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Abstract
We propose a new method, dubbed One Class
Signed Distance Function (OCSDF), to perform
One Class Classification (OCC) by provably learn-
ing the Signed Distance Function (SDF) to the
boundary of the support of any distribution. The
distance to the support can be interpreted as a
normality score, and its approximation using 1-
Lipschitz neural networks provides robustness
bounds against l2 adversarial attacks, an under-
explored weakness of deep learning-based OCC
algorithms. As a result, OCSDF comes with a
new metric, certified AUROC, that can be com-
puted at the same cost as any classical AUROC.
We show that OCSDF is competitive against
concurrent methods on tabular and image data
while being way more robust to adversarial at-
tacks, illustrating its theoretical properties. Fi-
nally, as exploratory research perspectives, we
theoretically and empirically show how OCSDF
connects OCC with image generation and im-
plicit neural surface parametrization. Our code
is available at https://anonymous.4open.
science/r/CSDFL.

1. Introduction
One class classification (OCC) is an instance of binary clas-
sification where all the points of the dataset at hand belong
to the same (positive) class. The challenge of this task
is to construct a decision boundary without using points
from the other (negative) class. It has various safety-critical
applications in anomaly detection, for instance to detect
banking fraud, cyber-intrusion or industrial defect, in out-
of-distribution detection, to prevent wrong decisions of Ma-
chine Learning models, or in Open-Set-Recognition. How-
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ever, OCC algorithms suffer from limitations such as the
lack of negative data, and robustness issues (Azizmalayeri
et al., 2022), the latter being an under-explored topic in the
OCC spectrum. Even though some algorithms do not use
negative examples, many work cope with the lack of nega-
tive data with Negative Sampling, either artificially (Sipple,
2020) or using outlier exposure (Hendrycks and Dietterich,
2019; Fort et al., 2021). However, such samplings are often
biased or heuristic. As for robustness, although some works
design robust algorithms (Goyal et al., 2020; Lo et al., 2022),
it is always only empirically demonstrated (Hendrycks and
Dietterich, 2019).

In this paper, we introduce a new framework to perform
OCC based on the Signed Distance Function (SDF), a func-
tion traditionally used in computer graphics. Assume the
positive samples are independently and identically obtained
from a distribution PX with compact support X ⊂ Rd.
Let ∂X = X/X̊ be the boundary of the distribution. The
Signed Distance Function is the function S : Rd → R:

S(x) =

{
d(x, ∂X ) if x ∈ X ,
−d(x, ∂X ) otherwise,

(1)

where d(x, ∂X ) = infz∈∂X ∥x− z∥2. The idea of our algo-
rithm, which we call One Class Signed Distance Function
(OCSDF) is to learn the SDF to the boundary of the positive
data distribution and use it as a normality score. We show
that the Hinge Kantorovich-Rubinstein (HKR) loss intro-
duced by (Serrurier et al., 2021) allows provably learning
the SDF with a 1-Lipschitz network.

SDF exhibits desirable properties. First, by implicitly
parametrizing the domain X , it allows efficiently sampling
points outside of X and performing principled Negative
Sampling. Second, the SDF fulfils the Eikonal equation:
∥∇xS(x)∥ = 1. In particular, S is 1-Lipschitz with respect
to l2-nom : ∀x, z ∈ Rd, ∥S(x)−S(z)∥2 ≤ ∥x− z∥2. This
property provides exact robustness certificates for OCSDF
in the form of a certified AUROC that can be computed at
the same cost as AUROC. This regularity translates into
solid empirical robustness as compared to other OCC base-
lines. In other words, OCSDF alleviates the lack of negative
data and the robustness issue. We go further and highlight
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Figure 1. Summary of One Class Signed Distance Function (OCSDF). We start with an uniform negative sampling, then we fit a 1-
Lipschitz classifier fθ using the Hinge Kantorovich-Rubinstein loss. We apply the Adapted Newton Raphson algorithm 1 to attract the
points towards the boundary of the domain ∂X thanks to the smoothness of fθ , which in addition allows providing robustness certificates.

interesting research perspectives regarding OCSDF. Indeed,
we show that learning the SDF with a 1-Lipschitz network
enables a generative procedure that allows visualizing points
at the boundary of X . Moreover, It implicitly parametrizes
the shape of X , which connects One-Class Classification
with implicit surface parametrization, intensively used in
computer graphics for shape reconstruction.

Our contributions are as follows. (1) We introduce a new
OCC framework based on the Signed Distance Function
to the boundary of the data distribution. We theoretically
demonstrate that the SDF can be learned with a 1-Lipschitz
neural net using the Hinge Kantorovich-Rubinstein (HKR)
loss and Negative Sampling; (2) We evaluate the perfor-
mances of OCSDF on several benchmarks and show its
benefits for theoretical and empirical robustness; and (3) we
demonstrate how OCSDF extends the applications of One
Class Classification from traditional OOD detection to gen-
erative visualization and implicit surface parametrization
for shape reconstruction from point clouds.

2. Related Work
One Class Classification (OCC) OCC is an instance of
binary classification where all the points of the dataset at
hand belong to the same (positive) class. The challenge of
this task is to construct a decision boundary without using
points from the other (negative) class. OCC amounts to find-
ing a domain containing the support of the data distribution.
That is why OCC is mainly used in Out Of Distribution
(OOD), anomaly or novelty detection, with positive samples
considered In Distribution (ID) and negative ones as OOD,
anomalies or novelties. This task dates back to (Sager,
1979; Hartigan, 1987) and was popularized for anomaly
detection with One-class Support Vector Machines (OC-
SVM)(Schölkopf et al., 1999). Since then, the field of OCC
has flourished with many well-established algorithms such
as Local Outlier Factors (Breunig et al., 2000), Isolation

Forests (Liu et al., 2008) and their variants (see (Han et al.,
2022) for a thorough benchmark). More recently, since
Deep-SVDD (Ruff et al., 2018) - followed by several works
such as (Bergman and Hoshen, 2019; Golan and El-Yaniv,
2018; Goyal et al., 2020; Zenati et al., 2018; Sabokrou et al.,
2018) - Deep Learning has emerged as a relevant alterna-
tive to perform OCC due to its capacities to handle large
dimensional data. However, methods of this field suffer
from their lack of robustness and certifications, which
makes them vulnerable to adversarial attacks. In addition,
they always struggle to cope with the lack of OOD data.
In this paper, we tackle these problems with an OCC algo-
rithm based on approximating the SDF using 1-Lipschitz
neural nets. In addition, the SDF being intensively used in
Computer Graphics, our algorithm establishes a new link
between OCC and implicit surface parametrization.

SDF for neural implicit surfaces Historically, signed
distance functions have been used in computer graphics to
parametrize a surface as the level set of some function (Nov-
ello et al., 2022). Given an incomplete or unstructured
representation of a geometrical object (like a 3D point cloud
or a triangle soup), recent methods aim at representing a
smooth shape either as vectors in the latent space of a gen-
erative model (Achlioptas et al., 2018; Ben-Hamu et al.,
2018; Groueix et al., 2018; Chou et al., 2022) or directly
as parameters of a neural net (Park et al., 2019b; Atzmon
and Lipman, 2020). The first method allows for easy shape
interpolation, while the latter proved to be a more robust ap-
proach (Davies et al., 2021). Those neural implicit surfaces
alleviate both the problems related to memory requirements
of voxel-based representations and the combinatorial na-
ture of meshes, making them ideally suited for rendering
using ray marching (Hart, 1995) and constructive solid ge-
ometry. In those contexts, the constraint ∥∇xf(x)∥ ≤ 1 is
necessary to guarantee the validity of the geometrical query
while having ∥∇xf(x)∥ as close as possible to 1 allows for
greedier queries and faster computation times. In practice,



training an SDF requires a dataset (p, d) of points p ∈ R3

with their corresponding signed distance d to the desired
surface. Computing those distances requires the existence
and availability of a ground truth, which is not always the
case. Moreover, training tends to be unstable in general, and
special care is needed for most computer graphics applica-
tions (Sharp and Jacobson, 2022). Our method can instead
be trained to approximate a surface without prior knowledge
of the distances and is provably robust.

1-Lipschitz neural nets As noticed in (Béthune et al.,
2022; Brau et al., 2023) 1-Lipschitz neural nets (Stasiak
and Yatsymirskyy, 2006; Li et al., 2019b; Su et al., 2022) are
naturally linked to the signed distance function. In particular,
they are 1-Lipschitz, i.e. they fulfil ∥∇xf(x)∥ ≤ 1 on the
whole input space. They boast a rich literature, especially
for convolutional neural nets (Gayer and Sheshkus, 2020;
Wang et al., 2020; Liu et al., 2021; Achour et al., 2022;
Li et al., 2019a; Trockman and Kolter, 2021; Singla and
Feizi, 2021). These networks benefit from several appealing
properties: they are not subject to exploding nor vanishing
gradients (Li et al., 2019a), they generalize well (Bartlett
et al., 2019; Béthune et al., 2022), and they are elegantly
connected to optimal transport theory (Arjovsky et al., 2017;
Serrurier et al., 2021). 1-Lipschitz neural nets also benefit
from certificates against l2-attacks (Li et al., 2019a; Tsuzuku
et al., 2018); hence the approximation of S is robust against
l2-adversarial attacks by design.

