
HAL Id: hal-03977257
https://hal.science/hal-03977257

Preprint submitted on 7 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Single machine adversarial bilevel scheduling problems
Vincent t’Kindt, Federico Della Croce, Alessandro Agnetis

To cite this version:
Vincent t’Kindt, Federico Della Croce, Alessandro Agnetis. Single machine adversarial bilevel schedul-
ing problems. 2022. �hal-03977257�

https://hal.science/hal-03977257
https://hal.archives-ouvertes.fr

Single machine adversarial bilevel scheduling problems

Vincent T’kindta,∗, Federico Della Croceb, Alessandro Agnetisc

aUniversité de Tours, Laboratoire d’Informatique Fondamentale et Appliquée (EA 6300), EMR CNRS
7002 ROOT, 64 avenue Jean Portalis, 37200 Tours, France,

bDIGEP, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy,
CNR, IEIIT, Torino, Italy

cUniversita degli Studi di Siena, Dipartimento di Ingegneria dell’Informazion e Scienze Matematiche,
via Roma 56, 53100 Siena, Italy.

Abstract

We consider single machine scheduling problems in the context of adversarial bilevel
optimization where two agents, the leader and the follower, take decisions on the same
jobset and the leader acts first with the aim of inducing the worst possible solution for
the follower. Thus, the follower schedules the jobs in order to optimize a given criterion.
The considered criteria are the total completion time, the total weighted completion time,
the maximum lateness and the number of tardy jobs. We focus on adversarial bilevel
scheduling with job selection and data modification. In the case with job selection, the
leader selects a fixed cardinality subset of the jobs that the follower schedules next. In the
case with data modification, the leader can modify some of the data (processing times,
due dates, weights), given a limited budget Q. Thus, the follower schedules the set of
jobs with modified data. For all the considered criteria either we provide polynomial-time
algorithms or show that they can be solved in the worst-case in pseudo-polynomial time.

Keywords: Scheduling, Single Machine, Bilevel Optimization, Complexity results

1. Introduction

Scheduling theory deals with the allocation of a given set of jobs to resources over time
while minimizing some criteria. Even if it is usually assumed that a single decision maker
(called agent) takes all scheduling decisions, a significant part of the literature considers
that several agents may compete for scheduling their own set of jobs. For example, this
is notably the case of multiagent scheduling (e.g. Agnetis et al. (2014)) or game theory
based scheduling (e.g. Pascual et al. (2009)). In this paper we investigate another form
of interactions between agents related to bilevel optimization (Dempe et al. (2015)) and
leading to bilevel scheduling problems. Bilevel optimization has strong links with other
topics like Stackelberg games, set-valued optimization problems (Dempe (2003)) or min-
max robust optimization (see Aissi et al. (2009) for a survey of such problems). We first

∗Corresponding author
Email addresses: tkindt@univ-tours.fr (Vincent T’kindt), federico.dellacroce@polito.it

(Federico Della Croce), agnetis@diism.unisi.it (Alessandro Agnetis)

Preprint submitted to Elsevier November 28, 2022

focus on the main concepts of bilevel optimization before turning to a review of bilevel
scheduling literature.

A bilevel discrete optimization problem can be defined as follows:

Minx∈XL

(
fL
(
x, y∗ = argminy∈XF fF (x, y)

))
, (1)

with XL (resp. XF) the set of solution of the first (resp. second) level, and fL (resp.
fF) the objective function to minimize at the first (resp. second) level. Variations with
functions to maximize can naturally be introduced. A simple way to present bilevel
optimization problems is to consider a first agent, called the leader that can take some
decisions x ∈ XL and wants to minimize its objective function fL. Next, at the second
level the other agent, called the follower, makes its own decisions from set y ∈ XF taking
into account x and minimizing fF . However, both fL and fF depend on the complete
set of decisions (x, y). As minimizing the follower’s objective function may lead to several
optimal solutions, two classes of problems can be introduced (Dempe (2003)): optimistic
and pessimistic bilevel problems. In an optimistic bilevel problem, it is assumed that
the follower returns, among all optimal solutions minimizing fF , the one that leads to
the smallest value of fL. On the contrary, in a pessimistic bilevel problem, it is assumed
that the follower returns its optimal solution that is the worst for the leader’s objective
function. Another class of bilevel optimization problems can be met in the literature,
which we call hereafter adversarial bilevel problems. In this setting, the leader takes
decision so that the optimal solution of the follower’s problem is the worst possible. As
an example, the bilevel knapsack problem introduced by DeNegre (2011) falls into this
category.
From a complexity point of view, bilevel optimization problems can be much harder than
traditional single level ones (Woeginger (2021)). This is notably the case of the bilevel
adversarial knapsack problem of DeNegre which was shown to be Σp

2-hard (Caprara et al.
(2014)). And unless P = NP, we have P ⊂ NP ⊂ Σp

2 (Stockmeyer (1977)) providing
the information that some Σp

2-hard problems are harder than any NP-hard problem.
It turns out that defining the complexity status of bilevel optimization problem can be
really challenging.

To the best of our knowledge, very little results are known in the literature on bilevel
scheduling problems. Karlof and Wang (1996) first considered a flowshop scheduling
problem with operators where the leader determines the schedule of operators to mini-
mize the sum of job completion times while the follower determines the schedule of jobs
to minimize the makespan. An extension of this problem to the case of fuzzy processing
times is tackled by Abass (2005). Kovacs and Kis (2011) introduce a general constraint
programming formulation for bilevel scheduling problems and applied it to solve an op-
timistic bilevel single machine problem in which the leader selects the set of jobs the
follower next schedules. Following the standard scheduling notation, this problem is
denoted by 1|OPT − n, rj , d̃j |

∑
j w

L
j xj ,

∑
j w

F
j C

F
j , with OPT − n meaning that the

optimistic setting is considered and the leader selects the number of jobs n to schedule,
minimizing the cost of the selected ones

∑
j w

L
j xj . The follower sequences the jobs so that

their weighted sum of completion times is minimum. Kis and Kovacs (2012) consider

2

both the P |OPT − Ak|
∑

j w
L
j C

L
j ,
∑

j w
F
j C

F
j and P |PES − Ak|

∑
j w

L
j C

L
j ,
∑

j w
F
j C

F
j

problems: they correspond to the optimistic (OPT) and pessimistic (PES) settings of
the problem where the leader defines the set of jobs Ak assigned to any machine k while
the follower sequence them on each machine. The problem is shown to be strongly NP-
hard. Kis and Kovacs (2012) consider again the 1|OPT − n, rj , d̃j |

∑
j w

L
j xj ,

∑
j w

F
j C

F
j

problem and show that it is weakly NP-hard.

In this paper we focus on a set of basic bilevel adversarial scheduling problems. Let
us consider a single machine available for processing a set of n jobs j defined by a
processing time pj and, depending on the problem, by a due date dj or a weight wj . For
a given schedule s, let Cj(s) be the completion time of job j. It is well-known in the
literature that several single machine problems can be solved in polynomial time. But
what happens when considering them in a framework of adversarial bilevel optimization?
In section 2 we consider scheduling problems for which the leader must select a subset of
jobs that the follower schedules. In section 3 we focus on scheduling problems for which
the leader has a budget to modify data that the follower next uses to build an optimal
schedule to his problem. Section 4 provides conclusions and potential future research
directions. The results presented in these sections are summarized in Table 1.

Problem Section Note
Polynomially solvable problems

1|ADV − n|
∑

j C
F
j 2.1 O(N log(N)) time.

1|ADV − n|LF
max 2.3 O(N log(N)) time.

1|ADV − n|
∑

j U
F
j 2.4 O(n2N) time.

1|ADV − p|
∑

j C
F
j 3.1 O(n log(n)) time.

1|ADV − p, qj ∈ R|
∑

j w
F
j C

F
j 3.2 O(n log(n)) time.

and
1|ADV − w, qj ∈ R|

∑
j w

F
j C

F
j

1|ADV − p|LF
max 3.3 O(n) time.

