Vincent T'kindt
email: tkindt@univ-tours.fr

Federico Della Croce
email: federico.dellacroce@polito.it

Alessandro Agnetis
email: agnetis@diism.unisi.it

Single machine adversarial bilevel scheduling problems

Keywords: Scheduling, Single Machine, Bilevel Optimization, Complexity results

We consider single machine scheduling problems in the context of adversarial bilevel optimization where two agents, the leader and the follower, take decisions on the same jobset and the leader acts first with the aim of inducing the worst possible solution for the follower. Thus, the follower schedules the jobs in order to optimize a given criterion. The considered criteria are the total completion time, the total weighted completion time, the maximum lateness and the number of tardy jobs. We focus on adversarial bilevel scheduling with job selection and data modification. In the case with job selection, the leader selects a fixed cardinality subset of the jobs that the follower schedules next. In the case with data modification, the leader can modify some of the data (processing times, due dates, weights), given a limited budget Q. Thus, the follower schedules the set of jobs with modified data. For all the considered criteria either we provide polynomial-time algorithms or show that they can be solved in the worst-case in pseudo-polynomial time.

Introduction

Scheduling theory deals with the allocation of a given set of jobs to resources over time while minimizing some criteria. Even if it is usually assumed that a single decision maker (called agent) takes all scheduling decisions, a significant part of the literature considers that several agents may compete for scheduling their own set of jobs. For example, this is notably the case of multiagent scheduling (e.g. [START_REF] Agnetis | Multiagent scheduling[END_REF]) or game theory based scheduling (e.g. [START_REF] Pascual | Cooperation in multi-organization scheduling[END_REF]). In this paper we investigate another form of interactions between agents related to bilevel optimization [START_REF] Dempe | Bilevel Programming Problems: Theory, Algorithms and Applications to Energy Networks[END_REF]) and leading to bilevel scheduling problems. Bilevel optimization has strong links with other topics like Stackelberg games, set-valued optimization problems [START_REF] Dempe | Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints[END_REF]) or minmax robust optimization (see [START_REF] Aissi | Min-max and min-max regret versions of combinatorial optimization problems: a survey[END_REF] for a survey of such problems). We first focus on the main concepts of bilevel optimization before turning to a review of bilevel scheduling literature.

A bilevel discrete optimization problem can be defined as follows:

M in x∈X L f L x, y * = argmin y∈X F f F (x, y) , (1)
with X L (resp. X F) the set of solution of the first (resp. second) level, and f L (resp. f F) the objective function to minimize at the first (resp. second) level. Variations with functions to maximize can naturally be introduced. A simple way to present bilevel optimization problems is to consider a first agent, called the leader that can take some decisions x ∈ X L and wants to minimize its objective function f L . Next, at the second level the other agent, called the follower, makes its own decisions from set y ∈ X F taking into account x and minimizing f F . However, both f L and f F depend on the complete set of decisions (x, y). As minimizing the follower's objective function may lead to several optimal solutions, two classes of problems can be introduced [START_REF] Dempe | Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints[END_REF]): optimistic and pessimistic bilevel problems. In an optimistic bilevel problem, it is assumed that the follower returns, among all optimal solutions minimizing f F , the one that leads to the smallest value of f L . On the contrary, in a pessimistic bilevel problem, it is assumed that the follower returns its optimal solution that is the worst for the leader's objective function. Another class of bilevel optimization problems can be met in the literature, which we call hereafter adversarial bilevel problems. In this setting, the leader takes decision so that the optimal solution of the follower's problem is the worst possible. As an example, the bilevel knapsack problem introduced by DeNegre (2011) falls into this category.

From a complexity point of view, bilevel optimization problems can be much harder than traditional single level ones [START_REF] Woeginger | The trouble with the second quantifier[END_REF]). This is notably the case of the bilevel adversarial knapsack problem of DeNegre which was shown to be Σ p 2 -hard [START_REF] Caprara | A complexity and approximability study of the bilevel knapsack problem[END_REF]). And unless P = N P, we have P ⊂ N P ⊂ Σ p 2 [START_REF] Stockmeyer | The polynomial-time hierarchy[END_REF]) providing the information that some Σ p 2 -hard problems are harder than any N P-hard problem. It turns out that defining the complexity status of bilevel optimization problem can be really challenging.

To the best of our knowledge, very little results are known in the literature on bilevel scheduling problems. [START_REF] Karlof | Bilevel programming applied to the flow shop scheduling problem[END_REF] first considered a flowshop scheduling problem with operators where the leader determines the schedule of operators to minimize the sum of job completion times while the follower determines the schedule of jobs to minimize the makespan. An extension of this problem to the case of fuzzy processing times is tackled by [START_REF] Abass | Bilevel programming approach applied to the flow shop scheduling problem under fuzsiness[END_REF]. [START_REF] Kovacs | Constraint programming approach to a bilevel scheduling problem[END_REF] introduce a general constraint programming formulation for bilevel scheduling problems and applied it to solve an optimistic bilevel single machine problem in which the leader selects the set of jobs the follower next schedules. Following the standard scheduling notation, this problem is denoted by 1|OP T -n, r j , dj | j w L j x j , j w F j C F j , with OP T -n meaning that the optimistic setting is considered and the leader selects the number of jobs n to schedule, minimizing the cost of the selected ones j w L j x j . The follower sequences the jobs so that their weighted sum of completion times is minimum. [START_REF] Kis | On bilevel machine scheduling problems[END_REF]

consider both the P |OP T -A k | j w L j C L j , j w F j C F j and P |P ES -A k | j w L j C L j , j w F j C F j
problems: they correspond to the optimistic (OP T) and pessimistic (P ES) settings of the problem where the leader defines the set of jobs A k assigned to any machine k while the follower sequence them on each machine. The problem is shown to be strongly N Phard. [START_REF] Kis | On bilevel machine scheduling problems[END_REF] consider again the 1|OP T -n, r j , dj | j w L j x j , j w F j C F j problem and show that it is weakly N P-hard.

In this paper we focus on a set of basic bilevel adversarial scheduling problems. Let us consider a single machine available for processing a set of n jobs j defined by a processing time p j and, depending on the problem, by a due date d j or a weight w j . For a given schedule s, let C j (s) be the completion time of job j. It is well-known in the literature that several single machine problems can be solved in polynomial time. But what happens when considering them in a framework of adversarial bilevel optimization? In section 2 we consider scheduling problems for which the leader must select a subset of jobs that the follower schedules. In section 3 we focus on scheduling problems for which the leader has a budget to modify data that the follower next uses to build an optimal schedule to his problem. Section 4 provides conclusions and potential future research directions. The results presented in these sections are summarized in Table 1.