Robustness and certification While robustness comes
with many aspects, this work focuses mainly on adversar-
ial attacks (Szegedy et al., 2014). Extensive literature ex-
plores the construction of efficient attacks (Goodfellow et al.,
2014) (Brendel et al., 2018) (Carlini and Wagner, 2017). As
nearly any deep learning architecture is vulnerable, defenses
have also been developed with notably adversarial training
(Madry et al., 2018) (Zhang et al., 2019)(Shafahi et al.,
2019), or randomized smoothing (Cohen et al., 2019)(Car-
lini et al., 2023). Since early works pointed out the link
between the Lipschitz constant of a network and its robust-
ness, Lipschitz-constrained networks have also been studied
(Anil et al., 2019) (Serrurier et al., 2021). Similarly to classi-
fiers, OCC Algorithms based on deep neural nets suffer from
their natural weakness to adversarial attacks (Azizmalayeri
et al., 2022). Although some works design robust algorithms
(Goyal et al., 2020; Lo et al., 2022), the robustness achieved
is always only empirically demonstrated (Hendrycks and
Dietterich, 2019). Few works provide theoretical certifi-
cations (we only found (Bitterwolf et al., 2020) based on
interval bounds propagation). In this work, we leverage the
properties of 1-Lipschitz networks to provide certifications.

Tackling the lack of OOD data The previously men-
tioned OCC and OOD algorithms, as well as many others
(Hendrycks and Gimpel, 2018; Hsu et al., 2020) are de-
signed to avoid the need for OOD data. However, some

works aim at falling back to classical binary classification
by artificially generating negative samples. The idea of
Negative Sampling is not recent and appeared in (Forrest
et al., 1994) for detecting computer viruses or to emulate
the distinction made by antibodies between pathogens and
body cells (Gonzalez et al., 2002). It has been introduced in
anomaly detection by (Ayara et al., 2002) and studied by sev-
eral works summarized in (Jinyin and Dongyong, 2011), but
has lost popularity due to its practical inefficiency (e.g. com-
pared to One-Class Support Vector Machines (OCSVM)
(Stibor et al., 2005)). Recently, some works revived the
idea of using OOD data, either by artificial negative sam-
pling (Lee et al., 2018; Sipple, 2020; Goyal et al., 2020;
Pourreza et al., 2021), or by using OOD data from other
sources, a procedure called outlier exposure (Fort et al.,
2021; Hendrycks et al., 2019). However, outlier exposure
suffers from bias since OOD data does not come from the
same data space. Therefore, we follow the first idea and
sample negative data points close to the domain X , thanks
to the orthogonal neural nets-based estimation of the SDF.

3. Method
The method aims to learn the Signed Distance Function
(SDF) by reformulating the one-class classification of PX

as a binary classification of PX against a carefully chosen
distribution Q(PX). We show that this formulation yields
desirable properties, especially when the chosen classifier is
a 1-Lipschitz neural net trained with the Hinge Kantorovich-
Rubinstein (HKR) loss.

3.1. SDF learning formulated as binary classification
We formulate SDF learning as a binary classification that
consists of classifying samples from PX against samples
from a complementary distribution, as defined below.

Definition 1 (
B,ϵ∼ Complementary Distribution (informal))

Let Q be a distribution of compact support included in
B, with disjoint support from that of PX that “fills” the
remaining space, with 2ϵ gap between X and supp Q. Then

we write Q
B,ϵ∼ PX .

A formal definition is given in Appendix A. Binary clas-

sification between PX and any Q
B,ϵ∼ PX allows the con-

struction of the optimal signed distance function, using the
Kantorovich-Rubinstein (HKR) Hinge loss (Serrurier et al.,
2021), thanks to the following theorem.

Theorem 1
SDF Learning with HKR loss. Let Lhkr

m,λ(yf(x)) =
λmax (0,m− yf(x))− yf(x) be the Hinge Kantorovich
Rubinstein loss, with margin m = ϵ, regularization λ > 0,
prediction f(x) and label y ∈ {−1, 1}. Let Q be a prob-
ability distribution on B. Let Ehkr(f) be the population



risk:

Ehkr(f,PX , Q) :=Ex∼PX
[Lhkr

m,λ(f(x))]

+ Ez∼Q[Lhkr
m,λ(−f(z))].

(2)

Let f∗ be the minimizer of population risk, whose existence
is guaranteed with Arzelà-Ascoli theorem (Béthune et al.,
2022):

f∗ ∈ arg inf
f∈Lip1(Rd,R)

Ehkr(f,PX , Q), (3)

where Lip1(Rd,R) is the set of Lipschitz functions Rd → R
of constant 1. Assume that Q

B,ϵ∼ PX . Then, f∗ approxi-
mates the signed distance function over B:

∀x ∈ X , S(x) = f∗(x)−m,

∀z ∈ supp Q, S(z) = f∗(z)−m.
(4)

Moreover, for all x ∈ supp Q ∪ X :

sign(f(x)) = sign(S(x)).

Note that if m = ϵ ≪ 1, then we have f∗(x) ≈ S(x). In
this work, we parametrize f as a 1-Lipschitz neural network,
as defined below, because they fulfil f ∈ Lip1(Rd,R) by
construction.

Definition 2 (1-Lipschitz neural network (informal))
Neural network with Groupsort activation function and or-
thogonal transformation in affine layers parameterized like
in (Anil et al., 2019).

Details about the implementation can be found in Appendix
D. Theorem 1 tells us that if we characterize the comple-
mentary distribution Q, we can approximate the SDF with
a 1-Lipschitz neural classifier trained with HKR loss. We
now need to find the complementary distribution Q.

3.2. Finding the complementary distribution by
targeting the boundary

We propose to seek Q through an alternating optimization
process: at every iteration t, a proposal distribution Qt is
used to train a 1-Lipschitz neural net classifier ft against
PX by minimizing empirical HKR loss. Then, the proposal
distribution is updated in Qt+1 based on the loss induced
by ft, and the procedure is repeated.

We suggest starting from the uniform distribution: Q0 =
U(B). Observe that in high dimension, due to the curse
of dimensionality, a sample z ∼ Q0 is unlikely to satisfy
z ∈ X . Indeed the data lies on a low dimensional manifold
X for which the Lebesgue measure is negligible compared
to B. Hence, in the limit of small sample size n ≪ ∞, a

sample Zn ∼ Q⊗n
0 fulfills Zn

B,ϵ∼ PX . This phenomenon is
called the Concentration Phenomenon and has already been

leveraged in anomaly detection in (Sipple, 2020). How-
ever, the curse works both ways and yields a high variance
in samples Zn. Consequently, the variance of the associ-
ated minimizers f0 of equation 3 will also exhibit a high
variance, which may impede the generalization and conver-
gence speed. Instead, the distribution Qt must be chosen to
produce higher density in the neighborhood of the bound-
ary ∂X . The true boundary is unknown, but the level set
Lt = f−1

t ({−ϵ}) of the classifier can be used as a proxy to
improve the initial proposal Q0. We start from z0 ∼ Q0, and
then look for a displacement δ ∈ Rd such that z + δ ∈ Lt.
To this end, we take inspiration from the multidimensional
Newton-Raphson method and consider a linearization of ft:

ft(z0 + δ) ≈ ft(z0) + ⟨∇xft(z0), δ⟩. (5)

Since 1-Lipschitz neural nets with GroupSort activation
function are piecewise affines (Tanielian and Biau, 2021),
the linearization is locally exact, hence the following prop-
erty.

Property 1. Let ft be a 1-Lipschitz neural net with Group-
Sort activation function. Almost everywhere on z0 ∈ Rd,
there exists δ0 > 0 such that for every ∥δ∥ ≤ δ0, we have:

ft(z0 + δ) = ft(z0) + ⟨∇xft(z0), δ⟩. (6)

Since ft(z0 + δ) ∈ Lt translates into ft(z0 + δ) = −ϵ,

δ = − ft(z0) + ϵ

∥∇xft(z0)∥2
∇xft(z0). (7)

Properties of Lhkr
m,λ ensure that the optimal displacement

follows the direction of the gradient ∇xft(z0), which coin-
cides with the direction of an optimal transportation plan
(Serrurier et al., 2021). The term ∥∇xft(z0)∥ enjoys an in-
terpretation as a Local Lipschitz Constant (see (Jordan and
Dimakis, 2020)) of ft around z0, which we know fulfills
∥∇xft(z0)∥ ≤ 1 when parametrized with an 1-Lipschitz
neural net. When ft is trained to perfection, the expres-
sion for δ simplifies to δ = −ft(z0)∇xft(z0) thanks to
Property 2.

Property 2 (Minimizers of Lhkr
m,λ are Gradient Norm Pre-

serving (from (Serrurier et al., 2021))). Let f∗
t be the solu-

tion of Equation 3. Then for almost every z ∈ B we have
∥∇xf

∗
t (z)∥ = 1.

