite their rather analog physiological correlates.

1. Introduction

The high mental workload imposed by complex activities such as
piloting an airplane or operating a nuclear power plant can reduce
performance and increase human error, with sometimes serious fi-
nancial or even life-threatening consequences (Byrne and Parasuraman,
1996; Causse et al., 2016; Durantin et al., 2014; Parasuraman et al.,
2008), Conversely, a very low level of mental workload can lead to
boredom (Sawin and Scerbo, 1995) and a vigilance decrement that
equally risks a cost to human life (Pattyn et al., 2008). Furthermore,
complex activities are often also associated with acute psychological
stress, the effects of which – an impairment to attention, memory, or
decision making (Bryce and Floresco, 2016; LeBlanc, 2009) – can be
difficult to disentangle from that of excessive mental workload. To as-
certain the relative impact of mental workload and psychological stress
in parallel during complex tasks is challenging, particularly as tradi-
tional methods such as questionnaires fail to capture moment-to-mo-
ment fluctuations in cognitive state. A reliable and sensitive set of
measures to discriminate between different levels of mental workload

and psychological stress in real time is key to developing intelligent
adaptive systems, which in turn can help to prevent the deleterious
consequences of human error in the performance of complex tasks.

The literature on adaptive automation suggests that both under- and
over-load are detrimental to human performance (Parasuraman et al.,
2000): under-load can lead to vigilance decrement (Pattyn et al., 2008),
while over-load promotes errors, cognitive tunneling, or difficulties in
adapting to situational changes (Durantin et al., 2014; Plessow et al.,
2011; da Silva, 2014). Some authors have proposed an optimal work-
load level that is neither too low nor too high (Hou and Fidopiastis,
2014; Parasuraman et al., 2000). Acute stress is also often viewed as
detrimental to performance (e.g., Elzinga and Roelofs, 2005; Hembree,
1988), with extended exposure to stress leading to adverse health issues
(Murphy, 1996). Neuroimaging evidence supports the idea that acute
psychological stress can temporarily alter the functioning of the pre-
frontal lobes (e.g., Arnsten, 2009; Qin et al., 2009; Schoofs et al., 2008),
thus contributing to the occurrence of human error.

Mental workload and psychological stress are often used indis-
tinctively (e.g., with the term “mental stress”, see Hjortskov et al.,
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2004), perhaps because the source and their effects are often very si-
milar. For example, it is well-documented that a task generating a very
high mental workload can also lead to an increase in psychological
stress when an individual feels overwhelmed by difficulty (Warm et al.,
2008). Furthermore, even if mental workload and psychological stress
are thought to be triggered by different mechanisms (e.g., cognitive
effort vs. emotion), and underpinned by distinct brain centers (e.g.,
prefrontal cortex vs. limbic system; Gaillard and Wientjes, 1994), the
probability of observing similar physiological effects during a task is
high as they both impact upon the autonomic nervous system (e.g.,
Causse et al., 2010; Critchley et al., 2013; Mandrick et al., 2016).
However, the two should be considered as distinct phenomena (Chen,
2006; Hidalgo-Muñoz et al., 2018); a high level of mental workload
does not necessarily elicit a high psychological stress level, and a high
stress level may also occur when mental workload is low.

Both mental workload and psychological stress are common in
naturalistic work settings. There is evidence that the two concepts may
mutually impact upon each other. For instance, coping with acute stress
requires mental resources that will be no longer available for the per-
formance of the cognitive task (Mandrick et al., 2016; Stawski et al.,
2006; Williges and Wierwille, 1979). Similarly, Matthews and Campbell
(2010) revealed that high levels of distress may be related to lower
working memory performance, due to higher distress lowering the
threshold for an acceptable mental workload. Such a performance de-
crease under stress is flexible since the recruitment of additional cog-
nitive resources seems to protect from its negative impacts (Eysenck
and Calvo, 1992). A moderate level of stress can also enhance moti-
vation (Anderson, 1976), which might increase the actual amount of
effort invested in the task. In this sense, maintaining a certain level of
stress might be desirable during particular situations. For example,
Wolf (2009) has shown that during learning, stress can help to con-
solidate information in memory. Thus, it seems that different situations
come with different optimal levels of workload and stress, and if one
can identify these ‘sweet spots’ it may be possible to maximize desirable
effects (i.e., performance, learning). In attempting to distinguish be-
tween the two concepts, Gaillard and Wientjes (1994) proposed that
mental workload (mental effort in their study) is characterized by ef-
ficient energy expenditure, increasing or sustaining performance, while
stress (distress) is seen as an inefficient expenditure of energy that does
not sustain performance, instead provoking unpleasant feelings such as
anxiety.