Problem

Section Note Polynomially solvable problems

1|ADV -n| j C F j 2.1 O(N log(N)) time. 1|ADV -n|L F max 2.3 O(N log(N)) time. 1|ADV -n| j U F j 2.4 O(n 2 N) time. 1|ADV -p| j C F j 3.1 O(n log(n)) time. 1|ADV -p, qj ∈ R| j w F j C F j 3.2 O(n log(n)) time. and 1|ADV -w, qj ∈ R| j w F j C F j 1|ADV -p|L F max 3.3 O(n) time. 1|ADV -d, dj = d| j U F j 3.4 O(n log(n)) time. 1|ADV -p, dj = d| j U F j 3.4 O(n log(n)) time. N P-hard problems 1|ADV -n, L|- 2.4
L is the (known) list of tardy jobs. It is a decision problem.

Open problems

1|ADV -n| j wjC F j 2.2 O(nN j pj) time by dynamic programming. 1|ADV -p, qj ∈ N| j w F j C F j 3.2
An optimal solution does not necessarily and preserve the initial WSPT order. 1|ADV -w, qj

∈ N| j w F j C F j 1|ADV -d|L F max 3.3 1|ADV -p| j U F j 3.4 O(n 4 p 3 max) time by dynamic programming. 1|ADV -d| j U F j 3.4 O(n 4 (pmax + dmax)d 2 max
) time by dynamic programming.

N refers to the number of initial jobs in a selection problem / n refers to the number of jobs to schedule by the follower Table 1: Complexity status of some bilevel single machine scheduling problems

Adversarial bilevel scheduling with job selection

Assume that a set of N jobs are available for the leader who has to select exactly n < N jobs that the follower next schedules minimizing a given criterion f F . Leader's goal is to select the jobs so that the optimal value of f F ∈ { j C F j , j w j C F j , L F max , j U j } is maximum. The following subsections discuss the existence of polynomial-time algorithms for each criterion minimized by the follower.

Sum of completion times

The problem tackled in this section is referred to as 1|ADV -n| j C F j . It is wellknown that the classic 1|| j C j problem can be solved in O(n log(n)) time by sorting jobs by non-decreasing value of their processing time (SPT rule). We show in the next theorem that this rule can be exploited to solve the bilevel problem still in polynomial time.

Theorem 1. The 1|ADV -n| j C F j problem can be solved in O(N log(N)) time as follows:

1. The leader selects the n ≤ N jobs with the largest processing times, 2. The follower applies the SPT rule on these n jobs.

Proof. For a given sequence s of n jobs, j C F j can be rewritten as:

j C F j (s) = n j=1 (n -j + 1)p s(j)
, with s(j) the job in position j is s. Assume now that the leader selects n jobs such that they are not the ones with the largest processing times and let s = αkβγ be the SPT sequence of these jobs, where α, β and γ are partial sequences and k is a job. Now, let ℓ be a job not previously selected by the leader with p ℓ > p k . We denote by s ′ = αβℓγ the obtained SPT sequence when swapping k and ℓ. Assume that:

j C F j (s) > j C F j (s ′). We have:                    j C F j (s) = |α| j=1 (n -j + 1)p α(j) + (n -|α|)p k + |β| j=1 (n -|α| -j)p β(j) + |γ| j=1 (n -|α| -|β| -j)p γ(j) j C F j (s ′) = |α| j=1 (n -j + 1)p α(j) + |β| j=1 (n -|α| -j + 1)p β(j) + (n -|α| -|β|)p ℓ + |γ| j=1 (n -|α| -|β| -j)p γ(j) j C F j (s) > j C F j (s ′) ⇔ (n -|α|)p k > |β| j=1 p β(j) + (n -|α| -|β|)p ℓ , as p k ≤ p j , ∀j ∈ β: ⇔ (n -|α| -|β|)(p k -p ℓ) > |β| j=1 p β(j) -|β|p k > 0
which is a contradiction with the fact that p k < p ℓ . Consequently, to make the SPT order having the maximum j C F j value, the leader must select the n jobs with the largest processing times.

Weighted sum of completion times

Consider the case where each job j has a weight w j and the follower minimizes the weighted sum of completion times j w j C F j . This problem is referred to as 1|ADV -n| j w j C F j . It is well-known that the classic 1|| j w j C j problem can be solved in O(n log(n)) time by sorting jobs by non-decreasing value of the ratio pj wj (WSPT rule). Thus, whenever the leader selects n jobs, the follower sequences them according to the WSPT rule. We first show that the natural intuition that the leader should select the n jobs with largest ratio, does not lead to an optimal solution of the bilevel problem. Let us consider the following N = 4 jobs problem with p = [10; 1; 3; 1] and w = [1000; 2; 4; 1]. Suppose n = 3 and let s = (2, 3, 4) be the solution obtained if the leader selects the 3 jobs with largest ratio pj wj . We have j w j C F j (s) = 23. But if the leader selects jobs {1, 2, 3} then WSPT gives s ′ = (1, 2, 3) and j w j C F j (s) = 10078.

However, We can show the following results.

Lemma 1. Let be two jobs k and ℓ such that:

1. p k w k < p ℓ w ℓ , and 2. There are at least n jobs j such that p k w k < pj wj , and 3. There are strictly less than n jobs j such that p ℓ w ℓ < pj wj . Then, the two following conditions hold: (C1) if w ℓ ≥ w k then there exists an optimal solution to the bilevel problem in which ℓ is selected instead of k. (C2) if w ℓ < w k and p k ≥ p ℓ then there exists an optimal solution to the bilevel problem in which k is selected instead of ℓ.

Proof. First, let us provide an analysis common to both conditions. Let be s = αkβγ and s ′ = αβℓγ two schedules ordered according to WSPT rule, with α, β and γ partial sequences. So, we have:

pi wi ≤ p k w k ≤ pj wj ≤ p ℓ w ℓ ≤ pu wu , ∀i ∈ α, ∀j ∈ β and ∀u ∈ γ, (A) p k w k < p ℓ w ℓ . (B)
Besides, j w j C F j on schedules s and s ′ can be written as follows, where j → i denotes all the jobs consecutively scheduled from j to i (included):

               j w j C F j (s) = j∈α p j w j + j→i∈α w i + w k + W β + W γ + p k (w k + W β + W γ) + j∈β p j j→i∈β w i + w j + W γ + j∈γ p j (j→i∈γ w i + w j) j w j C F j (s ′) = j∈α p j w j + j→i∈α w i + w ℓ + W β + W γ + p ℓ (w ℓ + W γ) + j∈β p j j→i∈β w i + w j + w ℓ + W γ + j∈γ p j (j→i∈γ w i + w j) with W π the sum of the weights of jobs in sequence π. Let us define ∆ = j w j C F j (s) - j w j C F j (s ′). We have: ∆ = (w k -w ℓ)P α + W γ (p k -p ℓ) + p k W β + p k w k -p ℓ w ℓ -w ℓ P β ,
with P π the sum of processing times of job in sequence π. Now, let us focus on condition (C1): we assume that w ℓ ≥ w k and we show that ∆ > 0 implies a contradiction.