In practice, the exact minimizer f∗
t is not always retrieved,

but equation 7 still applies to imperfectly fitted classifiers.
The final sample z′ ∼ Qt is obtained by generating a se-
quence of T small steps to smooth the generation. The
procedure is summarized in algorithm 1. In practice, T can
be chosen very low (below 16) without significantly hurting
the quality of generated samples. Finally, we pick a random
“learning rate” η ∼ U([0, 1]) for each negative example in



the batch to ensure they distribute evenly on the path toward
the boundary. The procedure also benefits from Property
3, which ensures that the distribution Qt+1 obtained from
Qt across several iterative applications of Algorithm 1 still

fulfils Qt+1 B,ϵ∼ PX . The proof is given in Appendix B.

Property 3 (Complementary distributions are fix points).
Let Qt be such that Qt B,ϵ∼ PX . Assume that Qt+1 is ob-
tained with algorithm 2. Then we have Qt+1 B,ϵ∼ PX .

Algorithm 1 Adapted Newton–Raphson for Complemen-
tary Distribution Generation
Input: 1-Lipschitz neural net ft
Parameter: number of steps T
Output: sample z′ ∼ Qt(f)

1: sample learning rate η ∼ U([0, 1])
2: z0 ∼ U(B) { Initial approximation.}
3: for each step t = 1 to T do
4: zt+1 ← zt − η

T
∇xf(z

t)
∥∇xf(zt)∥2

2
(f(zt) + ϵ){Refining.}

5: zt+1 ← ΠB(zt+1){ Stay in feasible set.}
6: end for
7: return zT

Remark. In high dimension d≫ 1, when ∥∇xft(z)∥ = 1
and Vol(B) ≫ Vol(X ) the samples obtained with algo-
rithm 1 are approximately uniformly distributed in the levels
of ft. It implies that the density of Q increases exponentially
fast (with factor d) with respect to the value of−|ft(·)|. This
mitigates the adverse effects of the curse of dimensionality.

This scheme of “generating samples by following gradient
in input space” reminds diffusion models (Ho et al., 2020),
feature visualization tools (Olah et al., 2017), or recent ad-
vances in VAE (Kuzina et al., 2022). However, no elaborated
scheme is required for the training of ft: 1-Lipschitz net-
works exhibit smooth and interpretable gradients (Serrurier
et al., 2022) which allows sampling from X “for free” as
illustrated in figure 4.

Remark. A more precise characterization of Qt built with
algorithm 1 can be sketched below. Our approach bares
some similarities with the spirit of Metropolis-adjusted
Langevin algorithm (Grenander and Miller, 1994). In this
method, the samples of p(x) are generated by taking the
stationary distribution xt )∞ of a continuous Markov chain
obtained from the stochastic gradient step iterates

xt+1 ← xt + ζ∇x log p(x) +
√

2ζZ (8)

for some distribution p(x) and Z ∼ N (0,1). By
choosing the level set ϵ = 0, and p(x) ∝ 1{f(x) ≤
0} exp (−ηf2(x)) the score function ζ∇x log p(x) is trans-
formed into ∇xf(x)|f(x)| with ζ = η

T . Therefore, we
see that the density decreases exponentially faster with the
squared distance to the boundary ∂X when there are enough

steps T ≫ 1. In particular when X = {0} we recover p(x)
as the pdf of a standard Gaussian N (0,1). Although the
similarity is not exact (e.g., the diffusion term

√
2ηZ is lack-

ing, T is low, η ∼ U([0, 1]) is a r. v.), it provides interesting
complementary insights on the algorithm.

3.3. Alternating minimization for SDF learning
Each classifier ft does not need to be trained from scratch.
Instead, the same architecture is kept throughout training,
and the algorithm produces a sequence of parameters θt
such that ft = fθt . Each set of parameters θt is used as
initialization for the next one θt+1. Moreover, we only
perform a low fixed number of parameter updates for each t
in a GAN fashion. The final procedure of OCSDF is shown
in Figure 1 and detailed in algorithm 3 of Appendix B.

4. Properties
4.1. Certificates against adversarial attacks
The most prominent advantage of 1-Lipschitz neural nets
is their ability to produce certificates against adversarial
attacks (Szegedy et al., 2014). Indeed, by definition we have
f(x + δ) ∈ [f(x) − ∥δ∥, f(x) + ∥δ∥] for every example
x ∈ X and every adversarial attack δ ∈ Rd. This allows
bounding the changes in AUROC score of the classifier for
every possible radius ϵ > 0 of adversarial attacks.

Proposition 1 (certifiable AUROC). Let F0 be the cumula-
tive distribution function associated with the negative clas-
sifier’s prediction (when f(x) ≤ 0), and p1 the probability
density function of the positive classifier’s prediction (when
f(x) > 0). Then, for any attack of radius ϵ > 0, the AUROC
of the attacked classifier fϵ can be bounded by

AUROCϵ(f) =

∫ ∞

−∞
F0(t)p1(t− 2ϵ)dt. (9)

The proof is left in Appendix C. The certified AUROC score
can be computed analytically without performing the at-
tacks empirically, solely from score predictions f1(τ − 2ϵ).
More importantly, the certificates hold against any adver-
sarial attack whose l2-norm is bounded by ϵ, regardless of
the algorithm used to perform such attacks. We empha-
size that producing certificates is more challenging than
traditional defence mechanisms (e.g, adversarial training,
see (Bai et al., 2021) and references therein) since they do
not target defence against a specific attack method.

4.2. Rank normal and anomalous examples

Beyond the raw certifiable AUROC score, l2-based Lips-
chitz robustness enjoys another desirable property: the far-
ther from the boundary the adversary is, the more important
the attack budget required to change the score. In practice,
it means that an attacker can only dissimulate anomalies al-
ready close to being “normal”. Aberrant and hugely anoma-
lous examples will require a larger (possibly impracticable)
attack budget. This ensures that the normality score is ac-



tually meaningful: it is high when the point is central in its
local cloud, and low when it is far away.

5. Experiments
In this section, we evaluate the performances and properties
of OCSDF on tabular and image data. All the experiments
are conducted with tensorflow, and the 1-Lipschitz neural
nets are implemented using the library Deel-Lip1.

5.1. Toy examples from Scikit-Learn
We use two-dimensional toy examples from the Scikit-Learn
library (Pedregosa et al., 2011). Results are shown in fig-
ure 2. The contour of the decision function are plotted in res-
olution 300× 300 pixels. The level sets of the classifier are
compared against those of One Class SVM (Schölkopf et al.,
2001) and Isolation Forest (Liu et al., 2008). We also train
a conventional network with Binary Cross Entropy against
complementary distribution Qt, and we show it struggles to
learn a meaningful decision boundary. Moreover, its Local
Lipschitz Constant (Jordan and Dimakis, 2020) increases
uncontrollably, as shown in table 1, which makes it prone to
adversarial attacks. Finally, there is no natural interpretation
of the prediction of the conventional network in terms of
distance: the magnitude |f(·)| of the predictions quickly
grows above 1e − 3, whereas for 1-Lipschitz neural nets,
it is approximately equal to the signed distance function S.
We refer to Appendix E for visualizations.
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(a) Two circles. (b) Two blobs. (c) Blob & cloud.

Figure 2. Contour plots of our method with 1-Lipschitz (LIP) net-
work and Lhkr

m,λ (HKR) loss on toy examples of Scikit-learn.
5.2. Anomaly Detection on Tabular datasets

We tested our algorithm on some of the most prominent
anomaly detection benchmarks of ODDS library (Rayana,
2016). In this unsupervised setting (like ADBench (Han
et al., 2022)) all the examples (normal examples and anoma-
lies) are seen during training, but their true label is unknown.
To apply our method, the only hyperparameter needed is
the margin m that we select in the range [0.01, 0.05, 0.2, 1.].
For each value, the results are averaged over 20 independent

1https://github.com/deel-ai/deel-lip

Local Lipschitz
Constant

One
Cloud

Two
Clouds

Two
Blobs

Blob
Cloud

Two
Moons

26.66 122.84 1421.41 53.90 258.73

Table 1. Lower bound on the Local Lipschitz Constant (LLC) of
conventional network after 10, 000 training steps for each toy
example. It is the maximum of ∥∇xif(xi)∥ over the train set.

runs train/test splits. Following ADBench guidelines and
best practices from the AD community, we only compute
the AUROC, since this metric is symmetric under label flip.
We report the best average in table 2 along baselines from
ADBench (Han et al., 2022). As observed by (Han et al.,
2022), none of the algorithms clearly dominates the others,
because what is considered an anomaly (or not) depends
on the context. Among 14 other methods tested, our algo-
rithm ranks 7.1± 3.6/15, while the best (Isolation Forests)
ranks 4.5 ± 3.2/15. The experiment shows that our algo-
rithm is competitive with respect to other broadly used base-
lines. Nonetheless, it brings several additional advantages.
First, our algorithm can be seen as a parametric version
of kNN for the euclidean distance, which leverages deep
learning to avoid the costly construction of structures like
a KDTree (Maneewongvatana and Mount, 1999) and the
quadratic cost of nearest neighbor search, thereby enabling
its application in high dimensions. Second, it provides ro-
bustness certificates. We illustrate those two advantages
more thoroughly in the next section.

