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Singular perturbation for a two-class

Processor-Sharing queue with impatience

R. Nasri∗ F. Simatos† A. Simonian‡

May 7, 2021

Abstract
A two-class Processor-Sharing queue with one impatient class is stud-

ied. Local exponential decay rates for its stationary distribution (N(∞),M(∞))
are established in the heavy traffic regime where the arrival rate of impa-
tient customers grows proportionally to a large factor A. This regime is
characterized by two time-scales, so that no general Large Deviations re-
sult is applicable. In the framework of singular perturbation methods, we
instead assume that an asymptotic expansion of the solution of associated
Kolmogorov equations exists for large A and derive it in the form

P(N(∞) = Ax,M(∞) = Ay) ∼ g(x, y)

2πA
· e−AH(x,y), x > 0, y > 0,

with explicit functions g and H.
This result is then applied to the model of mobile networks proposed

in [15] and accounting for the spatial movement of users. We give further
evidence of a unusual growth behavior in heavy traffic in that the station-
ary mean queue length E(Nmob(∞)) and EMmob(∞)) of each customer-class
increases proportionally to

E(Nmob(∞)) ∝ E(Mmob(∞)) ∝ log

(
1

1− %tot

)
with system load %tot tending to 1, instead of the usual 1/(1−%tot) growth
behavior.

1 Queuing Model and Main Results

We describe the addressed queuing system and the specific asymptotic regime
considered to evaluate its stationary occupancy distribution. We then state
our main mathematical results and apply them to the account of spatial user
movement in mobile networks.

∗Orange Labs, OLN/GDM, Orange Gardens, 44 avenue de la République, CS 50010, 92326
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Figure 1: Multi-class PS queue with impatience.

1.1 Two-class Processor-Sharing queue with one impa-
tient class

In this paper, we consider a two-class Markovian Processor-Sharing (PS) queue
where one class of users are impatient and leave the system at rate θ > 0. This
queuing system is depicted in Figure 1 and can be described as follows:

• the arrival process of patient (resp. impatient) customers entering the
queue is Poisson with rate α (resp. β);

• service requirements for successive patient (resp. impatient) customers are
i.i.d. and exponentially distributed with mean 1/µ (resp. 1/ν);

• server capacity is normalized to unity and customers are served according
to the PS service discipline, that is, when there are k > 1 customers in
service, each one is served instantaneously at rate 1/k;

• the sojourn times of impatient customers in queue (before possible service
completion) are i.i.d. and exponentially distributed with mean 1/θ.

This defines a birth-and-death process (N,M) = ((N(t),M(t)), t > 0) with
values in N2 and whose infinitesimal generator Ω is given by

Ω(f)(n,m) = α (f(n+ 1,m)− f(n,m)) + β (f(n,m+ 1)− f(n,m))

+
µn

n+m
(f(n− 1,m)− f(n,m)) +

(
νm

n+m
+ θm

)
(f(n,m− 1)− f(n,m))

for f : N2 → R and (n,m) ∈ N2 (with the convention 0/0 = 0). This process has
a stationary distribution (N(∞),M(∞)) if and only if the stability condition

% =
α

µ
< 1 (1)
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holds [14, Sect.12.2, Prop.12.1], where % denotes the load of patient customers
offered to the system. Note that this stability condition only involves the load
of patient customers (through their arrival rate α and service requirement µ)
and not that of impatient ones, as the latter can always leave the system in a
finite time whatever the system load.

1.2 Two time scales in the heavy traffic regime

In this queue, we are interested in the heavy traffic regime where β tends to
infinity, while the four other parameters α, µ, ν and θ remain fixed. We will
consider A = β/θ as our scaling parameter and write A → ∞ to mean that
β →∞ with all other parameters kept fixed. In this regime, both processes N
and M become of the order of A but evolve on different time scales as can be
observed when considering their fluid behavior.

As A becomes large, M becomes large and so departures are mostly due to
the impatience term θ · m, given M = m and N = n, since the service term
νm/(n+m) remains bounded. If this service term could be neglected, then M
would be equal to M ′, the M/M/∞ queue length with input rate β = Aθ and
service rate θ. As specified below, M and M ′ indeed behave very similarly in the
considered heavy traffic regime. In fact, a simple coupling argument between
M and M ′ makes it possible to transfer to M the well-known heavy traffic
behavior of M ′, namely, to show that the process (M(t)/A, t > 0) scaled only
in space converges (weakly, in a functional sense) to the deterministic solution
(y(t), t > 0) to the ordinary differential equation (ODE)

dy

dt
= θ − θ y

and that its stationary distribution M(∞)/A converges to the unique stable
point

y∗ = 1 (2)

of this ODE.
On the other hand, arrival and service rates of N remain bounded: they are

respectively equal to α and µn/(n+m) ∈ [0, µ]. As defined by this service rate,
component N needs to become commensurate with component M in order to
obtain some service and so it will also live on the O(A) space scale. But since
its arrival rate is bounded, it needs a time of order O(A) to reach such values
and it is indeed on this time scale that it evolves. On this time scale, however,
M evolves very rapidly and so an averaging behavior is to be expected, whereby
N and M would interact through the mean value of M which, as argued above,
is close to A. In other words, the asymptotic behavior of N is expected to be
close to that of N ′, the length of the single-server PS queue with A permanent
customers. In fact, standard methods could be used to prove that N and N ′

have the same fluid limit; specifically, the process (N(At)/A, t > 0) scaled both
in time and space converges to the deterministic solution (x(t), t > 0) to the
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ODE
dx

dt
= α− µ x

x+ 1
,

and its stationary distribution N(∞)/A converges to the unique stable point

x∗ =
%

1− %
(3)

of this ODE, with again % = α/µ < 1.
In other words, in the heavy traffic regime when A→∞, the fluid behavior

of (N,M) is the same as that of (N ′,M ′) and the main goal of this paper is
to investigate to which extent this approximation holds in a Large Deviations
setting.

1.3 Main results

In order to emphasize the dependency with respect to the scaling parameter A,
let us denote by ΠΠΠA the stationary distribution of (N,M) when β/θ = A (recall
that we let A → ∞ while the four parameters α, µ, ν and θ remain fixed). It
follows from the above discussion that the mass of distribution ΠΠΠA is essentially
concentrated around (Ax∗, Ay∗) in the sense that ΠΠΠA([Ax,Ax̄]× [Ay,Aȳ])→ 1
when A→∞, for any x < x∗ < x̄ and y < y∗ < ȳ. This regime therefore defines
a Large Deviations setting for ΠΠΠA, whereby probabilities ΠΠΠA(Ax,Ay) decrease
exponentially for increasing A and fixed x > 0, y > 0.

The main result of the present paper is to establish sharp local asymptotics
using the singular perturbation method, as discussed in more detail in Section 2
below. In this framework, it is admitted that an expansion of the form

ΠΠΠA(Ax,Ay) =
1

2πA
×

exp

[
−A ·H(x, y)− h0(x, y)− h1(x, y)

A
− h2(x, y)

A2
+O

(
1

A3

)]
, x, y > 0,

(4)

exists for functions H and h0, h1, h2 satisfying some specific smoothness as-
sumptions; these functions are then successively determined via the Kolmogorov
equations. Note that H in expansion (4) is the usual decay function of the Large
Deviations theory, defined by

H(x, y) = − lim
A→∞

1

A
logΠΠΠA(Ax,Ay).

Our main result involves the functions Φ, Ψ and g that will appear repeatedly
in the sequel, and which are respectively defined by

Φ(x) = x log

(
x

%

)
− (x+ 1) log(x+ 1)− log(1− %), x > 0, (5)

Ψ(y) = y log y − y + 1, y > 0, (6)
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and

g(x, y) = (1− %)

√
x+ 1

x y

(
x+ 1

x+ y

)ν/θ
exp

[
µ

θ
(1− %)

(
x− x∗

x+ 1

)
log

(
x+ 1

x+ y

)]
for x, y > 0 (recall that x∗ and y∗ have been defined in (3) and (2)).

Theorem 1. Beside stability condition % < 1, assume further that an asymp-
totic expansion of the form (4) exists and satisfies the following smoothness
conditions:

1. the functions H, h0, h1 and h2 are respectively of class C 3, C 2, C 1 and
C 0 in the open quarter-plane R+∗ × R+∗;

2. the decay function H is non negative, continuous over the closed quarter
plane R+ × R+, and satisfies H(x∗, y∗) = 0.

Then as A→∞, we have

ΠΠΠA(Ax,Ay) ∼ g(x, y)

2πA
e−A·(Φ(x)+Ψ(y)) (7)

for any x, y > 0.

The assumption on the continuity of H over R+×R+ is motivated by the fact
that these properties hold in the case when a large deviations principle (LDP)
exists (this results from the lower semi-continuity of H [8, Chap.7, Sect.6],
together with the existence of an attained infimum for the action functional on
any closed subset [8, p.81]). Focusing on the decay function H, Theorem 1 has
the following consequence.