∆ > 0 ⇔ (w k -w ℓ)P α + W γ (p k -p ℓ) + p k W β + p k w k -p ℓ w ℓ -w ℓ P β > 0
Due to (A) we can write:

W β ≤ P β w k p k , ⇒ (w k -w ℓ)(P α + P β) + W γ (p k -p ℓ) > p ℓ w ℓ -p k w k
but due to (B) and our assumption w ℓ ≥ w k , we necessarily have p ℓ > p k and the left-hand side of the inequality is negative while the right-hand side is positive. This contradicts the fact that ∆ > 0 and k cannot be selected instead of ℓ. Now, let us focus on condition (C2): we assume that w ℓ < w k and p k ≥ p ℓ , and we show that ∆ < 0 implies a contradiction.

∆ < 0 ⇔ (w k -w ℓ)P α + W γ (p k -p ℓ) + p k W β + p k w k -p ℓ w ℓ -w ℓ P β < 0 Due to (A) we can write: P β ≤ W β p ℓ w ℓ , ⇒ (w k -w ℓ)P α + (W γ + W β)(p k -p ℓ) + p k w k -p ℓ w ℓ < 0
but due to our assumptions w ℓ < w k and p k ≥ p ℓ ,the left-hand side is positive. This is a contradiction with ∆ < 0 and ℓ cannot be selected instead of k.

From lemma 1, we can evince that whenever we have p k w k < p ℓ w ℓ , w k > w ℓ and p k < p ℓ , we cannot decide whether or not one job is preferable to the other. To solve the 1|ADV -n| j w j C F j problem we can propose a pseudo-polynomial time algorithm as follows. Assume that jobs are indexed such that p1 w1 ≤ p2 w2 ≤ ... ≤ pn wn and let WC[j, k, C] be the optimal value of the bilevel problem when the leader has selected k jobs among the first j ones and their makespan is equal to C. We have: The complexity status of the 1|ADV -n| j w j C F j problem is still open, even if the existence of a pseudo-polynomial time algorithm prevents it from being N P-hard in the strong sense.

WC[j, k, C] = max WC[j -1, k, C] j is not selected ; WC[j -1, k -1, C -p j] + w j C j is selected with WC[j, k, C] = -∞,

Maximum lateness

In this section, we assume that each job j has a due date d j and the follower minimizes the maximum lateness L F max = max j=1..n (L F j) with L F j = C F j -d j for a given schedule. This problem is referred to as 1|ADV -n|L F max . Without loss of generality, we assume that jobs are indexed following the non-decreasing order of their due date (EDD order), i.e. d 1 ≤ ... ≤ d N . We denote by L EDD max the L max value of schedule s EDD = (1, ..., N):

whenever n < N , the optimal solution value of the 1|ADV -n|L F max problem is no more than L EDD max .

First, let us consider a job j ≤ n. If there exists an optimal solution to the 1|ADV -n|L F max problem in which this job gives the value of L F max , then, it is necessarily processed in position j and let s j = (1, ..., n) be the associated schedule. The rationale is that in this position its completion time is maximum. Next, let us consider a job j > n. If there exists an optimal solution in which this job gives the value of L F max , then, it is necessarily processed in position n. Let P j be such that |P j | = (n -1), P j = {k < j} and ∄ℓ / ∈ P j , ℓ < j, such that ∃k ∈ P j with p ℓ > p k , i.e., P j contains the (n -1) longest jobs having index smaller than j. Let the schedule associated to job j be s j = s Pj //{j}, i.e. s Pj followed by j, with s Pj the schedule built by sorting jobs in P j according to their index number (EDD rule).

Theorem 2. The schedule s * = argmax 1≤j≤N (L max (s j)) is an optimal solution to the 1|ADV -n|L F max problem. It can be computed in O(N log(N)) time.

Proof. Let s * be an optimal schedule to the 1|ADV -n|L F max problem and let k be the job giving the value L F max in s * (break ties by choosing the one with the smallest position). The jobs in s * are sorted by increasing value of their index number, and we distinguish between two cases, depending on the position of job k. First, assume that job k ≤ n. Then, job k is necessarily in position k otherwise a non selected job ℓ < k, i.e. ℓ / ∈ s * , could be swapped with a job i > k, i ∈ s * , and scheduled before k : this leads to increase L k and thus contradicts the fact that s * is optimal. Besides, k is preceded by the (k -1) jobs with smallest due dates, as the follower applies the EDD rule, and followed by any (n -k) jobs with largest due dates. Second, assume that job k > n. Following the same reasoning than in the first case, we can show that job k is necessarily processed in the last position of s * , i.e. position n. As the follower applies the EDD rule, job k is necessarily preceded by (n -1) jobs with smaller due dates. Besides, to have a maximum L k value we select, among the (k -1) smallest due date jobs, the ones with the largest processing times, i.e. jobs in P k . As we enumerate all schedules s j with 1 ≤ j ≤ N , we necessarily compute s * .

The complexity result follows from a careful implementation of the algorithm: build all s j 's starting from j = 1 and compute P j from P j-1 by a simple update. If j < n, P j = P j-1 ∪ {j -1}. Otherwise, remove from P j-1 the smallest processing time job p ℓ and add p j-1 if p j-1 > p ℓ .

Number of tardy jobs

In this section, we assume that each job j has a due date d j and the follower minimizes the number of tardy jobs j U F j with U F j = 1 if C F j > d j and 0 otherwise. This problem is referred to as 1|ADV -n| j U F j . Without loss of generality we assume that jobs are indexed following the non-decreasing order of their due date (EDD order), i.e. d 1 ≤ ... ≤ d N . Whenever the n jobs have been selected by the leader, the follower minimizes the number of tardy jobs by means of Moore's algorithm [START_REF] Moore | An n job, one machine sequencing algorithm for minimizing the number of late jobs[END_REF]) or, equivalently, by Lin and Wang's algorithm [START_REF] Lin | Necessary and sufficient conditions of optimality for some classical scheduling problems[END_REF]).

Let us denote by s M oore the schedule obtained by applying Moore's algorithm on the N jobs. Roughly speaking, this algorithm works as follows: at iteration k, schedule job k after the partial schedule α which only contains early jobs. If job k is early set α = α//{k} and iterate. If job k is late then select job k max from α//{k} that has the largest processing time. Set α = α//{k}, remove job k max from α and iterate. Finally, all the removed jobs are scheduled late at the end of α. We denote by j U M oore j the j U j value of schedule s M oore . We have the following result.

Lemma 2. Let k last be the last job detected late in Moore's algorithm. If k last ≤ n, then the optimal solution of the 1|ADV -n| j U F j problem is obtained by selecting the n first jobs in EDD order.

Proof. Let us denote by j U F * j the optimal solution value of problem 1|ADV -n| j U F j for a given instance. It is straightforward that

j U F * j ≤ j U M oore j as j U F * j
is computed on a subset of the N jobs. As k max ≤ n, by selecting jobs {1, ..., k max , k max +1, ...n} the follower's optimal solution will have j U F * j = j U M oore j .