5.3. One Class learning on images
We evaluate the performances of OCSDF for OCC, where
only samples of the normal class are supposed to be avail-
able. To emulate this setting, we train a classifier on each
of the classes of MNIST and Cifar10, and evaluate it on an
independent test set in a one-versus-all fashion. We com-
pare our method against DeepSVDD (Ruff et al., 2018),
OCSVM (Schölkopf et al., 1999), and Isolation Forests (Liu
et al., 2008). Details on the implementation of the baselines
can be found in Appendix G. The mean AUROC score is
reported in table 3 and averaged over 20 runs. It is com-
puted between the 1, 000 test examples of the target class
and the remaining 9, 000 examples from other classes of
the train set (both unseen during training). The histograms
of normality scores are given in Appendix G. OCSDF is
competitive with respect to other baselines. In addition, it
comes with several advantages described in the following.

5.3.1. CERTIFIABLE AND EMPIRICAL ROBUSTNESS

For each class, we compute the certified AUROC
score of each digit for l2 attacks of radii ϵ ∈
{8/255, 16/255, 36/255}. None of the concurrent meth-
ods can provide certificates against l2 attacks: in the
work of (Goyal et al., 2020) the attacks are performed
empirically (no certificates) with l-∞ radii. In table 3,
we report our certifiable AUROC with various radii ϵ ∈
{0, 8/25, 16/255, 36/255, 72/255}. In figure 3 we report

https://github.com/deel-ai/deel-lip


Dataset d #no.+an. perc. OCSDF
(Ours)

Deep
SVDD

OC
SVM IF PCA kNN SOTA

Average Rank 7.1± 3.6 11.2 7.5 4.5 5.7 7.8 4.5± 3.2 (IF)
breastw 9 444+239 35% (#10) 82.6± 5.9 65.7 80.3 98.3 95.1 97.0 99.7 (COPOD)
cardio 21 1,655+176 9.6% (#2) 95.0± 0.1 59.0 93.9 93.2 95.5 76.6 95.5 (PCA)
glass 9 205+9 4.2% (#7) 73.9± 4.1 47.5 35.4 77.1 66.3 82.3 82.9 (CBLOF)

http (KDDCup99) 3 565,287+2,211 0.4% (#11) 67.5± 37 69.0 99.6 99.96 99.7 03.4 99.96 (IF)
Ionosphere 33 225+126 36% (#7) 80.2± 0.1 50.9 75.9 84.5 79.2 88.3 90.7 (CBLOF)

Lymphography 18 142+6 4.1% (#8) 96.1± 4.9 32.3 99.5 99.8 99.8 55.9 99.8 (CBLOF)
mammography 6 10,923+260 2.32% (#6) 86.0± 2.5 57.0 84.9 86.4 88.7 84.5 90.7 (ECOD)

musk 166 2,965+97 3.2% (#8) 92.6± 20. 43.4 80.6 99.99 100.0 69.9 100.0 (PCA)
Optdigits 64 5,066+150 3% (#12) 51.0± 0.9 38.9 54.0 70.9 51.7 41.7 87.5 (CBLOF)

Pima 8 500+268 35% (#12) 60.7± 1.0 51.0 66.9 72.9 70.8 73.4 73.4 (kNN)
satimage-2 36 5,732+71 1.2% (#3) 97.9± 0.4 53.1 97.3 99.2 97.6 92.6 99.8 (CBLOF)

Shuttle 9 45,586+3,511 7% (#4) 99.1± 0.3 52.1 97.4 99.6 98.6 69.6 99.6 (IF)
smtp (KDDCup99) 3 95,126+30 0.03% (#4) 87.1± 3.5 78.2 80.7 89.7 88.4 89.6 89.7 (IF)

speech 400 3,625+61 1.65% (#15) 46.0± 0.2 53.4 50.2 50.7 50.8 51.0 56.0 (COF)
thyroid 6 3,679+93 2.5% (#5) 95.9± 0.0 49.6 87.9 98.3 96.3 95.9 98.3 (IF)

vertebral 6 210+30 12.5% (#4) 48.6± 2.6 36.7 38.0 36.7 37.0 33.8 53.2 (DAGMM)
vowels 12 1,406+50 3.4% (#2) 94.7± 0.7 52.5 61.6 73.9 65.3 97.3 97.3 (kNN)
WBC 30 357+21 5.6% (#10) 93.6± 0.1 55.5 99.0 99.0 98.2 90.6 99.5 (CBLOF)
Wine 13 119+10 7.7% (#5) 81.5± 0.9 59.5 73.1 80.4 84.4 45.0 91.4 (HBOS)

Table 2. AUROC score for tabular data, averaged over 20 runs. The dimension of the dataset is denoted by d. In the Anomaly Detection
protocol (AD) we use all the data (normal class and anomalies) for training, in an unsupervised fashion. The “#no.+an.” column indicates
part of normal (no.) and anomalous (an.) data used during training for each protocol. SOTA denominates the best sore ever reported on
the dataset, obtained by crawling relevant literature, or ADBench (Han et al., 2022) results (table D4 page 37). We report the rank as
(#rank) among 14 other methods.

MNIST OCSDF OCSDF OCSDF OCSDF OCSDF OC
SVM

Deep
SVDD IF

Certificates ϵ = 0 ϵ = 8/255 ϵ = 16/255 ϵ = 36/255 ϵ = 72/255 ϵ = 0 ϵ = 0 ϵ = 0
mAUROC 95.5± 0.4 93.2± 2.1 89.9± 3.5 78.4± 6.4 57.5± 7.5 91.3± 0.0 94.8± 0.9 92.3± 0.5

digit 0 99.7± 0.1 99.6± 0.2 99.5± 0.2 99.0± 0.6 96.2± 3.0 98.6± 0.0 98.0± 0.7 98.0± 0.3
digit 1 99.8± 0.0 99.7± 0.0 99.6± 0.1 99.2± 0.3 96.2± 1.6 99.5± 0.0 99.7± 0.1 97.3± 0.4
digit 2 90.6± 2.0 85.3± 1.9 78.2± 2.3 53.1± 5.2 14.1± 4.6 82.5± 0.1 91.7± 0.1 88.6± 0.5
digit 3 93.4± 1.2 90.0± 1.7 85.0± 2.3 66.2± 4.6 26.9± 5.0 88.1± 0.0 91.9± 1.5 89.9± 0.4
digit 4 96.5± 0.9 95.3± 1.2 93.9± 1.7 89.4± 3.6 76.2± 9.8 94.9± 0.0 94.9± 0.8 92.7± 0.6
digit 5 93.9± 2.2 89.0± 3.2 81.6± 4.7 54.0± 8.7 15.6± 6.9 77.1± 0.0 88.5± 0.9 85.5± 0.8
digit 6 98.7± 0.6 98.1± 0.7 97.2± 0.9 93.1± 2.6 74.9± 10.4 96.5± 0.0 98.3± 0.5 95.6± 0.3
digit 7 97.1± 0.6 96.5± 0.5 95.6± 0.6 92.2± 0.8 81.2± 1.7 93.7± 0.0 94.6± 0.9 92.0± 0.4
digit 8 89.4± 2.6 83.3± 5.1 74.7± 9.0 50.3± 15.9 24.4± 14.0 88.9± 0.0 93.9± 1.6 89.9± 0.4
digit 9 96.4± 0.3 95.3± 0.9 93.8± 1.3 87.8± 3.1 68.9± 7.6 93.1± 0.0 96.5± 0.3 93.5± 0.3

CIFAR10 OCSDF OCSDF OCSDF OCSDF OCSDF OC
SVM

Deep
SVDD IF

Certificates ϵ = 0 ϵ = 8/255 ϵ = 16/255 ϵ = 36/255 ϵ = 72/255 ϵ = 0 ϵ = 0 ϵ = 0
mAUROC 57.4± 2.1 53.1± 2.1 48.8± 2.1 38.4± 1.9 22.5± 1.4 64.8± 8.0 64.8± 6.8 55.4± 8.0
Airplane 68.2± 4.5 64.3± 3.9 60.1± 3.2 49.4± 1.1 31.2± 3.6 61.6± 0.9 61.7± 4.1 60.1± 0.7

Automobile 57.3± 1.7 52.5± 3.0 47.6± 4.2 36.1± 6.8 19.8± 7.8 63.8± 0.6 65.9± 2.1 50.8± 0.6
Bird 51.8± 2.7 47.5± 1.8 43.2± 1.6 33.4± 3.4 19.5± 5.7 50.0± 0.5 50.8± 0.8 49.2± 0.4
Cat 58.8± 1.2 54.6± 0.8 50.3± 0.8 40.0± 1.5 24.4± 2.3 55.9± 1.3 59.1± 1.4 55.1± 0.4

Deer 49.4± 2.4 45.3± 2.1 41.4± 1.9 32.2± 1.5 18.8± 1.4 66.0± 0.7 60.9± 1.1 49.8± 0.4
Dog 56.3± 0.6 51.9± 1.0 47.5± 1.6 36.7± 2.9 20.6± 4.0 62.4± 0.8 65.7± 2.5 58.4± 0.5
Frog 52.6± 1.8 48.7± 1.7 44.9± 1.6 35.8± 1.4 22.4± 1.1 74.7± 0.3 67.7± 2.6 42.9± 0.6
Horse 49.5± 0.9 45.5± 1.0 41.5± 1.2 32.5± 1.5 18.8± 1.6 62.6± 0.6 67.3± 0.9 55.1± 0.7
Ship 68.6± 1.8 64.6± 1.4 60.4± 1.3 49.3± 2.4 29.8± 4.9 74.9± 0.4 75.9± 1.2 74.2± 0.6

