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ABSTRACT

Predominant in today society, mobile apps are rising as promising application systems for automatic
control. An app can be viewed as a plant, processing input signals (queries, phone data, etc.) and
generating outputs (such as a service or an answer). Guaranteeing that the app complies with a
desired behavior is a major safety challenge. This work focuses on privacy issues for geolocated
mobile apps. Many applications use the location data to provide a service (e.g., navigation, fitness)
or to improve it (e.g., weather forecast, social media). This gain in service utility comes at the cost
of personal data sharing. Such threat to user privacy can be leveraged by protection mechanisms,
e.g., addition of noise to the location data. However, state-of-the-art techniques still lack means of
ensuring both data utility and privacy in a dynamics utilization context. This paper presents the
first non-linear analytical modeling followed by a control formulation for regulating the privacy
level in a mobile app. The privacy is sensed using the well established notion of Point of Interest.
Through modeling, we highlight the control challenges, namely the non-linearity and time-variance
of the plant, its high sensibility to noise and the impact of the user’s mobility pattern – seen a
disturbance. A controller is designed, combining feedback with anticipation action. Evaluation is
performed using mobility records from two real-world multi-users datasets. Our approach enables,
with a unique and universal tuning, to robustly meet privacy objectives with preserved utility and
negligible computational overhead. Control algorithm, experimental evaluation and analysis scripts
are available online for reproducibility.

1. Introduction
Computing systems, and especially software, are novel

control systems. The need for IT regulation started in the
2000s when the concept of Autonomic Computing [30]
was introduced, aiming at the self-adaptation of software
products without being backed by a specific theory. State-
of-the-art works investigate the use of control theory for
modeling and decision-making in computing systems [18],
showing strong and promising opportunities. Software sys-
tems evolve with unseen dynamics, as they do not fall under
Physics’ laws, therefore, novel opportunities are thus open
for research on all control aspects: formulation and choice
of sensors and actuators, modeling through identification
from data, and control [34]. Applications running on mobile
devices represent a significant part of IT usage by individ-
uals. Ensuring their behavior regulation is a major safety
challenge. Moreover, these apps, dynamic by nature, offer
a whole new playground for control specialists [44]. In this
work, we tackle privacy challenges for users of mobile apps
using geolocation.

Location privacy protection considers mobile devices
users whose mobility information is shared with third par-
ties. Applications and services tend to require location data
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to personalize users’ experiences. Examples of location-
based services are very numerous and range from navi-
gation applications and fitness tracking apps, to weather
forecasting and recommendation systems [24]. Mobile apps
provide those personalized and convenient services at the
cost of personal data disclosure, as service providers or
third party attackers can take advantage of these data to
derive private information about users. The most common
threats are (i) re-identification attacks where the identity of
an anonymous user is guessed based on previously recorded
data [21], (ii)mobility prediction that anticipates users’ next
moves based on their habits [23], (iii) extraction of user’s
places of interest [35] (home, workplace, place of worship,
etc.), and (iv) inference of social relationships (partners,
coworkers, etc.) [46]. Such severe and global threats for users
motivate the need for efficient and accessible privacy protec-
tion. Additional motivation concerns political and societal
aspects, as illustrated by the media release of a mobility
dataset by a fitness tracking social app that revealed the
location and maps of unknown US military bases [48]; or
the regulations enforced by the governments, such as the
European General Data Protection Regulation1 or the US
Location Privacy Protection Act2.

The time-perspective plays a central role in mobile apps,
and can suggest a classification [27]: some are snapshot
services—they only need a single location point to provide
their service, an example could be aweather app—,while the
others need continuous records—for instance navigation or
gaming apps. Without loss of generality, this work considers

1https://gdpr-info.eu/
2https://www.congress.gov/bill/112th-congress/senate-bill/1223
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the more complex, online scenario where a stream of data
is dynamically shared. As the attacker has access to more
information, the continuous scenario is more challenging
than the snapshot case.

Location Privacy Protection Mechanisms emerged as
solutions to protect users’ privacy [43]. Such algorithms
modify the location data to improve privacy; e.g., by adding
noise [5], reducing data precision [13], or merging close
users’ locations [1]. In this paper, we focus on the well-
established notion of differential privacy [15] and its adap-
tation to mobility data, Geo-Indistinguishability [5]. This
mechanism adds spatial noise to each of the location data.
Most protection mechanisms are parametrized algorithms,
e.g., the variance of the spatial noise added to the data can
be adjusted. By tuning those parameters we change the pro-
tection action. This property is highly valuable considering
that privacy often comes at the cost of a reduction of the
service utility: a configurable mechanism which allows to
leverage the privacy to utility trade-off [10]. In particular,
optimal privacy and utility protection cannot be universal
[8], motivating the need for dynamic adaptation of the pro-
tection. Deciding on the suitable parametrization to meet
privacy and utility objectives at runtime is however still an
open challenge. As human mobility is highly dynamic, with
varying speeds and frequencies of move, the application of
a protection mechanism with a fixed configuration results in
volatile levels of privacy and utility.

This paper adopts a novel approach, in which the prob-
lem is shifted from choosing the configuration parameter of
a protection mechanism to achieving a desired privacy level
in an automated and robust fashion while improving utility.
This feedback approach allows therefore a gain of utility
even in non-privacy-sensitive situations. The challenge of
how to automatically tune a protection mechanism to meet
users objectives, is shaped as a reference tracking problem.
When it comes to ensuring protection independent of the
user mobility pattern, a disturbance regulation approach is
used. This paper thus tackles the challenges of practicality,
personalization of protection mechanisms, and temporal
aspects [27] thanks to the control-based approach. This
works illustrates the direct application of control theory for
the benefit of users of mobile communication systems.

In this paper, we introduce a feedback control strategy for
mobile privacy regulation, as illustrated in Fig. 1. In details,
we present the first formulation of the location privacy chal-
lenge as a Control problem. Online privacy relies on user’s
likelihood to be in a point of interest; and utility is based on
service quality loss. Control challenges rely on non-uniform
sampling, saturation effects, and stochastic, highly dynamic
and unpredictable disturbance. Modeling is performed both
analytically and by data identification to derive a dynamical
model with input non-linearity. To the authors’ knowledge,
it is the first analytical non-linear modeling of a software
system. A privacy controller is designed, combining feed-
back and a pre-compensation. Its parameters are universal,
and no user-specific tuning is needed. Evaluation on several
real mobility data illustrates the relevance of the control
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Figure 1: Privacy regulation of a mobile protection app using
control: a schematic view.

approach. Control algorithm, evaluation and analysis scripts
are available online for reproducibility [11].
In short, the main contributions are:

(i) formulation of the location privacy control problem,
(ii) non-linear analytical modeling, and
(iii) design of a privacy controller.
The remaining of the paper is organized as follows. First

background on mobility and privacy is given in Section 2,
further translated into a control problem in Section 3, high-
lighting dynamic protection challenges. The system’s model
is presented in Section 4, with both analytical and identifi-
cation approaches. The controller construction and design
is presented in Section 5. Validation and evaluation on real
data ends the paper in Section 6, followed by related work
analysis (Section 7) and by the conclusion with perspectives.
(Section 8).

2. Privacy protection of mobile apps users
Our control plant is a location-privacy protection appli-

cation and mobility data is considered as a disturbance. This
section provides background on the protection mechanisms
and on mobility, while control formalization of the consid-
ered problem is given in Section 3. First, we highlight the
challenges of controlling a system influenced by human mo-
bility data: (i) wide-spectrum signal frequencies, (ii) large
amplitude variations and (iii) non-uniform sampling. Then
we present the real-world datasets used for identification and
control evaluation. Eventually, background is given on the
notions of location privacy and protection mechanisms.