Theorem 2. Under the same assumptions as that of Theorem 1, the decay rate
H of distribution ΠΠΠA equals the sum

H(x, y) = Φ(x) + Ψ(y)

for all x, y > 0.

For illustration (see Figure 2), the convex surface z = H(x, y) in the (x, y, z)-
space is plotted for % = 0.5. We then have (x∗, y∗) = (1, 1) and, in particular,
H(0, 0) ≈ 1.69, H(3, 0) ≈ 1.52, H(0, 3) ≈ 1.99. The level curves H(x, y) =
constant in the positive quadrant are also depicted.

Theorem 2 thus asserts that distribution ΠΠΠA is asymptotically the product of
two marginal distributions in the logarithmic order. Actually, the components
Φ and Ψ that appear are exactly those of the processes N ′ and M ′ introduced
earlier, that is, Φ is the decay rate of the single-server PS queue with input
rate α, A permanent customers and service rate µ (this will be proved in Ap-
pendix A), and Ψ is the decay rate of the M/M/∞ queue with input rate Aθ
and service rate θ [8, Chap.5, p.160]. This result therefore shows that the ap-
proximation (N,M) ≈ (N ′,M ′) remains accurate in the logarithmic order for
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Figure 2: Surface z = H(x, y) and level curves H(x, y) = constant.

large deviations. However, Theorem 1 shows that this approximation breaks
down in the usual, say O(1), order because function g in (7) does not factorize
into the product of two functions of x and y.

The next result shows that this independence property in the logarithmic
order is enough to imply independence of centered and scaled stationary distri-
butions.

Theorem 3. Under the same assumptions as that of Theorem 1, the centered
pair

(ξA, ηA) =
√
A

(
N(∞)

A
− x∗, M(∞)

A
− y∗

)
converges weakly as A → ∞ towards the centered Gaussian variable (ξ, η) with
covariance structure

E(ξ2) =
%

(1− %)2
, E(η2) = 1, E(ξη) = 0.

Moreover, we have

E(N(∞)) ∼ Ax∗, E(M(∞)) ∼ A

for large A.

Theorem 3 implies, in particular, that the scaled pair (N(∞)/A,M(∞)/A)
converges weakly to the deterministic point (x∗, y∗), as was alluded to before.
Besides, the asymptotic distribution of (ξ, η) has zero covariance, so that its com-
ponents are asymptotically independent, although N(∞) and M(∞) are depen-
dent for finite A. In fact, (ξ, η) is the limit of the centered and scaled stationary
distribution of (N ′,M ′), showing that the approximation (N,M) ≈ (N ′,M ′)
still holds for fluctuations of stationary distributions around their determinis-
tic limits (this is verified in Appendix A, Remark 5, for the variable ξ; on the
other hand, this readily follows from the Gaussian approximation of the Poisson
distribution of the M/M/∞ queue for the variable η).
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Figure 3: Multi-class closed-loop PS queue.

1.4 Application to mobile networks

Numerous models of multi-class PS queues with impatience have been inves-
tigated in the queueing literature. The single-class PS queue with impatience
has been early dealt with to derive asymptotics for the stationary queue dis-
tribution [4]. In the context of radio communication networks, the multi-class
case when all classes are impatient has been addressed for the control of early
customer departure in the overload regime [9]. More recently, this multi-class
queue has been invoked for the performance of radio networks when accounting
for spatial mobility [14, 15, 19]. In this context, impatience is used to model
mobility, as both impatience and mobility make customers leave the system
independently of the service received.

This last stream of results is actually one of our motivation for investigat-
ing Theorem 2. These papers consider the process (N,M) above, with N the
number of Static (patient) customers, and M the number of Moving (impa-
tient) customers in the considered radio cell: a departure of an M -customer is
thus either due to a service completion, or to a spatial movement to another
neighboring cell of the network, the latter happening in stationarity at rate
θ E(M(∞)).

In order to account for possible reverse movements of users to the considered
cell in the network but outside the cell, the authors of [14, 15, 19] consider the
so-called closed-loop Processor-Sharing queue (see Figure 3). In the latter, the
arrival rate of M -customers is decomposed as

β = βex + βnet,

βex representing the rate of exogenous arrivals and βnet the rate of arrivals within
the network. The rate βex is fixed, while the rate βnet is obtained by imposing
a balance condition. In fact, the authors consider the case of a balanced cell
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where the movements of mobile users within the network from and to the cell
balance each other, that is, βnet is equal to the rate θ E(M(∞)) of customers
moving out of the cell. This balance condition is captured by the equation

θ · E(M(∞)) = βnet. (8)

Since E(M(∞)) is itself a function of βnet, (8) is a Fixed-Point equation. It has
been proved [14, Proposition 3.1] that this Fixed-Point equation has a unique
solution if and only if

%tot :=
α

µ
+
βex
ν

< 1,

meaning that the total load imposed by exogenous arrivals is smaller than the
cell capacity. When it is enforced, this defines a Markov process (Nmob,Mmob)
which is a particular case of the above (N,M) process with a parameter β
specifically chosen as an implicit function of other parameters α, βex, µ and ν,
that is, β = βex + βnet with βnet determined by Fixed-Point equation (8).

In [19], this Markov process (Nmob,Mmob) is studied in the heavy traffic regime
%tot ↑ 1: this makes the rate βnet of inner movements grow large and it thus
amounts to studying the (N,M) process in the regime A → ∞. It is proved
there, in particular, that the stationary distribution remarkably grows as the
logarithm of 1/(1−%tot), a very peculiar result in sharp contrast with the usual
1/(1− %tot) growth in heavy traffic. More precisely, the authors show that the
random sequence (Nmob(∞),Mmob(∞))/ log(1/(1− %tot)) is tight when %tot ↑ 1,
that any accumulation point is larger than (x∗, y∗) and they conjecture that this
lower bound is actually the exact limit. As argued in [19], proving this requires
to prove that

− 1

A
logΠΠΠA(0, 0) −→ H(0, 0) = 1− log(1− %)

when A→∞, which is a direct consequence of Theorem 2 in the framework of
the present singular perturbation setting.

It is proved in [19] that P(Nmob(∞) = Mmob(∞) = 0) = 1 − %tot so that as
%tot ↑ 1, we have β → ∞ in such a way that A ∼ − log(1 − %tot)/H(0, 0). A
direct application of Theorem 2 to the (Nmob,Mmob) process then enables us to
state the following.

Theorem 4. Suppose % < 1 and that the assumptions of Theorem 1 hold. We
further let

Amob = − log(1− %tot)
H(0, 0)

with H(0, 0) = 1− log(1− %). As %tot ↑ 1, the centered pair√
Amob

(
Nmob(∞)

Amob

− x∗, Mmob(∞)

Amob

− y∗
)

converges weakly to the same Gaussian variable (ξ, η) as that of Theorem 3.
Moreover, the mean queue occupancies grow logarithmically as

E(Nmob(∞)) ∼ Amob x
∗ and E(Mmob(∞)) ∼ Amob
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when %tot ↑ 1, with again x∗ = %/(1− %) and y∗ = 1.

The latter estimates of the mean queue occupancies enable us to derive
asymptotics for the average throughput of each customer class. Seeing the
workload brought by each arriving customer as a data volume to be transferred
through a communication link (server) with total transmission capacity C, the
mean throughput can be defined as the ratio of the mean volume of transferred
data to the mean transfer time of a given customer [15, Section 2.1]. Normalizing
the server capacity C to unity and using the general expressions of [15, Prop.2.2],
the efficient throughputs γ and Γ of class S (Static) and M (Moving) customer
flows can then be readily expressed by

γ =
%

E(Nmob(∞))
, Γ =

1

E(Mmob(∞))

(
%tot − %+

βnet
ν

)
− θ

ν
,

respectively, where rate βnet is defined by (8). As %tot ↑ 1, the estimates of
E(Nmob(∞)) and E(Mmob(∞)) provided by Theorem 4 then yield

γ ∼ −(1− log(1−%))
1− %

log(1− %tot)
, Γ ∼ −(1− log(1−%))

%tot − %
log(1− %tot)

(9)

for each customer class of the closed-loop queue.

1.5 Organization of paper

Before presenting the proofs of the latter results, we first discuss in Section 2
their relevance compared to the current literature on both Large Deviations
and Singular Perturbation methods. Section 3 contains preliminary technical
results. Although Theorem 2 above was claimed as a consequence of Theorem 1,
the proof proceeds by first proving Theorem 2 in Section 4, and then iterating
the argument to prove Theorem 1 in Section 5. Section 5 also presents a direct
Corollary to Theorem 1 concerning the asymptotic behavior of the marginal
distributions of N(∞) and M(∞) (Corollary 1). The proof of Theorem 3 is
then given in Section 6; it essentially relies on the asymptotics that Theorem 1
enables us to obtain for the generating function of distribution ΠΠΠA. Appendix A
establishes that function Φ is the decay rate of the single-server PS-queue with
A permanent customers; Appendices B and C provide the proofs of two inter-
mediate results that intervene in the proof of Theorem 3.