The question whether the 1|ADV -n| j U F j problem can or cannot be solved in polynomial time when Lemma 2 does not hold, is answered hereafter. We first consider that the leader has selected n jobs and we want to check if there exists a solution for the follower which has ϵ U tardy jobs. This problem can be solved by a dynamic programming algorithm which is a simple specialization of the one proposed in [START_REF] Lawler | A dynamic programming algorithm for preemptive scheduling of a single machine to minimize the number of late jobs[END_REF] for the 1|r j , pmtn| j w j U j problem. Let C 0 (j, ϵ U) be the value of the smallest makespan when the j first jobs in EDD order have been scheduled and ϵ U of them are tardy. We have:

C 0 (j, ϵ U) = min C 0 (j -1, ϵ U -1) j is scheduled tardy ; C 0 (j -1, ϵ U) + p j if C 0 (j-1, ϵU) + pj ≤ dj; +∞ otherwise
with C 0 (j, ϵ U) = +∞ whenever ϵ U < 0 or ϵ U > j, and C 0 (0, 0) = 0. Notice that this dynamic programming algorithm requires O(n 2) time and space. Now, for the 1|ADV -n| j U F j problem we can generalize the above recursion to take into account the leader's decisions. Let C(j, k, ϵ U) be the value of the smallest makespan when k jobs among the j first ones are selected and ϵ U of them are tardy. We have:

C(j, k, ϵ U) = max C(j -1, k, ϵ U) j is not selected ; min C(j -1, k -1, ϵ U -1); C(j -1, k -1, ϵ U) + p j j is selected with C(j, k, ϵ U) = +∞ whenever ϵ U < 0 or ϵ U > j, C(j, k, ϵ U) = -∞ whenever j < k,
and C(0, 0, 0) = 0. Notice that the two terms inside the min() correspond to j being scheduled tardy and, respectively, being scheduled early. Besides, whenever the min() returns +∞, this value must be transformed into -∞ during the recursions. Solving the bilevel problem requests to determine the greatest value ϵ U such that C(N, n, ϵ U) ̸ = -∞. Notice that this dynamic programming algorithm requires O(N n 2) time and space which implies that the 1|ADV -n| j U F j problem can be solved in polynomial time.

To conclude this section, we prove that a related problem is N P-complete. Assume that the list L of tardy jobs is imposed, that is the problem turns to a decision problem where the leader has to select (n -|L|) jobs so that when the follower schedules the n jobs, only those in L are tardy. This problem is denoted by 1|ADV -n, L|-.

Theorem 3. Let L be the set of jobs which have to be scheduled tardy by the follower. The 1|ADV -n, L|-problem is N P-complete.

Proof. Let us consider the following weakly N P-complete problem:

Equal-size Partition Data: Let be A = {a 1 , ..., a 2n ′ } be a finite set of elements and a size s(a) ∈ N, ∀a ∈ A. Let be B = j∈A s(a)

2 Question: Does there exists A ′ ⊂ A such that a∈A ′ s(a) = B and |A ′ | = n ′ ? We show that this problem reduces to the special case of agreeable due dates, i.e. with p j ≤ p k ⇔ d j ≤ d k , ∀j, k = 1..N . This problem is denoted by 1|ADV -n, agreeable, L|-.

Let be given an instance of Equal-size Partition and let us denote by N ′ = 2n ′ for simplicity purpose. We build the instance of the bilevel scheduling problem as follows:

N = N ′ + 1,
L = {N ′ + 1}, n = n ′ + 1.
To have job (N ′ + 1) tardy, the total length of the element jobs scheduled before must be at least B. However, if the jobs before (N ′ + 1) are of total length strictly greater than B, then at least one of these ones is tardy and this violates the fact that only jobs in L are tardy. Consequently, there exists a feasible solution to the scheduling problem if and only if there exists a feasible solution to Equal-size Partition .

Adversarial bilevel scheduling with data modification

We now turn to problems in which a set of n jobs is available and the leader can modify some of the data (processing times, due dates, weights), given a limited budget Q, before the follower computes a schedule minimizing a given criterion f F . Leader's goal is to modify data such that the optimal value of f

F ∈ { j C F j , j w F j C F j , L F max , j U F j } is maximum.
The following subsections discuss the existence of polynomial-time algorithms for each criterion minimized by the follower.

Sum of completion times

The problem tackled in this section is referred to as 1|ADV -p| j C F j . Given a list of n jobs with processing times p F j , the follower schedules jobs so that their sum of completion times, denoted by j C F j , is minimum. This is doable in polynomial time by applying the SPT rule. Let be the initial processing times p j so that p 1 ≤ ... ≤ p n . Thus, the leader has to decide how to fix quantities q j so that, with p F j = p j + q j , the follower's optimal solution is as bad as possible. In addition, the leader has a budget so that j |q j | ≤ Q, with Q ∈ N given. Notice that the leader has no interest in setting a q j < 0 as it would decrease the optimal solution value of the j C F j . Thus, without loss of optimality, we consider q j ≥ 0, ∀j = 1..n, and j q j ≤ Q. We first show two instrumental results.

Lemma 3. Let s = (1, ..., k, k + 1, ...n) be a SPT schedule with p 1 = ... = p k < p k+1 , q = Q k with q ∈ N, and p k + q ≤ p k+1 . Let s 1 be the schedule obtained by setting q 1 = ... = q k = q and q j = 0, ∀j = k + 1, .., n, and let s 2 be the schedule obtained by setting q 1 = ... = q k ′ = q, k ′ < k and assigning budget (Q -(k -k ′)q) to any subset of jobs in {(k + 1), .., n}. We have j C F j (s 1) > j C F j (s 2).

Proof. First, notice that s 1 = s and that both the first (k -k ′) jobs in s 2 and the first (k -k ′) jobs in s have identical processing times. Next, it is well-known that the follower's objective function can be rewritten as:

n j=1 C F j = n j=1 (n -j + 1)p F j .
Let us define ∆(s ℓ , s) = (j C F j (s ℓ)j C F j (s)) as the increase in the objective function for a given vector q ℓ = [q ℓ 1 , ..., q ℓ n]. We have: ∆(s 1 , s) = qk(n -k-1 k). We derive an upper bound on ∆(s 2 , s) by setting q k+1 = (Q-(k -k ′)q) and by remarking that jobs 1 to k ′ are scheduled from positions (k -k ′ + 1) to k in s 2 . Thus, we have:

∆(s 2 , s) ≤ k j=(k-k ′) q + (n -k)q(k -k ′) ≤ q (k ′ +1)(n-k+k ′ +1) 2 + q(n -k)(k -k ′) ≤ q 2 (n -k)(2k -k ′ + 1) + (k ′ + 1) 2 Consequently, we have: ∆(s 1 , s) -∆(s 2 , s) ≥ qk(n -k-1 2) -q 2 (n -k)(2k -k ′ + 1) + (k ′ + 1) 2 ≥ q 2 n(k ′ + 1) + q 2 k(k -k ′ + 2) -q 2 (k ′ + 1) 2 ≥ q 2 n(k ′ + 1) + q 2 (k 2 -kk ′ + 2k -k ′2 -2k ′ -1) > q 2 n(k ′ + 1) -q 2 (kk ′ + 1) > 0 It follows that j C F j (s 1) > j C F j (s 2
). Lemma 4. Let s = (1, ..., k, k + 1, ...n) be a SPT schedule with p 1 = ... = p k < p k+1 , q = Q k with q ∈ N, and p k + q ≤ p k+1 . Let s 1 be the schedule obtained by setting q 1 = ... = q k = q and q j = 0, ∀j = (k + 1)..n, and let s 2 be the schedule obtained by setting q 1 = ... = q k = 0 and assigning budget Q to any subset of jobs in {(k + 1), .., n}. We have j C F j (s 1) > j C F j (s 2).