1|ADV − d, dj = d|
∑

j U
F
j 3.4 O(n log(n)) time.

1|ADV − p, dj = d|
∑

j U
F
j 3.4 O(n log(n)) time.

NP-hard problems
1|ADV − n,L|− 2.4 L is the (known) list of tardy jobs. It is a

decision problem.

Open problems
1|ADV − n|

∑
j wjC

F
j 2.2 O(nN

∑
j pj) time by dynamic programming.

1|ADV − p, qj ∈ N|
∑

j w
F
j C

F
j 3.2 An optimal solution does not necessarily

and preserve the initial WSPT order.
1|ADV − w, qj ∈ N|

∑
j w

F
j C

F
j

1|ADV − d|LF
max 3.3

1|ADV − p|
∑

j U
F
j 3.4 O(n4p3max) time by dynamic programming.

1|ADV − d|
∑

j U
F
j 3.4 O(n4(pmax + dmax)d

2
max) time by dynamic

programming.
N refers to the number of initial jobs in a selection problem / n refers to the number of jobs to

schedule by the follower

Table 1: Complexity status of some bilevel single machine scheduling problems

3

2. Adversarial bilevel scheduling with job selection

Assume that a set of N jobs are available for the leader who has to select exactly n <
N jobs that the follower next schedules minimizing a given criterion fF . Leader’s goal is
to select the jobs so that the optimal value of fF ∈ {

∑
j C

F
j ,
∑

j wjC
F
j , LF

max,
∑

j Uj} is
maximum. The following subsections discuss the existence of polynomial-time algorithms
for each criterion minimized by the follower.

2.1. Sum of completion times

The problem tackled in this section is referred to as 1|ADV − n|
∑

j C
F
j . It is well-

known that the classic 1||
∑

j Cj problem can be solved in O(n log(n)) time by sorting
jobs by non-decreasing value of their processing time (SPT rule). We show in the next
theorem that this rule can be exploited to solve the bilevel problem still in polynomial
time.

Theorem 1. The 1|ADV − n|
∑

j C
F
j problem can be solved in O(N log(N)) time as

follows:

1. The leader selects the n ≤ N jobs with the largest processing times,
2. The follower applies the SPT rule on these n jobs.

Proof. For a given sequence s of n jobs,
∑

j C
F
j can be rewritten as:∑

j C
F
j (s) =

∑n
j=1(n− j + 1)ps(j),

with s(j) the job in position j is s. Assume now that the leader selects n jobs such that
they are not the ones with the largest processing times and let s = αkβγ be the SPT
sequence of these jobs, where α, β and γ are partial sequences and k is a job. Now, let
ℓ be a job not previously selected by the leader with pℓ > pk. We denote by s′ = αβℓγ
the obtained SPT sequence when swapping k and ℓ. Assume that:∑

j C
F
j (s) >

∑
j C

F
j (s′).

We have:



∑
j C

F
j (s) =

∑|α|
j=1(n− j + 1)pα(j) + (n− |α|)pk +

∑|β|
j=1(n− |α| − j)pβ(j)

+
∑|γ|

j=1(n− |α| − |β| − j)pγ(j)∑
j C

F
j (s′) =

∑|α|
j=1(n− j + 1)pα(j) +

∑|β|
j=1(n− |α| − j + 1)pβ(j) + (n− |α| − |β|)pℓ

+
∑|γ|

j=1(n− |α| − |β| − j)pγ(j)

∑
j C

F
j (s) >

∑
j C

F
j (s′) ⇔ (n− |α|)pk >

∑|β|
j=1 pβ(j) + (n− |α| − |β|)pℓ,

as pk ≤ pj , ∀j ∈ β:

⇔ (n− |α| − |β|)(pk − pℓ) >
∑|β|

j=1 pβ(j) − |β|pk > 0

which is a contradiction with the fact that pk < pℓ. Consequently, to make the SPT order
having the maximum

∑
j C

F
j value, the leader must select the n jobs with the largest

processing times.
4

2.2. Weighted sum of completion times

Consider the case where each job j has a weight wj and the follower minimizes the
weighted sum of completion times

∑
j wjC

F
j . This problem is referred to as 1|ADV −

n|
∑

j wjC
F
j . It is well-known that the classic 1||

∑
j wjCj problem can be solved in

O(n log(n)) time by sorting jobs by non-decreasing value of the ratio
pj

wj
(WSPT rule).

Thus, whenever the leader selects n jobs, the follower sequences them according to the
WSPT rule. We first show that the natural intuition that the leader should select the n
jobs with largest ratio, does not lead to an optimal solution of the bilevel problem. Let
us consider the following N = 4 jobs problem with p = [10; 1; 3; 1] and w = [1000; 2; 4; 1].
Suppose n = 3 and let s = (2, 3, 4) be the solution obtained if the leader selects the 3
jobs with largest ratio

pj

wj
. We have

∑
j wjC

F
j (s) = 23. But if the leader selects jobs

{1, 2, 3} then WSPT gives s′ = (1, 2, 3) and
∑

j wjC
F
j (s) = 10078.

However, We can show the following results.

Lemma 1. Let be two jobs k and ℓ such that:

1. pk

wk
< pℓ

wℓ
, and

2. There are at least n jobs j such that pk

wk
<

pj

wj
, and

3. There are strictly less than n jobs j such that pℓ

wℓ
<

pj

wj
.

Then, the two following conditions hold:

(C1) if wℓ ≥ wk then there exists an optimal solution to the bilevel problem in which ℓ
is selected instead of k.

(C2) if wℓ < wk and pk ≥ pℓ then there exists an optimal solution to the bilevel problem
in which k is selected instead of ℓ.

Proof. First, let us provide an analysis common to both conditions. Let be s = αkβγ
and s′ = αβℓγ two schedules ordered according to WSPT rule, with α, β and γ partial
sequences. So, we have:

�
pi

wi
≤ pk

wk
≤ pj

wj
≤ pℓ

wℓ
≤ pu

wu
, ∀i ∈ α, ∀j ∈ β and ∀u ∈ γ, (A)

�
pk

wk
< pℓ

wℓ
. (B)

Besides,
∑

j wjC
F
j on schedules s and s′ can be written as follows, where j → i denotes

all the jobs consecutively scheduled from j to i (included):

∑
j wjC

F
j (s) =

∑
j∈α pj

(
wj +

∑
j→i∈α wi + wk +Wβ +Wγ

)
+ pk(wk +Wβ +Wγ)

+
∑

j∈β pj
(∑

j→i∈β wi + wj +Wγ

)
+
∑

j∈γ pj(
∑

j→i∈γ wi + wj)∑
j wjC

F
j (s′) =

∑
j∈α pj

(
wj +

∑
j→i∈α wi + wℓ +Wβ +Wγ

)
+ pℓ(wℓ +Wγ)

+
∑

j∈β pj
(∑

j→i∈β wi + wj + wℓ +Wγ

)
+
∑

j∈γ pj(
∑

j→i∈γ wi + wj)

with Wπ the sum of the weights of jobs in sequence π. Let us define ∆ =
∑

j wjC
F
j (s)−∑

j wjC
F
j (s′). We have:

∆ = (wk − wℓ)Pα +Wγ(pk − pℓ) + pkWβ + pkwk − pℓwℓ − wℓPβ ,
5

with Pπ the sum of processing times of job in sequence π.
Now, let us focus on condition (C1): we assume that wℓ ≥ wk and we show that ∆ > 0
implies a contradiction.

∆ > 0 ⇔ (wk − wℓ)Pα +Wγ(pk − pℓ) + pkWβ + pkwk − pℓwℓ − wℓPβ > 0

Due to (A) we can write: Wβ ≤ Pβ
wk

pk
,

⇒ (wk − wℓ)(Pα + Pβ) +Wγ(pk − pℓ) > pℓwℓ − pkwk

but due to (B) and our assumption wℓ ≥ wk, we necessarily have pℓ > pk and the
left-hand side of the inequality is negative while the right-hand side is positive. This
contradicts the fact that ∆ > 0 and k cannot be selected instead of ℓ.
Now, let us focus on condition (C2): we assume that wℓ < wk and pk ≥ pℓ, and we show
that ∆ < 0 implies a contradiction.