2 Asymptotics of stationary distributions

Prior to proceeding to the detailed proofs of our main results, we first review
previous works addressing asymptotics for the stationary distribution of Markov
jump processes.
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2.1 Large Deviations Principles

Consider a scaled jump process ZA in some subset of the lattice Zd/A, d > 2.
The scaling applied to ZA is said regular if all transition rates are proportional
to parameter A. Assume then that an LDP can be stated for ZA, with an
action functional ST defined on the metric space CT (Rd) of continuous Rd-
valued functions on interval [0, T ], T > 0. If process ZA has a stationary
distribution ΠΠΠA, its decay rate

H(z) = − lim
A↑+∞

1

A
· logΠΠΠA(Az), z = (z1, . . . , zd) ∈ Rd, (10)

is then obtained [8, Chap.5, 6] by minimizing functionals ST , T > 0, on the
whole union

⋃
T>0 CT (Rd).

The scaling presently envisaged for process (N,M), however, is not regular
since only β = O(A) grows to infinity while α is kept fixed. This amounts
to squeezing the time scale of the impatient customers arrival process, while
keeping the initial time scale for the patient customers arrival flow. For this
singular scaling, N is thus seen as a slow process driven by the fast variations
of M .

Similar settings have been investigated in previous work, but none seems
to directly apply to our problem. Given a homogeneous Markov chain Y with
finite state space Γ ⊂ N, consider the pair ZA = (XA,YA) where the fast
process YA(t) = Y(At), t > 0, drives the slow process XA via the differential
equation

dXA

dt
(t) = b(XA(t),Y(At)), t > 0, (11)

for a drift b : Rd−1 × Γ→ Rd−1. Then:

• an LDP can be stated [8, Chap.7, Section 4] for the slow component XA of
ZA = (XA,YA), with an action functional ST defined on space CT (Rd−1);

• consider further the set L Γ
0,T of mappings p : (t, y) ∈ [0, T ] × Γ 7→ p(t, y)

such that p(·, y) is Borelian on [0, T ] for each y ∈ Γ, and the vector
(p(t, y))y∈Γ is a probability on Γ for each t ∈ [0, T ]. Let then the pro-
cess PA be the random element of L Γ

0,T defined by

PA(t, y) = 1YA(t)=y, t ∈ [0, T ], y ∈ Γ.

An LDP for the pair (XA,PA) is then stated in [5, Theorem 2.3], with an
action functional ST now defined on the product space CT (Rd−1)×L Γ

0,T .

The case where XA is a diffusion process has also received attention. In [17],
a general LDP is derived when both XA and YA are diffusion processes while,
closer to our case, [10] considers the case where XA is a diffusion process and
YA a finite-state space Markov chain. To our knowledge, however, no general
LDP is known in the case when the slow component XA is itself a Markov chain
depending on the evolution of the fast driving chain YA, both evolving with

10



increments of order O(1/A), all the more since all previous results assume the
finiteness of the state space Γ of the fast process Y, which assumption fails for
the process M presently considered.

2.2 Sharp Asymptotics via singular perturbation methods

LDP’s concern the asymptotic behavior of stationary distributions on the log-
arithmic scale. In order to derive sharp (that is, not only logarithmic) asymp-
totics, we will now invoke singular perturbation methods. These methods have
been justified for specific classes of problems:

- both a classification and rigorous foundation are established in [6, Chap.6]
for some classical families of partial differential equations;

- the present case of jump processes has been considered in [20, Chap.4, 6]
where asymptotics of the solutions of transient backward or forward Kolmogorov
equations at finite time t are stated, but for a regular scaling only (in a different
meaning to that introduced in Section 1.2 above, the two-time scales in [20]
refer to either small t = O(ε) or large t = O(1/ε));

- asymptotic expansion for Laplace transforms have also been proven in the
following context [7]. Consider a Markov process ZA in Rd, moving with a
deterministic drift b and perturbed by a jump process with jump rates O(A)
and increments O(1/A). Given a function f ∈ C∞(Rd;R), let

FA(z, t) = E
(
e−A·f(ZA(T )) |ZA(t) = z

)
, z ∈ Rd, t ∈ [0, T ].

Provided that the drift b belongs to C∞(Rd;Rd) and the transition distribution
of ZA satisfies boundedness and non degeneracy conditions, it is then shown [7,
Theorem 5.1] that function FA is C∞ on Rd × [0, T ] and has the asymptotic
expansion

FA(z, t) = exp

[
−A ·G(z, t)−G0(z, t)− · · · − Gk(z, t)

Ak
+O

(
1

Ak+1

)]
(12)

for any k ∈ N. Functions G and Gk, k > 0, are locally C∞ and recursively
obtained by solving partial differential equations. Expansion (12) applies, in
particular, to the Laplace transform of ZA(T ) at finite time T by choosing
f(z) = 〈u, z〉 for given u ∈ Rd. If process ZA has a stationary distribution, the
Laplace transform of ZA(∞) is then deduced from (12) by letting t ↑ +∞.

Such expansions have been invoked and applied in other contexts, even if
their existence is not formally stated. The analysis of coupled queuing systems
is, in particular, one of the application fields of these perturbation methods (see
[12, 13], [18, Chap.9] and references therein). In this framework, expansions of
the form

ΠΠΠA(Az) =
1

(2πA)d/2
exp

[
−A ·H(z)− h0(z)− h1(z)

A
− · · ·

]
, z ∈ Rd,

(13)
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for the stationary distribution ΠΠΠA are assumed to hold, with the decay rate H
and functions h0, h1, . . . successively determined via the Kolmogorov equations.
While the existence of expansion (13) is admitted, the actual determination of
unknown functions H, h0, h1, . . . is considered as a consistent argument for its
validity. To illustrate simply the approach developed in the latter references,
consider the one-dimensional processes (d = 1) on the half-line [0,+∞). Using
(13), the asymptotics of ΠΠΠA(Ax) for fixed x > 0 and for small x = n/A, n =
O(1), are shown to differ by some unknown multiplying constant; this constant
is determined through the “Asymptotic Matching” principle [1, Chap.7, 7.4]
which consists in identifying asymptotics of ΠΠΠA(Ax) and ΠΠΠA(n) when making
x tend to 0 and n tend to +∞, respectively.

To summarize this review, we can thus assert that LDP’s with singular
scaling are known for some specific classes of Markov processes, although not
including the case of the birth-and-death process (N,M) presently considered.
On the other hand, the analytical approach developed in the Singular Pertur-
bation framework can be applied for classes of processes for which no LDP is
known; assuming the existence of an asymptotic expansion of the form (13),
this analytical approach then brings more precise information on the asymp-
totic behavior of their distribution. In this paper, admitting the existence of
expansions such as (13), the analytical approach will thus be chosen to obtain
the desired asymptotics for the stationary distribution ΠΠΠA of process (N,M) in
the regime where A grows to infinity.

3 Preliminary results

In this section, we introduce a scaled version of distribution ΠΠΠA and explicit the
Kolmogorov equation it satisfies. We also recall a Laplace expansion that will
be used repeatedly.

3.1 Kolmogorov equations and scale change

Recall that ΠΠΠA denotes the stationary distribution of (N,M) when the stability
condition (1) holds. By definition of its dynamics, it satisfies the associated set
of Kolmogorov equations[

α+ β +

(
µn

n+m
+

ν m

n+m

)
1n+m>0 + θm

]
ΠΠΠA(n,m) = (14)

αΠΠΠA(n− 1,m)1n>0 + βΠΠΠA(n,m− 1)1m>0 +
µ(n+ 1)

n+m+ 1
ΠΠΠA(n+ 1,m) +

(m+ 1)

(
ν

n+m+ 1
+ θ

)
ΠΠΠA(n,m+ 1), (n,m) ∈ N2.