Quantifying in real-time both mental workload and psychological
stress in operators has been a research endeavor for decades.
Physiological measures are often viewed as well-suited to quantifying
and even predicting mental workload in dynamic settings (Durkee
et al., 2013), since physiological assessment of mental workload can be
performed in real time without interrupting individuals in their ongoing
activity and tasks (Borghini et al., 2017; Borghini et al., 2012; Hincks
et al., 2016). Furthermore, physiological measurements are objective
and not prone to desirability and other biases that affect questionnaires
and self-reports. One approach is to study the peripheral manifestations
of a high mental stress such as cardiovascular responses (Hjortskov
et al., 2004), while it is also possible to explore more direct measures of
brain activity such as electroencephalography (EEG) or functional near
infrared spectroscopy (fNIRS). For example, using fNIRS, Herff et al.
(2014) were able to classify workload levels during an n back task with
an accuracy level of 50% (higher than a chance level of 33% with three
n back levels). A promising way to improve classification performance
is to combine several physiological modalities (Hirshfield et al., 2009;
Liu et al., 2017a), for example, Aghajani et al. (2017) demonstrate that
a hybrid system (EEG+ fNIRS) allows higher classification accuracy for
mental workload than using EEG or fNIRS alone. One recent study
achieved accuracy of over 90% in distinguishing between stress and
non-stress conditions during a mental arithmetic task using EEG and
fNIRS combined (Al-Shargie et al., 2016). However, in this study stress
was induced using time pressure and negative feedback which arguably

may have forced the participant to increase effort, thus blurring the line
between a stress and a mental workload classifier.

Many studies investigating physiological measures of mental
workload have focused on a unidimensional construct (e.g., Liu et al.,
2017a; Wang et al., 2012), yet workload is considered by many re-
searchers as multidimensional (Hart, 2006; Wickens, 2002; Wilson and
Eggemeier, 1991). A unitary view would constrict the ability to respond
to fluctuations in workload, for example, time load (or time pressure)
might negatively impact drivers' performance (Rendon-Velez et al.,
2016) while other forms of cognitive load might actually increase
performance (Victor, 2014). In other cases, it could be beneficial to
consider the specific dimensions of multiple resource theory (i.e., stage,
modality, codes; Wickens, 2002) to avoid interference between tasks,
and for this reason, some authors have called for further investigation
into multidimensional physiological workload (Matthews et al., 2015).
The ability to physiologically distinguish and predict up to six sources
of workload (see NASA-TLX, Hart, 2006), is appealing but, we believe,
unrealistic based on the current level of knowledge. Rather, as a first
step, we suggest trying to dissociate between cognitive and affective
aspects.

As mentioned previously, one of the challenges in dissociating
mental workload and psychological stress is their overlap in terms of
physiological markers. For example, both mental workload and acute
stress are known to impact heart rate and heart rate variability
(Bernardi et al., 2000; Fairclough et al., 2005). One study reported a
cross-participant classification accuracy of 73% using pressure sensors
embedded in a chair to distinguish between cognitive load and stress
(Arnrich et al., 2010). However, their study did not include sub-levels
of workload and stress, nor did it include a situation in which cognitive
load and stress were simultaneously administered. Finally Mühl et al.,
2014 used EEG to predict two workload levels in an n-back task (similar
to that used in the current study) across two affective conditions (re-
laxation and stress), with around 70% accuracy. However, this was
achieved using within subject classifiers, thus limiting the ability to
generalize to new participants without a training/calibration session.
Furthermore, they did not attempt to perform a classification of stress
level.

Another challenge that comes with classifying mental workload and
psychological stress is related to inter-individual variability. Individuals
might react differently, both psychologically and physiologically in
response to workload or stress, making physiological metrics person-
specific when predicting mental states (Macaš et al., 2009). Prefrontal
cortex activations are not only correlated with task difficulty, but also
with individual levels of mental effort (Causse et al., 2017). Age is
another factor to consider and has been shown to differentially affect
the hemodynamic response of the brain during mental tasks (Laguë-
Beauvais et al., 2013). Furthermore, individuals with behavioral dis-
orders have been shown to have lower cardiac and electrodermal re-
sponses when facing stressors compared to the rest of the population
(Popma et al., 2006), as do unfit individuals (de Rooij and Roseboom,
2010). It has been investigated whether such under-reactivity to stress,
coined blunted stress reaction, could be explained by factors like self-
appraisal of stress/difficulty, or the amount of invested mental effort
(Brindle et al., 2017). However, results indicated that individuals dis-
playing blunted stress reaction were no different when appraising
stress/difficulty and invested a similar mental effort, thus other factors
might be responsible for blunted stress reactions, increasing the var-
iance among individual's physiological responses.