Truck 61.3± 3.4 56.5± 2.1 51.5± 1.1 39.0± 3.9 20.0± 7.0 75.9± 0.3 73.1± 1.2 58.9± 0.7

Table 3. AUROC score on the test set of MNIST and CIFAR10 in a one versus all fashion, averaged on 10 runs. We also report the
AUROC of DeepSVDD (Ruff et al., 2018) for completeness, along with the other AUROC scores of Isolation Forest (IF) and One-Class
SVM (OC-SVM) reported in (Ruff et al., 2018). When the differences between some methods are not statistically significant, we highlight
both. When the confidence intervals overlap, we highlight both. We also show the certifiable AUROC against l-2 attacks of norms
ϵ ∈ {8/255, 16/255, 36/255}. Concurrent methods cannot provide certificates for ϵ > 0.



the empirical AUROC against l2-PGD attacks with three ran-
dom restarts, using stepsize ζ = 0.25ϵ like Foolbox (Rauber
et al., 2020). These results illustrate our method’s benefits:
not only does it come with robustness certificates that are
verified empirically, but the empirical robustness is also way
better than DeepSVDD, especially for Cifar10.

Figure 3. Empirical Mean AUROC on all classes against adver-
sarial attacks of various radii in One Class setting, using default
parameters of FoolBox (Rauber et al., 2020).

5.3.2. VISUALIZATION OF THE SUPPORT

OCSDF can be seen as a parametric version of kNN, which
enables this approach in high dimensions. As a result, the
decision boundary learned by the classifier can be material-
ized by generating adversarial examples with algorithm 1.
The forward computation graph is a classifier based on op-
timal transport, and the backward computation graph is an
image generator. Indeed, the back-propagation through a
convolution is a transposed convolution, a popular layer
in the generator of GANs. Overall, the algorithm behaves
like a WGAN (Arjovsky et al., 2017) with a single network
fulfilling both roles. This unexpected feature opens a path
to the explainability of the One Class classifier: the support
learned can be visualized without complex feature visual-
ization tools. In particular, it helps identify failure modes.

Figure 4. Examples from algorithm 1 with T = 64 and η = 1.

5.3.3. LIMITATIONS

We also tested our algorithm on the Cats versus Dogs dataset
by training on Cats as the One Class and using Dogs as OOD
examples. On this high-dimensional dataset, the AUROC
barely exceeds 55.0%. This suggests that the SDF is rel-
evant for tabular and simple image datasets (e.g MNIST)
but fails to generalize in a meaningful way in higher dimen-
sions. This is expected: the euclidean norm is notoriously a
bad measure of similarity in pixel space. A more thorough
discussion of the limitations is left in Appendix H.

6. OCSDF for implicit shape parametrization
Our approach to learning the SDF contrasts with the com-
puter graphics literature, where SDF is used to obtain the
distance of a point to a surface (here defined as ∂X ). In-

deed, SDFs are usually learned in a supervised fashion,
requiring the ground truth of l2 distance. This is classically
achieved using Nearest-Neighbor algorithms, which can be
cumbersome, especially when the number of points is high.
Efficient data structures (e.g., using K-dtrees (Maneewong-
vatana and Mount, 1999) or Octrees (Meagher, 1980)) can
mitigate this effect but do not scale well to high dimensions.
Instead, OCSDF learns the SDF solely based on points con-
tained in the support.

Figure 5. Visualization of the SDF (3rd row) from sparse point
clouds of size 2048 (2nd row) sampled from ground truth
meshes (1st row) with Trimesh library, against the SSSR algo-
rithm (Boltcheva and Lévy, 2017) that attempts to reproduce the
meshes solely from a point cloud (4th row). The SDF exhibits
better extrapolation properties and provides smooth surfaces.

To illustrate this, we use models from Princeton’s Model-
Net10 dataset (Wu et al., 2015). We sample n = 2048
within each mesh to obtain a 3d point cloud. We fit the
SDF on the point cloud with the same hyperparameters
as the tabular experiment. We use Lewiner marching algo-
rithm (Lewiner et al., 2003) from scikit-image (Van der Walt
et al., 2014), on a 200×200×200 voxelization of the input.
We plot the mesh reconstructed with Trimesh (Dawson-
Haggerty et al., 2019). The results are highlighted in fig-
ure 5. We chose the first percentile of Ex∼PX

[f(x)] as the
level set of the iso-surface we plot. We compare our re-
sults visually against a baseline from (Boltcheva and Lévy,
2017) implemented in Graphite (Levy, 2022) that rebuilds
the mesh solely from the point cloud (without extrapolation).
We highlight that n = 2048 is considered low resolution;
hence many details are expected to be lost. Nonetheless, our
method recovers the global aspect of the shape more faith-
fully, smoothly, and consistently than the other baseline.

7. Conclusion
We proposed a new approach to One-Class Classification,
OCSDF, based on the parametrization of the Signed Dis-
tance Function to the boundary of the known distribution
using a 1-Lipschitz neural net. OCSDF comes with robust-
ness guarantees and naturally tackles the lack of negative
data inherent to OCC. Finally, this new method extends
OCC beyond Out-of-Distribution detection and allows ap-



plying it to surface parametrization from point clouds and
generative visualization.
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A. Proofs and comments
A.1. Complementary distribution

Definition 3 (
B,ϵ∼ Complementary Distribution)

Let PX a distribution with compact support X ⊂ B, with B ⊂ Rd a bounded measurable set. Q is said to be (B, ϵ) disjoint
from PX if (i) its support supp Q ⊂ B is compact (ii) d(supp Q,X ) ≥ 2ϵ (iii) for all measurable sets M ⊂ B such that

d(M,X ) ≥ 2ϵ we have Q(M) > 0. It defines a symmetric but irreflexive binary relation denoted Q
B,ϵ∼ PX .

The idea is to learn one class classifier by reformulating one class learning of PX as a binary classification of PX against
a carefully chosen adversarial distribution Q(PX). This simple idea had already occurred repeatedly in the related
literature (Sabokrou et al., 2018). Note that Lhkr

m,λ benefits from generalization guarantees as proved in (Béthune et al., 2022):
the optimal classifier on the train set and on the test set are the same in the limit of big samples.

A.2. Learning the SDF with HKR loss

Theorem 1
SDF Learning with HKR loss. Let Lhkr

m,λ(yf(x)) = λmax (0,m− yf(x))− yf(x) be the Hinge Kantorovich Rubinstein
loss, with margin m = ϵ, regularization λ > 0, prediction f(x) and label y ∈ {−1, 1}. Let Q be a probability distribution
on B. Let Ehkr(f) be the population risk:

Ehkr(f,PX , Q) :=Ex∼PX
[Lhkr

m,λ(f(x))]

+ Ez∼Q[Lhkr
m,λ(−f(z))].

(2)

Let f∗ be the minimizer of population risk, whose existence is guaranteed with Arzelà-Ascoli theorem (Béthune et al., 2022):

f∗ ∈ arg inf
f∈Lip1(Rd,R)

Ehkr(f,PX , Q), (3)

where Lip1(Rd,R) is the set of Lipschitz functions Rd → R of constant 1. Assume that Q
B,ϵ∼ PX . Then, f∗ approximates

the signed distance function over B:
∀x ∈ X , S(x) = f∗(x)−m,

∀z ∈ supp Q, S(z) = f∗(z)−m.
(4)

Moreover, for all x ∈ supp Q ∪ X :
sign(f(x)) = sign(S(x)).

Proof. The results follow from the properties of Lhkr
m,λ loss given in Proposition 2 of (Serrurier et al., 2021). If Q

B,ϵ∼ PX ,
then by definition, the two datasets are 2ϵ separated. Consequently the hinge part of the loss is null: max (0,m− yf(x))
for all pairs (x,+1) and (z,−1) with x ∼ PX and z ∼ Q. We deduce that:

∀x ∈ X , f(x) ≥ m, ∀z ∈ supp Q, f(z) ≤ −m. (10)

In the following we use:
Fz = {argmin

z0∈supp Q
∥x− z0∥2},∀x ∈ X

and
Fx = {argmin

x0∈X
∥x0 − z∥2},∀z ∈ (supp Q).

Since m = ϵ, we must have f(x) = m for all x ∈ Fx, and f(z) = −m for all z ∈ Fz , whereas S(x) = 0 and S(z) = −2m.
Thanks to the 1-Lipschitz property for every x ∈ X we have f(x) ≤ f(∂x)+ ∥x− ∂x∥ where ∂x = argminx̄∈∂X ∥x− x̄∥
is the projection of x onto the boundary ∂X . Similarly f(z) ≥ f(∂z) − ∥z − ∂z∥. The −yf(x) term in the Lhkr

m,λ



loss (Wasserstein regularization), incentives to maximize the amplitude |f(x)| so the inequalities are tight. Notice that
S(x) = S(∂x) + ∥x− ∂x∥ and S(z) = S(∂z)− ∥z − ∂z∥. This allows concluding:

∀x ∈ X ,S(x)) = f∗(x)−m, ∀z ∈ supp Q,S(z) = f∗(z)−m. (11)

A.3. Finding the right complementary distribution

Finding the right distribution Q
B,ϵ∼ PX with small ϵ is also challenging.