As explained in Section 1, in the heavy traffic regime A → ∞, N and M
become of the order of A and we will consequently study them on this scale.
More precisely, we define the function pA by

pA(x, y) = A2 ·ΠΠΠA([Ax], [Ay]), x, y > 0, (15)
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[x] ∈ N denoting the integer part of x ∈ R+. Linear system (14) translates for
pA into the following functional equations on the open quarter-plane (0,+∞)×
(0,+∞) and its boundary {(x, 0), x > 0} ∪ {(0, y), y > 0}, namely[

α+Aθ +
µx

x+ y
+

ν y

x+ y
+Aθ y

]
pA(x, y) = (16)

αpA

(
x− 1

A
, y

)
+Aθ pA

(
x, y − 1

A

)
+

µ(Ax+ 1)

A(x+ y) + 1
pA

(
x+

1

A
, y

)
+ (Ay + 1)

(
ν

A(x+ y) + 1
+ θ

)
pA

(
x, y +

1

A

)
, x > 0, y > 0,

in the interior quarter-plane,

[α+Aθ + µ]pA(x, 0) = αpA

(
x− 1

A
, 0

)
+ µpA

(
x+

1

A
, 0

)
+

(
ν

Ax+ 1
+ θ

)
pA

(
x,

1

A

)
, x > 0,

[α+Aθ + ν +Aθy]pA(0, y) = Aθ pA

(
0, y − 1

A

)
+

µ

Ay + 1
×

pA

(
1

A
, y

)
+ (Ay + 1)

(
ν

Ay + 1
+ θ

)
pA

(
0, y +

1

A

)
, y > 0,

(17)

on the boundary and

(α+Aθ)ΠΠΠA(0, 0) =
µ

A2
pA

(
1

A
, 0

)
+
ν + θ

A2
pA

(
0,

1

A

)
, (18)

at the origin, together with the normalization condition∫∫
R2+

pA(x, y) dx dy = 1. (19)

In the rest of the paper, we assume that the assumptions of Theorem 1 hold,
that is, % < 1 and the expansion (4) holds with functions H, h0, h1 and h2

respectively of class C 3, C 2, C 1 and C 0 in the open quarter-plane R+∗ × R+∗,
and function H being non-negative, continuous over the closed quarter plane
R+ × R+ and with H(x∗, y∗) = 0. In terms of density function pA introduced
in (15), the expansion (4) equivalently reads

pA(x, y) =
A

2π
×

exp

[
−A ·H(x, y)− h0(x, y)− h1(x, y)

A
− h2(x, y)

A2
+O

(
1

A3

)]
(20)

for all x, y > 0.

13



Remark 1. An explicit solution to system (14) seems out of reach for an arbi-
trary set of parameters α, µ, β, ν and θ. To obtain an efficient approximation
for this stationary distribution ΠΠΠA, a heuristic framework has been developed
in [15] on the basis of the so-called “Quasi-Stationary approximation”. Specif-
ically, for any state N = n > 0 of the number of patient customers, this ap-
proximation assumes that the conditional distribution D(m |n) = P(M(∞) =
m |N(∞) = n), m ∈ N, of M(∞), given N(∞) = n, is evaluated by considering
that the dynamics of process M is described by keeping the value of N constant
in time. The Quasi-Stationary approximation proves, in particular, more robust
than the direct numerical resolution of infinite system (14). This numerical sta-
bility is beneficial, in particular, in the high load regime when % = α/µ tends to
1.

Remarkably, the functional ST arising in the LDP of Section 2.1 involves
the Quasi-Stationary distribution D(· |x) of Y, when fixing the state x of the
slow process XA.

3.2 Laplace expansion

We finally recall a classical Laplace expansion for an integral with exponen-
tial integrand and a large parameter A, which will be repeatedly used in the
forthcoming sections. Given

- a real (possibly infinite) interval [a, b],
- real-valued functions g and h on [a, b] such that h ∈ C 2[a, b] has a unique

minimum at the interior point r∗ ∈ (a, b) with h′′(r∗) 6= 0,
- and g ∈ C 0[a, b] with g(r∗) 6= 0,

then [2, Section 5.3, Equ.(5.3.9)]∫ b

a

e−A·h(r)g(r) dr = e−A·h(r∗)

√
2π

Ah′′(r∗)
g(r∗)

[
1 +O

(
1

A

)]
. (21)

Similar asymptotics hold for complex-valued integrals with the same condi-
tions for both functions g and h, namely∫ b

a

e−A·h(r)+iAζrg(r)dr

= e−A·h(r∗)+iAζr∗ · exp

(
−Aζ2

2h′′(r∗)

)√
2π

Ah′′(r∗)
g(r∗)

[
1 +O

(
1

A

)]
(22)

for large A and any real constant ζ. When either function g or h depends
smoothly on a real parameter σ, the O(1/A) remainder in (21) or (22) tends
to 0 when A ↑ +∞, uniformly with respect to σ pertaining to a given compact
interval.
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4 Proof of Theorem 2

Consider functional equation (16) for large A. Fix the point (x, y) with x > 0
and y > 0; expansion (20) applied at neighboring point (x− 1/A, y) yields

pA

(
x− 1

A
, y

)
=

exp

[
−A ·H

(
x− 1

A
, y

)
− h0

(
x− 1

A
, y

)
− 1

A
h1

(
x− 1

A
, y

)
+ · · ·

]
(up to factor A/2π). Using the assumed smoothness of H, h0 and h1, Taylor
expansions at first order in 1/A near point (x, y) give

pA

(
x− 1

A
, y

)
= exp

[
−AH(x, y)− h0(x, y)− 1

A
h1(x, y) + · · ·

]
×

exp

[
∂H

∂x
(x, y)− 1

2A

∂2H

∂x2
(x, y) +

1

A

∂h0

∂x
(x, y) + · · ·

]
,

dots denoting O(1/A2) terms. By (20) again, the first exponential factor in
the right-hand side of the latter relation equals pA(x, y); expanding the second
exponential term at first order in 1/A then gives

pA(x− 1/A, y)

pA(x, y)
= e+∂xH

(
1− 1

A

[
1

2

∂2H

∂x2
− ∂h0

∂x

]
+ · · ·

)
, (23)

all derivatives being taken at point (x, y) (∂xH, ∂yH denote derivatives ∂H/∂x
and ∂H/∂y for short, respectively). In a similar manner, we obtain the ex-
pansions of function pA at neighboring points (x, y − 1/A), (x + 1/A, y) and
(x, y + 1/A) in the form

pA(x, y − 1/A)

pA(x, y)
= e+∂yH

(
1− 1

A

[
1

2

∂2H

∂y2
− ∂h0

∂y

]
+ · · ·

)
,

pA(x+ 1/A, y)

pA(x, y)
= e−∂xH

(
1− 1

A

[
1

2

∂2H

∂x2
+
∂h0

∂x

]
+ · · ·

)
,

pA(x, y + 1/A)

pA(x, y)
= e−∂yH

(
1− 1

A

[
1

2

∂2H

∂y2
+
∂h0

∂y

]
+ · · ·

)
.

(24)
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Inserting expressions (23)–(24) into equation (16) and dividing throughout by
factor pA(x, y), we then obtain

α+Aθ +
µx

x+ y
+

ν y

x+ y
+Aθy = α · e∂xH

(
1− 1

A

[
1

2

∂2H

∂x2
− ∂h0

∂x

]
+ · · ·

)
+

Aθ · e∂yH
(

1− 1

A

[
1

2

∂2H

∂y2
− ∂h0

∂y

]
+ · · ·

)
+[

µx

x+ y
+

µ y

A(x+ y)2
+ · · ·

]
e−∂xH

(
1− 1

A

[
1

2

∂2H

∂x2
+
∂h0

∂x

]
+ · · ·

)
+[

ν y

x+ y
+

ν x

A(x+ y)2
+ · · ·+ θ(Ay + 1)

]
e−∂yH

(
1− 1

A

[
1

2

∂2H

∂y2
+
∂h0

∂y

]
+ · · ·

)
.

At order O(A) and O(1) for large A, the latter relation then entails

θ + θ y = θ · e∂yH + θ y · e−∂yH (25)

and

α+
µx

x+ y
+

ν y

x+ y
= α · e∂xH − θ e∂yH

[
1

2

∂2H

∂y2
− ∂h0

∂y

]
+

µx

x+ y
· e−∂xH +

[
ν y

x+ y
+ θ

]
e−∂yH − θ ye−∂yH

[
1

2

∂2H

∂y2
+
∂h0

∂y

]
(26)

respectively. We then successively observe that
(A) Relation (25) is a quadratic equation for e∂yH . We can exclude the

trivial solution e∂yH(x,y) = 1 which would give ∂yH(x, y) = 0 and a solution
H depending on variable x only. We are thus left with the other solution
e∂yH(x,y) = y, that is, ∂yH(x, y) = log y for y > 0. Integrating with respect to
variable y, the latter relation provides

H(x, y) = Φ̃(x) + Ψ(y), x > 0, y > 0, (27)

for a function Φ̃ to be determined and with function Ψ given by (6).
(B) After (27), we have ∂H/∂y = log y and ∂2H/∂y2 = 1/y at point (x, y),

x > 0, y > 0. Carrying over these values into equation (26), the latter solves
for the first derivative ∂h0/∂y into

θ
∂h0

∂y
(x, y) =

1

y − 1

[
α(1− eΦ̃′(x)) +

µx

x+ y
(1− e−Φ̃′(x))

]
+

ν

x+ y
+

θ

2y
.

Integrating the latter equality with respect to variable y then yields

θ h0(x, y) = θΩ(x) +

[
α(1− eΦ̃′(x)) +

µx

x+ 1
(1− e−Φ̃′(x))

]
log(y − 1)

− µx

x+ 1
(1− e−Φ̃′(x)) log(x+ y) + ν log(x+ y) +

θ

2
log y (28)
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for all x > 0, y > 0 and some unknown function Ω. By assumption, h0 is
continuously differentiable in the open quarter-plane and, in particular, on the
vertical line y = 1. After relation (28), this implies that the coefficient of
log(y − 1) should vanish identically, hence

α(1− eΦ̃′(x)) +
µx

x+ 1
(1− e−Φ̃′(x)) = 0

or, equivalently,

αe2 Φ̃′(x) −
(
α+

µx

x+ 1

)
eΦ̃′(x) +

µx

x+ 1
= 0, x > 0.