2.1. Mobility data: a challenging disturbance
Mobility data are records of location coordinates over

time. The location is often the one of an individual us-
ing a mobile device, but it can also be records of some
transportation modes (car, bikes, etc.). In the following, the
terminology user is used to refer to the person or object
which location is recorded. Formally, mobility databases are
GPS points (latitude, longitude) labeled with timestamps
and users’ identification. Depending on the data collection
method, the sampling rate can be constant or not during the
record period, and some periods can even contain no record
(for instance when the device is switched off).

In this work, we apply our research on two datasets,
namely: Cabspotting and Privamov. The Cabspotting dataset

Cerf, S et al.: Preprint submitted to Elsevier Page 2 of 18
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[40] gathers mobility traces of 536 taxi cabs during their
service in San Francisco Bay Area, USA, over one month.
The sampling time is not constant, with an average of 1min,
and the dataset is very dense—few data are missing. Note
that the specificity of this dataset is regarding the type of
mobility it represents: only vehiclesmoves, mostly in a dense
urban area. The Privamov dataset [7] records the mobility
of students and academics around Lyon’s Campus, France.
Data are recorded with a fixed sampling period of 10 s,
however much data is missing which makes the dataset very
sparse. This dataset represents human urban mobility with
various transportation means.

A snippet of a mobility trace from a Cabspotting user
can be found in Fig. 2: the location points are represented
on the map of San Francisco (Fig. 2a) and the variations
of the user’s speed through time are given (Fig. 2b). Some
sections of this trace have been highlighted to showmobility
diversity. First, the cab driver is stopped at a cab station
(yellow dots, between 0min to 40min). Later on, the user
drives with high speed on a highway from the airport to the
city (blue crosses, around 110min to 120min). Eventually,
the user drives around the city, from a hotel to the piers
with relatively slow speed (green circles, around 150min).
The user mobility is extremely different with, various signal
amplitude, frequency, and sampling time. One can also note
that, for instance, no data is recorded from 5min to 30min.
Robustness against such a disturbance is a real challenge.
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Figure 2: Mobility data of a user from Cabspotting dataset
(abboip) revealing the diversity of mobility patterns.

2.2. Privacy Protection
Before describing the protection mechanisms (with ex-

ample and illustration), we focus on the thorny notion of
privacy.

2.2.1. Notions of Location privacy
Defining privacy is not easy as there are flourishing

attempts in the literature, mainly around the theoretical con-
cepts of k-anonymity [47] (hiding a user among k − 1 other
similar ones) and differential privacy [15] (bounding the
query answers difference between datasets differing by only
one user). Those theoretical concepts are ill-suited for prac-
tical scenarios, as the privacy level depends on contextual
information. Indeed, both the semantic context (for instance
religious or health related places) and user context (history

in this vicinity) impact users’ privacy threat. In practice,
location quantification based on metrics are better suited
than theoretic definitions. There are many practical location
privacy metrics (see Primault et al. [43] for an overview),
but one key concept is the notion of Points Of Interest (POI)
[26, 19], which regroups the significant places where users
spend time, such as home, workplace, place of worship, etc.
A POI is defined as a meaningful geographical area where a
user made a significant stop [26]. Formally, it is the location
of the center circular zone of a given diameter where the user
stayed for a minimum duration T .

The retrieval of POI is of crucial knowledge as it is often
the very first step for performing attacks as re-identification
[41], mobility prediction [23] or worship prediction [20].
This work does not try to defend against specific attacks, but
rather focuses on ensuring user-defined levels of a privacy
metric based on the well-established notion of Point of In-
terest [26]Indeed, the protection challenge aiming to defeat
a well-performing privacy attack has been shown unfeasible
in practice, as it would require adding so much noise that the
data would be unusable by the mobile app [32]. On a more
theoretical level, not specific to location, the optimal state
estimation of systems under Laplacian noise (i.e., differential
privacy) has also been investigated [17]. Additionally, from
a practical point of view, we address privacy by using a
privacy sensor signal based on POIs (see Section 3.1.4). The
obfuscation of the users’ Points Of Interest would be our
notion of location privacy.

2.2.2. Protection mechanisms
Location Privacy ProtectionMechanisms (LPPMs) is the

literature dedicated terminology for all the processes and
algorithms that, by manipulating location data, aim at im-
proving the privacy protection of users. They take as input a
mobility record and output another mobility data, hopefully
more privacy preserving. The input data is called actual data,
or original one; while the output is called obfuscated or
sanitized data.

We want to highlight that the methodology presented in
this work is general and can apply to all existing protection
mechanisms [43] which are:

(i) tunable by at least one parameter;
(ii) online processes: every location can be individually

obfuscated in real time;
(iii) user-centric: the obfuscation does not depend on ex-

ternal knowledge (like: crowd density in the area,
other users’ position, etc.).

In this paper, we use the Geo-Indistinguishability mech-
anism (Geo-I) [5] as an illustration of our control approach as
it is one of the most used mechanism which realizes spatial
distortion of user mobility data in an on-line fashion (i.e.,
suitable for applying control), in opposition with most of
the state-of the art protection app which work in an off-line
fashion. Moreover, Geo-I realizes the well known differen-
tial privacymodel [15], which enable to derivemathematical
privacy guarantees on the sanitized dataset. Geo-I protects
user’s location data by adding spatial noise. This noise is

Cerf, S et al.: Preprint submitted to Elsevier Page 3 of 18
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drawn from a Laplace distribution around the actual user
location, and repeated for each record through time. The
noise is stochastic to avoids easy filtering by an attacker
knowing the data protection conditions. It has a configura-
tion parameter � ∈ ℝ+ (expressed in m−1) which quantifies
the amount of noise to add: the lower �, the higher the noise.
For an actual location point l (which is a vector of latitude
and longitude coordinates), its sanitized (obfuscated) value
named l is computed as follows:

l = l − 1
�

[

W−1

(

p − 1
e

)

+ 1
](

cos �
sin �

)

(1)

where W−1 is the Lambert W function (the -1 branch), e is
Euler’s number, p is drawn uniformly in [0, 1) and � in [0,
2�). Note that the use of the LambertW function comes from
Geo-I’s formulation. Using this specific function—rather
than a Gaussian distribution—ensures the well established
differential-privacy property [15] on the protected data. For
the sake of simplifying the notations through the rest of the
paper, we introduce the following notation:

(p) = W−1

(

p − 1
e

)

+ 1 (2)

which rewrites Eq. (1) as follows:

l = l −
(p)
�

(

cos �
sin �

)

(3)

Fig. 3 illustrates the application of Geo-I protection app
on the mobility trace of an illustrative Cabspotting user, for
two values of the parameter � (Figs. 3b and 3c) compared to
the actual original data trace (Fig. 3a). The noisier the data
are, the better the user privacy is preserved, as less infor-
mation can be inferred from the trace. However, the service
will be less accurate as the reported sanitized location data
are far from the actual ones. Tuning Geo-I parameter enables
to leverage both privacy protection and service utility.

While the presented methodology can be extended to a
large class of protection apps, as stated above, Geo-I will be
specifically considered in the remaining of the paper.

3. Control Problem Formulation
The location privacy regulation problem is formulated in

this section. The process, actuator, sensors, and disturbance

(a) no obfuscation (b) � = 10−2 (c) � = 10−2.5

Figure 3: Protection of a mobility trace using Geo-I. Illustration
of a Cabspotting user (abboip) for various configurations of the
tuning parameter �.

are defined, as a first step prior to modeling (which will be
done in Section 4) and control design (in Section 5). In short,
the plant is the protection app, it has two inputs: the user
actual location (uncontrollable) and the variance of the noise
added for sanitation (the control signal). The plant outputs
the sanitized location, on which we build a sensor of utility
loss and a sensor of privacy—based on the dispersion of
the obfuscated data, to be related to the notion of POI. The
disturbance is formally defined as the privacy sensing of the
actual location (uncontrollable signal). Justification of the
relevance of those signals are given in the respected subsec-
tions. A schematic representation of the system in given in
Fig. 1. Illustration of the open loop behavior motivating the
control problem is further provided.