We propose to seek Q through an alternating optimization process. Consider a sample z ∈ Lt. If z is a false positive (i.e
ft(z) > 0 and z /∈ X ), training ft+1 on the pair (z,−1) will incentive ft+1 to fulfill ft+1(z) < 0, which will reduce the
volume of false positive associated to ft+1. If z is a true negative (i.e ft(z) < 0 and z /∈ X ) it already exhibits the wanted
properties. The case of false negative (i.e ft(z) < 0 and z ∈ X ) is more tricky: the density of PX around z will play an
important role to ensure that ft+1(z) > 0.

Hence we assume that samples from the target PX are significantly more frequent than the ones obtained from pure
randomness. It is a very reasonable assumption (especially for images, for example), and most distributions from real use
cases fall under this setting.

Assumption 1 (PX samples are more frequent than pure randomness (informal))
For any measurable set M ⊂ X we have PX(M)≫ U(M).

To ensure that property (iii) of definition 3 is fulfilled, we also introduce stochasticity in algorithm 1 by picking a random
“learning rate” η ∼ U([0, 1]). To decorrelate samples, the learning rate is sampled independently for each example in the
batch.

The final procedure depicted in algorithm 2 benefits from the mild guarantee of proposition 4. It guarantees that once
the complementary distribution has been found, the algorithm will continue to produce a sequence of complementary
distributions and a sequence of classifiers ft that approximates S.

B. Signed Distance Function learning framed as Adversarial Training

Property 4. Let Qt be such that Qt B,ϵ∼ PX . Assume that Qt+1 is obtained with algorithm 2. Then we have Qt+1 B,ϵ∼ PX .

Proof. The proof also follows from the properties of Lhkr
m,λ loss given in Proposition 2 of (Serrurier et al., 2021) Since

Qt
B,ϵ∼ PX all examples z ∼ Qt generated fulfill (by definition) d(z,X ) ≥ 2ϵ ≥ 2m. Indeed the 1-Lipschitz constraint (in

property 2) guarantees that no example zt can “overshoot” the boundary. Hence for the associated minimizer ft+1 of Lhkr
m,λ

loss, the hinge part of the loss is null. This guarantees that ft+1(z) ≤ −m for z ∼ Q. We see that by applying algorithm 1
the property is preserved: for all z ∼ Qt+1 we must have ft+1(z) ≤ −m = −ϵ. Finally notice that because z0 ∼ U(B) and
η ∼ U([0, 1]) the support supp Q covers the whole space B (except the points that are less than 2ϵ apart from X ). Hence we

have Qt+1
B,ϵ∼ PX as expected.

B.1. Lazy variant of algorithm 2

Algorithm 2 solves a MaxMin problem with alternating maximization-minimization. The inner minimization step (mini-
mization of the loss over 1-Lipschitz function space) can be expensive. Instead, partial minimization can be performed by
doing only a predefined number of gradient steps. This yields the lazy approach of algorithm 3. This provides a considerable
speed up over the initial implementation. Moreover, this approach is frequently found in literature, for example, with GAN ()
or WGAN (). However, we lose some of the mild guarantees, such as the one of Proposition 4 or even Theorem 1. Crucially,
it can introduce unwanted oscillations in the training phase that can impede performance and speed. Hence this trick should
be used sparingly.
The procedure of algorithm 3 bears numerous similarities with the adversarial training of Madry (Madry et al., 2018). In our
case the adversarial examples are obtained by starting from noise U(B) and relabeled are negative examples. In their case,
the adversarial examples are obtained by starting from PX itself and relabeled as positive examples.



Algorithm 2 Alternating Minimization for Signed Distance Function learning
Input: 1-Lipschitz neural network architecture f◦
Input: initial weights θ0, learning rate α

1: repeat
2: ft ← fθt
3: θ̃ ← θt
4: repeat
5: Generate batch z ∼ Qt of negative samples with algorithm 1
6: Sample batch x ∼ PX of positive samples
7: Compute loss on batch L(θ̃) := Ehkr(fθ̃, x, z)

8: Learning step θ̃ ← θ̃ + α∇θL(θ̃)
9: until convergence of θ̃ to θt+1.

10: until convergence of ft to limit f∗.

Algorithm 3 One Class Signed Distance Function learning
Input: 1-Lipschitz neural net architecture f◦, initial weights θ0, learning rate α, number of parameter update per time step
K

1: repeat
2: θ̃ ← θt
3: Generate batch z ∼ Qt of negative samples with algorithm 1
4: Sample batch x ∼ PX of positive samples
5: for K updates do
6: Compute loss on batch L(θ) := Ehkr(fθ̃, x, z)

7: Learning step θ̃ ← θ̃ + α∇θL(θ̃)
8: end for
9: θt+1 ← θ̃

10: until convergence of ft.



C. Certifiable AUROC (Proposition 1)
Proposition 2 (certifiable AUROC). Let F0 be the cumulative distribution function associated with the negative classifier’s
prediction (when f(x) = 0), and p1 the probability density function of the positive classifier’s prediction (when f(x) = 0).
Then, for any attack of radius ϵ > 0, the AUROC of the attacked classifier fϵ can be bounded by

AUROC(fϵ) =
∫ ∞

−∞
F0(t)p1(t− 2ϵ)dt. (12)

Proof. Let p1 (resp. p−1) be the probability density function (PDF) associated with the classifier’s positive (resp. negative)
predictions. More precisely, p1 (resp. p−1) is the PDF of f♯PX (resp. f♯Q) for some adversarial distribution Q, where f♯·
denotes the pushforward measure operator (Bogachev and Ruas, 2007) defined by the classifier. The operator f♯ formalizes
the shift between PX (resp. Q), the ground truth distributions, and p−1 (resp. p1), the imperfectly distribution fitted by f .
Let F−1 and F1 be the associated cumulative distribution functions. For a given classification decision threshold τ , we can
define the True Positive Rate (TPR), the True Negative Rate (TNR), and the False Positive Rate (FPR) in probabilistic terms:

• TPR: F−1(τ)

• TNR: 1− F1(τ)

• FPR: F1(τ)

The ROC curve is then the plot of F−1(τ) against F1(τ). Hence, setting v = F1(t), we can define the AUROC as:

AUROC(f) =
∫ 1

0

F−1(F
−1
1 (v))dv (13)

And with the change of variable dv = p1(t)dt

AUROC(f) =
∫ ∞

−∞
F−1(t)p1(t)dt. (14)

We consider a scenario with symmetric attacks: the attack decreases (resp. increases) the normality score of One Class (resp.
Out Of Distribution samples) for decision threshold τ ∈ R. When the 1-Lipschitz classifier f is under attacks of radius at
most ϵ > 0 we note fϵ the perturbed classifier:

fϵ(x) = min
δ≤ϵ

(21{f(x) ≥ τ} − 1)f(x+ δ). (15)

Note that fϵ(x) ≤ f(x) + ϵ when f(x) < τ and fϵ(x) ≥ f(x)− ϵ when f(x) ≥ τ thanks to the 1-Lipschitz property. This
effectively translates the pdf of fϵ by |ϵ| atmost.

We obtain a lower bound for the AUROC (i.e a certificate):

AUROC(fϵ) ≥
∫ ∞

−∞
F−1(t+ ϵ)p1(t− ϵ)dt

=

∫ ∞

−∞
F−1(t)p1(t− 2ϵ)dt.

(16)

The certified AUROC score can be computed analytically without performing the attacks empirically, solely from score
predictions f1(τ − 2ϵ). More importantly, the certificates hold against any adversarial attack whose l2-norm is bounded by
ϵ, regardless of the algorithm used to perform such attacks. We emphasize that producing certificates is more challenging
than traditional defence mechanisms (e.g, adversarial training, see (Bai et al., 2021) and references therein) since they do
not target defence against a specific attack method.



O
C

M
L

N
E

T
+B

C
E

O
C

SV
M

IF

(a) One cloud. (b) Two circles. (c) Two blobs. (d) Blob and cloud. (e) Two moons.

Figure 6. Toy examples of Scikit-learn. Top row: our method with Lipschitz (LIP) 1-Lipschitz network and Lhkr
m,λ (HKR) loss. Second

row: conventional network (NET) trained with Binary Cross Entropy (BCE). Third row: One Class SVM. Fourth row: Isolation Forest.

D. 1-Lipschitz Neural Networks
We ensure that the kernel remains 1-Lipschitz by re-parametrizing them: Θi = Π(Wi) where Wi is a set of unconstrained
weights and Θi the orthogonal projection of Wi on the Stiefel manifold - i.e the set of orthogonal matrices. The projection
Π is made with Björck algorithm (Björck and Bowie, 1971), which is differentiable and be included in the computation
graph during forward pass. Unconstrained optimization is performed on Wi directly.