∆ < 0 ⇔ (wk − wℓ)Pα +Wγ(pk − pℓ) + pkWβ + pkwk − pℓwℓ − wℓPβ < 0

Due to (A) we can write: Pβ ≤ Wβ
pℓ

wℓ
,

⇒ (wk − wℓ)Pα + (Wγ +Wβ)(pk − pℓ) + pkwk − pℓwℓ < 0

but due to our assumptions wℓ < wk and pk ≥ pℓ,the left-hand side is positive. This is
a contradiction with ∆ < 0 and ℓ cannot be selected instead of k.

From lemma 1, we can evince that whenever we have pk

wk
< pℓ

wℓ
, wk > wℓ and pk < pℓ,

we cannot decide whether or not one job is preferable to the other.
To solve the 1|ADV − n|

∑
j wjC

F
j problem we can propose a pseudo-polynomial time

algorithm as follows. Assume that jobs are indexed such that p1

w1
≤ p2

w2
≤ ... ≤ pn

wn
and

let WC[j, k, C] be the optimal value of the bilevel problem when the leader has selected
k jobs among the first j ones and their makespan is equal to C. We have:

WC[j, k, C] = max
(
WC[j − 1, k, C]︸ ︷︷ ︸
j is not selected

;WC[j − 1, k − 1, C − pj] + wjC︸ ︷︷ ︸
j is selected

)

with WC[j, k, C] = −∞, whenever k > j or C < 0 or (k = 0 and C > 0), and
WC[0, 0, 0] = 0.
To solve the 1|ADV − n|

∑
j wjC

F
j problem we need to determine the value

C ∈ {1, ...,
∑N

j=1 pj} such that WC[N,n, C] is maximum. This dynamic programming
requires O(Nn

∑
j pj) time and space.

The complexity status of the 1|ADV − n|
∑

j wjC
F
j problem is still open, even if the

existence of a pseudo-polynomial time algorithm prevents it from being NP-hard in the
strong sense.

2.3. Maximum lateness

In this section, we assume that each job j has a due date dj and the follower minimizes
the maximum lateness LF

max = maxj=1..n(L
F
j) with LF

j = CF
j − dj for a given schedule.

This problem is referred to as 1|ADV − n|LF
max. Without loss of generality, we assume

that jobs are indexed following the non-decreasing order of their due date (EDD order),
i.e. d1 ≤ ... ≤ dN . We denote by LEDD

max the Lmax value of schedule sEDD = (1, ..., N):
6

whenever n < N , the optimal solution value of the 1|ADV −n|LF
max problem is no more

than LEDD
max .

First, let us consider a job j ≤ n. If there exists an optimal solution to the 1|ADV −
n|LF

max problem in which this job gives the value of LF
max, then, it is necessarily processed

in position j and let sj = (1, ..., n) be the associated schedule. The rationale is that in
this position its completion time is maximum.
Next, let us consider a job j > n. If there exists an optimal solution in which this job
gives the value of LF

max, then, it is necessarily processed in position n. Let Pj be such
that |Pj | = (n − 1), Pj = {k < j} and ∄ℓ /∈ Pj , ℓ < j, such that ∃k ∈ Pj with pℓ > pk,
i.e., Pj contains the (n − 1) longest jobs having index smaller than j. Let the schedule
associated to job j be sj = sPj//{j}, i.e. sPj followed by j, with sPj the schedule built
by sorting jobs in Pj according to their index number (EDD rule).

Theorem 2. The schedule s∗ = argmax1≤j≤N (Lmax(sj)) is an optimal solution to the
1|ADV − n|LF

max problem. It can be computed in O(N log(N)) time.

Proof. Let s∗ be an optimal schedule to the 1|ADV − n|LF
max problem and let k be

the job giving the value LF
max in s∗ (break ties by choosing the one with the smallest

position). The jobs in s∗ are sorted by increasing value of their index number, and we
distinguish between two cases, depending on the position of job k.
First, assume that job k ≤ n. Then, job k is necessarily in position k otherwise a non
selected job ℓ < k, i.e. ℓ /∈ s∗, could be swapped with a job i > k, i ∈ s∗, and scheduled
before k : this leads to increase Lk and thus contradicts the fact that s∗ is optimal.
Besides, k is preceded by the (k− 1) jobs with smallest due dates, as the follower applies
the EDD rule, and followed by any (n− k) jobs with largest due dates.
Second, assume that job k > n. Following the same reasoning than in the first case, we
can show that job k is necessarily processed in the last position of s∗, i.e. position n.
As the follower applies the EDD rule, job k is necessarily preceded by (n− 1) jobs with
smaller due dates. Besides, to have a maximum Lk value we select, among the (k − 1)
smallest due date jobs, the ones with the largest processing times, i.e. jobs in Pk.
As we enumerate all schedules sj with 1 ≤ j ≤ N , we necessarily compute s∗.

The complexity result follows from a careful implementation of the algorithm: build
all sj ’s starting from j = 1 and compute Pj from Pj−1 by a simple update. If j < n,
Pj = Pj−1 ∪ {j − 1}. Otherwise, remove from Pj−1 the smallest processing time job pℓ
and add pj−1 if pj−1 > pℓ.

2.4. Number of tardy jobs

In this section, we assume that each job j has a due date dj and the follower mini-
mizes the number of tardy jobs

∑
j U

F
j with UF

j = 1 if CF
j > dj and 0 otherwise. This

problem is referred to as 1|ADV − n|
∑

j U
F
j . Without loss of generality we assume

that jobs are indexed following the non-decreasing order of their due date (EDD order),
i.e. d1 ≤ ... ≤ dN . Whenever the n jobs have been selected by the leader, the follower
minimizes the number of tardy jobs by means of Moore’s algorithm (Moore (1968)) or,
equivalently, by Lin and Wang’s algorithm (Lin and Wang (2007)).

7

Let us denote by sMoore the schedule obtained by applying Moore’s algorithm on
the N jobs. Roughly speaking, this algorithm works as follows: at iteration k, schedule
job k after the partial schedule α which only contains early jobs. If job k is early set
α = α//{k} and iterate. If job k is late then select job kmax from α//{k} that has the
largest processing time. Set α = α//{k}, remove job kmax from α and iterate. Finally,
all the removed jobs are scheduled late at the end of α. We denote by

∑
j U

Moore
j the∑

j Uj value of schedule sMoore. We have the following result.

Lemma 2. Let klast be the last job detected late in Moore’s algorithm. If klast ≤ n, then
the optimal solution of the 1|ADV −n|

∑
j U

F
j problem is obtained by selecting the n first

jobs in EDD order.

Proof. Let us denote by
∑

j U
F∗
j the optimal solution value of problem 1|ADV −

n|
∑

j U
F
j for a given instance. It is straightforward that

∑
j U

F∗
j ≤

∑
j U

Moore
j as∑

j U
F∗
j is computed on a subset of the N jobs. As kmax ≤ n, by selecting jobs

{1, ..., kmax, kmax+1, ...n} the follower’s optimal solution will have
∑

j U
F∗
j =

∑
j U

Moore
j .