3.1. System, signals, and sensors
3.1.1. Process

As stated above, the location privacy protection app is
considered as the plant. The app takes as input the user
actual mobility data and a control parameter (i.e., noise
properties), and outputs the sanitized location record. The
sanitized data is broadcasted to the Location-Based Service
(e.g., navigation or venue finder) and the service response is
returned directly to the user. Note that this service loop is out
of the scope of the control formulation, and no assumption
is made on the impact of the service on the user mobility.
Such a system with a measurable output and a tunable input
is suitable to be a control plant.

3.1.2. Control Variable
The protection app is assumed to be tunable by at least

one signal. In the case of Geo-I, the � parameter can be
updated at each iteration and impacts both the POI-oriented
privacy and the utility loss, therefore it can be an eligible
control signal:

u(t) = �(t) (4)

The usual range of values of this control signal is from
10−4m−1 to 1m−1. We warn the reader that the variations
of the control signal regarding the obfuscation process is
counterintuitive: the smaller the u, the more noise is added
(due to the inverse in Eq. (3)). When no noise is applied by
the app, we theoretically have u very big. In practice, we set
u =1m−1, i.e., a noise of about 1m that is reasonable given
the GPS precision. When u = 10−4m−1, the noise is of the
order of 10 km.

3.1.3. Utility loss sensor
Most location-based service use only the current position

to improve users’ experience, e.g., weather forecast, venue
finders, media tag. The utility loss sensor is then considered
as being instantaneous and spatial: the closer the sanitized
location sent to the mobile app is to the user’s actual one,
the better the service will be. The measure of the Utility loss,
namely z, is the distance between the sanitized released data
l and the actual one l [37]:

z(t) = dist [l(t), l(t)] , (5)
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with dist[∙, ∙] being the Euclidean distance between two
points at the surface of the earth.When considering the Geo-
I protection mechanism and given Eq. (3), utility loss sensor
translates as:

z(t) = −
(p)
u(t)

. (6)

In this case, the objective of minimizing utility loss is equiv-
alent to maximizing the control signal. The utility objective
becomes a constraint on the control signal, we only keep
the privacy measure y(t) as a performance signal in the
formulation, as illustrated in Fig. 1.

3.1.4. Privacy sensor
With regard to the POI-related privacy notion—to pre-

vent the identification of users’ Points Of Interest—we de-
fine the privacy sensor based on the spatial dispersion of
the locations sent by the user on a past time-window. A
small dispersion represents a concentration in space of the
obfuscated location records (and also in time due to the time
window calculation), which matches with the definition of a
POI [26]: the user is perceived as spending significant time
in a small area. This signal inversely represents how likely
users are to reveal a POI: the higher the privacy measure, the
better the protection. Formally, the privacy sensor is defined
as being twice the median distance between the location data
sent during the timewindow and the centroid of those points.
The centroid lc of the mobility trace l over a past window of
length T is defined as:

lc(t) =
1
|T |

t
∑

i=t−T
l(i). (7)

The privacy sensor y of the sanitized location trace l at time
t is then:

y(t) = 2median
k∈[t−T ;t]

(

dist[l(k), lc(t)]
)

. (8)

The privacy level is expressed in meters and is to be related
with the radius of the smallest POI currently retrievable
from the obfuscated trace. The use of median aggregation
enhances the privacy signal robustness regarding location
measurement noise, such as outlier measures.

3.1.5. Disturbance
Variations in the user mobility (mainly it’s speed, but

also the spatial dispersion of locations, etc.) impact the
retrieval of Points Of Interest and thus the privacy sensor
y. A user in constant movement, such as in a moving train
for example, would have a naturally high privacy, therefore
being impossible to extract a POI. Conversely, users wander-
ing around their garden are vulnerable in terms of privacy,
and require obfuscation to protect their POIs. These two
simple examples illustrate the dependency of the privacy
protection level on the user actual mobility data, and more
precisely on the dispersion of the actual data.We thus use the
privacy sensor on the actual location records l to estimate the

disturbance d at time t:

d(t) = 2median
k∈[t−T ;t]

(

dist[l(k), lc(t)]
)

, (9)

with lc(t) =
1
|T |

∑t
i=t−T l(i).

In short, the disturbance is linked to the user actual loca-
tion data. The disturbance is measurable, has non-uniform
sampling (just as the location trace) and presents large
fluctuation in terms of both amplitude and frequency (see
Section 3.2), making its robust rejection challenging.

3.2. Need for regulation and challenges
Further on, we motivate the need for controlling the pro-

tection app parameter to meet a desired privacy level through
an open loop behavior analysis. Illustration of the impact of
the control signal and the disturbance on the privacy and
utility sensors is given in Fig. 4. We use as disturbance a real
user mobility trace, the same as in Figs. 2 and 3. Privacy
y and utility loss z sensors are measured after applying a
constant control signal in two different experiments:
(i) u = 10−2m−1 (blue dots), and
(ii) u = 10−3m−1 (orange crosses).

Privacy measures are influenced by the user mobility
behavior (disturbance). This illustrates the need of a robust
dynamic configuration of the protection mechanism. The
disturbance d varies across four orders of magnitude and has
non-constant sampling: robustness to it is very challenging.
Privacy measures show that the control signal u impacts the
privacy level. Utility measures z show time variations due
to the stochasticity of Geo-I process (i.e., p and � variables).
However, the mean utility loss is constant per trace and
only depends on the control signal u. This comforts the
choice of defining only the privacy as a reference signal,
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Figure 4: Open loop study: impact of the disturbance and
control signal on privacy and utility measured signals. Location
record data from user abboip of Cabspotting dataset.
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and dealing with the utility objective by soundly setting the
control variable. Records from 105min to 130min illustrate
situations where a lower control signal do not increase
privacy protection since the user is inherently protected by
their movement, it is detrimental for data utility.

It clearly appears here the need for a privacy and utility
regulation—achievable by tuning Geo-I’s parameter— that
should be robust to the mobility disturbance.

4. Privacy Modeling
Prior to control design, and given the novelty of the

problem formulation, extensive modeling efforts are needed.
We derive a dynamical model describing and quantifying the
app behavior, which links the control signal (noise added)
and disturbance (mobility data) to the performance sensor
(privacy level). First, we study the static behavior, i.e.,
without time variation of the inputs. Analytical modeling is
performed based on system’s equations, first decoupling the
control and disturbance influence, i.e., using the scenario of
a stopped user (no disturbance) and then of a moving user
without protection (no control action). We further extend the
model to tackle both control and disturbance—i.e., privacy
protection andmovement—through identification from data.
The dynamical modeling is eventually performed by identi-
fication. The resulting model has a first order dynamics and
a non-linear gain. The non-linearities are regarding both the
control variable and the disturbance.

4.1. Static Analysis
First, we analyze the static behavior of the system, where

the control and disturbance signals are constant. Initially, the
respective impacts of the disturbance d and the control signal
u on the performance measure, are decoupled. As such, we
aim at detecting the presence of non-linearities between u,
d, and y.

4.1.1. Decoupling control and disturbance actions
Here we successively study the system without control

action and then without disturbance.