E. Toy experiment in 2D
All datasets are normalized to have zero mean and unit variance across all dimensions. The domain B is chosen to be the
ball of radius 5. This guarantees that X ⊂ B for all datasets. The plots of figure2 are squares of sizes [−5, 5] for (a), [−3, 3]
for (b)(c)(e) and [−4, 4] for (d) to make the figure more appealing.

E.1. One Class Learning

All the toy experiments of figure 2 uses a 2 ) 512 ) 512 ) 512 ) 512 ) 1 neural network. All the squares matrices are
constrained to be orthogonal. The last layer is a unit norm column vector. The first layer consists of two unit norm columns
that are orthogonal to each other. The optimizer is Rmsprop with default hyperparameters. The batch size is b = 256, and



Methods OCSDF
(ours)

DeepSDF
(Park et al., 2019a)

Target Generate Q
B,ϵ∼ P Compute S(x) from P

Cost Backward pass Nearest Neighbor search
Loss HKR Lhkr

m,λ ∥f(x)− S(x)∥22
Guarantees f is 1-Lipschitz None

Table 4. Comparison of our approach against DeepSDF.

the number of steps T = 4 is small. We chose a margin m = 0.05 except for “blob and cloud” dataset where we used
m = 0.1 instead. We take λ = 100. The networks are trained for a total of 10, 000 gradient steps.

E.2. Other benchmarks

For One Class SVM, we chose a parameter ν = 0.05, γ = 1
2 (which corresponds to the “scale” behavior of scikit-learn for

features in 2D with unit variance) and the popular RBF kernel. For Isolation Forest, we chose a default contamination level
of 0.05.

The conventional network (without orthogonality constraint) is trained with Binary Cross Entropy (also called log-loss) and
Adam optimizer. It shares the same architecture with ReLU instead of GroupSort. It is also trained for a total of 10, 000
gradient steps for a fair comparison. It would not make sense to use Lhkr

m,λ loss for a conventional network since it diverges
during, as noticed in (Béthune et al., 2022). The Lipschitz constant of the conventional network grows uncontrollably during
training even with Lhkr

m,λ loss, which is also compliant with the results of (Béthune et al., 2022).

F. Toy experiments on 3D point clouds
In figures 8 and 9, we provide additional examples of the use of SDF to reconstruct shapes from point clouds. We also
compare OCSDF with Deep SDF (Park et al., 2019a), a standard baseline for neural implicit surface parametrization, to
highlight the practical advantages of our method.

G. One Class Classification of image data
G.1. Mnist experiment

The MNIST images are normalized such that pixel intensity lies in [−1, 1] range. The set B is chosen to be the image
space, i.e B = [−1, 1]28×28 = [−1, 1]784. The optimizer is RMSprop with default hyperparameters. We chose m =
0.02×

√
(28× 28× (1− (−1)) ≈ 0.79 : this corresponds to modification of 1% of the maximum norm of an image. We

take λ = 200. We use a batch size b = 128, and a number of steps T = 16. We use the lazy variant, i.e algorithm 3. The
network is trained for a total of 70 epochs over the one class (size of the support: ≈ 6000 examples), using a warm start of
10 epoch with T = 0. The learning rate follows a linear decay from 1e−3 to 1e−6.

All the experiments use a VGG-like architecture, depicted in table 5. Convolutions are parametrized using layers of Deel-Lip
library (Serrurier et al., 2021), which use an orthogonal kernel with a corrective constant on the upper bound of the Lipschitz
constant of the kernel. Dense layers also use orthogonal kernels. We use l2-norm-pooling layer with windows of size 2× 2
that operates as: (x11, x12, x21, x22) 7→ ∥[x11, x12, x21, x22]∥.

We see in table 3 that it yields competitive results against other naive baselines such as Isolation Fortest (IF) or One Class
SVM (OCSVM), and against the popular deep learning algorithm Deep SVDD (Ruff et al., 2018).

Against DeepSVDD. We test 4 configurations for DeepSVDD.

1. The one from the original’s paper (Ruff et al., 2018) with LeNet architecture.

2. The Pytorch implementation from their official repository that combines LeNet and BatchNorm: https://github.
com/lukasruff/Deep-SVDD-PyTorch.

3. The Tensorflow implementation from pyod (Zhao et al., 2019) with dense layers and l2 activation regularization.

https://github.com/lukasruff/Deep-SVDD-PyTorch
https://github.com/lukasruff/Deep-SVDD-PyTorch


Datasets Toy2D & tabular Mnist
# parameters 792K 2,103K

layer 1 dense-512 (fullsort) conv-3x3-64 (groupsort)
layer 2 dense-512 (fullsort) conv-3x3-64 (groupsort)
layer 3 dense-512 (fullsort) conv-3x3-64 (groupsort)
layer 4 dense-512 (fullsort) conv-3x3-64 (groupsort)
layer 5 dense-1 (linear) l2 norm pooling - 2x2
layer 6 conv-3x3-128 (groupsort)
layer 7 conv-3x3-128 (groupsort)
layer 8 conv-3x3-128 (groupsort)
layer 9 conv-3x3-128 (groupsort)

layer 10 l2 norm pooling - 2x2
layer 11 conv-3x3-256 (groupsort)
layer 12 conv-3x3-256 (groupsort)
layer 13 conv-3x3-256 (groupsort)
layer 14 l2 norm pooling - 2x2
layer 15 global l2 norm pooling
layer 16 dense-1 (linear)

Table 5. Architectures of the 1-Lipschitz networks used for the experiments, using layers of Deel-Lip library.

4. The Tensorflow implementation from pyod but with the same (unconstrained) architecture as Table 5 to ensure a fair
comparison.

Each configuration is run 10 times, and the results are averaged. The best average among the four configurations is reported
in the main paper, while we report in Table 6 the results of all the configurations. It appears that the method of the original
paper is very sensitive to the network’s architecture, and the results are hard to reproduce overall. Empirically, we also
observe that the test/OOD AUROC is often smaller than train/OOD AUROC, which suggests that DeepSVDD memorizes
the train set but do not generalize well outside of its train data. We also notice that those results are different from the ones
originally reported by authors in their paper.

We report the histogram of predictions for the train set (One class), the set test (One class) and Out Of Distribution (OOD)
examples (the classes of the test set) in figure 10.

We also report the complete results of the empirical robustness of OCSDF versus DeepSVDD for MNIST and Cifar10 in
tables 8, 9, 10 and 11.

G.2. Image synthesis from One Class classifier

We perform a total of T = 64 steps with algorithm 1 by targeting the level set f−1({EPX
[f(x)]}) (to ensure we stay inside

the distribution). Moreover, during image synthesis, we follow a deterministic path by setting η = 1. The images generated
were picked randomly (with respect to initial sample z0 ∼ U(B)) without cherry-picking. Interestingly, we see that the
algorithm recovers some in-distribution examples successfully. The examples for which the image is visually deceptive are
somewhat correlated with low AUC scores. Those failure cases are also shared by concurrent methods, which suggests that
some classes are harder to distinguish. Notice that sometimes Out Of Distribution (OOD) Mnist digits, from other classes
not seen during training, are sometimes generated. This suggests that most Mnist digits can be built from a small set of
elementary features that are combined during the generation of Qt. Visualizations of generated digits are presented in Figure
11.

Finally, note that our method is not tailored for example generation: this is merely a side effect of the training process of the
classifier. There is no need a the encoder-decoder pair of VAE nor the discriminator-generator pair of a GAN. Moreover, no
hyper-parameters other than m and T are required.



Protocol
As described

in article
As in Pytorch

repository
As in Pytorch repository

(best run)
Pyod

(Zhao et al., 2019)
mean

0 88.6± 0. 90.2± 9.4 97.2 83.7± 0.
1 97.1± 0. 99.6± 0.1 99.7 97.2± 0.
2 66.5± 0. 79.9± 8.8 88.8 80.5± 0.
3 70.9± 0. 80.5± 8.4 91.3 79.6± 0.
4 78.0± 0. 88.3± 7.7 93.9 85.4± 0.
5 69.7± 0. 82.8± 6.0 89.5 72.9± 0.
6 85.2± 0. 95.8± 1.9 97.8 93.7± 0.
7 88.9± 0. 91.0± 3.3 94.7 92.8± 0.
8 72.8± 0. 84.6± 4.7 90.5 74.8± 0.
9 79.9± 0. 93.3± 3.0 96.1 89.9± 0.

Table 6. Average AUROC over 10 runs for each digit of Mnist. We re-code the method in Tensorflow using various configurations, due
to the discrepancies of protocols found in the literature. In overall, DeepSVDD is very sensitive to the network architecture and can
dramatically overfit.

Dataset One cloud Two circles Two blobs Blob and cloud Two moons
LLC conventional 26.66 122.84 1421.41 53.90 258.73

Table 7. Lower bound on the Local Lipschitz Constant (LLC) of the conventional network after 10, 000 training steps. It is obtained by
computing the maximum of ∥∇xif(xi)∥ over the train set. The LLC of the conventional network grows uncontrollably during training
and fails to provide metric guarantees.