The question whether the 1|ADV − n|
∑

j U
F
j problem can or cannot be solved in

polynomial time when Lemma 2 does not hold, is answered hereafter. We first consider
that the leader has selected n jobs and we want to check if there exists a solution for the
follower which has ϵU tardy jobs. This problem can be solved by a dynamic programming
algorithm which is a simple specialization of the one proposed in Lawler (1990) for the
1|rj , pmtn|

∑
j wjUj problem. Let C0(j, ϵU) be the value of the smallest makespan when

the j first jobs in EDD order have been scheduled and ϵU of them are tardy. We have:

C0(j, ϵU) = min
(

C0(j − 1, ϵU − 1)︸ ︷︷ ︸
j is scheduled tardy

; C0(j − 1, ϵU) + pj︸ ︷︷ ︸
if C0(j−1, ϵU) + pj ≤ dj ; +∞ otherwise

)

with C0(j, ϵU) = +∞ whenever ϵU < 0 or ϵU > j, and C0(0, 0) = 0. Notice that this
dynamic programming algorithm requires O(n2) time and space.
Now, for the 1|ADV − n|

∑
j U

F
j problem we can generalize the above recursion to take

into account the leader’s decisions. Let C(j, k, ϵU) be the value of the smallest makespan
when k jobs among the j first ones are selected and ϵU of them are tardy. We have:

C(j, k, ϵU) =

max

(
C(j − 1, k, ϵU)︸ ︷︷ ︸
j is not selected

; min
(
C(j − 1, k − 1, ϵU − 1); C(j − 1, k − 1, ϵU) + pj

)︸ ︷︷ ︸
j is selected

)

with C(j, k, ϵU) = +∞ whenever ϵU < 0 or ϵU > j, C(j, k, ϵU) = −∞ whenever j < k,
and C(0, 0, 0) = 0. Notice that the two terms inside the min() correspond to j being
scheduled tardy and, respectively, being scheduled early. Besides, whenever the min()
returns +∞, this value must be transformed into −∞ during the recursions.
Solving the bilevel problem requests to determine the greatest value ϵU such that
C(N,n, ϵU) ̸= −∞. Notice that this dynamic programming algorithm requires O(Nn2)
time and space which implies that the 1|ADV − n|

∑
j U

F
j problem can be solved in

8

polynomial time.

To conclude this section, we prove that a related problem is NP-complete. Assume
that the list L of tardy jobs is imposed, that is the problem turns to a decision problem
where the leader has to select (n − |L|) jobs so that when the follower schedules the n
jobs, only those in L are tardy. This problem is denoted by 1|ADV − n,L|−.

Theorem 3. Let L be the set of jobs which have to be scheduled tardy by the follower.
The 1|ADV − n,L|− problem is NP-complete.

Proof. Let us consider the following weakly NP-complete problem:
Equal-size Partition
Data: Let be A = {a1, ..., a2n′} be a finite set of elements and a

size s(a) ∈ N,∀a ∈ A. Let be B =
∑

j∈A s(a)

2
Question: Does there exists A′ ⊂ A such that

∑
a∈A′ s(a) = B and

|A′| = n′?
We show that this problem reduces to the special case of agreeable due dates, i.e. with
pj ≤ pk ⇔ dj ≤ dk, ∀j, k = 1..N . This problem is denoted by 1|ADV −n, agreeable,L|−.

Let be given an instance of Equal-size Partition and let us denote by N ′ = 2n′ for
simplicity purpose. We build the instance of the bilevel scheduling problem as follows:

� N = N ′ + 1,

� element jobs: ∀j = 1..N ′, pj = aj , and dj = B,

� partition job: pN ′+1 = 2B and dN ′+1 = 3B − 1,

� L = {N ′ + 1},

� n = n′ + 1.

To have job (N ′ + 1) tardy, the total length of the element jobs scheduled before must
be at least B. However, if the jobs before (N ′ + 1) are of total length strictly greater
than B, then at least one of these ones is tardy and this violates the fact that only jobs
in L are tardy. Consequently, there exists a feasible solution to the scheduling problem
if and only if there exists a feasible solution to Equal-size Partition .

3. Adversarial bilevel scheduling with data modification

We now turn to problems in which a set of n jobs is available and the leader can modify
some of the data (processing times, due dates, weights), given a limited budget Q, before
the follower computes a schedule minimizing a given criterion fF . Leader’s goal is to
modify data such that the optimal value of fF ∈ {

∑
j C

F
j ,
∑

j w
F
j C

F
j , LF

max,
∑

j U
F
j } is

maximum. The following subsections discuss the existence of polynomial-time algorithms
for each criterion minimized by the follower.

9

3.1. Sum of completion times

The problem tackled in this section is referred to as 1|ADV − p|
∑

j C
F
j . Given a

list of n jobs with processing times pFj , the follower schedules jobs so that their sum of

completion times, denoted by
∑

j C
F
j , is minimum. This is doable in polynomial time

by applying the SPT rule. Let be the initial processing times pj so that p1 ≤ ... ≤ pn.
Thus, the leader has to decide how to fix quantities qj so that, with pFj = pj + qj , the
follower’s optimal solution is as bad as possible. In addition, the leader has a budget so
that

∑
j |qj | ≤ Q, with Q ∈ N given. Notice that the leader has no interest in setting

a qj < 0 as it would decrease the optimal solution value of the
∑

j C
F
j . Thus, without

loss of optimality, we consider qj ≥ 0,∀j = 1..n, and
∑

j qj ≤ Q. We first show two
instrumental results.

Lemma 3. Let s = (1, ..., k, k + 1, ...n) be a SPT schedule with p1 = ... = pk < pk+1,
q = Q

k with q ∈ N, and pk + q ≤ pk+1.
Let s1 be the schedule obtained by setting q1 = ... = qk = q and qj = 0, ∀j = k + 1, .., n,
and let s2 be the schedule obtained by setting q1 = ... = qk′ = q, k′ < k and assigning
budget (Q− (k − k′)q) to any subset of jobs in {(k + 1), .., n}.
We have

∑
j C

F
j (s1) >

∑
j C

F
j (s2).

Proof. First, notice that s1 = s and that both the first (k − k′) jobs in s2 and the
first (k − k′) jobs in s have identical processing times. Next, it is well-known that the
follower’s objective function can be rewritten as:∑n

j=1 C
F
j =

∑n
j=1(n− j + 1)pFj .

Let us define ∆(sℓ, s) = (
∑

j C
F
j (sℓ)−

∑
j C

F
j (s)) as the increase in the objective function

for a given vector qℓ = [qℓ1, ..., q
ℓ
n]. We have:

∆(s1, s) = qk(n− k−1
k).

We derive an upper bound on ∆(s2, s) by setting qk+1 = (Q−(k−k′)q) and by remarking
that jobs 1 to k′ are scheduled from positions (k − k′ + 1) to k in s2. Thus, we have:

∆(s2, s) ≤
∑k

j=(k−k′) q + (n− k)q(k − k′)

≤ q (k′+1)(n−k+k′+1)
2 + q(n− k)(k − k′)

≤ q
2

(
(n− k)(2k − k′ + 1) + (k′ + 1)2

)
Consequently, we have:
∆(s1, s)−∆(s2, s) ≥ qk(n− k−1

2)− q
2

(
(n− k)(2k − k′ + 1) + (k′ + 1)2

)
≥ q

2n(k
′ + 1) + q

2k(k − k′ + 2)− q
2 (k

′ + 1)2

≥ q
2n(k

′ + 1) + q
2 (k

2 − kk′ + 2k − k′2 − 2k′ − 1)
> q

2n(k
′ + 1)− q

2 (kk
′ + 1)

> 0

It follows that
∑

j C
F
j (s1) >

∑
j C

F
j (s2).

Lemma 4. Let s = (1, ..., k, k + 1, ...n) be a SPT schedule with p1 = ... = pk < pk+1,
q = Q

k with q ∈ N, and pk + q ≤ pk+1.
Let s1 be the schedule obtained by setting q1 = ... = qk = q and qj = 0, ∀j = (k + 1)..n,
and let s2 be the schedule obtained by setting q1 = ... = qk = 0 and assigning budget Q
to any subset of jobs in {(k + 1), .., n}.
We have

∑
j C

F
j (s1) >

∑
j C

F
j (s2).

10

Proof. First, notice that s1 = s and that the first k jobs in s2 are identical to those in
s1. Next, it is well-known that the follower’s objective function can be rewritten as:∑n

j=1 C
F
j =

∑n
j=1(n− j + 1)pFj .