This quadratic equation for eΦ̃′(x) has the non-constant ( 6= 1) solution

eΦ̃′(x) =
µx

α(x+ 1)
=

x

%(x+ 1)
(29)

which differential equation readily integrates for Φ̃ into

Φ̃(x) = x log x− (x+ 1) log(x+ 1)− x log %+ C0, x > 0, (30)

for some constant C0. As Ψ(y∗) = Ψ(1) = 0, the assumption H(x∗, y∗) = 0 on

H then implies that Φ̃(x∗) = 0 with x∗ introduced in (3); this readily determines
the value C0 = − log(1 − %). The latter and (30) thus entirely determine the

function Φ̃, which is thus equal to Φ defined by (5). The final expression of
decay rate H = Φ + Ψ in the open quarter-plane R+∗×R+∗ follows. Since H is
assumed to be continuous on the closed quarter plane, this expression extends
by continuity to R+ × R+, which concludes the proof of Theorem 2.

Remark 2. Equation (25) is the so-called Hamilton-Jacobi equation for the
component M [8, Chap.5, Theorem 4.3] which determines the partial derivative
∂H/∂y only. In the present singular Large Deviations setting, however, the full
derivation of function H requires another partial differential equation for the
next function h0, together with its smoothness across the line y = y∗ = 1.

5 Proof of Theorem 1

We now determine the prefactor h0 in the expansion (20) of density pA. Given
the expression (30) of function Φ̃, formula (28) for function h0 now easily reduces
to

h0(x, y) = Ω(x) +
µ

θ
(1− %)

(
x− x∗

x+ 1

)
log(x+ y) + c log(x+ y) +

log y

2
(31)

for x > 0, y > 0, with c = ν/θ, x∗ introduced in (3) and some unknown function
Ω. In order to specify Ω, we evaluate terms of subsequent order O(1/A) in the
functional equation (16) for x > 0 and y > 0.
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To this end, expansions (24) for both pA(x, y−1/A) and pA(x, y+1/A) have
to be extended up to order O(1/A2). Besides, the expansions for pA(x±1/A, y)
at order O(1/A) only are still sufficient. Applying then (20) at point (x, y−1/A),
we have

pA

(
x, y − 1

A

)
= exp

[
−A·H

(
x, y − 1

A

)
−h0

(
x, y − 1

A

)
− 1

A
h1

(
x, y − 1

A

)
− 1

A2
h2

(
x, y − 1

A

)
+ · · ·

]
;

(up to multiplying factor A/2π). Writing Taylor expansions at second order in
1/A for functions H, h0, h1, h2, . . . near point (x, y), we then easily obtain

pA

(
x, y − 1

A

)
= exp

[
−AH(x, y)− h0(x, y)− 1

A
h1(x, y)− 1

A2
h2 (x, y) + · · ·

]
×

e∂yH exp

[
− 1

2A

∂2H

∂y2
+

1

6A2

∂3H

∂y3
+ · · ·+ 1

A

∂h0

∂x
− 1

2A2

∂2h0

∂y2
+ · · ·+ 1

A2

∂h1

∂y
+ · · ·

]
,

all derivatives being taken at point (x, y) and dots denoting O(1/A3) terms. By
expansion (20) again, the first exponential factor in the right-hand side of the
latter equality equals pA(x, y) (up to A/2π). Expanding the second exponential
term in the right-hand side at second order in 1/A then provides

pA(x, y − 1/A)

pA(x, y)
= e+∂yH

(
1− 1

A

[
1

2

∂2H

∂y2
− ∂h0

∂y

]
+

1

A2

{
1

2

[
1

2

∂2H

∂y2
− ∂h0

∂y

]2

+
1

6

∂3H

∂y3
− 1

2

∂2h0

∂y2
+
∂h1

∂y

}
+ · · ·

)
. (32)

At neighboring point (x, y + 1/A), a similar calculation yields

pA(x, y + 1/A)

pA(x, y)
= e−∂yH

(
1− 1

A

[
1

2

∂2H

∂y2
+
∂h0

∂y

]
+

1

A2

{
1

2

[
1

2

∂2H

∂y2
+
∂h0

∂y

]2

− 1

6

∂3H

∂y3
− 1

2

∂2h0

∂y2
− ∂h1

∂y

}
+ · · ·

)
. (33)

Inserting then expansions (32), (33) and retaining terms of order 1/A in the
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identity following (24) in the proof of Theorem 2, we then obtain the equation

0 = − α e∂xH
[

1

2

∂2H

∂x2
− ∂h0

∂x

]
(34)

+ θ e∂yH

{
1

2

[
1

2

∂2H

∂y2
− ∂h0

∂y

]2

+
1

6

∂3H

∂y3
− 1

2

∂2h0

∂y2
+
∂h1

∂y

}

− µx

x+ y
e−∂xH

[
1

2

∂2H

∂x2
+
∂h0

∂x

]
+

µ y

(x+ y)2
e−∂xH

−
(

ν y

x+ y
+ θ

)
e−∂yH

[
1

2

∂2H

∂y2
+
∂h0

∂y

]
+

ν x

(x+ y)2
e−∂yH

+ θy e−∂yH

{
1

2

[
1

2

∂2H

∂y2
+
∂h0

∂y

]2

− 1

6

∂3H

∂y3
− 1

2

∂2h0

∂y2
− ∂h1

∂y

}

involving ∂h0/∂x and ∂h1/∂y. The derivative ∂h0/∂x intervenes in (34) in the
first and third brackets only, with multiplying coefficient

K(x, y) = α e∂xH − µx

x+ y
e−∂xH = µ

x(x+ y)− %(x+ 1)2

(x+ 1)(x+ y)
, (35)

after using expression (29) for Φ̃′(x) = ∂H(x, y)/∂x. Calculating the derivatives
∂H/∂y = log y, ∂2H/∂y2 = 1/y, ∂3H/∂y3 = −1/y2 together with

∂h0

∂y
(x, y) =

c

x+ y
+

1

2y
,

∂2h0

∂y2
(x, y) = − c

(x+ y)2
− 1

2y2

after (31), equation (34) then reads

K(x, y)
∂h0

∂x
(x, y)− L(x, y) = θ(1− y)

∂h1

∂y
(x, y), x > 0, y > 0, (36)

when isolating each derivative ∂h0/∂x, ∂h1/∂y and setting

L(x, y) =
µ

2(x+ 1)2
+

α

2x(x+ y)
− α(x+ 1)y

x(x+ y)2
− ν x

(x+ y)2y
− c(1 + c)θy

2(x+ y)2

− θ

12y
− θ

[
c(1 + c)

2(x+ y)2
+

c

(x+ y)y
+

11

12 y2

]
+

1

y

(
ν y

x+ y
+ θ

)(
1

y
+

c

x+ y

)
.

(37)

By assumption, h1 is of class C 1 in the open quarter-plane and, in particular,
on the vertical line y = y∗ = 1. In view of functional relation (36), this implies
that its left-hand side should identically vanish for y = y∗ = 1, that is,

∀ x > 0,
∂h0

∂x
(x, 1) =

L(x, 1)

K(x, 1)
. (38)
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By expressions (35) and (37) of K(x, y) and L(x, y), elementary algebra provides

K(x, 1) = µ(1− %)
x− x∗

x+ 1
, L(x, 1) = µ(1− %)

x− x∗

2x(x+ 1)2

(note that both rational fractions K(x, 1) and L(x, 1) have a simple zero at
x = x∗ so that the ratio L(x, 1)/K(x, 1) is well-defined for all x > 0). Using
the latter, (38) then gives ∂h0(x, 1)/∂x = 1/ [2x(x+ 1)], x > 0 which readily
integrates to

h0(x, 1) = C0 + log

√
x

x+ 1
, x > 0, (39)

for some constant C0. Besides, expression (31) for h0(x, y) readily shows that
the difference h0(x, y)− h0(x, 1) is independent of the function Ω and equals

h0(x, y)− h0(x, 1) =
log y

2
+

[
c+

µ

θ
(1− %)

(
x− x∗

x+ 1

)]
log

(
x+ y

x+ 1

)
. (40)

Using relation (40), we thus deduce that h0(x, y) = h0(x, 1)+(h0(x, y)−h0(x, 1))
eventually equals

h0(x, y) = C0 + log

√
x

x+ 1
+

log y

2
+

[
c+

µ

θ
(1− %)

(
x− x∗

x+ 1

)]
log

(
x+ y

x+ 1

)
for x > 0, y > 0. At first order in 1/A, the expansion (20) for density pA in the
interior quarter plane therefore reads

pA(x, y) ∼ Ae−C0

2π
√
y
e−A·H(x,y)

√
x+ 1

x

× exp

[{
c+

µ

θ
(1− %)

(
x− x∗

x+ 1

)}
log

(
x+ 1

x+ y

)]
, x > 0, y > 0, (41)

which determines pA in the interior quarter plane, up to constant e−C0 . The
latter is determined by condition (19), once written as

∫
R+∗×R+∗ pA(x, y)dx dy ∼

1; using (41) and applying asymptotics (21) successively to the integral with
respect to variable x and to variable y in the latter, we obtain e−C0 = 1 − %.
After the definition (15) of ΠΠΠA in terms of pA, expression (7) eventually follows.
This concludes the proof of Theorem 1, from which we can deduce the following
corollary.