The present study sought to build a diagnostic model of mental state
by detecting simultaneously, instead of concurrently or independently,
mental workload and stress. Particular care was invested in the ex-
perimental design to minimize overlap between the two concepts.
Machine learning techniques able to handle a large number of features
were used in order to combine fNIRS and electrocardiographic (ECG)
measures. Finally, the study took into account individual characteristics
(gender, age, state anxiety, and perceived difficulty) in the



interpretation of the physiological measures. All results presented in
this paper derive from models that predict participant responses having
been trained on the responses of other participants only.

2. Materials and method

2.1. Participants

Eighteen participants (4 females), aged between 20 and 35
(mean=24.6, SD=5.0), were recruited from National Civil Aviation
School (ENAC) and Higher Institute of Aeronautics and Space
Engineering School (ISAE-SUPAERO) in Toulouse, France. Participants
reporting psychological, neurological conditions or cardiovascular dis-
ease, or taking medication affecting the brain or autonomic functions
could not participate in the study. Participants gave written informed
consent. The study complied with the Declaration of Helsinki for human
experimentation and was approved by medical committee (CPP du Sud-
Ouest et Outre-Mer IV, no CPP15-010b/2015-A00458-41).

2.2. Toulouse n-back task

This study used a modified version of the n-back task called
Toulouse n-back Task (TNT). The TNT is a combination of a classical n-
back task with a mental arithmetic task (Mandrick et al., 2016;
Peysakhovich et al., 2016). This variation allows one to add a proces-
sing load to the working memory load already elicited during the
classical version of the task. During the TNT, participants are required
to memorize and compare results of arithmetic operations instead of
just single characters. Operations were either additions or subtractions
of dual-digit multiples of 5 (e.g., 75–20, 15+70) displayed in the
center of a gray background. Just like the classical version of the task,
difficulty was modulated by changing the “n” parameter. In this study,
this parameter was either 0 (low load), 1 (medium load) or 2 (high
load). During the 0-back, operations of which the result was equal to 50
were the target stimuli. During 1- and 2-back, operations of which the
result was the same as the last (1-back) or the one before-last (2-back)
were the target stimuli. For example during a 1-back condition,
“60− 15” is a target stimulus if it was preceded by “35+ 10”, since the
two computations share the same result (45). Participants were in-
structed to press a green button on a Cedrus response pad (RB-740,
Cedrus Corporation, San Pedro, CA) to report target stimuli. To report
non-target stimuli, participants pressed a red button on the same pad.
Participants were instructed to respond as quickly and as accurately as
possible.

2.3. Experimental design

The experiment was divided into 2 run types, safe run and threat

run, according to whether or not loud aversive background sound was
played during the trial. Participants completed one safe run and two
threat runs. The safe run contained 12 task blocks (4 of each difficulty)
and 12 resting blocks. The two threat runs contained 9 task blocks (3 of
each difficulty) and 9 resting blocks each. Order of run type and diffi-
culty levels were counterbalanced across participants.

Experimental blocks were composed of 12 trials (12 arithmetic
operations), each displayed on screen for 2 s with an inter-stimulus
interval of 1 s, for a total length of 36 s per task block. Each experi-
mental block contained 4 target stimuli (33%) in random positions. A
resting block was presented after each experimental block. During the
resting blocks, the screen displayed “00+00” in the same fashion as
during experimental blocks. Participants were not required to report
any target during this resting blocks. The resting blocks lasted 18 s (6
trials of 3 s each). The blocks were pseudo-randomized for each parti-
cipant so that there were no two consecutive blocks of the same diffi-
culty. In threat runs, aversive sounds were administered during six
blocks (one block of each level of difficulty plus three resting periods).
These blocks were chosen pseudo-randomly so that the aversive sound
distribution was uniform during the entire run duration (to avoid ex-
pectations from the participants). Fig. 1 summarizes the task design.

2.3.1. The auditory stressors
A set of 34 sounds was used to induce participant stress. This set was

created based on the literature (Grillon et al., 2009; Hirano et al., 2006;
Kumar et al., 2008; Zald and Pardo, 2002) and was validated by sub-
jective ratings from 34 separate participants (see Mandrick et al., 2016)
and by a spectral frequency-temporal modulation analysis (Chi et al.,
2005). Sounds were modified to equalize loudness and duration. Each
sound was played only once for each participant to avoid habituation.
Participants were told that unpredictable aversive sounds could be
played during threat runs, even during resting trials. The sounds were
played for 7 s via AKG K171 MkII monitor headphones in stereo mode
and at a 95-dB sound pressure level, as controlled using a noise meter.
Unbeknownst to the participants, half of the threat trials did not contain
any sound. For analysis of the threat runs, those blocks containing
sounds (6 blocks in total for the two threat runs) were discarded to
exclude any potential effect of sound distraction, and to focus on the
anxiety related to the expectancy of the unpredictable sounds (Clarke
and Johnstone, 2013). Thus, the period during which the sounds were
played was not analyzed. After having excluded these 6 blocks, the
number of blocks analyzed in the safe and threat conditions were
identical (12 blocks). During safe runs, participants were reminded that
no sounds could be played. A 5-minute break was introduced between
runs to diminish effects of fatigue. Before the experiment, participants
performed a short practice session. They were submitted to one block of
each level of TNT difficulty (without aversive sounds). The order of
administration was fixed, namely 0-back, 1-back, and 2-back, to allow