Let us define ∆(sℓ, s) = (
∑

j C
F
j (sℓ)−

∑
j C

F
j (s)) as the increase in the objective function

for a given vector qℓ = [qℓ1, ..., q
ℓ
n]. We have:

∆(s1, s) = Q(n− k−1
k), and

∆(s2, s) ≤ Q(n− k),

as an upper bound to ∆(s2, s) is obtained by setting qk+1 = Q. It follows that ∆(s1, s) >
∆(s2, s) which proves the result.

Theorem 4. The 1|ADV − p|
∑

j C
F
j problem can be solved in O(n log(n)) time. The

leader sets:

� qj = P − pj, ∀j = 1..
(
kP −Q− kPP +

∑kP

i=1 pi
)
,

� qj = P − pj + 1, ∀j =
(
kP −Q− kPP +

∑kP

i=1 pi + 1
)
..kP ,

� qj = 0, ∀j = kP + 1..n,

with P = argmax0≤t≤
∑

j pj

(
(kt −

∑k
j=1 pj) ≤ Q|p1 ≤ ... ≤ pk ≤ t and pk+1 > t

)
,

and kP the job such that pkP
≤ P < pkP+1. The follower applies the SPT rule on the

pFj = pj + qj’s.

Proof. The result is obtained by applying repeatedly Lemma 3 and 4, starting from the
SPT schedule s0 with q0 = [0, ..., 0]. Also notice that, from the proof of these two lemma,
we can evince that increasing the first k′ equal-length jobs j with distinct quantities qj
is sub-optimal with respect to increasing them all by the same quantity q.
Let k0 be the number of consecutive equal-length jobs in s0 from position 1 on. First,
assume that Q ≥ Q0 = k0(pk0+1− pk0). By setting q = (pk0+1− pk0), qj = q, ∀j = 1..k0,
and qj = 0,∀j = (k0 + 1)..n, we obtain a new solution s1 that provides the largest
increase of the

∑
j C

F
j value among all possible assignments of budget Q0. Notice that

the sequence of jobs in s1 is the same than in s0, k1 > k0 and the remaining budget is
updated to Q = (Q−Q0).
The above process is repeated until iteration t when Q < Qt = kt(pkt+1 − (pkt + qkt). In
that case we necessarily have Q < kt and we set q = 1 and only increase the qj ’s of jobs
in positions (kt − Q) to kt. This is also the best assignment of quantity Q to increase
the optimal value of

∑
j C

F
j .

It is possible to directly identify the right values of k and the qj ’s as follows. Let
kP ∈ N, and P ∈ N, be the largest value such that:

(1)
∑kP

j=1(P − pj) ≤ Q, and

(2)
∑kP+1

j=1 (P − pj) > Q.

11

Thus, the kP smallest jobs will have increased processing times for the follower’s problem
so that the leader meets its budget constraint.
Notice, that Q−

∑kP

j=1(P − pj) < kP necessarily holds, otherwise (P + 1) would satisfy

(1) and (2), thus contradicting the definition of P . Consequently, the
(
kP −Q+ kPP −∑kP

i=1 pi
)
first jobs j will have a processing time pFj = P , while the

(
Q− kPP +

∑kP

i=1 pi
)

last jobs j will have a processing time pFj = P + 1. The remaining (n − kP) jobs will

keep their original processing times values, i.e. pFj = pj .

Solving the problem requires, in O(n log(n)) time, sorting the jobs according to SPT
order. Next, the values of P and kP can be computed in O(n) time as well as the
computation of the qj ’s. This yields an overall O(n log(n)) time complexity.

3.2. Weighted sum of completion times

Consider that jobs are also attached weights wF
j and the follower is scheduling jobs

so that their weighted sum of completion times, denoted by
∑

j w
F
j C

F
j , is minimum.

Whenever the processing times and weights are fixed, this is doable in polynomial time by
applying the WSPT rule. Two adversarial problems are considered hereafter depending
on the data the leader can modify. The first problem is denoted by 1|ADV −p|

∑
j w

F
j C

F
j

and the leader can only modify processing times, while the second problem is denoted
by 1|ADV − w|

∑
j w

F
j C

F
j and the leader can only modify the weights.

First, we focus on the 1|ADV −p|
∑

j w
F
j C

F
j problem. Let pj be the initial processing

times so that p1

wF
1

≤ ... ≤ pn

wF
n
. Again, the leader has to decide how to fix quantities qj

so that with pFj = pj + qj , the follower’s optimal solution is as bad as possible. As for
the unweighted case, it is of no interest for the leader that some qj < 0. In addition,
the leader has a budget so that

∑
j qj ≤ Q, with Q ∈ N given. We first consider the

continuous case, i.e. qj ∈ R, and show that it can be solved in polynomial time. We
start with instrumental results.

Lemma 5. There exists an optimal solution to the 1|ADV−p, qj ∈ R|
∑

j w
F
j C

F
j problem

in which jobs are sequenced according to the WSPT rule on the pj’s.

Proof. Suppose by contradiction an optimal solution s∗ exists where the original WSPT
sequence is not preserved. Thus, in s∗ there necessarily exist two adjacent jobs i and
j starting at time t0 whose processing times pFi , p

F
j and weights wi, wj are such that

pF
i

wi
>

pF
j

wj
(hence job i follows job j in s∗), while in the initial WSPT order we have

pi

wi
<

pj

wj
. The contribution to the objective function value of these two jobs in s∗ is

given by:

z1 = wj(t0 + pFj) + wi(t0 + pFj + pFi).

Let ϵ > 0 be a small enough value such that
pF
i −ϵ
wi

>
pF
j +ϵ

wj
and the sequence in s∗ remains

unchanged. Let sϵ be the solution obtained when setting pFi = pFi − ϵ and pFj = pFj + ϵ.
Thus, the contribution to the objective function value of these two jobs in sϵ is given by:

z2 = wj(t0 + pFj + ϵ) + wi(t0 + pFj + pFi) = z1 + ϵwj > z1.
12

Consequently, sϵ is necessarily better than s∗ which contradicts the optimality of s∗.

Following Lemma 5, we assume in the remainder that an optimal solution to the
problem with real valued qj ’s preserves the initial WSPT order.

Lemma 6. Let sWSPT = (1, .., n) be the schedule obtained by the WSPT rule on the pj’s.

Let be k ∈ {1..n}, Q =
∑k

j=1
pk+1

wk+1
wj−pj, q

1 = [pk+1

wk+1
w1−p1; ...;

pk+1

wk+1
wk−pk; 0; ...; 0] ∈ Rn

and q1+ϵ = q1 + ϵ ∈ Rn. Let s1 (resp. s1+ϵ) be the optimal solution of the follower’s
problem with q1 (resp. q1+ϵ).
We have

∑
j wjC

F
j (s1) ≥

∑
j wjC

F
j (s1+ϵ).

Proof. First, notice that the sequences associated to sWSPT , s1 and s1+ϵ are identical.
Next, we remind that the follower’s objective function can be rewritten as:∑n

j=1 w
F
j C

F
j =

∑n
j=1 p

F
j

∑n
k=j w

F
k .

Let us define ∆(sℓ, s) = (
∑

j wjC
F
j (sℓ) −

∑
j wjC

F
j (s)) as the increase in the objective

function for a given vector qℓ = [qℓ1, ..., q
ℓ
n]. We have:

∆(s1, sWSPT) =
∑k

j=1

(pk+1

wk+1
wj − pj

)∑n
i=j w

F
i , and

∆(s1+ϵ, sWSPT) =
∑k

j=1

(pk+1

wk+1
wj − pj + ϵj

)∑n
i=j w

F
i +

∑n
j=k+1 ϵj

∑n
i=j w

F
i .