Corollary 1. Given the assumptions of Theorem 1, the marginal stationary
distributions N(∞) and M(∞) are respectively asymptotic to

P(N(∞) = Ax) ∼ 1− %√
2πA

√
x+ 1

x
e−A·Φ(x), x > 0,

P(M(∞) = Ay) ∼ 1√
2πAy

e−A·Ψ(y)

(1− %)c(x∗ + y)c
, y > 0,

(42)

for large A.
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Proof. Integrating expression (7) with respect to variable y > 0 and applying the
Laplace expansion (21) at the unique minimum of function Ψ at point y = y∗,
asymptotics (42) for N(∞) follows. Integrating in turn (7) with respect to
variable x > 0 and applying Laplace expansion (21) at the unique minimum
of function Φ at point x = x∗, asymptotics (42) for M(∞) is similarly derived
from Theorem 1.

Remark 3. In a way similar to that used in this Section, sharp asymptotics
of density pA on the boundary {(x, 0), x > 0} ∪ {(0, y), y > 0} could be derived
from equations (17)–(18). Such evaluations are not needed in the present study
and we only sketch the resolution procedure. For x > 0 and y > 0, asymptotic
matching arguments can be first invoked to set

pA(x, 0) ∼ A
3
2

2π
· ϕ(x) e−A(Φ(x)+Ψ(0)), pA(0, y) ∼ A

3
2

2π
· ψ(x) e−A(Φ(0)+Ψ(y))

for some functions ϕ, ψ, together with

pA

(
x,

1

A

)
∼ A

5
2

2π
·ϕ1(x) e−A(Φ(x)+Ψ(0)), pA

(
1

A
, y

)
∼ A

5
2

2π
·ψ1(y) e−A(Φ(0)+Ψ(y))

where ϕ1, ψ1 can be derived from (7). Each equation (17) then provides the
respective solution for ϕ and ψ by identifying O(1) terms for large A. The last
equation (18) gives the final asymptotics for ΠΠΠA(0, 0).

6 Proof of Theorem 3

Define the generating function FA of the pair (N(∞),M(∞)) by

FA(u, v) = E
(
uN(∞)vM(∞)

)
, (u, v) ∈ D× D, (43)

where D is the open unit disk. The sharp asymptotics for ΠΠΠA stated in Theo-
rem 1 in the interior quarter-plane R+∗×R+∗ are now applied to obtain estimates
for generating function FA in a relevant domain. As a preamble, we first show
that FA has an analytic continuation from the product D×D to a larger domain
containing a neighborhood of point (u, v) = (1, 1).

Lemma 1. Given % < 1, the generating function FA can be analytically extended
to the product domain

ΩΩΩ = D
(

0,
1

%

)
× C (44)

where D(0, 1
% ) is the open disk centered at u = 0 and with radius 1/%.

The proof is detailed in Appendix B. The main steps sum up as follows: a
sample path property of process M first ensures the existence of FA(u, v) for
all (u, v) ∈ D×C; an estimate of the marginal distribution of N(∞) justifies in
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turn the existence for (u, v) ∈ D (0, 1/%)×D; finally, a convexity property of the
convergence domain of power series FA(u, v) concludes for its finiteness over ΩΩΩ.

Now, consider the open subset ΩΩΩ′ ⊂ ΩΩΩ defined by

ΩΩΩ′ = ΩΩΩ \ {u, u ∈ (−1/%, 0]} × {v, v ∈ (−∞, 0]}

(we have thus excluded the non positive real points (u, v) from ΩΩΩ). Using The-
orems 2 and 1, we can then assert the following.

Proposition 1. Given % < 1 and the assumptions of Theorem 1, the generating
function FA of the pair (N(∞),M(∞)) is asymptotic for large A to

FA(u, v) ∼
(

1− %
1− %r

)A
eA(s−1) exp

[
iA

(
%rζ

1− %r
+ sη

)]
× exp

[
−A

2

(
%rζ2

(1− %r)2
+ sη2

)]
G0(u, v) (45)

for (u, v) ∈ ΩΩΩ′, where we set u = r eiζ , 0 < r < 1/%, ζ ∈ (−π, π), and v = s eiη,
s > 0, η ∈ (−π, π), respectively and where the continuous function G0 is given
by

G0(u, v) =

(
1− %
1− %r

)[
s+ %r(1− s)

]α
θ (1−r)−c

with G0(1, 1) = 1.

The proof is detailed in Appendix C.

Remark 4. After the general result (22), asymptotics (45) can be also specified
by stating a remainder term of order O(1/A) for large A which tends to 0,
uniformly with respect to variable (u, v) pertaining to any compact subset of
domain ΩΩΩ′.

We can now proceed with the proof of Theorem 3.

Proof of Theorem 3. First address the weak convergence of the pair (ξA, ηA).
Let LA be the characteristic function of random variable (ξA, ηA); we have

LA(σ, τ) =E
(

exp

[
iσ
√
A

(
N(∞)

A
− x∗

)
+ iτ
√
A

(
M(∞)

A
− 1

)])
(46)

= e−i
√
A(σ x∗+τ) FA(e

iσ√
A , e

iτ√
A )

for all (σ, τ) ∈ R2, with i2 = −1. Apply then Proposition 1 to the point (u, v)
with u = exp(iσ/

√
A) and v = exp(iτ/

√
A), pertaining to a neighborhood of

(1, 1) for large enough A. We clearly have r = |u| = 1 and s = |v| = 1, so that
G0(u, v) = 1 and asymptotics (45) presently reduces to

FA(e
iσ√
A , e

iτ√
A ) =

exp

[
iA (x∗σ + τ)

1√
A

]
· exp

[
−A

2

(
σ2

A

%

(1− %)2
+
τ2

A

)]
×
[
1 +O

(
1

A

)]
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where, after Remark 4, the remainder term O(1/A) tends to 0 uniformly in

variables (σ, τ) (in fact, the pair (u, v) = (eiσ/
√
A, eiτ/

√
A) pertains to a compact

neighborhood of point (1, 1) ∈ ΩΩΩ′ for large enough A). It then follows that

FA(e
iσ√
A , e

iτ√
A ) ∼ e+i

√
A(σ x∗+τ) exp

[
−1

2

(
%σ2

(1− %)2
+ τ2

)]
(47)

for large A and any given (σ, τ) ∈ R2. By equality (46) and estimate (47), we
thus derive that

lim
A↑+∞

LA(σ, τ) = exp

[
−1

2

(
%σ2

(1− %)2
+ τ2

)]
, (σ, τ) ∈ R,

which limit defines the characteristic function of the Gaussian distribution with
covariance matrix given in Theorem 3. By Lévy’s continuity Theorem [11,
Chap.19, Theorem 19.1], we conclude that the scaled random variable (ξA, ηA)
converges weakly towards this Gaussian distribution.

Finally consider the estimation of expectations E(N(∞)) and E(M(∞)).
Note that, in general, the latter weak convergence of (ξA, ηA) does not neces-
sarily imply that E(ξA)→ E(ξ) and E(ηA)→ E(η). Presently, however, we can
directly rely on the asymptotics of Corollary (1) for the marginal distributions
of N(∞) to write

E(N(∞)) =
∑
n>0

nP(N(∞) = n) ∼
∫ +∞

0

(Ax)P(N(∞) = Ax)A dx

for large A, after estimating the discrete sum by a Riemann integral with integral
step 1/A; using asymptotics (42) for P(N(∞) = Ax), the latter then entails

E(N(∞)) ∼ A2

(
1− %√

2πA

)∫ +∞

0

√
x(x+ 1) e−A·Φ(x) dx.

Applying the Laplace asymptotics (21) to the latter integral, with the minimum
of Φ located at x = x∗ with Φ(x∗) = Φ′(x∗) = 0 and Φ′′(x∗) = (1 − %)2/%, we
readily obtain E(N(∞)) ∼ Ax∗ as claimed. A similar calculation provides
E(M(∞)) ∼ Ay∗ for large A.

7 Conclusion

In this paper, sharp large deviations asymptotics and limit theorems for the
stationary queue occupancy distribution have been derived for the Processor-
Sharing queue with both patient and impatient customers, in the case when the
normalized arrival rate A of impatient customers grows to infinity. On mathe-
matical ground, the asymptotic setting is a new case of singular pertubation for
the underlying bi-dimensional birth-and-death process where the time scale of
one component is accelerated while that of the other component is kept fixed. As
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no general large deviations principle is available for such a Markov process with
discrete state space, the sharp asymptotics have been obtained by assuming an
expansion of the form

pA =
A

2π
e−A·H

(
g +

g1

A
+ · · ·

)
, A ↑ +∞,

for the scaled solution pA to Kolmogorov equations. We have shown how un-
known functions H, g, . . . can be iteratively determined.