Proof. First, notice that s 1 = s and that the first k jobs in s 2 are identical to those in s 1 . Next, it is well-known that the follower's objective function can be rewritten as:

n j=1 C F j = n j=1 (n -j + 1)p F j .
Let us define ∆(s ℓ , s) = (j C F j (s ℓ)j C F j (s)) as the increase in the objective function for a given vector q ℓ = [q ℓ 1 , ..., q ℓ n]. We have:

∆(s 1 , s) = Q(n -k-1 k), and ∆(s 2 , s) ≤ Q(n -k),
as an upper bound to ∆(s 2 , s) is obtained by setting q k+1 = Q. It follows that ∆(s 1 , s) > ∆(s 2 , s) which proves the result.

Theorem 4. The 1|ADV -p| j C F j problem can be solved in O(n log(n)) time. The leader sets:

q j = P -p j , ∀j = 1.. k P -Q -k P P + k P i=1 p i , q j = P -p j + 1, ∀j = k P -Q -k P P + k P i=1 p i + 1 ..k P , q j = 0, ∀j = k P + 1..n, with P = argmax 0≤t≤ j pj (kt - k j=1 p j) ≤ Q|p 1 ≤ ... ≤ p k ≤ t and p k+1 > t ,
and k P the job such that p k P ≤ P < p k P +1 . The follower applies the SPT rule on the p F j = p j + q j 's.

Proof. The result is obtained by applying repeatedly Lemma 3 and 4, starting from the SPT schedule s 0 with q 0 = [0, ..., 0]. Also notice that, from the proof of these two lemma, we can evince that increasing the first k ′ equal-length jobs j with distinct quantities q j is sub-optimal with respect to increasing them all by the same quantity q. Let k 0 be the number of consecutive equal-length jobs in s 0 from position 1 on. First, assume that

Q ≥ Q 0 = k 0 (p k 0 +1 -p k 0)
. By setting q = (p k 0 +1 -p k 0), q j = q, ∀j = 1..k 0 , and q j = 0, ∀j = (k 0 + 1)..n, we obtain a new solution s 1 that provides the largest increase of the j C F j value among all possible assignments of budget Q 0 . Notice that the sequence of jobs in s 1 is the same than in s 0 , k 1 > k 0 and the remaining budget is updated to

Q = (Q -Q 0). The above process is repeated until iteration t when Q < Q t = k t (p k t +1 -(p k t + q k t).
In that case we necessarily have Q < k t and we set q = 1 and only increase the q j 's of jobs in positions (k t -Q) to k t . This is also the best assignment of quantity Q to increase the optimal value of j C F j .

It is possible to directly identify the right values of k and the q j 's as follows. Let k P ∈ N, and P ∈ N, be the largest value such that:

(1)

k P j=1 (P -p j) ≤ Q, and
(2)

k P +1 j=1 (P -p j) > Q.
Thus, the k P smallest jobs will have increased processing times for the follower's problem so that the leader meets its budget constraint. Notice, that Q -k P j=1 (P -p j) < k P necessarily holds, otherwise (P + 1) would satisfy (1) and (2), thus contradicting the definition of P . Consequently, the k P -Q + k P Pk P i=1 p i first jobs j will have a processing time p F j = P , while the Q -k P P + k P i=1 p i last jobs j will have a processing time p F j = P + 1. The remaining (n -k P) jobs will keep their original processing times values, i.e. p F j = p j .

Solving the problem requires, in O(n log(n)) time, sorting the jobs according to SPT order. Next, the values of P and k P can be computed in O(n) time as well as the computation of the q j 's. This yields an overall O(n log(n)) time complexity.

Weighted sum of completion times

Consider that jobs are also attached weights w F j and the follower is scheduling jobs so that their weighted sum of completion times, denoted by j w F j C F j , is minimum. Whenever the processing times and weights are fixed, this is doable in polynomial time by applying the WSPT rule. Two adversarial problems are considered hereafter depending on the data the leader can modify. The first problem is denoted by 1|ADV -p| j w F j C F j and the leader can only modify processing times, while the second problem is denoted by 1|ADV -w| j w F j C F j and the leader can only modify the weights.

First, we focus on the 1|ADV -p| j w F j C F j problem. Let p j be the initial processing times so that p1 w F 1 ≤ ... ≤ pn w F n . Again, the leader has to decide how to fix quantities q j so that with p F j = p j + q j , the follower's optimal solution is as bad as possible. As for the unweighted case, it is of no interest for the leader that some q j < 0. In addition, the leader has a budget so that j q j ≤ Q, with Q ∈ N given. We first consider the continuous case, i.e. q j ∈ R, and show that it can be solved in polynomial time. We start with instrumental results.

Lemma 5. There exists an optimal solution to the 1|ADV -p, q j ∈ R| j w F j C F j problem in which jobs are sequenced according to the WSPT rule on the p j 's.

Proof. Suppose by contradiction an optimal solution s * exists where the original WSPT sequence is not preserved. Thus, in s * there necessarily exist two adjacent jobs i and j starting at time t 0 whose processing times p F i , p F j and weights w i , w j are such that

p F i wi > p F j
wj (hence job i follows job j in s *), while in the initial WSPT order we have pi wi < pj wj . The contribution to the objective function value of these two jobs in s * is given by:

z 1 = w j (t 0 + p F j) + w i (t 0 + p F j + p F i).
Let ϵ > 0 be a small enough value such that

p F i -ϵ wi > p F j +ϵ
wj and the sequence in s * remains unchanged. Let s ϵ be the solution obtained when setting p F i = p F i -ϵ and p F j = p F j + ϵ. Thus, the contribution to the objective function value of these two jobs in s ϵ is given by:

z 2 = w j (t 0 + p F j + ϵ) + w i (t 0 + p F j + p F i) = z 1 + ϵw j > z 1 .
Consequently, s ϵ is necessarily better than s * which contradicts the optimality of s * .

Following Lemma 5, we assume in the remainder that an optimal solution to the problem with real valued q j 's preserves the initial WSPT order. Lemma 6. Let s W SP T = (1, .., n) be the schedule obtained by the WSPT rule on the p j 's.