Fig. 1. The experiment was composed of resting blocks (R), safe blocks with 3 levels of n-back (S0, S1 and S2) and threat block, also with 3 levels of n-back (T0, T1
and T2). Unpredictable aversive loud sounds (volume icon) were played at random during threat runs. Run and trial orders were counterbalanced and pseudo-
randomized.



an easier familiarization with the task. Then, they were also presented
with all examples of the aversive sounds that could occur during the
aversive runs.

2.3.2. Subjective measures and performance
After the practice session, participants were invited to evaluate the

TNT task difficulty levels using a DP15 scale (Delignières et al., 1994).
Anxiety was also measured before (i.e. just after signing the consent
form) and after the whole experimental protocol using the State-Trait
Anxiety Inventory (STAI form Y-A, French translation; Gauthier and
Bouchard, 1993). Task performance was measured using the percentage
of correct responses (both true positives and true negatives).

2.4. fNIRS and ECG measurements

fNIRS measurements were performed using a fNIRS 16-channel
headband model fNIR 100 (BIOPAC). Raw light intensities at 730 and
850 nm were recorded at 2 Hz for all 16 channels. The fNIR 100 has a
fixed 2.5 cm source-detector separation. The differential pathlength
factor (DPF), which accounts for the increased distance travelled by
light due to scattering, was set at 5.76. This value is in the re-
commended range for an adult head (Van der Van der Zee et al., 1992;
Gong et al., 2016). Participants were asked to relax for approximately
2min, and a ten-second baseline measurement was performed at rest.
Data acquisition was performed using COBI Studio, and processed with
fnirSoft 4.0. The fNIRS signal was recorded through the entire experi-
ment without interruption. The modified Beer-Lambert law was used to
convert light signal to concentration changes of oxygenated and deox-
ygenated hemoglobin (HbO2 and HHb, respectively). We removed
higher-frequency cardiac or respiratory activity and other noise with
other frequencies than the target signal (Roche-Labarbe et al., 2008; Lu
et al., 2010; White et al., 2009, Sasai et al. 2011) applying a band-pass
FIR filter with an order of 20 (0.02–0.40 Hz) on this raw time series of
HbO2 and HHb signal changes. Signal drifts and global trends were
further removed using normalization to zero mean (Z-normalization),
applied to the whole raw time series of HbO2 and HHb signal changes.
The data was then visually inspected. Data exclusion criteria were
channels without visible heart rate oscillations; Channels with coeffi-
cient of variation > 15%; Non-measuring channels (e.g. flat lines), see
Pinti et al. (2018). This visual inspection led to the exclusion of one
participant (nearly all channels were impacted). For the remaining
participants, < 2% of the samples were removed from the analysis. To
dissociate effects of TNT difficulty (0-back vs. 1-back vs. 2-back) and
threat (safe vs. threat), we extracted the fNIRS response from each trial.
More precisely, all analyzes were performed on changes in HbO2 and
HHb concentrations from the average of the initial ten-second rest
period baseline. We calculated the average signal change for all trials of
each condition, the standard procedure with the BIOPAC system (Ayaz
et al., 2012; Durantin et al., 2014; Foy et al., 2016; Causse et al., 2019;
Andéol et al., 2017). We then also computed the average slope for each
experimental condition. Slope was calculated on the entire block
durations (see Mandrick et al., 2013). Average changes and slopes were
calculated for both HbO2 and HHb for the 16 optodes, yielding a total
of 64 fNIRS features. Based on previous literature using the same fNIRS
device (Causse et al., 2017; Gateau et al., 2018; Kreplin and Fairclough,
2015), we created 3 ROIs: left lateral PFC (optodes 1–6), medial PFC
(optodes 7–10), and right lateral PFC (optodes 11–16). ECG activity was
measured using a single lead ECG, recorded at 500 Hz. From the ECG
signal, we computed the RR intervals and used Kubios HRV software
2.2 (University of Eastern Finland, http://kubios.uef.fi) to obtain 22
ECG features. Nine features were obtained using time domain analysis
(e.g., mean heart rate, RMSSD) and 13 were obtained using frequency
domain analysis (e.g., LF and HF power).