It follows that:
∆(s1, sWSPT)−∆(s1+ϵ, sWSPT) = −

∑k
j=1 ϵj

∑n
i=j w

F
i −

∑n
j=k+1 ϵj

∑n
i=j w

F
i

= −
∑k

j=1 ϵj(
∑k

i=j w
F
i +

∑n
i=k+1 w

F
i)

−
∑n

j=k+1 ϵj(
∑n

i=k+1 w
F
i −

∑j−1
i=k+1 w

F
i)

As
∑n

j=1 ϵj = 0, ϵj ≥ 0 (j = k + 1..n) and ϵj ≤ ϵj+1 (j = 1..k), we derive that:

∆(s1, sWSPT)−∆(s1+ϵ, sWSPT) = −
∑k

j=1 ϵj
∑k

i=j w
F
i +

∑n
j=k+1 ϵj

∑j−1
i=k+1 w

F
i ≥ 0,

as both terms are positive. This proves the result.

Theorem 5. The 1|ADV − p, qj ∈ R|
∑

j w
F
j C

F
j problem can be solved in O(n log(n))

time. The leader sets:

� qj =
(Q+

∑kR
ℓ=1 pℓ)w

F
j∑kR

ℓ=1 wF
ℓ

− pj, ∀j = 1..kR

� qj = 0, ∀j = (kR + 1)..n,

with R =
Q+

∑kR
j=1 pj∑kR

j=1 wF
j

and kR the job such that
pkR

wF
kR

≤ R <
pkR+1

wF
kR+1

. The follower applies

the WSPT rule on pFj = pj + qj and wF
j = wj, ∀j = 1..n.

Proof. It is well-known that the follower’s objective function can be rewritten as:∑n
j=1 w

F
j C

F
j =

∑n
j=1 p

F
j

∑n
k=j w

F
k .

Starting with pFj = pj , it is always worse for the optimal solution of the follower to

increase pFj instead of pFk , j < k, whenever the WSPT order is preserved. To preserve

the WSPT order, the leader must ensure that
pF
1

wF
1
≤ ≤ pF

n

wF
n
. It follows that to worsen

13

the optimal solution of the follower’s problem, the leader increases as much as possible
the jobs in the first positions of the WSPT sequence. Assume that a job j has a ratio
pj

wF
j
<

pF
j

wF
j
= R. Then, we must set qj = wF

j R− pj .

To maintain the WSPT order, and taking into account his budget, the leader must
determine the largest ratio R ∈ R and the job kR such that:

(P0)


pkR

wF
kR

≤ R <
pkR+1

wF
kR+1

, (I)∑kR

j=1 qj =
∑kR

j=1(w
F
j R− pj) = Q, (II)

pj+qj
wF

j
= R, ∀j = 1..kR (III)

Considering (III), for any value of j, and (II) (P0) implies:

(P1)


pkR

wF
kR

≤ R <
pkR+1

wF
kR+1

, (I)

qj =
(Q+

∑kR
ℓ=1 pℓ)w

F
j∑kR

ℓ=1 wF
ℓ

− pj , ∀j = 1..kR (IV)

It can be easily shown that fixing the qj ’s as in (IV) also satisfies (II) and (III), so
that (P0) and (P1) are equivalent. So, fixing the qj ’s as in (IV) solves to optimality the
problem.

Solving the problem requires sorting, in O(n log(n)) time, the jobs according to
WSPT. The computation of R and kR can be done in O(n) time, as well as the up-
date of the qj ’s. This yields an overall O(n log(n)) time complexity.

Let us go back to the discrete version of the problem, i.e. when qj ∈ N,∀j = 1..n. It
turns out that the WSPT order on the initial pj ’s may not be preserved in an optimal
solution to the 1|ADV −p, qj ∈ N|

∑
j w

F
j C

F
j problem. Let us take the following two jobs

example: p1 = 999, w1 = 1000, p2 = w2 = 1. Consider Q = 2. Two solutions s1 = (2, 1)
and s2 = (1, 2) can be obtained. Solution s1 can be built from vector q1 = [2; 0] while
solution s2 can be built from vectors q2 = [1; 1] and q3 = [0; 2]. It can be easily checked
that the optimal solution of the bilevel problem is given by s1 (by means of vector q1)
which does not follow the initial WSPT order (1, 2). Consequently, it cannot be solved
by the same kind of approach as in the continuous case. The complexity status of the
1|ADV − p, qj ∈ N|

∑
j w

F
j C

F
j problem remains open.

Next, consider the 1|ADV −w|
∑

j w
F
j C

F
j problem and the leader can only modify the

weights of the follower. So, for the follower’s problem we set pFj = pj and wF
j = wj + qj ,

∀j = 1..n, with qj ∈ N. As previously, we first focus on the relaxed version with real
valued qj ’s, i.e., problem 1|ADV − w, qj ∈ R|

∑
j w

F
j C

F
j . The proof of Lemma 5 shows

that the result also holds in the case the weights can be modified by the leader. So, there
exists an optimal solution to the 1|ADV − w, qj ∈ R|

∑
j w

F
j C

F
j problem in which jobs

are sequenced in the WSPT order on the pj and wj .

14

Theorem 6. The 1|ADV − w, qj ∈ R|
∑

j w
F
j C

F
j problem can be solved in O(n log(n))

time. The leader sets:

� qj =
(Q+

∑n
ℓ=kR

wℓ)p
F
j∑n

ℓ=kR
pF
ℓ

− wj, ∀j = kR..n

� qj = 0, ∀j = 1..(kR − 1),

with R =
∑n

j=kR
pF
j

Q+
∑n

j=kR
wj

and kR the job such that
pF
kR−1

wkR−1
< R ≤ pF

kR

wkR
. The follower applies

the WSPT rule on pFj = pj and wF
j = wj + qj, ∀j = 1.n.

Proof. The proof follows the same line than that of Theorem 5. As the follower’s
objective function can be rewritten as:∑n

j=1 w
F
j C

F
j =

∑n
j=1 p

F
j

∑n
k=j w

F
k ,

it follows that it is always worse for the optimal solution of the follower to increase wF
j

instead of wF
k , j > k, whenever the WSPT order is preserved. To preserve the WSPT

order, the leader must ensure that
pF
1

wF
1
≤ ≤ pF

n

wF
n
. It follows that to worsen the optimal

solution of the follower’s problem, the leader increases as much as possible the jobs in

the last positions of the WSPT sequence. Assume that a job j has a ratio
pF
j

wj
>

pF
j

wF
j
= R.

Then, we must set qj =
pF
j

R − wj .
To maintain the WSPT order, and taking account of his budget, the leader must deter-
mine the smallest ratio R ∈ R and the job kR such that:

(P0)



pkR−1

wF
kR−1

≤ R <
pkR

wF
kR

, (I)∑n
j=kR

qj =
∑n

j=kR
(
pF
j

R − wj) = Q, (II)

pF
j

wj+qj
= R, ∀j = kR..n (III)

Considering (III), for any value of j, and (II) (P0) implies:

(P1)


pkR−1

wF
kR−1

≤ R <
pkR

wF
kR

, (I)

qj =
(Q+

∑n
ℓ=kR

wℓ)p
F
j∑n

ℓ=kR
pF
ℓ

− wj , ∀j = kR..n (IV)

It can be easily shown that fixing the qj ’s as in (IV) also satisfies (II) and (III), so
that (P0) and (P1) are equivalent. So, fixing the qj ’s as in (IV) solves to optimality the
problem.
The time complexity is established exactly as in Theorem 5.

Considering the discrete version of the problem, i.e. when qj ∈ N,∀j = 1..n, it turns
out that the WSPT order on the initial wj ’s may not be preserved in an optimal solution
to the 1|ADV −w, qj ∈ N|

∑
j w

F
j C

F
j problem. This can be shown by the same two jobs

example than the one used for the ADV − p version of the problem which also implies
that the complexity status of the 1|ADV −w, qj ∈ N|

∑
j w

F
j C

F
j problem remains open.

15

3.3. Maximum lateness

Assume that each job j is defined by a processing time pj and a due date dj . The aim,
for the follower, is to schedule jobs in order to minimize the maximum lateness, defined
by LF

max = maxj=1..n(C
F
j −dFj). The leader can modify either the processing times or the

due dates so that the optimal solution for the follower is as bad as possible. Whenever
the pFj ’s and dFj ’s are known, the optimal solution of the follower’s problem is built by
applying the EDD rule. Without loss of generality, let us assume that d1 ≤ ... ≤ dn.