Impact of the disturbance on the undriven system Let
us consider in a first time the impact of the disturbance on
the performance signal, in the case where the control action
is null. Note that in our case, this means not modifying the
location data before broadcasting it, i.e., from Eq. (3) u tends
to infinity.

Theorem 1. For the static undriven system, one has:

y = d. (10)

PROOF. Given Eqs. (8) and (9) and with l = l (i.e., no
control action), one directly has y = d. □

That is to say, in absence of control action, the privacy
measure is linear with respect to the disturbance.

Impact of the control signal in an undisturbed system
We now consider the system without disturbance, that is to
say the user is stopped, i.e., d = 0.

Theorem 2. For the static undisturbed systemwith infinitely
fast sampling, one has:

y = 10a log(u)+b (11)

with

a = −1, b = log
(

−2median
k∈[t−T ;t]

(pk)
)

. (12)

That is to say, in the absence of disturbance and in ideal
recording conditions, the privacy measure is log-linear with
respect to the control action. In practice, when the number
of records is not large enough in comparison to the selected
time window, the offset b varies while the linear gain is
always constant a = −1.

PROOF. Without disturbance, the user is not moving, we
consider without loss of generality that:

l(t) = 0, ∀t ∈ ℝ (13)

The obfuscated locations (Eq. (3)) can thus be written as:

l(t) = −
(pt)
u

(

cos �t
sin �t

)

(14)

where pt is drawn uniformly in [0, 1) and �t in [0, 2�).
As a first step to the computation of the privacy sensor of

Eq. (8), we consider the centroid lc of the undisturbed actual
location, as:

lc(t) = − 1
|T |

1
u

t
∑

i=t−T
(pi)

(

cos �i
sin �i

)

(15)

where u can be extracted from the sum as in the static case it
is independent of the time. Under the assumption that we
have sufficiently enough samples, the sum tends to 0 [5].
Indeed, this is expected, as the noise added to the data by
Geo-I has a central symmetry. With infinitely fast sampling,
one now has:

lc(t) = 0, ∀t ∈ ℝ. (16)

The distance computation of Eq. (8) is then the norm |l(k)|,
that given Eq. (14) simplifies as −(pk)

u since by definition
u ≥ 0 and (pt) ≤ 0. This allows to simplify the privacy
sensor of Eq. (8) as:

y(t) = 1
u
×
(

−2median
k∈[t−T ;t]

(pk)
)

(17)

Taking the logarithm of the former equation, one has:

log(y) = − log(u) + log
(

−2median
k∈[t−T ;t]

(pk)
)

. (18)

□
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An additional challenge of the system comes from the
variability of the b parameter. Note that this variability
comes from the realization of the random variable p, a be-
havior designed on purpose in the Geo-I algorithm to harden
location trace re-identification. The computation on the time
window T with limited samples adds to the variability of
b. Asymptotically, we have b = 0.526 in average with a
standard deviation of ±0.45.

4.1.2. Joint impact of control and disturbance
We now take into account the combined impact of dis-

turbance and control action. Given the log-nonlinearity and
the offset b highlighted in Theorem 2, we introduce new
notations using bold letters.

Notation The updated control signal is defined as:

u = log(u) − log(uL), (19)

the performance signal as:

y = log(y) − log(yL), (20)

and the disturbance signal as:

d = log(d) − log(yL). (21)

where uL is a working point (typically the center of the
control signal range of variation) and yL its corresponding
privacy level (using results of Theorem 2):

log(yL) = a log(uL) + b (22)

Note that d is a measure using the privacy sensor (see
Section 3.1.5) and is thus linearized using yL. The use of
the logarithmic function in Eq. (19) ensures that the control
signal u can take values inℝ: the constraint of non-negativity
on u has been removed.

Asymptotic behavior From Theorems 1 and 2, one can
retrieve the asymptotic behavior of the performance signal
y depending on the values of u.

Lemma 3. The asymptotic equations of the privacy y in
presence of a control action u and a disturbance d are:

lim
u→−∞

y = au, and lim
u→+∞

y = d, (23)

with the bound value, at which y switches of asymptotic
behavior, being: u0 =

d
a .

That is to say, the output y is linear with respect to the control
input u for small values of u, and constant at a disturbance-
dependent level for large values of u. The bound depends on
the disturbance level.

PROOF. When u → −∞, one has from Eq. (19): u→ 0, and
so 1

u → +∞. Thus, using Eq. (3), l become negligible and
one has:

lim
u→−∞

l = −
(p)
u

(

cos �
sin �

)

,

that, following Eq. (14), corresponds to an undisturbed sys-
tem. Then, using Theorem 2, one has:

log(y) = a log(u) + b (24)

Using the notations of Eqs. (20) and (22), this translates as:

y = a log(u) + b − log(yL)
= a log(u) + b − a log(uL) − b
= a u

(25)

Conversely, when u → +∞, that is to say for 1
u → 0, one has

from Eq. (3):

lim
u→+∞

l = l,

that corresponds to an uncontrolled system. Thus, using
Theorem 1, one has y = d. Given Eqs. (20) and (21), this
rewrites as y = d. The bound on u can be found using the
value u0 at which the two asymptotic equations meet:

y = a u0 = d. (26)

□

Transition between asymptotic trends To practically
capture the complex transition behavior of the static char-
acteristic, we opt out for identification from data.

We experimentally retrieve the static characteristic. Sev-
eral experiments are conducted with constant control signal
and disturbance, the constant values being different be-
tween experiments. Average privacy is computed for each
experiment. The control signal values u are chosen as log-
uniformly distributed in its definition range. A constant dis-
turbance is characterized by a constant dispersion of actual
data (see Section 3.1.5), expressed by a constant speed in our
experiments. The speeds are taken with various values: high,
low or null (the user is stopped).

An illustration of a static characterization is given in
Fig. 5. Those results illustrate Theorems 1 to 3: (i) the
logarithm of the privacy measure is linear with respect to
the logarithm of the control signal for low values of u and
(ii) for large values of u there is a saturation at a constant
value, whose level depends on the disturbance.

The smooth transition between linear and saturated parts
can be identified from Fig. 5 as deriving from the following
equation:

y =
ud
u
d

√

1 +
(

u
ud

)2
, (27)

with

ud = 10
log(d) − b

a . (28)

Analytical asymptotic results of Theorem 3 can be retrieved
when varying the relative value of u compared to ud (i.e.,
compared to d). Experimental validation is given in Sec-
tion 6.1.

Finally, we retrieve the static gain from Eq. (27).
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Figure 5: Static characteristics of the control input to privacy
output transfer function for various (constant) disturbance
scenario. Each data point is the averaging over a whole
experiment. Data extracted from Privamov user 51.

Theorem 4. The gainK between the controlled obfuscation
u and the privacy level y is non-linear, and depends on both
the control u and the mobility disturbance d:

K(u,d) ≜ dy
du

= −1

1 + 102
(

u− d
a

) (29)

For readability considerations, proof of Theorem 4 is in Ap-
pendix A. The gain is an input non-linearity in the sense of
the Hammerstein-Wiener modeling [52]. It is asymptotically
consistent with previous results.

4.2. Dynamic modeling
The impact of control signal time variations on the

system is now studied. Black-box identification is performed
on a stopped user, i.e., without disturbance, to ensure being
in the linear zone of the static characteristic. The dynamics of
the system are expected to come only from the time window
calculation of the privacy signal, which motivates the time
analysis over the frequency one. An input step variation is
applied in which the values of the initial and final level are
chosen in the linear range of the system (u < ud), as in the
constant part the control signal has no impact on the privacy
level. The dynamic model captured with such methodology
gathers the plant (protection app) and the privacy sensor
processes.