These results have been applied to the closed-loop PS queue fed back by the
flow of impatient customers with still uncompleted service. Unlike the common
queueing systems with growth 1/(1 − %tot)

α in high load condition for some
α > 0, this closed-loop PS queue has been shown to exhibit a slower logarithmic
growth − log(1 − %tot) in the high load regime. In performance terms, the
account of the so-called moving users is beneficial to the system behavior and
the throughput of each user class decays less fast in case of congestion, as per
estimates (9).

The present approach offers generalizations when extended to queuing sys-
tems with a state space with higher dimension. Specifically, consider the PS
queue with a number K of patient or impatient customer classes, with arrival
rate αk, service rate µk and impatient rate θk > 0 for class k ∈ {1, . . . ,K}. This
system should be amenable to the techniques applied in the present paper when
the arrival rate αk, with θk 6= 0, of some class k of impatient customers tends to
infinity proportionally to a dimensionless parameter A. While the present ap-
proach has directly considered asymptotics for the solution of the Kolmogorov
equations in dimension K = 2, an alternative approach for K > 2 consists in
deriving asymptotics for the generating function FA of the queue occupancy
(N1, . . . , NK). In fact, it can be easily shown from system (14) that FA verifies
the integro-differential equation[

K∑
k=1

αk(1− uk)

]
FA(u) +

K∑
k=1

θk (uk − 1)
∂FA
∂uk

(u) =

∫ 1

0

[
K∑
k=1

µk(1− uk)
∂FA
∂uk

(tu)

]
dt, u = (u1, . . . , uK) ∈ DK ,

with FA(1, . . . , 1) = 1. In some extended analyticity domain ΩΩΩ ⊃ DK , an
expansion

FA = e−A·G
(
G0 +

G1

A
+ · · ·

)
for FA could then be determined through the latter equation and provide general
information on the corresponding multivariate queue distribution.

A Derivation of decay rate K

In this appendix, we prove that the component Φ of H is the decay rate related
to the single-server PS queue with A permanent customers, arrival rate α and
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service rate µ, as was claimed in Section 1. More generally, assume % = α/µ < 1
and let Em denote the stationary distribution of the single-server PS queue with
a fixed number m of permanent customers in queue, arrival rate α and service
rate µ.

Lemma 2. Consider x = O(1) and y = O(1). We then have

lim
A↑+∞

1

A
· logEAy(Ax) = −K(x, y) (48)

where

K(x, y) = x log

(
x

%

)
+ y log y − (x+ y) log(x+ y)− y log(1− %).

Since K(x, 1) = Φ(x) for y = 1, this indeed shows that Φ is the decay rate
of the single-server PS queue with A permanent customers.

Proof of Lemma 2. By a simple reversibility argument for the Markov chain
representing the queue occupancy, we first have

Em(n) = %n
n∏
k=1

(
1 +

m

k

)
×Em(0), n ∈ N, (49)

with Em(0) given by the normalization condition. More precisely, Em(0) =
1/Rm(%) where

Rm(z) =
∑
n>0

zn

n!

n∏
k=1

(k +m) =
1

(1− z)m+1
, 0 < z < 1, (50)

hence Em(0) = (1 − %)m+1. Now address the estimation of EAy(Ax) for large
A and fixed x > 0, y > 0. The logarithm of the product

WAy(Ax) =
∏

16k6Ax

(
1 +

Ay

k

)
involved in expression (49) where n = Ax and m = Ay, with x = O(1) and
y = O(1), can be written as the sum

logWAy(Ax) = T (Ay) +Ay

Ax∑
k=1

1

k
−

+∞∑
k=Ax+1

gAy(k) (51)

where we set

gm(u) = log
(

1 +
m

u

)
− m

u
, T (z) =

∑
j>1

gz(j)

for u ∈ [1,+∞) and z > 1, respectively. We successively evaluate each term of
the right-hand side of (51) for large A:
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a) by the Weierstrass product formula [16, Sect. 5.8.2], the sum T (z) can
be first made explicit in terms of the Γ function only, namely

T (z) = − log Γ(z)− γz − log z, z > 0,

γ denoting the Euler constant. Using this expression of T (z) and the Stirling’s
asymptotic formula log Γ(z) = z log z − z − (log z)/2 + log

√
2π + o(1) for large

positive z [16, Sect. 5.11.1], we thus obtain

T (Ay) = −Ay · log(Ay) + (1− γ)Ay − 1

2
log(Ay)− log

√
2π + o(1); (52)

b) besides, the second term in the right-hand side of (51) is proportional to
the harmonic sum, which is known to expand as [16, Sect. 2.10.8]

Ax∑
j=1

1

j
= log(Ax) + γ +

1

2Ax
+ o(1); (53)

c) finally, the last sum in the right-hand side of (51) can be written via the
Euler-MacLaurin formula [16, Sect. 2.10.1] in the form

+∞∑
k=Ax+1

gAy(k) =

∫ +∞

Ax+1

gAy(u)du+
gAy(+∞) + gAy(Ax+ 1)

2

+
1

12
(g′Ay(+∞)− g′Ay(Ax+ 1)) + · · · (54)

From the derivative g′m(u) = m2/u2(u + m), u > 1, we have g′Ay(+∞) = 0
and g′Ay(Ax+ 1) = o(1). Besides, calculating the integral in the right-hand side
of (54) gives∫ +∞

Ax+1

gAy(u)du =
[
ugAy(u)

]+∞
u=Ax+1

−
∫ +∞

Ax+1

ug′Ay(u)du (55)

= −(Ax+ 1)gAy(Ax+ 1)−Ay · log

(
Ax+Ay + 1

Ax+ 1

)
by using an integration by parts along with the previous expression of g′m(u);
furthermore, the factor gAy(Ax+ 1) in the right-hand side of (55) expands as

gAy(Ax+ 1) = log
(

1 +
y

x

)
− y

x
+

y2

x2(x+ y)A
+ o

(
1

A

)
;

gathering expression (55) and the former results, the sum (54) can consequently
be evaluated as

+∞∑
k=Ax+1

gAy(k) =
{
−A

[
x log

(
1 +

y

x

)
− y
]
−
[
log
(

1 +
y

x

)
− y

x

]}
− y2

x(x+ y)
−
{
Ay log

(
1 +

y

x

)
− y2

x(x+ y)

}
+

1

2

[
log
(

1 +
y

x

)
− y

x

]
+ o(1)

(56)
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after expanding all contributing terms up to order 1/A. After (52), (53) and (56),
we conclude that the logarithm (51) expands as

logWAy(Ax) = −A(y log y − (x+ y) log(x+ y) + x log x)

− log(
√

2πAy) +
1

2
log
(

1 +
y

x

)
+ o(1). (57)

Coming back to the expression (49) of probability EAy(Ax), and using the
value of EAy(0) obtained after (50) yields

EAy(Ax) = %Ax ·WAy(Ax) ·EAy(0) (58)

= (1− %) exp [Ax log %+ logWAy(Ax) +Ay log(1− %)] ;

inserting the expansion (57) for logWAy(Ax) into equality (58) then provides
the limit (48) with the expected decay rate K(x, y).

Remark 5. Note for completeness that a sharp asymptotics for EAy(Ax) also
readily follows from (57)–(58), giving

EAy(Ax) ∼ 1− %√
2πA

√
x+ y

x y
exp(−A ·K(x, y)) (59)

for large A. For any real r = O(1), in particular, write x = x∗ + r/
√
A and

y = 1; a Taylor expansion then gives K(x, 1) = Φ(x) = Φ′′(x∗)r2/2A + o(1/A)
so that, after asymptotics (59),

EA(Ax∗ + r
√
A) ∼ 1− %√

2πA

√
x∗ + 1

x∗ · 1
× e−A·K(x,y)

∼ 1− %
√
%

1√
2πA

· exp

[
− (1− %)2

%

r2

2

]
, r ∈ R. (60)

We thus conclude from (60) that the probability P(N ′(∞) = Ax∗ + r
√
A) is

asymptotic to P(ξ = r)/
√
A, where P(ξ = r) denotes the value of the density

function of Gaussian variable ξ at point r. This confirms the fact that the
centered variable √

A

(
N ′(∞)

A
− x∗

)
,

like ξA, also converges in distribution towards Gaussian variable ξ.

B Proof of Lemma 1

The proof of Lemma 1 proceeds in three steps.
(a) We first prove the analytic continuation of FA to the product D×C. As

in Section 1, let M ′(t) denote the number of customers in the M/M/∞ queue
with Poisson arrival process of rate β and i.i.d. “service times” with exponential
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distribution of parameter θ. Departures for the occupancy process M for M -
customers stem from both service completion and departures due to impatience,
while the departures for process M ′ come from impatience only. The random
processes (N,M) and M ′ can be coupled in such a way that N and M ′ are
independent, M ′(0) = M(0) and

M(t) 6M ′(t), t > 0.