We first focus on the problem where the leader can only modify the processing times,
which is referred to as 1|ADV − p|LF

max. As the due dates remain unchanged, we set
dFj = dj , ∀j = 1..n. Besides, pFj = pj + qj is the processing time value of the follower’s
problem. As modifying the processing times has no impact on the EDD order, this bilevel
problem can be trivially solved by setting q1 = Q and qj = 0, j = 2..n.

Now, let us consider the problem in which the leader can only modify the due dates,
which is referred to as 1|ADV − d|LF

max. Thus, we set pFj = pj , d
F
j = dj − qj , ∀j = 1..n,

and increasing the value of the optimal solution of the follower’s problem requires qj ≥ 0,
with

∑n
j=1 qj ≤ Q. Intuitively, we could think about decreasing the due dates of critical

jobs, i.e., jobs which give the Lmax value. However, consider the following 2-job example
with p1 = 30, d1 = 11, p2 = 3, d2 = 13 and Q = 10. The optimal schedule for these due
dates is s0 = (1, 2), it has Lmax(s0) = 20 and the critical job is 2. If the leader sets q1 = 4
and q2 = 6 to increase the Lmax by decreasing d2, then the optimal solution is s1 = (1, 2)
and has Lmax(s1) = 26. But if the leader only decreases d1 by setting q1 = 10 and
q2 = 0, then the optimal solution is still s2 = (1, 2) but with Lmax(s2) = 29 > Lmax(s1).
Consequently, to compute an optimal solution, it is not sufficient to only consider de-
creasing the due dates of critical jobs.

We provide some properties of an optimal schedule when we are given the critical job
j

Theorem 7. Let j be a job giving the LF
max value of an optimal schedule s∗ to the

1|ADV − d|LF
max problem. We denote by Bj (resp. Aj) the set of jobs preceding (resp.

following) j in s∗. There exists an optimal schedule s∗ in which:

1. Bj ⊆ {1, ..., (j−1)} and jobs in Bj are sequenced by their index order (initial EDD
order),

2. jobs in Aj are sequenced by their index order (initial EDD order) and qk = 0,∀k ∈
Aj,

3. ∀i ∈ Aj ∩ {1, ..., (j − 1)}, pi < pj.

Proof. Let sEDD = (1, ..., n) denote the schedule obtained by sequencing jobs according
to the EDD rule and let s∗ denote an optimal sequence with job j being a job with
maximum lateness. In schedule s∗ we have dFℓ = dℓ − q∗ℓ and L∗

ℓ refers to the lateness
of job ℓ, ∀ℓ = 1...n. The properties stated in the theorem are shown by proving the five
following facts: in s∗, all jobs in Bj are in EDD order (fact 1), all successors of j in sEDD

are in Aj (fact 2), all jobs in Aj are in EDD order (fact 3), each job k ∈ Aj keeps the
original due date (fact 4) and for each job i ∈ Aj ∩ {1, ..., (j − 1)}, pi < pj must hold

16

(fact 5). We prove the result by showing that from any presumed optimal schedule, we
can always build s∗ without increasing the Lmax value. We distinguish above the five
mentioned facts.

1. Suppose there exists another optimal schedule s1, with values q1ℓ , in which j gives
the Lmax and there exists a pair of jobs h, i, preceding j both in sEDD and s1 such
that dh < di but d

F
i = di−q1i < dFh = dh−q1h. Hence, job h precedes i in sEDD and

h follows i in s1. In this case, as Lmax = L1
j , we have L1

i ≤ Lmax and L1
h ≤ Lmax.

By reducing q1i so that di − q1i = dh − q1h, we can place job i immediately after job

h. Let s
′1 be the corresponding schedule with values q′

1
ℓ = q1ℓ , ∀ℓ = 1...n, ℓ ̸= i,

and q′
1
i = di − dh + q1h > 0 since dh < di. Notice that

∑
ℓ q

′1
ℓ <

∑
ℓ q

1
ℓ ≤ Q. Let us

denote by L′1
h and L′1

i the associated lateness values. We have L′1
h < L′1

i = L1
h ≤

Lmax = L1
j , that is Lmax does not change. By iteratively applying this argument,

we obtain an optimal schedule st in which all jobs i < j preceding j also in st are
in EDD order of the dℓ’s.

2. Now, we assume that there exists another optimal schedule s1 with values q1ℓ ,
in which j gives the Lmax and let job k > j be the largest index job which is
scheduled before j in s1. Notice that by a similar reasoning to that of fact 1, we
can assume that job k immediately precedes j. Let us build a schedule s′

1
with

values q′
1
ℓ = q1ℓ , ∀ℓ = 1...n, ℓ ̸= k, and q′

1
k = dk − dj + q1j . Again, note that q′

1
k ≥ 0

since dj ≤ dk. Thus, s′
1
= (1, ..., j, k, ..., n) with

∑
ℓ q

′1
ℓ <

∑
ℓ q

1
ℓ ≤ Q. We have:

L1
k < L′1

j ≤ L∗
max = L1

j = L′1
k. That is, now k gives the Lmax with j preceding

k, thus respecting the EDD order. Also for this fact, by iteratively applying this
argument, we obtain an optimal schedule st where, if job j gives the Lmax value,
then all jobs k > j follow j in st.

3. Next, suppose there exists another optimal schedule s1,with values q1ℓ , in which j
gives the Lmax and there exists pairs of jobs h, i following j both in sEDD and s1

such that dh < di but dFi = di − q1i < dFh = dh − q1h. Hence, job h precedes i
in sEDD and h follows i in s1. The same analysis considered in fact 1 holds here
leading to the conclusion that we can obtain an optimal schedule st in which all
jobs i > j following j also in st are in EDD order of the di’s.

4. For this fact, suppose there exists another optimal schedule s1,with values q1ℓ , in
which j gives the Lmax and there exists a job k following j both in sEDD and s1

such that q1k > 0 and dFk < dk. By setting q1k to 0 so that dFk = dk, job k remains
after job j and the value of LF

max does not change. By iteratively applying this
argument, we obtain an optimal schedule st in which all successors of j keep their
original due date.

5. For the last fact, suppose by contradiction there exists another optimal schedule
s1 with values q1ℓ , in which j gives the Lmax and let i be the smallest index job
i < j with pi > pj which is scheduled after j in s1 = (..., j, ..., i, ...). Consider the
schedule s′1 in which j and i are swapped with: q′1i = di−dj +q1j , q

′1
j = dj −di and

q′1ℓ = q1ℓ ,∀ℓ ̸= i, j. So, we have d′Fi = dFj and d′Fj = dFi . Then,
∑

ℓ q
′1
ℓ =

∑
ℓ q

1
ℓ ≤ Q

as q1i + q1j = q′1i + q′1j , and then s′1 is feasible as it does not use more budget than

s1. But then, C ′F
i > CF

j implies L′F
i > LF

j which contradicts the optimality of s1

and i cannot be scheduled after j.

From Theorem 7 it follows that, if we knew the job j inducing the maximum lateness,
17

and which jobs in subset Bj precede j in the sequence, then each optimal q∗ℓ could be
immediately determined. Hence, the problem could be trivially solved by testing each
job j as the one inducing LF

max and then deciding for each job i ∈ {1, ..., j − 1} whether
i precedes j or not. However, this algorithm would run with exponential complexity
O(p(n)2n) where we denote by p(n) a polynomial of n.

Even if Theorem 7 provides interesting structural properties of an optimal schedule,
the complexity status of the 1|ADV − d|LF

max problem remains open.

3.4. Number of tardy jobs

Assume that each job j is defined by a processing time pj and a due date dj . The aim,
for the follower, is to schedule jobs in order to minimize the number of tardy jobs, defined
by
∑

j U
F
j , with UF

j = 1 if job j is tardy, i.e. CF
j > dFj , and 0 otherwise. Whenever the

pFj ’s and dFj ’s are known, the follower minimizes the number of tardy jobs by means of
Moore’s algorithm (Moore (1968)) or, equivalently, by Lin and Wang’s algorithm (Lin
and Wang (2007)). Consider the particular case where all jobs share a common due date
d: we show that the two possible problems can be solved in polynomial time.