2.5. Machine learning modeling

Before training the models, baseline and resting blocks were re-
moved. The remaining 382 samples were then folded using a Leave-
One-Participant-Out scheme, meaning that results presented are always
predictions on new unseen participants. We attempted prediction on
three variables of interest: 1) mental workload level (classification of
the 3 n-back levels), 2) stress level (classification as either threat or
safe), and 3) joint mental workload/stress level (classification of the 6
possible mental workload/stress combinations). In order to predict
these three variables of interest, three different feature subsets were
tested: 1) fNIRS only subset, 2) ECG only subset, and 3) joint fNIRS-ECG
subset. We used a MATLAB implementation of a Naive Bayes classifier
to perform machine learning modeling (using fitcnb function, MATLAB
R2016b). This classifier was used because it has a high capacity for
generalization and can perform well with highly dimensional datasets
such as the one used in this study (Fan et al., 2011). Naive Bayes
classifiers use the assumption that each feature is independent of the
others. They are fairly simple and efficient (Rish, 2001). Naive Bayes
classifiers were configured to use a kernel distribution, whereby kernel
width optimization was achieved using MATLAB's Bayesian Optimiza-
tion. Training data were 5-folded and 100 optimization iterations were
performed for validation. The subjective, behavioral, fNIRS, and ECG
data of the current study were part of a previously published dataset
(Mandrick et al., 2016).

3. Results

3.1. Subjective and behavioral data

Self-reported subjective ratings of difficulty (DP15) increased with
the n-back level: the 0-back task was rated as “Very easy” (average
DP15= 4.8 ± 1.0), the 1-back task as “Somewhat difficult” (average
DP15= 8.2 ± 1.1), and the 2 back task as “Very difficult” (average
DP15= 12.0 ± 0.8). A one-way repeated measures ANOVA revealed
that this increase was significant, F(2, 32)= 110.9, p < .001,
ηp

2= 0.87, with each of the three levels rated differently from each
other (p < .001 for all three comparisons). Analysis of the state anxiety
ratings (STAI Y-A) revealed that participants were more anxious after
the experimental protocol (average STAI Y-A=32.9 ± 3.4; F(1,
16)= 10.7, p= .005, ηp

2= 0.40) than before (average STAI Y-
A=27.8 ± 2.2). Table 1 shows the average accuracy for all six con-
ditions during the n-back task. The main effect of mental workload was
significant, performance was lower as the n-level increased, F(2,
32)= 27.8, p < .001, ηp

2= 0.64. Post hoc comparison analysis
(Tukey-Kramer method) confirmed significant differences between all
three levels (p < .01 for all three comparisons). Repeated measures
ANOVA revealed neither main effect of stress nor mental workload x
stress interaction on accuracy.

3.2. Classification performance

Table 2 shows average classification performance per participant for
each combination of variable and feature subset. These feature subsets
encompassed all combinations: 1) fNIRS features, 2) ECG features, and
3) combined fNIRS and ECG features. Chance rate was about 33% (1
out of 3) for n-back classification, 50% (1 out of 2) for threat

Table 1
Performance (accuracy) by mental workload (n-back level) and stress levels
(safe vs. threat).

0-back 1-back 2-back

Safe 94.5 ± 7.1 83.7 ± 16.6 74.7 ± 18.4
Threat 94.4 ± 6.8 84.5 ± 15.7 72.1 ± 18.1
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classification and 16% (1 out of 6) for joint n-back/stress classification.
Results of binomial test showed that all but one classifier achieved
accuracy above chance level (p < .001). Workload classification per-
formance was between 43% and 47% (p < .001 for all feature subsets),
and for stress classification, two combinations of parameters were sig-
nificantly better than chance (fNIRS, p < .001; fNIRS+ECG,
p < .001). By itself, ECG was not sufficient to classify stress. Regarding
condition classification, accuracy was between 22% and 24%
(p < .001 for all feature subsets).

3.3. Deeper analysis of classification performance with fNIRS

Besides generating models, we examined more carefully which part
of the fNIRS signal contributed the most to classification. To this aim,
we trained extra classifiers using only specific feature subsets. In con-
trast to the previous analysis that integrated the 16 prefrontal optodes
indistinctively, fNIRS features were separated into three areas of in-
terest (AOI). The left and right AOIs grouped the 6 lateral optodes (1 to
6 and 11 to 16, respectively), while the medial AOI grouped optodes 7
to 10. We also separated oxygenated and deoxygenated features, thus
leading to six specific feature subsets (i.e., left-HbO2, left-HHb, medial-
HbO2, medial-HHb, right-HbO2, right-HHb). These six classifiers were
once again trained for the three variables of interest (i.e., 3 mental
workload levels, 2 stress levels and all 6 conditions). No ECG features
were used to train these classifiers. As illustrated in Fig. 2, classification
accuracy using these feature subsets showed that all variables were best
predicted using activity of the lateral prefrontal cortices rather than the
medial prefrontal cortex. Regarding oxygenated and deoxygenated
features, stress level was best predicted with HHB while classification of
mental workload level (or of the six conditions separately) was always
more accurate with the HbO2 signal (see Fig. 2).