Let be k ∈ {1..n}, Q = k j=1 p k+1 w k+1 w j -p j , q 1 = [p k+1
w k+1 w 1 -p 1 ; ...; p k+1 w k+1 w k -p k ; 0; ...; 0] ∈ R n and q 1+ϵ = q 1 + ϵ ∈ R n . Let s 1 (resp. s 1+ϵ) be the optimal solution of the follower's problem with q 1 (resp. q 1+ϵ). We have j w j C F j (s 1) ≥ j w j C F j (s 1+ϵ).

Proof. First, notice that the sequences associated to s W SP T , s 1 and s 1+ϵ are identical.

Next, we remind that the follower's objective function can be rewritten as:

n j=1 w F j C F j = n j=1 p F j n k=j w F k .
Let us define ∆(s ℓ , s) = (j w j C F j (s ℓ)j w j C F j (s)) as the increase in the objective function for a given vector q ℓ = [q ℓ 1 , ..., q ℓ n]. We have:

∆(s 1 , s W SP T) = k j=1 p k+1 w k+1 w j -p j n i=j w F i , and ∆(s 1+ϵ , s W SP T) = k j=1 p k+1 w k+1 w j -p j + ϵ j n i=j w F i + n j=k+1 ϵ j n i=j w F i .
It follows that:

∆(s 1 , s W SP T) -∆(s 1+ϵ , s W SP T) = - k j=1 ϵ j n i=j w F i - n j=k+1 ϵ j n i=j w F i = - k j=1 ϵ j (k i=j w F i + n i=k+1 w F i) - n j=k+1 ϵ j (n i=k+1 w F i - j-1 i=k+1 w F i) As n j=1 ϵ j = 0, ϵ j ≥ 0 (j = k + 1..n) and ϵ j ≤ ϵ j+1 (j = 1..k), we derive that: ∆(s 1 , s W SP T) -∆(s 1+ϵ , s W SP T) = - k j=1 ϵ j k i=j w F i + n j=k+1 ϵ j j-1
i=k+1 w F i ≥ 0, as both terms are positive. This proves the result.

Theorem 5. The 1|ADV -p, q j ∈ R| j w F j C F j problem can be solved in O(n log(n)) time. The leader sets:

q j = (Q+ k R ℓ=1 p ℓ)w F j k R ℓ=1 w F ℓ -p j , ∀j = 1..k R q j = 0, ∀j = (k R + 1)..n, with R = Q+ k R j=1 pj k R j=1 w F j and k R the job such that p k R w F k R ≤ R < p k R +1 w F k R +1
. The follower applies the WSPT rule on p F j = p j + q j and w F j = w j , ∀j = 1..n.

Proof. It is well-known that the follower's objective function can be rewritten as:

n j=1 w F j C F j = n j=1 p F j n k=j w F k .
Starting with p F j = p j , it is always worse for the optimal solution of the follower to increase p F j instead of p F k , j < k, whenever the WSPT order is preserved. To preserve the WSPT order, the leader must ensure that

p F 1 w F 1 ≤ ≤ p F n w F n .
It follows that to worsen the optimal solution of the follower's problem, the leader increases as much as possible the jobs in the first positions of the WSPT sequence. Assume that a job j has a ratio pj w F j < p F j w F j = R. Then, we must set q j = w F j R -p j . To maintain the WSPT order, and taking into account his budget, the leader must determine the largest ratio R ∈ R and the job k R such that:

(P 0)          p k R w F k R ≤ R < p k R +1 w F k R +1 , (I) k R j=1 q j = k R j=1 (w F j R -p j) = Q, (II) pj +qj w F j = R, ∀j = 1..k R (III)
Considering (III), for any value of j, and (II) (P 0) implies:

(P 1)      p k R w F k R ≤ R < p k R +1 w F k R +1
, (I)

q j = (Q+ k R ℓ=1 p ℓ)w F j k R ℓ=1 w F ℓ -p j , ∀j = 1..k R (IV)
It can be easily shown that fixing the q j 's as in (IV) also satisfies (II) and (III), so that (P 0) and (P 1) are equivalent. So, fixing the q j 's as in (IV) solves to optimality the problem.

Solving the problem requires sorting, in O(n log(n)) time, the jobs according to WSPT. The computation of R and k R can be done in O(n) time, as well as the update of the q j 's. This yields an overall O(n log(n)) time complexity.

Let us go back to the discrete version of the problem, i.e. when q j ∈ N, ∀j = 1..n. It turns out that the WSPT order on the initial p j 's may not be preserved in an optimal solution to the 1|ADV -p, q j ∈ N| j w F j C F j problem. Let us take the following two jobs example: p 1 = 999, w 1 = 1000, p 2 = w 2 = 1. Consider Q = 2. Two solutions s 1 = (2, 1) and s 2 = (1, 2) can be obtained. Solution s 1 can be built from vector q 1 = [2; 0] while solution s 2 can be built from vectors q 2 = [1; 1] and q 3 = [0; 2]. It can be easily checked that the optimal solution of the bilevel problem is given by s 1 (by means of vector q 1) which does not follow the initial WSPT order (1, 2). Consequently, it cannot be solved by the same kind of approach as in the continuous case. The complexity status of the 1|ADV -p, q j ∈ N| j w F j C F j problem remains open.

Next, consider the 1|ADV -w| j w F j C F j problem and the leader can only modify the weights of the follower. So, for the follower's problem we set p F j = p j and w F j = w j + q j , ∀j = 1..n, with q j ∈ N. As previously, we first focus on the relaxed version with real valued q j 's, i.e., problem 1|ADV -w, q j ∈ R| j w F j C F j . The proof of Lemma 5 shows that the result also holds in the case the weights can be modified by the leader. So, there exists an optimal solution to the 1|ADV -w, q j ∈ R| j w F j C F j problem in which jobs are sequenced in the WSPT order on the p j and w j .

Theorem 6. The 1|ADV -w, q j ∈ R| j w F j C F j problem can be solved in O(n log(n)) time. The leader sets:

q j = (Q+ n ℓ=k R w ℓ)p F j n ℓ=k R p F ℓ -w j , ∀j = k R ..n q j = 0, ∀j = 1..(k R -1), with R = n j=k R p F j Q+ n j=k R wj and k R the job such that p F k R -1 w k R -1 < R ≤ p F k R w k R
. The follower applies the WSPT rule on p F j = p j and w F j = w j + q j , ∀j = 1.n.

Proof. The proof follows the same line than that of Theorem 5. As the follower's objective function can be rewritten as:

n j=1 w F j C F j = n j=1 p F j n k=j w F k
, it follows that it is always worse for the optimal solution of the follower to increase w F j instead of w F k , j > k, whenever the WSPT order is preserved. To preserve the WSPT order, the leader must ensure that

p F 1 w F 1 ≤ ≤ p F n w F n
. It follows that to worsen the optimal solution of the follower's problem, the leader increases as much as possible the jobs in the last positions of the WSPT sequence. Assume that a job j has a ratio

p F j wj > p F j w F j = R.
Then, we must set q j = p F j R -w j . To maintain the WSPT order, and taking account of his budget, the leader must determine the smallest ratio R ∈ R and the job k R such that:

(P 0)            p k R -1 w F k R -1 ≤ R < p k R w F k R , (I) n j=k R q j = n j=k R (p F j R -w j) = Q, (II) p F j wj +qj = R, ∀j = k R ..n (III)
Considering (III), for any value of j, and (II) (P 0) implies:

(P 1)    p k R -1 w F k R -1 ≤ R < p k R w F k R , (I) q j = (Q+ n ℓ=k R w ℓ)p F j n ℓ=k R p F ℓ -w j , ∀j = k R ..n (IV)
It can be easily shown that fixing the q j 's as in (IV) also satisfies (II) and (III), so that (P 0) and (P 1) are equivalent. So, fixing the q j 's as in (IV) solves to optimality the problem. The time complexity is established exactly as in Theorem 5.