Letting t→∞, this readily entails that

P(N(∞) = n,M(∞) = m) 6 P(M ′(∞) > m), (n,m) ∈ N2,

where M ′(∞) has a Poisson distribution with parameter A = β/θ. The latter
inequality ensures that P(N(∞) = n,M(∞) = m) = O(Am/m!) for large m and
the power series defining FA(u, v) is thus convergent for all u ∈ D and v ∈ C.
Function FA is therefore analytically defined in D× C.

(b) We now consider the extension of FA to the product D(0, 1/%) × D.
Summing all equations (14) with respect to index m > 0, we have

αQA(n) + µn
∑
m>0

ΠΠΠA(n,m)

n+m
= αQA(n− 1) + µ (n+ 1)

∑
m>0

ΠΠΠA(n+ 1,m)

n+m+ 1

where we set QA(n) =
∑
m>0 ΠΠΠA(n,m), hence

αQA(n) = µ(n+ 1)
∑
m>0

ΠΠΠA(n+ 1,m)

n+m+ 1
, n ∈ N. (61)

Let

εεεA(n+ 1) =
1

QA(n+ 1)

∣∣∣∣∣∣(n+ 1)
∑
m>0

ΠΠΠA(n+ 1,m)

n+m+ 1
−QA(n+ 1)

∣∣∣∣∣∣ .
Considering the right-hand side of (61) for large n, we calculate

εεεA(n+ 1) =
1

QA(n+ 1)

∑
m>0

m

n+m+ 1
·ΠΠΠA(n+ 1,m) (62)

6
1

n+ 1
· E(M(∞);N(∞) = n+ 1)

QA(n+ 1)

hence

εεεA(n+ 1) 6
1

n+ 1
· E(M(∞) |N(∞) = n+ 1). (63)

Since M 6 M ′ and by the independence of random variables M ′ and N , we
have E(M(∞) |N(∞) = n + 1) 6 E(M ′(∞)) = A. It thus follows from upper
bound (63) that εεεA(n + 1) → 0 when n ↑ +∞ hence, after equality (61),
αQA(n) ∼ µQA(n+ 1), that is,

QA(n+ 1)

QA(n)
∼ %
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for large n. We conclude that the power series FA(u, v) converges for all u ∈
D(0, 1

% ) and v ∈ D.

(c) Let S be the set of points (u, v) ∈ C2 where the power series FA(u, v)
converges absolutely and S the interior of S. We let

S0 = {(u, v) ∈ S, uv 6= 0}

and consider the mapping λ : (u, v) ∈ S0 7→ (log |u|, log |v|) ∈ R2. By [3, Chap.I,
Théorème 3], it is known that the set S is logarithmically convex, that is, the
image λ(S0) is convex in R2.

Now, by Item (a) above, S contains D× C hence the image λ(S0) contains
the square (−∞, 0) × (−∞,+∞) in R2. Similarly, by Item (b) above, S con-
tains D(0, 1/%)×D, hence the image λ(S0) contains the square (−∞,− log %)×
(−∞, 0). By the convexity property of λ(S0), we then deduce that λ(S0) con-
tains its convex envelope and thus also the complementary square (0,− log %)×
(0,+∞), so that we eventually have

λ(S0) ⊃ (−∞,− log %)× (−∞,+∞).

The convergence domain S of power series FA(u, v) therefore contains the prod-
uct ΩΩΩ = D(0, 1/%)×C. Function FA is thus analytically defined in ΩΩΩ, as claimed.

C Proof of Proposition 1

In the following, we further assume that u /∈ (−∞, 0], v /∈ (−∞, 0] and log
denotes the principal determination of the logarithm over the cut plane C \
(−∞, 0]. By definition of FA, write

FA(u, v) = I + J +K + L

where
I =

∑
n>1,m>1

P(N(∞) = n,M(∞) = m)unvm,

J =
∑
m>1

P(N(∞) = 0,M(∞) = m) vm, K =
∑
n>1

P(N(∞) = n,M(∞) = 0)un

and L = ΠΠΠA(0, 0).
(a) First consider the sum I. With the change scale n = Ax and m = Ay,

x > 0, y > 0 and by Theorem 2, we have

P(N(∞) = Ax,M(∞) = Ay)uAxvAy � exp(−Ahu,v(x, y))

for large A (f � g meaning that − log f/A ∼ − log g/A when A ↑ +∞) where

hu,v(x, y) = Φ(x)− x log u+ Ψ(y)− y log v (64)

= Φ(x)− x log r + Ψ(y)− y log s− i(xζ + yη)
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with u = r eiζ and v = s eiη as in the statement of Proposition 1. For given
real r = |u| > 0, s = |v| > 0, and after the respective definitions (5) and (6) of
functions Φ and Ψ, the real-valued function hr,s : (x, y) ∈ R+∗2 7→ hr,s(x, y) is
easily shown to have a unique minimum at point (Xu, Yv) ∈ R+∗2 given by

Xu =
% r

1− %r
, Yv = s. (65)

The corresponding value hr,s(Xu, Yv) = Φ(Xu)−Xu log r + Ψ(Yv)− Yv log s is
easily calculated as hr,s(Xu, Yv) = − log(1− %) + log(1− %r)− (s− 1) so that

exp (−Ahr,s(Xu, Yv)) =

(
1− %
1− %r

)A
eA(s−1) (66)

while the second-order derivatives of hr,s at (Xu, Yv) are given by

∂2hr,s
∂x2

(Xu, Yv) =
(1− %r)2

%r
:= ar,

∂2hr,s
∂y2

(Xu, Yv) =
1

s
:= bs

and ∂2
xyhr,s(Xu, Yv) = 0. Estimating the discrete sum I over the lattice N∗2 by a

Riemann integral over R+∗2 with integration step 1/A and using asymptotics (7)
for ΠΠΠA(Ax,Ay), we further have

I ∼
∫ +∞

0+

Adx

∫ +∞

0+

Ady ΠΠΠA(Ax,Ay) · uAxvAy (67)

∼ A

2π

∫ +∞

0+

∫ +∞

0+

g(x, y) e−Ahu,v(x,y)dxdy

with function hu,v introduced in (64). Now applying the asymptotics (22) to
evaluate the (complex-valued) integral (67) with help of (66), we then obtain

I ∼ A

2π
× g(Xu, Yv) · e−Ahr,s(Xu,Yv)+iA(ζXu+ηYv) ×

exp

[
−Aζ

2

2 ar

]
exp

[
−Aη

2

2 bs

] √
2π

Aar

√
2π

A bs
.

Using successively the expressions (66) for e−Ahr,s(Xu,Yv) and the second-order
derivatives ar and bs of hr,s at point (Xu, Yv), together with the definition of g
in (7) eventually reduces the latter estimate of I to

I ∼
(

1− %
1− %r

)A
eA(s−1) exp

[
iA

(
%rζ

1− %r
+ sη

)]
×

exp

[
−A

2

(
%rζ2

(1− %r)2
+ sη2

)]
G0(u, v) (68)

with coefficient

G0(u, v) =
g(Xu, Yv)

∂2
xxhr,s(Xu, Yv)∂2

yyhr,s(Xu, Yv)
=

(
1− %
1− %r

)[
s+%r(1−s)

]α
θ (1−r)−c

.
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To specify the definition domain of function G0, first assume s 6 1; then the
argument s + %r(1 − s) > s > 0 for all r (and thus also for r < 1/%); now if
s > 1, s+ %r(1− s) is positive if and only if %r < 1 + 1/(s− 1), which is fulfilled
if %r < 1. We thus conclude that function G0 is well-defined and continuous
over ΩΩΩ, and thus also in the subset ΩΩΩ′. At point (u, v) = (1, 1), in particular,
we clearly have r = s = 1 so that G0(1, 1) = 1.

(b) Now address the second term J . By Theorem 2 again, we can write

P(N(∞) = 0,M(∞) = Ay) � e−AH(0,y)vAy = e−Ah1,v(0,y)

with the notation (64) for function h1,v. For s = |v| > 0, the real-valued function
y ∈ R+∗ 7→ h1,s(0, y) has a unique minimum at y = Ys = s > 0, with value

h1,s(0, Yv) = − log(1− %)− (s− 1).

The module of the sum J is therefore of order |J | � e−Ah1,s(0,Yv) = (1 −
%)AeA(s−1) and, after the estimate (68) of I, the ratio I/J is of order

|I|
|J |
� 1

(1− %r)A

and thus tends to 0 when A ↑ +∞ and for (u, v) ∈ ΩΩΩ′. We conclude that I
dominates J for large A.

(c) As to the third term K, it is similarly verified that |I|/|K| � eAs with
s = |v| > 0. As the latter ratio tends to +∞ when A ↑ +∞, I also dominates
K for large A. Finally,

|I|
|L|
� eAs

(1− %r)A

and I also dominates L for large A.
After (68) and the latter discussion, asymptotics (45) for FA(u, v), (u, v) ∈ ΩΩΩ′

eventually follows.
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