3.4. Analysis of classification performance obtained with fNIRS,
demographic information, and subjective ratings

Finally, we used a generalized linear regression model following a
binomial distribution to analyze which factors contributed the most to
classification performance. While some of this information is conveyed
in the previous figures, a generalized linear regression model allows
statistically rigorous verification of the previously obtained results and
the inclusion of several other independent variables. We used classifi-
cation success of each 2292 trials (382 trials× 6, since six classifiers
were compared) as dependent variable (0=wrong classification,
1= correct classification), while independent variables included in the
model were AOIs (i.e., left, medial, right), fNIRS signal type (HbO2 or
HHb), mental workload (0-back, 1-back, 2-back), and stress levels (safe,
threat). We also included demographic information (gender and age),
anxiety ratings (from the STAI Y-A questionnaire, before and after the
experiment), and difficulty ratings (from the DP-15 questionnaire, for 0-
back, 1-back, and 2-back). Multicollinearity was assessed using the
Variance Inflation Factor (VIF; Belsley et al., 1980). The highest VIF
obtained was 3.9, which is lower than the threshold commonly con-
sidered for multicollinearity issues (Kutner, Nachsheim & Neter, 2004;
Sheather, 2009). Thus, all variables were kept in the regression ana-
lysis.

3.4.1. Mental workload classification
The analysis confirmed that the left and right PFC AOIs led to better

classification compared to the medial PFC AOI (left AOI: β=0.28,
p= .008; right AOI: β=0.31, p= .003). HbO2 features also led to
better classification compared to those of HHB (β=0.23, p= .005).
Mental workload, stress level, gender, and age did not affect classifi-
cation performance. As for the subjective ratings, scores of the DP15
during 0-back was shown to be associated with better classification
(β=0.59, p= .03).

3.4.2. Stress classification
Classification was better using the left AOI (β=0.22, p= .03) and

even better using the right AOI (β=0.27, p= .007; compared to the
medial AOI in both cases). In this analysis, fNIRS signal type, mental
workload and stress levels, gender and age did not affect classification
accuracy for stress. Scores of the STAI Y-A, recorded before the ex-
periment, were shown to be associated with better classification accu-
racy (β=0.63, p < .001). Again, scores of the DP15 (for 0-back and 2-
back) were also associated with better accuracy (respectively: β=0.95,
p < .001; β=0.43, p= .005).

3.4.3. Mental workload+ stress classification
The right PFC AOI yielded better classification accuracy compared

to the medial AOI (β=0.40, p= .002). This time, the left AOI was no
better than the medial AOI. HbO2 features were once again associated

Table 2
Classification accuracy of classifiers.

Feature subset Workload
(0 vs. 1 vs. 2-back)

Stress
(safe vs. threat)

Workload+ stress
(all 6 conditions)

fNIRS 0.43 ± 0.07⁎ 0.63 ± 0.06⁎ 0.22 ± 0.06⁎

ECG 0.42 ± 0.07⁎ 0.53 ± 0.07 0.24 ± 0.04⁎

fNIRS+ECG 0.47 ± 0.07⁎ 0.62 ± 0.07⁎ 0.24 ± 0.04⁎

⁎ Significantly better than chance level (p < .001).

Fig. 2. Classification performance of the 3 variables (mental workload, stress,
mental workload+stress) for the 3 prefrontal AOIs (left lateral, medial, and
right lateral) and the 2 fNIRS signal (HbO2 and HHB). Dotted line shows chance
level.



with better classification (β=0.22, p= .03). Ratings of the STAI Y-A
before the experiment and ratings of the DP15 (0 back) were also as-
sociated with better classification (respectively: β=0.66, p= .005;
β=1.10, p= .001).

4. Discussion

The current work aimed to disentangle the separate contributions of
mental workload and stress to task performance and physiological ac-
tivity. The monotonic decline in accuracy in line with each increase in
load on the n-back task confirmed that we had elicited marked varia-
tions of mental workload. The threat condition had minimal effect on
task performance. Noise, as a stressor, can impair task performance
(e.g. Szalma and Hancock, 2011), but this is not always the case. Per-
sonality traits (Belojević et al., 1992), noise properties (Smith, 1989)
and task modalities (Driskell et al., 1992) can mitigate the effects on the
performance. In some cases, noise has been reported to increase per-
formance (Alimohammadi et al., 2013; Saeki et al., 2004). In the cur-
rent work, despite using a stressor which is known to increase sub-
jective anxiety, no apparent behavioral effects were measurable. This
shows the benefits of physiologically recognizing stress independently
from the observable behavior.