Considering the discrete version of the problem, i.e. when q j ∈ N, ∀j = 1..n, it turns out that the WSPT order on the initial w j 's may not be preserved in an optimal solution to the 1|ADV -w, q j ∈ N| j w F j C F j problem. This can be shown by the same two jobs example than the one used for the ADV -p version of the problem which also implies that the complexity status of the 1|ADV -w, q j ∈ N| j w F j C F j problem remains open.

Maximum lateness

Assume that each job j is defined by a processing time p j and a due date d j . The aim, for the follower, is to schedule jobs in order to minimize the maximum lateness, defined by L F max = max j=1..n (C F j -d F j). The leader can modify either the processing times or the due dates so that the optimal solution for the follower is as bad as possible. Whenever the p F j 's and d F j 's are known, the optimal solution of the follower's problem is built by applying the EDD rule. Without loss of generality, let us assume that d 1 ≤ ... ≤ d n .

We first focus on the problem where the leader can only modify the processing times, which is referred to as 1|ADV -p|L F max . As the due dates remain unchanged, we set d F j = d j , ∀j = 1..n. Besides, p F j = p j + q j is the processing time value of the follower's problem. As modifying the processing times has no impact on the EDD order, this bilevel problem can be trivially solved by setting q 1 = Q and q j = 0, j = 2..n. Now, let us consider the problem in which the leader can only modify the due dates, which is referred to as 1|ADV -d|L F max . Thus, we set p F j = p j , d F j = d j -q j , ∀j = 1..n, and increasing the value of the optimal solution of the follower's problem requires q j ≥ 0, with n j=1 q j ≤ Q. Intuitively, we could think about decreasing the due dates of critical jobs, i.e., jobs which give the L max value. However, consider the following 2-job example with p 1 = 30, d 1 = 11, p 2 = 3, d 2 = 13 and Q = 10. The optimal schedule for these due dates is s 0 = (1, 2), it has L max (s 0) = 20 and the critical job is 2. If the leader sets q 1 = 4 and q 2 = 6 to increase the L max by decreasing d 2 , then the optimal solution is s 1 = (1, 2) and has L max (s 1) = 26. But if the leader only decreases d 1 by setting q 1 = 10 and q 2 = 0, then the optimal solution is still s 2 = (1, 2) but with L max (s 2) = 29 > L max (s 1). Consequently, to compute an optimal solution, it is not sufficient to only consider decreasing the due dates of critical jobs.

We provide some properties of an optimal schedule when we are given the critical job j Theorem 7. Let j be a job giving the L F max value of an optimal schedule s * to the 1|ADV -d|L F max problem. We denote by B j (resp. A j) the set of jobs preceding (resp. following) j in s * . There exists an optimal schedule s * in which:

1. B j ⊆ {1, ..., (j -1)} and jobs in B j are sequenced by their index order (initial EDD order), 2. jobs in A j are sequenced by their index order (initial EDD order) and q k = 0, ∀k ∈ A j , 3. ∀i ∈ A j ∩ {1, ..., (j -1)}, p i < p j . Proof. Let s EDD = (1, ..., n) denote the schedule obtained by sequencing jobs according to the EDD rule and let s * denote an optimal sequence with job j being a job with maximum lateness. In schedule s * we have d F ℓ = d ℓ -q * ℓ and L * ℓ refers to the lateness of job ℓ, ∀ℓ = 1...n. The properties stated in the theorem are shown by proving the five following facts: in s * , all jobs in B j are in EDD order (fact 1), all successors of j in s EDD are in A j (fact 2), all jobs in A j are in EDD order (fact 3), each job k ∈ A j keeps the original due date (fact 4) and for each job i ∈ A j ∩ {1, ..., (j -1)}, p i < p j must hold (fact 5). We prove the result by showing that from any presumed optimal schedule, we can always build s * without increasing the L max value. We distinguish above the five mentioned facts.

1. Suppose there exists another optimal schedule s 1 , with values q 1 ℓ , in which j gives the L max and there exists a pair of jobs h, i, preceding j both in s EDD and s 1 such that d h < d i but d F i = d i -q 1 i < d F h = d h -q 1 h . Hence, job h precedes i in s EDD and h follows i in s 1 . In this case, as L max = L 1 j , we have L 1 i ≤ L max and L 1 h ≤ L max . By reducing q 1 i so that d i -q 1 i = d h -q 1 h , we can place job i immediately after job h. Let s ′ 1 be the corresponding schedule with values q ′ 1 ℓ = q 1 ℓ , ∀ℓ = 1...n, ℓ ̸ = i, and q ′ 1 i = d i -d h + q 1 h > 0 since d h < d i . Notice that ℓ q ′ 1 ℓ < ℓ q 1 ℓ ≤ Q. Let us denote by L ′ 1 h and L ′ 1 i the associated lateness values. We have

L ′ 1 h < L ′ 1 i = L 1 h ≤ L max = L 1
j , that is L max does not change. By iteratively applying this argument, we obtain an optimal schedule s t in which all jobs i < j preceding j also in s t are in EDD order of the d ℓ 's. 2. Now, we assume that there exists another optimal schedule s 1 with values q 1 ℓ , in which j gives the L max and let job k > j be the largest index job which is scheduled before j in s 1 . Notice that by a similar reasoning to that of fact 1, we can assume that job k immediately precedes j. Let us build a schedule s ′ 1 with values q ′ 1 ℓ = q 1 ℓ , ∀ℓ = 1...n, ℓ ̸ = k, and q ′ 1 k = d k -d j + q 1 j . Again, note that q ′ 1 k ≥ 0 since d j ≤ d k . Thus, s ′ 1 = (1, ..., j, k, ..., n) with ℓ q ′ 1 ℓ < ℓ q 1 ℓ ≤ Q. We have:

L 1 k < L ′ 1 j ≤ L * max = L 1 j = L ′ 1 k .
That is, now k gives the L max with j preceding k, thus respecting the EDD order. Also for this fact, by iteratively applying this argument, we obtain an optimal schedule s t where, if job j gives the L max value, then all jobs k > j follow j in s t . 3. Next, suppose there exists another optimal schedule s 1 ,with values q 1 ℓ , in which j gives the L max and there exists pairs of jobs h, i following j both in s EDD and s 1 such that d h < d i but d F i = d i -q 1 i < d F h = d h -q 1 h . Hence, job h precedes i in s EDD and h follows i in s 1 . The same analysis considered in fact 1 holds here leading to the conclusion that we can obtain an optimal schedule s t in which all jobs i > j following j also in s t are in EDD order of the d i 's. 4. For this fact, suppose there exists another optimal schedule s 1 ,with values q 1 ℓ , in which j gives the L max and there exists a job k following j both in s EDD and s 1 such that q 1 k > 0 and d F k < d k . By setting q 1 k to 0 so that d F k = d k , job k remains after job j and the value of L F max does not change. By iteratively applying this argument, we obtain an optimal schedule s t in which all successors of j keep their original due date. 5. For the last fact, suppose by contradiction there exists another optimal schedule s 1 with values q 1 ℓ , in which j gives the L max and let i be the smallest index job i < j with p i > p j which is scheduled after j in s 1 = (..., j, ..., i, ...). Consider the schedule s ′1 in which j and i are swapped with: q ′1 i = d i -d j + q 1 j , q ′1 j = d j -d i and q ′1 ℓ = q 1 ℓ , ∀ℓ ̸ = i, j. So, we have d ′F i = d F j and d ′F j = d F i . Then, ℓ q ′1 ℓ = ℓ q 1 ℓ ≤ Q as q 1 i + q 1 j = q ′1 i + q ′1 j , and then s ′1 is feasible as it does not use more budget than s 1 . But then, C ′F i > C F j implies L ′F i > L F j which contradicts the optimality of s 1 and i cannot be scheduled after j.

From Theorem 7 it follows that, if we knew the job j inducing the maximum lateness,

 whenever k > j or C < 0 or (k = 0 and C > 0), and WC[0, 0, 0] = 0. To solve the 1|ADV -n| j w j C F j problem we need to determine the value C ∈ {1, ..., N j=1 p j } such that WC[N, n, C] is maximum. This dynamic programming requires O(N n j p j) time and space.

 element jobs: ∀j = 1..N ′ , p j = a j , and d j = B, partition job: p N ′ +1 = 2B and d N ′ +1 = 3B -1,

Acknowledgements

This work was partially supported by "Ministero dell'Istruzione, dell'Università e della Ricerca" Award "TESUN-83486178370409 finanziamento dipartimenti di eccellenza CAP. 1694 TIT. 232 ART. 6".

and which jobs in subset B j precede j in the sequence, then each optimal q * ℓ could be immediately determined. Hence, the problem could be trivially solved by testing each job j as the one inducing L F max and then deciding for each job i ∈ {1, ..., j -1} whether i precedes j or not. However, this algorithm would run with exponential complexity O(p(n)2 n) where we denote by p(n) a polynomial of n.

Even if Theorem 7 provides interesting structural properties of an optimal schedule, the complexity status of the 1|ADV -d|L F max problem remains open.

Number of tardy jobs

Assume that each job j is defined by a processing time p j and a due date d j . The aim, for the follower, is to schedule jobs in order to minimize the number of tardy jobs, defined by j U F j , with U F j = 1 if job j is tardy, i.e. C F j > d F j , and 0 otherwise. Whenever the p F j 's and d F j 's are known, the follower minimizes the number of tardy jobs by means of Moore's algorithm [START_REF] Moore | An n job, one machine sequencing algorithm for minimizing the number of late jobs[END_REF]) or, equivalently, by Lin and Wang's algorithm [START_REF] Lin | Necessary and sufficient conditions of optimality for some classical scheduling problems[END_REF]). Consider the particular case where all jobs share a common due date d: we show that the two possible problems can be solved in polynomial time.

First, consider problem 1|ADV -p, d j = d| j U j and notice that, for any given processing times p F j = p j + q j , ∀j = 1..n (with q j ≥ 0), an optimal solution for the follower is obtained by sorting the jobs in non-decreasing order of the p j 's. From this sequence, jobs completing after the common due date d are tardy. Assume that the initial processing times p j are indexed such that p 1 ≤ ... ≤ p n . Let ℓ be the last early job when jobs are scheduled with the initial p j 's. It is straightforward that tardy jobs j in this initial schedule will have q j = 0. By increasing the processing times of the early jobs, the leader will make jobs ℓ, (ℓ -1), ... tardy. Besides, it is preferable that the budget Q is assigned to the first early jobs and the SPT order is maintained to maximize the number of tardy jobs. Consequently, the procedure described in Theorem 4 can be applied to optimally solve the 1|ADV -p, d j = d| j U j problem. When the leader can only modify the value of the common due date, i.e. problem 1|ADV -d, d j = d| j U j , it is easy to see that an optimal solution is achieved by setting d F = max(0; d -Q). Then, the follower sequences jobs by non-decreasing value of the processing times, inducing a time complexity in O(n log(n)).

We now turn to the general 1|ADV -p| j U j problem and provide a pseudopolynomial time algorithm to solve it. We assume hereafter that jobs are indexed such that d 1 ≤ ... ≤ d n . Let U[j, C, Q] be the maximal minimum number of tardy jobs when the j first jobs are scheduled, the early ones finish at time C and the leader has a budget Q to modify their processing time. We have:

with U[j, C, Q] = +∞, if j = 0 and C > 0, and U[0, 0, Q] = 0. Notice that, by convention, we define min(+∞; +∞) = -∞ and max(-∞; ...; -∞) = +∞. Moreover, the value of q achieving the maximum in the above formula defines the value of q j . To solve the 1|ADV -p| j U j problem, we keep the best solution among all U[n, t, Q], ∀t = 0...(

which can be rewritten as O(n 4 p 3 max) since Q ≤ np max with p max = max 1≤j≤n (p j). The 1|ADV -d| j U j problem can be similarly solved by a slight modification of the above dynamic programming formulation:

Notice that the complexity status of the two problems with arbitrary dues dates remains open even if the existence of dynamic programming formulations running in pseudo-polynomial time rules out N P-hardness in the strong sense.

Conclusions

In this paper we focused on the solution of some bilevel single machine scheduling problems in the adversarial setting, i.e. when the leader modifies the instance to make as bad as possible the optimal solution of the follower's problem. All the considered scheduling problems are polynomially solvable when the leader cannot modify the instance (single level optimization) and some of them remain so in the adversarial bilevel setting. However, surprisingly, others remain open even if pseudo-polynomial time algorithms may have been proposed. It is really intriguing to note that, despite their simple formulation, they seem to be at the frontier between easy and hard problems. These open problems definitely deserve deeper attention.

A natural extension of the problems tackled in this paper could be to consider them in the settings of optimistic or pessimistic bilevel optimization. As the leader minimizes his own criterion, these problems are expected to be much harder than in the adversarial setting. Hopefully, some may be proved to be N P-hard while others may be Σ p 2 -hard, thus requiring challenging complexity proofs.

Finally, we point out that beyond the complexity status of bilevel scheduling problems it is worthwhile to consider the solution of hard ones and establish how effective can be exact algorithms for single machine problems but also for more complex scheduling environment.