First, consider problem 1|ADV − p, dj = d|
∑

j Uj and notice that, for any given pro-

cessing times pFj = pj+qj , ∀j = 1..n (with qj ≥ 0), an optimal solution for the follower is
obtained by sorting the jobs in non-decreasing order of the pj ’s. From this sequence, jobs
completing after the common due date d are tardy. Assume that the initial processing
times pj are indexed such that p1 ≤ ... ≤ pn. Let ℓ be the last early job when jobs
are scheduled with the initial pj ’s. It is straightforward that tardy jobs j in this initial
schedule will have qj = 0. By increasing the processing times of the early jobs, the leader
will make jobs ℓ, (ℓ− 1), ... tardy. Besides, it is preferable that the budget Q is assigned
to the first early jobs and the SPT order is maintained to maximize the number of tardy
jobs. Consequently, the procedure described in Theorem 4 can be applied to optimally
solve the 1|ADV − p, dj = d|

∑
j Uj problem.

When the leader can only modify the value of the common due date, i.e. problem
1|ADV − d, dj = d|

∑
j Uj , it is easy to see that an optimal solution is achieved by set-

ting dF = max(0; d − Q). Then, the follower sequences jobs by non-decreasing value of
the processing times, inducing a time complexity in O(n log(n)).

We now turn to the general 1|ADV − p|
∑

j Uj problem and provide a pseudo-
polynomial time algorithm to solve it. We assume hereafter that jobs are indexed such
that d1 ≤ ... ≤ dn. Let U [j, C,Q] be the maximal minimum number of tardy jobs when
the j first jobs are scheduled, the early ones finish at time C and the leader has a budget
Q to modify their processing time. We have:

U [j, C,Q] = max0≤q≤Q

(
min

(
U [j − 1, C − pj − q,Q− q]︸ ︷︷ ︸

if C≤dj

;U [j − 1, C,Q− q] + 1︸ ︷︷ ︸
j is tardy

))

with U [j, C,Q] = +∞, if j = 0 and C > 0, and U [0, 0,Q] = 0. Notice that, by convention,
we define min(+∞; +∞) = −∞ and max(−∞; ...;−∞) = +∞. Moreover, the value
of q achieving the maximum in the above formula defines the value of qj . To solve

18

the 1|ADV − p|
∑

j Uj problem, we keep the best solution among all U [n, t,Q], ∀t =

0...(
∑n

j=1 pj +Q). The running time is in O(n(
∑n

j=1 pj +Q)Q2) which can be rewritten

as O(n4p3max) since Q ≤ npmax with pmax = max1≤j≤n(pj).
The 1|ADV − d|

∑
j Uj problem can be similarly solved by a slight modification of the

above dynamic programming formulation:

U [j, C,Q] = max0≤q≤Q

(
min

(
U [j − 1, C − pj ,Q− q]︸ ︷︷ ︸

if C≤(dj−q)

;U [j − 1, C,Q− q] + 1︸ ︷︷ ︸
j is tardy

))

with the same initial conditions. The running time is now in O(n4(pmax + dmax)d
2
max)

since Q ≤ ndmax with dmax = max1≤j≤n(dj).

Notice that the complexity status of the two problems with arbitrary dues dates
remains open even if the existence of dynamic programming formulations running in
pseudo-polynomial time rules out NP-hardness in the strong sense.

4. Conclusions

In this paper we focused on the solution of some bilevel single machine scheduling
problems in the adversarial setting, i.e. when the leader modifies the instance to make
as bad as possible the optimal solution of the follower’s problem. All the considered
scheduling problems are polynomially solvable when the leader cannot modify the in-
stance (single level optimization) and some of them remain so in the adversarial bilevel
setting. However, surprisingly, others remain open even if pseudo-polynomial time algo-
rithms may have been proposed. It is really intriguing to note that, despite their simple
formulation, they seem to be at the frontier between easy and hard problems. These
open problems definitely deserve deeper attention.

A natural extension of the problems tackled in this paper could be to consider them
in the settings of optimistic or pessimistic bilevel optimization. As the leader minimizes
his own criterion, these problems are expected to be much harder than in the adversarial
setting. Hopefully, some may be proved to be NP-hard while others may be Σp

2-hard,
thus requiring challenging complexity proofs.

Finally, we point out that beyond the complexity status of bilevel scheduling problems
it is worthwhile to consider the solution of hard ones and establish how effective can
be exact algorithms for single machine problems but also for more complex scheduling
environment.

Acknowledgements

This work was partially supported by ”Ministero dell’Istruzione,
dell’Università e della Ricerca” Award ”TESUN-83486178370409 finanziamento dipar-
timenti di eccellenza CAP. 1694 TIT. 232 ART. 6”.

19

References

Abass, S., 2005. Bilevel programming approach applied to the flow shop scheduling problem under
fuzsiness. Computational Management Science 2, 279–293. doi:10.1007/s10287-005-0035-z.

Agnetis, A., Billaut, J.C., Gawiejnowicz, S., Pacciarelli, D., Soukhal, A., 2014. Multiagent scheduling.
Springer.

Aissi, H., Bazgan, C., Vanderpooten, D., 2009. Min-max and min-max regret versions of combinatorial
optimization problems: a survey. European Journal of Operational Research 2, 427–438. doi:10.1016/
j.ejor.2008.09.012.

Caprara, A., Carvalho, M., Lodi, A., Woeginger, G., 2014. A complexity and approximability study of
the bilevel knapsack problem. SIAM Journal on Optimization 24, 823–838. doi:10.1137/130906593.

Dempe, S., 2003. Annotated bibliography on bilevel programming and mathematical programs with
equilibrium constraints. Optimization 52, 333–359. doi:10.1080/0233193031000149894.

Dempe, S., Kalashnikov, V., Pérez-Valdés, G., Kalashnikova, V., 2015. Bilevel Programming Problems:
Theory, Algorithms and Applications to Energy Networks. Springer.

DeNegre, S., 2011. Interdiction and discrete bilevel linear programming. Ph.D. thesis. Lehigh University
(USA).

Karlof, J., Wang, W., 1996. Bilevel programming applied to the flow shop scheduling problem. Computers
& Operations Research 23, 443–451. doi:10.1016/0305-0548(95)00034-8.

Kis, T., Kovacs, A., 2012. On bilevel machine scheduling problems. OR Spectrum 34, 43–68. doi:10.
1007/s00291-010-0219-y.

Kovacs, A., Kis, T., 2011. Constraint programming approach to a bilevel scheduling problem. Constraints
16, 317–340. doi:10.1007/s10601-010-9102-3.

Lawler, E., 1990. A dynamic programming algorithm for preemptive scheduling of a single machine
to minimize the number of late jobs. Annals of Operations Research 26, 125–133. doi:10.1007/
BF02248588.

Lin, Y., Wang, X., 2007. Necessary and sufficient conditions of optimality for some classical scheduling
problems. European Journal of Operational Research 176, 809–818. doi:10.1016/j.ejor.2005.09.017.

Moore, J., 1968. An n job, one machine sequencing algorithm for minimizing the number of late jobs.
Management Science 15, 102–109. doi:10.1007/s10479-018-2852-9.

Pascual, F., Rzadca, K., Trystram, D., 2009. Cooperation in multi-organization scheduling. Concurrency
and Computation: Practice and experience 21, 905–921. doi:10.5555/1525995.1525998.

Stockmeyer, L., 1977. The polynomial-time hierarchy. Theoretical Compute Science 3, 1–22. doi:10.
1016/0304-3975(76)90061-X.

Woeginger, G., 2021. The trouble with the second quantifier. 4OR 19, 157–181. doi:10.1007/
s10288-021-00477-y.

20