Our models achieved an average three-category (n-back level)
classification accuracy of 43%, 42%, and 47% for the fNIRS-alone, ECG-
alone, and fNIRS+ECG combined approaches, respectively. This is
consistent with the existing literature, for example, Liu et al. (2017a)
classified three mental workload levels (during a classical n-back task)
using fNIRS-alone, EEG-alone, and combined EEG and fNIRS, achieving
42%, 43%, and 49% accuracy, respectively. Our models achieved levels
of classification accuracy on mental workload comparable to that of Liu
et al. (2017a) despite having to deal with concurrent variations in
participants' emotional state (stress level).

Our results showed that mental workload classification was possible
using only ECG. To our knowledge, no other study has used a 3-level n-
back classifier using only ECG features, although significant differences
have previously been found between baseline, 0-back, 1-back and 2-
back using only a measure of heart rate (Mehler et al., 2009). Fur-
thermore, Cinaz et al. (2013) computed common ECG features for 3
levels of a dual n-back task; while they did not train classifiers, they
showed that some ECG features (e.g., RMSSD) were sensitive enough to
present significant differences between levels. Such differences in
RMSSD were also observed in the current study (see Mandrick et al.,
2016), suggesting that a simple, and more affordable ECG measurement
system could perform just as well as a more complex fNIRS setup with
regard to mental workload classification.

In terms of stress classification, in the current study, this was pos-
sible using fNIRS and a fNIRS + ECG combination, but not using ECG
alone. At first glance, this result might seem surprising given that the
effects of stress on cardiovascular activity are well documented (e.g.,
Schubert et al., 2009); however, we argue that our results do not oppose
this common knowledge. While investigating the physiological re-
sponse pattern of this study (see Mandrick et al., 2016), we find that
stress does indeed affect cardiovascular metrics but in order to make
correct classifications, it is necessary to have sufficient sensitivity and
specificity performances. As such, it is possible to surmise that cardio-
vascular changes induced by the threat condition were not specific
enough to that stressor. Stress is often associated with the fight-or-flight
response, in which the body increases its sympathetic activity in order
to prepare the body to respond to a threat. However, an increase of
mental workload is also associated with an increase in sympathetic
activity and therefore, our classifiers might have been trained to dis-
count the ECG response (which might have been captured by the n-back
classifier), and trained instead to classify according to the fNIRS pattern
associated with anxiety. Also, according to Liu et al. (2017b), it is
possible that integrating ECG measures with fNIRS does not sig-
nificantly improve classification (the workload in their study) if the

physiological measurements do not provide additional information to
the brain signal measurements (for the stress in our case).

Finally, we also postulate that the nature of the stressor, which was
only of moderate emotional intensity (i.e., far from a life-threatening
stressor that pilots might encounter) and induced relatively little var-
iation in ECG activity (i.e., around +1.5 bpm in the threat vs. safe
condition, see Mandrick et al., 2016), could have limit the classifying
performance. A more intense stress, jeopardizing task performance and
generating a more marked physiological response (in particular cardi-
ovascular), might have improved classification accuracy (safe vs. threat
conditions and mental workload factor vs. stress factor). We believe
that the lack of effects of the auditory stressors on task performance was
mainly due their too low emotional intensity. However, it can also be
partly due to coping mechanisms. The processing efficiency theory
(Eysenck and Calvo, 1992) proposes that adverse effects of anxiety are
not always visible on performance outcome. Stressful situations can
generate an increased motivation to minimize the aversive anxiety
state. Motivation promotes enhanced effort, thus, potential perfor-
mance impairments caused by stress can be compensated if auxiliary
processing resources are available. As said previously, this is one of the
advantages of the psychophysiological measurements. They are able to
detect a moderate increased of the stress level, without “visible” effects
on the behavior, but that could be intolerable on the long term.