The evolution of privacy through time is reported in
Fig. 6. The relation between the control input and the privacy
measure can be approximated as a Hammerstein-Wiener
model, with a first order LTI transfer function and an input
non-linearity—derived from Eq. (29):

H(s) =
Y(s)
U(s)

=
K(u,d)
1 + �s

(30)
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Figure 6: Step response of the undisturbed system in its linear
zone. Privamov user 51.

s being the Laplace variable and with � = T
3 , as the rise time

corresponds to the length of the privacy metric time window
T . The non-linear gain K(u,d) reflects the saturation effect
at large control-signal values.

5. Control Strategy
The Location Privacy controller is presented, starting

with the formulation of the control objectives and followed
by a detailed description of each control component.

5.1. Specifications
The controller aims at tackling the challenge of per-

sonalization of protection mechanisms through dynamical
adaptation to users’ mobility practically. In details, users’
first objective is to keep acceptable privacy levels despite
their highly varying mobility patterns. In control terms,
this objective translates in rejecting the users’ movements
disturbance. Users can additionally specify a desired privacy
protection level (a minimal threshold), corresponding to a
reference tracking objective. This reference can vary sig-
nificantly, depending on if the user is in a utility-sensitive
or privacy-sensitive situation. The controller is desired with
zero steady state error, small overshoot (e.g. less than 10%
[39]), and a reasonable settling time with respect to the
user mobility (i.e., of T ). Indeed, the control does not aim
at increasing the rapidity of the system, as it would result
in a non-realistic mobility trace. The controller is aimed
to be implemented on a smartphone or any other mobile
device. It thus needs to show limited overhead in terms of
computation, storage, and communication to have a limited
impact on users’ experience and device battery. Given the
very large audience susceptible of being interested in privacy
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Figure 7: Control loop schema showing the three control components: a feedback, a pre-compensation and anti-windup

protection mechanisms, user-friendliness is a key feature:
very few inputs from the user should be asked. Eventually,
as the location is shared, first and foremost, for the user to
benefit from a service, the obfuscation should not degrade
significantly data utility.

To sum up, the closed-loop specifications are:
(i) reject the mobility disturbance,
(ii) follow the privacy reference and increase as much as

possible service utility when privacy constraints are
met,

(iii) induce low overhead and ask for limited users inputs.
The controller is thus composed of a feedback controller

(see Section 5.2) for reference tracking and to react to the
presence of disturbance, a pre-compensation action (detailed
in Section 5.3) to anticipate reference sharp variations, and
an anti-windup mechanism (see Section 5.4) to prevent
irrationally loosing service utility. Low-complexity versions
of those controllers components are chosen to meet the third
objective, and an emphasis is made on finding universal
control parameters to avoid any tuning by users. The control
loop is illustrated in Fig. 7, showing the articulation of the
three control components. As motivated in Section 4.1.2, the
signals are in their linearized form. We define ysp as the
linearization of the desired privacy level ysp:

ysp = log(ysp) − log(yL). (31)

The user objective is expressed in meters, i.e., a value of
ysp =100mmeans that the user does not want POIs of 100m
diameter or smaller to be retrievable.

5.2. Feedback Controller
A feedback action is used for reference tracking. Distur-

bance rejection is also ensured using a feedback controller,
as it reacts to the impact of the mobility disturbance of
the user on the privacy values, and compute accordingly a
compensatory control signal. A PI controller is used for zero
steady state error, thanks to the integral action, while being
sufficiently robust to the stochasticity of the plant (i.e., the
app) and to the effects of the disturbance.

The PI part of the controller is expressed as:

PI(s) = UPI(s)
Ysp(s) − Y(s)

=
KI
s

+KP . (32)

Tuning guidelines. The parameters are tuned using pole
placement as detailed in [6]:

KI = �
KL.�obj

, KP = 1
KL.�obj

, (33)

with �obj the pole of the objective closed loop, fixed by
the desired response time. In our privacy use-case, the user
sets its desired POI duration time T in the definition of the
privacy signal (see Eq. (8)). To have a control loop faster
than the system, we set �obj = �

3 . The linear gain is used:
KL = a.

The PI controller is the discretized to cope with the non-
constant sampling time:

uPI(ti) =
(

KI (ti − ti−1) +KP
)

e(ti)−KP e(ti−1)+uPI(ti−1)
(34)

with e(ti) = ysp − y being the error.

5.3. Pre-compensation Control
A pre-compensation action is added to enhance refer-

ence tracking. The reference signal can present large and
sudden variations. This happens for instance when the user
urgently needs a service (such as starting navigation) or
conversely finished using it (end of the course). The pre-
compensation control anticipates the effect of such sudden
reference changes. Using a purely reactive control would
cause significant drifts during the sharp reference variations.

We use a pre-compensation action as an anticipation
control, able to deal with the changes of the reference signal:

uPC(t + 1) =
ysp(t)
K

(35)

Both pre-compensation and feedback controllers are thus
soundly tuned without the need for users inputs.

5.4. Anti-windup
The anti-windup action has two purposes: i) ensuring

that the control signal will not take extremely low values
which would result in tremendous data distortion, and ii) en-
suring that it does not reach significantly high values for
which the utility gain is negligible whereas the controller
would need too much time to react and decrease the control
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Figure 8: Static modeling evaluation: the non-linear static gain
allows for a fine fit to experimental data. Privamov user 51.

signal. To ensure such behavior, an anti wind-up strategy is
added as well as an actuator saturation [49]:

{

uPI = min(max(uPI, 2ū), 2
̄
u),

u = min(max(uPC + uPI, ū),
̄
u). (36)

where thresholds ū and
̄
u are chosen according to Geo-I’s

common range of variations, ensuring the stability of the
system. Note that the PI action has a wider range of variation
allowed, as the pre-compensation may significantly shift the
global control action.

6. Evaluation
We first present the validation of the model and con-

troller using real-life data. Evaluation of the generality of
the control to several users from various datasets is then
performed. Analysis of utility preservation and overhead
ends the section with practicality concerns.

Models and control parameters values are summarized in
Table 1. We consider that the time window (T in the privacy
definition) is to be set by the users so that their points of
interest are hidden. In our case, we chose to protect places
where the users stay longer than T = 15min. This avoids
insignificant stops such as waiting at a traffic light to be
obfuscated, while being ambitious on the points of interest to

Parameter Value Parameter Value
T 15min uL 10−2m−1

a -1 yL 335.7m
b 0.526 �obj 15 min
KL -1 KP -0.334
� 5 min KI -0.0011

Table 1: Values of all the parameters for the model and
control algorithm
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Figure 9: Dynamic model validation: robustness to user’s
mobility. Experimental data in blue and proposed model in
orange. Privamov user 51.

protect: not only work and home places but also information
such as shopping, meeting, or worship places. All others
parameters are drawn from theory developed in Sections 4
and 5, linearization of the control signal is done at the center
of its definition range.

Experiments are carried out using Python 3 on a laptop
equipped with an Intel Core i7-1185G7 CPU clocked at
3GHz x 8, running under Ubuntu 20.04 LTS. Codes for
reproducing experiments and analysis are made open [11].

6.1. Model validation
We evaluate the accuracy of the model in capturing the

privacy level of a user through time, knowing the control
input (protection app parametrization) and the disturbance
(user’s movement). We consider the non-linear model of
Eq. (29), and compare it with the linear asymptotic gain
K = a as in Theorem 3. First modeling performance is
shown without considering time influence (static scenario),
then the prediction accuracy in real-time is presented.