Mnist DeepSVDD DeepSVDD DeepSVDD DeepSVDD DeepSVDD DeepSVDD
l2-PGD ϵ = 8/255 ϵ = 16/255 ϵ = 36/255 ϵ = 72/255 ϵ = 144/255 ϵ = 255/255

mean 90.2± 6.4 89.7± 6.9 88.2± 8.4 84.5± 12.2 74.1± 21.7 61.9± 29.0
digit 0 96.9 96.5 95.3 91.6 78.8 56.9
digit 1 99.6 99.6 99.6 99.5 99.5 99.4
digit 2 80.6 78.9 73.7 61.2 29.4 08.4
digit 3 87.2 86.7 85.4 82.2 69.6 47.8
digit 4 90.7 90.7 90.7 90.5 90.0 89.4
digit 5 83.0 81.5 76.7 65.9 44.2 28.8
digit 6 97.7 97.6 97.0 95.2 86.8 69.2
digit 7 93.3 93.2 92.9 92.4 90.9 89.4
digit 8 82.7 82.1 80.3 76.1 61.5 39.7
digit 9 90.5 90.5 90.4 90.4 90.2 89.7

Table 8. Empirical AUROC against l2-PGD adversarial attacks on Mnist for DeepSVDD.

Mnist OCSDF OCSDF OCSDF OCSDF OCSDF OCSDF
l2-PGD ϵ = 8/255 ϵ = 16/255 ϵ = 36/255 ϵ = 72/255 ϵ = 144/255 ϵ = 255/255

mean 93.2± 5.0 92.8± 5.3 91.8± 6.0 89.8± 7.4 83.1± 11.9 68.2± 19.5
digit 0 99.4 99.4 99.3 99.1 98.2 94.9
digit 1 99.1 99.0 98.8 98.4 96.7 90.9
digit 2 89.7 89.1 87.5 84.4 74.0 51.0
digit 3 91.1 90.5 89.2 86.4 77.3 56.6
digit 4 95.2 94.9 94.1 92.6 87.1 73.0
digit 5 84.6 83.7 81.2 76.3 60.8 33.3
digit 6 98.0 97.9 97.6 96.9 94.4 86.9
digit 7 95.3 95.0 94.4 93.0 88.5 77.2
digit 8 85.8 85.1 83.3 79.7 68.7 46.9
digit 9 93.9 93.6 92.7 91.0 85.2 70.9

Table 9. Empirical AUROC against l2-PGD adversarial attacks on Mnist for one run of OCSDF in One Class learning.



CIFAR10 DeepSVDD DeepSVDD DeepSVDD DeepSVDD DeepSVDD DeepSVDD
l2-PGD ϵ = 8/255 ϵ = 16/255 ϵ = 36/255 ϵ = 72/255 ϵ = 144/255 ϵ = 255/255

mean 54.4± 8.3 46.5± 8.1 28.4± 7.0 09.2± 3.7 0.7± 0.6 0.1± 0.0
Airplane 62.82 55.09 36.21 12.57 0.76 0.01

Automobile 43.02 36.94 21.98 8.35 1.24 0.09
Bird 58.50 49.13 27.66 6.47 0.16 0.01
Cat 45.80 36.82 18.76 3.91 0.12 0.00

Deer 63.02 53.55 30.82 7.41 0.23 0.00
Dog 50.33 43.32 27.95 10.88 1.43 0.09
Frog 63.44 55.31 35.33 11.12 0.63 0.01
Horse 44.67 36.55 20.09 5.37 0.26 0.00
Ship 64.38 57.67 40.89 17.47 1.87 0.04

Truck 48.39 40.85 24.79 8.46 0.81 0.03

Table 10. Empirical AUROC against l2-PGD adversarial attacks on Cifar10 for DeepSVDD.

CIFAR10 OCSDF OCSDF OCSDF OCSDF OCSDF OCSDF
l2-PGD ϵ = 8/255 ϵ = 16/255 ϵ = 36/255 ϵ = 72/255 ϵ = 144/255 ϵ = 255/255

mean 59.0± 9.3 58.2± 9.2 56.7± 9.6 53.9± 10.3 48.4± 10.3 39.8± 13.8
Airplane 80.1 79.8 79.0 77.4 73.9 67.6

Automobile 60.2 59.5 57.7 54.4 47.3 35.7
Bird 52.7 51.9 49.9 46.2 38.8 28.0
Cat 57.7 57.0 55.4 52.3 46.1 36.6

Deer 50.8 50.0 48.0 44.4 37.3 27.1
Dog 55.8 55.2 53.5 50.5 44.4 35.0
Frog 54.7 54.0 52.2 49.1 42.8 32.9
Horse 48.0 47.3 45.4 42.0 35.3 25.5
Ship 71.7 69.2 68.7 67.5 65.1 61.5

Truck 57.9 57.6 56.9 55.4 52.5 48.1

Table 11. Empirical AUROC against l2-PGD adversarial attacks on Cifar10 for one run of OCSDF in One Class learning.

H. Known Limitations
Despite its performance and appealing properties, the method suffers from some important limitations we highlight below
and that can serve as a basis for future work.

H.1. Gradient Norm Preserving networks (GNP) approximation power

The performance of the algorithm strongly depends on its capacity to properly learn the true minimizer f∗ of Lhkr
m,λ loss. Per

Property 2 such minimizer must fulfill ∥∇xf
∗(x)∥2 = 1 everywhere on the support of PX and Qt. Hence the performance

of the algorithm (and the associated theoretical guarantees) depends on the capacity of the GNP network to fulfil this property.
In the tabular case, it is easy to do using orthogonal matrices for affine layers and GroupSort (or FullSort (Anil et al., 2019))
activation functions. However, in the image case, designing “orthogonal convolution” is still an active research area. Several
solutions have been proposed, but they come with various drawbacks in terms of simplicity of implementation, computational
cost, or tightness of the constraint. Hence the average gradient norm on image datasets struggles to exceed 0.3 in practice.
Another limitation stems from low-rank adjoint operators (e.g the last layer of the network): during backpropagation they do
not preserve gradient norm along all directions.

The Newton-Raphson trick that uses steps of size ∇xf(x)
∥∇xf(x)∥2

2
mitigates partially the issue. This suggests that the algorithm

(in its current form) could benefit from further progress in Gradient Norm Preserving (GNP) architectures.

H.2. Limitations of the euclidean norm in image space

The algorithm provides metric guarantees in the construction of the Signed Distance Function (SDF) to the boundary. The
l2-norm is not a crucial component of the construction: the proof of 1 and Proposition 2 of (Serrurier et al., 2021) can be
applied to any norm. However, in every case, the Lipschitz constraint |f(x)− f(y)| ≤ ∥x− y∥L on the network architecture
must coincide with the norm ∥ · ∥L used to build the signed distance function. Currently, only networks that are Lipschitz
with respect to l∞ and l2 norms benefit from universal approximation properties (Anil et al., 2019). Those norms are



often meaningful for tabular data, but not for images. Hence, metric guarantees are less useful in pixel space. The method
still benefits from certificates against adversarial attacks, which is highly desirable for critical systems but lacks semantic
interpretation otherwise.

H.3. Tuning of margin

The algorithm is not quite agnostic to the data: the margin m > 0 used in Lhkr
m,λ loss is an important parameter that serves as

prior on the typical distance that separates the One Class support from the anomalies. This hyper-parameter can be guessed
from the final application at hand (very much like the “scale” parameter of radial basis function kernels), manually with
grid search algorithms or more extensive procedures. Theorem 1 suggests that a small margin m works best. However,
the VC dimension associated with the corresponding set of classifiers increases polynomially with 1

m (see Proposition 6
of (Béthune et al., 2022)). Hence, the algorithm benefits from faster convergence and more stability during training when m
is big. Fortunately, this tradeoff present in most deep learning-based algorithms is solely controlled by this one-dimensional
parameter in our case. Any heuristic estimation from data or with a one-dimensional line search is feasible, even with a
limited computational budget.

I. Hardware
The hardware consists of a workstation with NVIDIA 1080 GPU with 8GB memory and a machine with 32GB RAM.
Hence, while being based on deep learning, and obviously benefiting from faster hardware, the requirements are affordable
to most practitioners. The typical duration for an epoch on most challenging datasets was under a minute.
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(a) Lipschitz Network and Lhkr
m,λ. (b) Conventional Network and BCE.

Figure 7. Histograms of score functions for 1-Lipschitz network (left) and conventional neural network. The blue bars correspond to the
distribution of f(x), x ∼ PX and the red bars to the distribution f(z), z ∼ U(B).



Figure 8. SDF of 2048 points sampled from the mesh of a 3D CAD model.

Figure 9. SDF of 2048 points sampled from the mesh of a 3D CAD model.



(a) Class “0”. (b) Class “1”. (c) Class “2”.

(d) Class “3”. (e) Class “4”. (f) Class “5”.

(g) Class “6”. (h) Class “7”. (i) Class “8”.

(j) Class “9”.

Figure 10. Histogram of scores predicted by the classifier at the end of training for train examples, test examples, and OOD Test examples
on Mnist after one of the runs of the algorithm.



Figure 11. Synthetic examples obtained by running algorithm 1 with T = 64 and η = 1.