Beside independent mental workload and stress classifications, we
were able to disentangle variations in physiological activity resulting
from combined mental workload and stress level changes. Although the
six-category classification accuracy (the 6 combinations of mental
workload and stress levels) was moderate (24% at best), it was sig-
nificant and able to outperform chance level (16%). These results
support the notion that fNIRS+ECG in combination could be used to
disentangle the two concepts. Furthermore, given the leave-one-parti-
cipant-out scheme used in the training of classifiers, we suggest that it is
possible to generalize these predictions to new individuals without
having to calibrate models on them first. We cannot exclude that in-
creasing n-back levels may have also increase the level of psychological
stress. For example, the cognitive appraisal processes refer to situa-
tional evaluations in terms of their significance for one's well-being
(Lazarus, 1991). Acute stress can increase when situational demands
are perceived as exceeding coping resources or abilities (Penley and
Tomaka, 2002). Some participants may have felt overwhelmed by task
difficulty. In addition, coping with stress can consume cognitive re-
sources (Eysenck and Calvo, 1992). In this sense, high n-back level can
elicit a mixture of mental workload and psychological stress. Purely
generating mental workload remains complex, and depends on in-
dividual characteristics and personality. Thus, a possible limitation of
the study is that the comparison of safe vs. threat conditions in the high
level of mental workload (in particular 2-back) can have finally resulted
in a mixture of workload and acute stress (safe condition) vs. a mixture
of workload and higher acute stress, with an additional stress due to the
aversive sounds (threat condition). A future study should assess the
level of subjective anxiety or the level of subjective acute stress after
each n-back level, to control for this possible effect, especially in the
higher level of difficulty. Even if it is difficult to purely and separately
manipulate mental workload and stress, it does not impact the re-
levance of our results, in particular the ability of the model to disen-
tangle combinations of mental workload and stress level changes.

A more detailed analysis separating three prefrontal AOIs and dis-
tinguishing between the two fNIRS signals (HbO2 and HHB) revealed
that mental workload levels were best classified with the activity in the
lateral prefrontal regions rather than medial regions. Classifiers using
either the left or right prefrontal cortices were able to achieve a similar
level of accuracy using the full set of optodes. This result reinforces
previous studies that propose a prominent role for these regions in
working memory (Curtis and D'Esposito, 2003; De Pisapia et al., 2007;
Owen et al., 1996) and mental arithmetic (Gruber et al., 2001). Re-
garding the fNIRS signal, except for the two-category classification of



stress that was slightly more accurate using HHB, classification accu-
racy was always better using HbO2, for both the three-category mental
workload classifier and the six-category (all possible mental workload/
stress combinations) classifier.

The additional analysis of classification performance using a gen-
eralized linear regression model showed that objective factors (mental
workload and stress) were associated with no better performance,
suggesting that our classifiers were equally good in every experimental
condition. There were some subjective ratings that were associated with
higher classification accuracy, for example, increased ratings of per-
ceived difficulty during the 0-back (the easiest condition) were asso-
ciated with better classification accuracy for all classifiers. In other
words, individuals demonstrating higher perceived difficulty during the
0-back condition were more likely to be correctly classified. We can
assume that individuals who felt more difficulty during the 0-back
condition were more likely to be overwhelmed and overloaded during
the much-harder 2-back condition. As some authors suggest, overload
might be characterized by its own physiological signature, in particular,
a disengaging from the task associated with a decline of fNIRS activity
(Durantin et al., 2014). Thus, our classifiers might have detected high
variance between normal load and overload for high 0-back raters.
Following this hypothesis, individuals who perceived 0 back as an easy
task might have been unfazed by 2-back, resulting in less physiological
variation between task difficulty and, ultimately, less opportunity for
classifiers to distinguish correctly. Finally, classification of stress level
was better if the participant rated a high level of pre-experiment an-
xiety. We suggest that participants showing a higher level of anxiety
were probably more inclined to react strongly to the threat condition,
and this reaction might have provoked a more marked physiological
reaction that was more easily detected by the classifiers. On the other
hand, participants rating as low anxious might have been much less
influenced by the threat condition.

5. Conclusion

In this study, we showed that a combination of fNIRS+ECG
achieved the best accuracy for predicting variations in mental work-
load. Nevertheless, ECG alone was able to classify variations of mental
workload quite efficiently, which confirmed that this simple measure
can be sufficient for field studies or assessment in an operational setting
where more cumbersome sensors are difficult to employ. The stress
level was well predicted with fNIRS alone or a combination of fNIRS
and ECG, however, ECG alone was no greater than chance level. Most
likely, the level of stress generated in the study was too moderate to
elicit a marked cardiovascular activity; as such, participants with a
higher subjective level of anxiety were classified more accurately.
Finally, and most importantly, we were able to disentangle variations of
mental workload from variations of stress with all features (fNIRS-
alone, ECG-alone, a combination of fNIRS+ECG). Classification ac-
curacy was moderate, but focusing on the lateral regions of the pre-
frontal cortex can improve classification performance. To the best of
our knowledge, very few studies have successfully separated the two
concepts on the basis of their physiological signatures. Given the lack of
effect of our stressor on task performance, future studies should attempt
to replicate the current design using a stressor with higher intensity, for
example by adding an induction inspired by the Trier Social Stress Test
(Kirschbaum et al., 1993). In addition, in future works, more psycho-
logical constructs could be added to further increase diagnosticity of
classification models. Such constructs could include mental fatigue, but
also physical activity, which is often disregarded in laboratory experi-
ments despite being present in many work settings.
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