6.1.1. Static privacy prediction
The static characteristic shows the impact of the control

signal u on the privacy value y. Experimental results of
Fig. 5 are compared to the models predictions in Fig. 8. The
parameter b is found using linear regression (implemented
through sklearn in Python): b = 0.26. The linear model (con-
tinuous line) successfully captures the system’s behavior for
small values of the control signal. However, when the user is
moving at high speed, the linear model performs correctly on
less than a fourth of the control input range. The non-linear
model (dashed, dotted and dashed-dotted lines depending
on the value of the disturbance) successfully captures the
saturation effect. The smooth transition between linear and
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Figure 10: Dynamic model evaluation: handling control signal
variations. Experimental data in blue and model in orange.
Privamov user 51.

saturated zone is correctly modeled, allowing for a refined
control action around the non-linearity breakpoint. Results
of Fig. 8 favor the use of the non-linear model over the linear
one, as in the following dynamic modeling evaluation.

6.1.2. Dynamic privacy prediction
This section investigates the dynamic aspect of the

model, i.e., its ability to predict in real-time the privacy level
of a user.

Fig. 9 presents the privacy measured (blue dots) and
modeled (orange line) through time in the top plot; for
a constant control signal (set at u = uL, middle plot)
and under a challenging disturbance (bottom plot). A 24-
hour mobility trace of the user 51 from Privamov dataset
(chosen randomly) is used as experimental data. The distur-
bance presents both high and low frequency variations, as
well as non-constant sampling time, as can be seen around
9100min. The predicted privacy value (continuous orange
line) corresponds to the measured privacy (blue markers)
with very good accuracy, despite the highly varying distur-
bance. Dealing with non-constant sampling is however dif-
ficult, as highlighted by the occurrence of small oscillations
of the model prediction around 9100min.

In a second time, the control signal is randomly varied,
and the model performances are illustrated in Fig. 10. The
random control signal is generated with various amplitudes
(u ∈ [−2, 2] ) and periods (from 10 s to 30min), and is
reported on themiddle plot. The top plot presents the privacy
levels: one can see again a precise fit between the measured
values (blue crosses) and the prediction (orange line).We see
again here the impact of non-constant sampling through the
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Figure 11: Controller validation: robustness to user’s mobility.
Comparison of our proposed control strategy with a static
protection app configuration (i.e. without control) and a non-
protected user (i.e. without protection). Note that the control
signal plot shows a constant signal at u = 0, corresponding
to the constant parametrization of Geo-I without control.
Privamov user 51.

appearance of high frequency behavior. However, these inac-
curacies may not be detrimental to the control performance,
which supports the use of the non-linear model.

To sum-up, the modeling is fairly accurate both in steady
and in dynamical state.

6.2. Analyzing Controller’s performance
The controller performance is evaluated with regard to

the objectives presented in Section 5. First the robustness
to the user’s mobility disturbance is studied, then its ability
to follow a privacy reference specification is evaluated.
Utility and control overhead are discussed respectively in
Sections 6.4 and 6.5.

In all the controller evaluation experiments, results of
several strategies are presented for comparison. The privacy
level achieved with our control strategy is compared to the
privacy level of the user without protection. We recall
that this level is not null, as the user’s speed inherently
provides some protection. Comparison is also given with the
privacy achieved when using a protection app with a static
configuration at u = 0, i.e., without control. Note that this
strategy corresponds to the state-of-the-art protection mech-
anism Geo-I. The comparison with the scenario without
protection enables to show moments when no obfuscation
is needed, while the comparison with the scenario without
control illustrates the benefits of a dynamic configuration of
the protection app.
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Figure 12: Control validation: handling privacy with reference
variations. Note that the control signal plot shows a constant
signal at u = 0, corresponding to the constant parametrization
of Geo-I without control. Privamov user 51.

6.2.1. Robustness to disturbances
First, the controller’s robustness to the presence of a

highly varying disturbance is evaluated. The privacy refer-
ence value is fixed and set at ysp =102m, i.e., ysp = −0.526.
Results are given in Fig. 11: the top plot presents the privacy
signals of the different scenarios (without protection, with-
out control and with our control) and the constant reference;
the middle plot shows the control signal; and the bottom plot
the disturbance.

During most of the experiment, the user has a privacy
level without protection lower than the reference. In those
moments, the control leverages the control signal to meet
the reference with a good precision. Without control, the
privacy level is high and close to the reference, however with
a static error.

Around 8000min, the disturbance oscillates with large
amplitudes: the system without protection shows an in-
creased privacy. The control signal is then increased by the
controller up to the upper bound. Remind that a high control
value means little noise added to the mobility data (due to
the inverse formulation in Eq. (3)), which results in utility
savings. The scenario without control but with a constant
u enables to preserve a high privacy level throughout the
experiment, at the cost of constant data obfuscation, which
has a high utility cost (see Section 6.4 for quantified details)

Those results validate the use of the controller to be
robust to users’ mobility with a limited utility cost.

6.2.2. Reference tracking
Second, we evaluate here the ability of the controller to

achieve user’s time-varying reference privacy level.
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Figure 13: Control validation on different users. Privamov 14

user. Fast and uniform sampling provides smoother control.

Fig. 12 shows experiments with the same disturbance
(i.e. we use the same mobility trace previously presented)
whereas with a varying reference scenario in this case (pink
continuous line). The reference consists of a random signal
generated with varying amplitude (ysp ∈ [−2, 2]) and period
(from 5min to 5 h).

When the privacy reference value is higher than the
privacy without protection, the controller increases the
control signal so that the privacy with control meets the
reference value. The reference tracking is (i) stable, despite
the modeling high frequency variations; (ii) precise, the
static error is null even if some noise is visible due to the
system stochasticity; (iii) fast, the rise time is of the order of
10minwhile the settling time can reach 50min, and (iv)with
some overshoot, which amplitude varies from about 10%
at 9150min to 40% at 8150min. Rapidity and overshoot
could be improved, for example usingmore advanced control
techniques. The scenario without control is not able to
follow the reference when it is too high (see for instance
from 8000min to 8580min) while uselessly degrading the
service quality at other periods (see for instance 8920min to
9170min).

Overall, the presented controller manages to precisely
follow the dynamic reference and reject the mobility distur-
bance with a user-independent configuration, a low compu-
tation overhead and limited control cost.

6.3. Robustness: evaluation on different users and
datasets

The controller’s ability to adapt to other users’ behavior
without any change on the control algorithm (i.e., with the
same tuning) is now evaluated.

A similar approach of random reference signal is applied
to another user of the same dataset (Fig. 13) and two users
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Figure 14: Control validation on different users. Cabspotting
abboip user.

from another dataset (Figs. 14 and 15). As Section 6.2
showed the advantage of our control compared to the sce-
nario without control, for improving the reading, we show
only the comparison to the scenario without protection—
as it enables to explain why some low reference values
cannot be tracked. Globally, in all experiments the control
privacy reached the desired reference value while without
protection the privacy protection level is poor.

The user of Fig. 13 shows a significantly different sce-
nario, with a strong disturbance (low privacy without pro-
tection) due to its low speed (in average around 5 kmh−1,
i.e., someone walking). The control shows high perfor-
mance in terms of precision in this case, and little static
noise. This user illustrate a second challenge: dealing with
record absence, i.e., anomaly large sampling period, see
945min to 975min. Despite such extreme conditions, the
control stays stable and converges to the reference in a few
tens of minutes.

We now evaluate our control with the data of users
from another dataset, i.e., with different recording condi-
tions. The disturbance signal from Fig. 14 illustrates those
differences: i) the sampling time is larger (30 s in average)
and ii) the users move faster (as they are in cars), leading
to higher values of disturbance. Despite the large sampling
periods, i.e., fewer control actions, the control keeps the
privacy level at the reference value with good precision. The
control rapidity is similar, while the steady state presents
large oscillations due to large oscillations in the disturbance
signal. The privacy level without protection is globally
high, with moments where it is higher than the reference, see
for instance 420min to 600min. In those cases, the control
sets the input to its maximumvalue, meaning very little noise
(1m) is added to the data, so utility is preserved. Note that
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Figure 15: Control validation on different users. Cabspotting
oilrag user.

this behavior is not detrimental to our use-case, as utility is
maximal and privacy is high (even above the reference).

The last user of our comparison, in Fig. 15, also presents
long sampling periods and high disturbance values; while
additionally i) data are not collected for a long period, from
80min to 190min, and ii) the disturbance shows very large
and quick variations. Even in those extreme conditions of
few control actions possible and extremely long sampling
period, the control stays stable and precisely tracks the
reference. The large and rapid variations of the disturbance
and privacywithout protection are challenging for our con-
troller, that however manages to keep tracking the reference
while with significant noise around the desired value.

Those results show the generality and robustness of the
controller that is able to perform correctly, with the same
parameters, with various users from different datasets. Our
controller has shown to be practical thanks to its universality,
while being able to adapt to time variations, thus allowing
for personalized privacy protection. In addition to the user
behavior (disturbance variation profile), the recording con-
ditions (non-constant sampling with large non recording pe-
riods) also affect the controller. Despite those challenges, our
control reaches fast and accurate performances in favorable
conditions (stable and fast sampling rate) while being stable
and still performing fairly good in degraded conditions.

6.4. Utility preservation
After validating the privacy-related performance of the

controller, the preservation of data utility is evaluated. Be-
forehand, the methodology and metrics are presented.
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User
Configuration Distortion z (in m) Service Utility zservice (in %)

strategy median 90tℎ percentile NavigationLyon NavigationSF VenueFinder WeatherForecast
(thd=10m) (thd=100m) (thd=1 km) (thd=10 km)

51
control 167.3 404.3 1.3 27.5 99.9 100

without control 165.5 390.2 0.5 27.0 99.9 100

14
control 172.6 414.5 1.8 25.3 99.7 100

without control 169.6 393.0 0.4 26.2 100 100

abboip
control 2.7 162.1 71.6 85.1 98.9 99.3

without control 166.1 375.7 0.2 24.9 99.3 99.3

oilrag
control 2.0 47.7 83.1 90.0 97.4 97.6

without control 163.8 378.5 0.0 24.7 97.7 97.7
the lower the better the higher the better

Table 2: Utility Evaluation for all users. Best results are in bold.

6.4.1. Metrics
Several indicators are used to capture the diversity of the

utility notion, both theoretically and in practice. First, we in-
vestigate the spatial distortion of data, as a general but theo-
retical utility notion. Then, we compute service-based utility
metrics, that evaluate the functionality of different location-
based services (such as navigation or weather forecast) based
on our sanitized data. Details of their computation are given
hereafter.

Firstly, we evaluate data distortion, that allows compari-
son with state of the art. More specifically, we compute the
instantaneous spatial distortion between the original location
and the obfuscated one, z, following equation (5). The me-
dian value and the 90tℎ percentile (worst-cases) aggregated
over the whole trace are computed [37] to give a per-user
utility evaluation. While those metrics enable to have an
overall idea of the data distortion, they are not able to capture
service quality loss [2].Most location-based services present
a threshold-based behavior: if the distortion is lower than the
service-specific threshold, the service can still work, while if
it is higher, the service gives useless results. As an example,
in a dense European city such as Lyon (place of Privamov
records), a Navigation app can provide the desired route if
data spatial distortion is lower than about 10m; while the
app may give a wrong route if distortion is higher, resulting
in zero utility. AWeather Forecast service presents the same
behavior: the forecast is accurate for data with a distortion
below around 10 km, while above this threshold, the weather
can considerably change. To capture this binary threshold-
based behavior, Service Utility metrics zservice are defined
for 4 representative services. zservice gives the proportion of
the time a given service worked correctly, computed based
on a threshold thd on data spatial distortion:

zservice = mean 1X<thd(z) (37)

In addition to the above-mentioned examples, a Navigation
app used in San Francisco is considered (record place of
Cabspotting), a city in which blocks are of much larger size
than in Lyon, thus a threshold value of 100m. A Venue
Finder app completes the metrics, for which a spatial dis-
tortion threshold of 1 km is used.

6.4.2. Evaluation
Distortion and service-based metrics are computed on

the data from the experimental evaluation presented in Sec-
tions 6.2 and 6.3. Results are given in Section 6.4.2. For each
user, we compare the scenario with control (our approach)
and without control (static configuration with u = 0, i.e.,
state of the art). For a fair comparison, we set ysp = 0 so that
to have similar privacy performance in both scenarios.

First, we analyze the spatial distortion, for which lower
values are better. Significantly lower values are achieved
with the control than without, for all users. For abboip and
oilrag users, the very low values of the medians of about
2m show negligible control impact half of the time. Indeed,
when the user is moving, no protection is needed, so no noise
is added to the data; which guarantees a perfectly efficient
service. Without control, a constant noise is nevertheless
applied, resulting is significant distortion and loss of utility.
Users 14 and 51 show higher distortion, due to their profile
with a strong disturbance (i.e., low speed, easily extrica-
ble points of interest). Note that for 90% of the data, the
distortion with control significantly lower than without for
abboip and oilrag users. For the other users, results with
and without control are comparable: less 400m distortion
for 90% of the data points.

Service utility metrics complete the analysis with con-
crete impact on location-based services. Low demanding
services such as weather forecasting and venue finder are
almost always usable (> 97% of the time), for all users
and both with and without control. The most demanding
service, i.e., navigation in Lyon, is functional more than
70% of the time for the users with low disturbance (abboip
and oilrag), while the service cannot be used at all for the
strongly disturbed users (the service works less than 2%
of the time). On those demanding services, the controller
ensures significantly better utility than without.

As a conclusion, the unavoidable utility degradation
inherent to the privacy protection can be observed, while
during most of the trace and for most services, the utility
is preserved with our control approach. In comparison to a
static protection without control, the service quality levels
achieved with the dynamic control are significantly higher,
especially for users with a high mobility. Our controller is
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practically usable, without much service degradation, while
preserving privacy.

6.5. Control overhead
The overhead due to the use of our control is evaluated

according to three aspects: computation, storage and com-
munication. We first evaluate the overhead of control, i.e.,
the dynamic decision on parametrization, and then the one
of the obfuscation algorithm—even if it is state of the art.

The computation complexity of the controller, defined by
Eqs. (34) and (35), is O(1). Experimental tests have shown
a computing time of the magnitude of the millisecond for
a control decision, that is negligible in regards with the
sampling period of the datasets (10 s to 60 s). The impact
on storage is also negligible, as our first order controller
only requires to store data from the last sampling period.
Eventually, the impact is null on communication, as only one
data point is sent to the service, exactly as in the scenario
without control. The computational complexity of Geo-I is
higher than our control, as it consists in drawing two random
variables and apply the Lambert W function, while it stays
largely negligible. Geo-I has no communication or storage
overhead.

To conclude, the controller introduces very few compu-
tation and storage overhead and no extra communication.
This approach is therefore suitable for a practical implemen-
tation on a smartphone, with guarantees of fast execution
and low battery usage. Other control algorithms with higher
computational complexity could thus be used, they will be
investigated in future work.

6.6. Discussion
We now discuss the performance and limitations of our

proposed protection mechanism in front of a set of different
attacks and analytics. We first consider the case of a reidenti-
fication attack based on POIs [43]. Our approach completely
obfuscates POIs which diameter is smaller or equal to the
reference value. Knowing the attack parameters, one can
thus defend against it by soundly setting the reference signal.
Let us now consider an attack aiming at reconstructing
transportation means. It is based on analytics on the speed
and acceleration of the users. With our approach, random
noise is added to the positions, which means that speed
and accelerations are distorted. No valuable information can
thus be extracted on the transportation means. A popular
analytics of mobility data consist in building heat maps [36].
Note that those heat maps can be seen both as privacy attacks
(to perform reidentification for instance) and service utility
(e.g. for traffic analysis). Depending on the relative value of
the heat map granularity and on the privacy reference set in
our framework, this analytics can be distorted or preserved.
Eventually, let us consider the case of filtering of the mo-
bility data, e.g. using a Kalman filter. Our approach adds
dynamically varying noise on data, which can be filtered out
by a well-performing attack.
As for future works, other control approaches could be
investigated, allowing for instance to preserve some utility-
related features of mobility data (e.g. speed for a navigation

app). Optimal approaches would enable to remove the need
for stochasticity in the noise, thus providing robustness to
filtering attacks.

7. Related Work
We situate the contributions of our work with respect to

two research areas: on deriving privacy metrics computable
online, and on adapting protection mechanisms in time,
space, and for each user.

7.1. Online privacy measures
Privacy metrics are of three main types: [43] (i) ex-

tracted from formal guarantees (like k-anonymity or differ-
ential privacy), (ii) computed from attacks, or (iii) based
on data-distortion. Formal guarantees require knowledge of
a dataset with different users, which make those metrics
unusable in our user-based, online scenario. Attack-based
metrics evaluate the accuracy, correctness and certainty of
a given privacy attack on data [45]. They present three
main limitations: being specific to a particular attack, high
complexity thus low practicality, and unfeasible privacy
protection with decent utility. In particular, efforts have been
made toward online metrics by considering the time corre-
lation between data [53], however at the cost of exponential
complexity [54].While bounding techniques allows formore
efficient computation, the complexity of this approach is
much higher compared to our POI-based metric. Defeating
a well-performing privacy attack has been shown infeasible
in practice if users want to keep a decent data utility [32].
Alternative metrics are needed that can capture the utility to
privacy trade-off.

We rely on a privacy metric based on data dispersion,
i.e., POI, that belong to the data distortion metrics. State-of-
the-art POI metrics are offline [22, 19, 33, 9], they require
the whole trace to be computed. Our paper contributes in
presenting the first privacy metric based on POI that can be
computed online. Our approach also has the benefit of being
general, and not optimized for a specific attack foiling.

7.2. Dynamic location protection
The location privacy literature proposes few works on

the protection apps configuration challenge, most of them
treating the problem as a static one—i.e., working on already
collected databases, possibly of temporally uncorrelated lo-
cations—and able either to work on a specific mechanism
[14, 3] or to choose between several [42, 10]. L2P2 [51] is
a dynamic objective-driven protection configuration law for
location privacy. It leverages the size of the cloaking area
in which the location is reported. Even if the configuration
adapts to the changes in the reference privacy, the algorithm
does not take into account the user’s movements, unlike
our approach. The control literature regarding differential
privacy is mainly focused on designing attacks using state or
input observations [17, 29]. Few works have addressed the
configuration challenge of the differential privacy parameter
[16, 12, 31], but always in a static way, i.e., not taking
time variations into account. A feedback control approach
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for privacy has been introduced by Wang et al. [50], con-
sidering a general differential-privacy mechanism and an
attacker performing state observation. However, this work
is not specific to the location scenario and the controller
(a unit gain feedback) is not considered from a robustness
perspective, as the mobility application requires. A dynamic
sampling method to protect the release of vehicle’s real-
time trajectory data has been proposed [25], with drawback
regarding temporal distortion, imposing to the user a delay of
the service. Personalized privacy protection can be achieved
using a user profile (assuming a priori knowledge of the
user’s POIs) [38]. This user profile is used to adapt geograph-
ically GeoI’s noise distribution, i.e., not its parametrization
but changing the Laplacian distribution for an optimal one.
The main limits of this work are the assumption of a priori
user knowledge (detrimental to usability in practice), time
is considered as a series of service queries (and not as a
regular location broadcast), and results are restricted to a 1D
scenario. Adaptive location preserving privacy mechanisms
[4, 28] adjust the amount of noise required to obfuscate
the user’s location based on the correlation level with its
previous obfuscated locations. Those works take as privacy
metric the predictability of one’s mobility, which is orthog-
onal and complementary to our POI-based approach.

8. Conclusion
This work tackles the challenge of robust dynamic pri-

vacy protection of a mobile apps’ user. This online scenario
is particularly sensitive to privacy attacks if a malicious
agent has access to the real-time position of the user. Focus
is made on the protection of user’s points of interest, an
indicator of behavior and identity. Protection mechanisms
from the literature come with an unavoidable reduction of
the service utility, as information is deteriorated to ensure
privacy. We tackle three challenges of such protection apps:
(i) their usability in practice by non experts, especially
regarding their configuration, (ii) the possibility to dynami-
cally change one’s privacy level requirements through time,
and (iii) the robustness to users’ mobility specificities to
have personalized protection. We present a control-based
approach enabling users to control their privacy when using
such protection mechanisms, while keeping an eye on utility
loss, regardless of their mobility patterns. Contributions
are on the novel problem formulation and particularly a
definition of real-time (points of interest oriented) privacy
metric; on the non-linear modeling of the system; and on
a control strategy with universal configuration. Evaluation
carried out using real data highlights the performance and
robustness of the controller for all users, with high ser-
vice utility preservation and low computational overhead.
Control algorithm and evaluation codes are available online
[11]. Further directions of study can suggest the presentation
of the control problem as a global optimization problem
solvable online or where prediction of the mobility patterns
could be taken into account, e.g., using machine learning.
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A. Proof of Theorem 4
PROOF. From Eq. (20) and given Eq. (27), we have:

y = log
⎛

⎜

⎜

⎝

ud
u
d

√

1 +
(

u
ud

)2⎞
⎟

⎟

⎠

− log yL (38)

Simplifying the logarithm of products and powers, one has:

y = log(udd) − log u+ 1
2
log

(

1 + u2

u2d

)

− log yL (39)

Using the identity u = 10log u and expressing u from u
(Eq. (19)):

y = log(udd) − u − log uL
+ 1

2 log
(

1 + 1
u2d
102u+2 log uL

)

− log yL
(40)

Now we compute the non-linear gain by deriving y accord-
ing to u. Several constant terms (relative to u) cancel out:

K ≜
dy
du

= −1 +
[

1
2 log

(

1 + 1
u2d
102u+2 log uL

)]′ (41)

to derive the function composition, we use a temporary

notation f (x) = log
(

1 + x
u2d

)

and g(x) = 102x+2 log uL .

Given that f ′(x) = 1
ln(10)×(u2d+x)

and g′(x) = 2 ln(10) ×

102x+2 log uL :

K = −1 + 1
2f

′(g(u))g′(u)

= −1 +
2 ln(10) × 102u+2 log uL

2 ln(10) × (u2d + 102u+2 log uL )
(42)

After simplification of 2 ln(10) terms and grouping terms
under the same denominator, one has:

K =
−u2d

u2d + 102u+2 log uL

= −1

1 + 102u+2 log uL
u2d

(43)

From Eq. (28) and introducing the notation d of Eq. (21),
one has:

ud = 10
d + log(yL) − b

a = 10
d
a+log(uL) (44)
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given Eq. (22).
Changing ud by Eq. (44) in Eq. (43):

K = −1

1 + 102u+2 log uL−2
d
a−2 log(uL)

= −1

1 + 102u−2
d
a

(45)

□
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