
HAL Id: hal-03976898
https://hal.science/hal-03976898v1

Submitted on 7 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On HGCD-D bounds
Juraj Sukop, Niels Möller

To cite this version:

Juraj Sukop, Niels Möller. On HGCD-D bounds. Independent. 2023. �hal-03976898�

https://hal.science/hal-03976898v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


On HGCD-D bounds

Juraj Sukop 1, Niels Möller 2

1 sukop@xxyxyz.org , 2 nisse@lysator.liu.se

Abstract

An improved bound for one of the founding relations of HGCD-D algo-
rithm is presented. This allows to put a lower limit on the iteration count
of the first sdiv loop, to impose a particular structure on the accumulated
quotients and to bound the size of the largest matrix element. The matrix
product M ·M ′ is proved to have its upper and lower size bound differ by
at most two bits.

Keywords: Euclid’s algorithm, greatest common division, GCD, Half-GCD

1 Introduction

The present note introduces several bounds relevant to HGCD-D algorithm and
its implementation. The algorithm was first introduced in [1] by Niels Möller,
where it was also analysed in detail and compared to other asymptotically fast
half-GCD functions. Half-GCD can be seen as GCD algorithm interrupted in
the middle of the work: it returns a matrix that can be used to compute two
consecutive terms of the remainder sequence, each being of roughly half the size
of the given input. In order not to repeat the many facts proved therein, this
note is structured as a commentary to the original paper and as such only the
most relevant results for this work will be recapitulated.

The motivation for this note is the matrix multiplication of HGCD-D algo-
rithm depicted in Listing 1, line 23. In particular, the lower bound of the size
that the product could attain as this has implications for a practical implemen-
tation with regards to memory allocation. Note that the upper bound is trivial:
in general, the size of the product of two matrices is bounded by the sum of
their respective sizes plus one. The worry then is just how much smaller the
final size could be.

The main argument of this note can be summarized as follows: By improv-
ing one of the stated relations it is shown that for the first loop at least one
sdiv step must be made. Such a fact has consequences for the structure of the
quotients, the relative order in which the factor matrices representing the quo-
tients accumulate and the size of matrix elements. Finally, the lower bound on
the the maximal element of the matrix product is proved.

2 Preliminaries

Through the text we will keep using the same notation as in the original: #x
denotes the bit size of positive x, #(x, y) = max(#x,#y), #(x, x′; y, y′) =

1



max(#x,#x′,#y,#y′), #(x, y) = min(#x,#y). A, B are positive integers (the
input), M is the transformation matrix of the accumulated quotient sequence.

HGCD-D accepts integers a, b > 0, n = #(a, b), s = bn/2c + 1, #(a, b) > s
and returns integers α, β > 0, #(α, β) > s, #(α − β) ≤ s and matrix M ≥ 0,
det(M) = 1, (a; b) = M(α;β).

Nevertheless, here we will deviate slightly from the presentation in the orig-
inal paper in order to amend one inaccuracy. There the first sdiv loop reads
as

9 while #(A,B) > b3N/4c+ 1 and #(A−B) > S
10 do
11 One sdiv step on (A,B); update M

and later the paper states “The bound N2 ≤ b3N/4c+ 1 implies ...”. How-
ever, the condition #(A−B) > S means the loop can terminate at that point as
well and thus A, B may not get the chance to become less or equal to b3N/4c+1.
Moreover, for the sake of simplified analysis, it is also advantageous to terminate
the algorithm early whenever #(A−B) ≤ S as no further progress is possible,
anyway. Therefore we write the algorithm as follows

HGCD-D(A,B)
1 N ← #(A,B), S ← bN/2c+ 1
2 if #(A,B) > b3N/4c+ 2

3 then
4 p1 ← bN/2c, n1 ← N − p1 = dN/2e
5 Split : A = 2p1a+A′, B = 2p1b+B′

6 (α, β,M)← HGCD-D(a, b)
7 (A;B)← 2p1(α;β) +M−1(A′;B′)
8 else M ← I
9 loop

10 do
11 if #(A−B) ≤ S
12 then return A, B, M
13 if #(A,B) ≤ b3N/4c+ 1
14 then break
15 One sdiv step on (A,B); update M
16 if #(A,B) > S + 2

17 then
18 N2 ← #(A,B)
19 p2 ← 2S −N2 + 1, n2 ← N2 − p2
20 Split : A = 2p2a+A′, B = 2p2b+B′

21 (α, β,M ′)← HGCD-D(a, b)
22 (A;B)← 2p2(α;β) +M ′−1(A′;B′)
23 M ←M ·M ′
24 while #(A−B) > S
25 do
26 One sdiv step on (A,B); update M
27 return A, B, M

Listing 1: The HGCD-D algorithm

2



3 The bounds

Lemma 1. As in Lemma 6 of the original paper, let (C;D) = M−1(A;B),
N = #(A,B), 0 < p < N , n = N − p. Then #(C,D) > p+ bn/2c+ 1

Proof. Recall the original Equation 4(
C
D

)
= ... = 2p

(
c
d

)
+M−1

(
A′

B′

)
where A = 2pa+A′, B = 2pb+B′ and (c, d,M) = HGCD-D(a, b), s = bn/2c+1,
#(c, d) > s. Next, consider its rightmost part where a′, b′ denote the last term(

a′

b′

)
= M−1

(
A′

B′

)
⇐⇒

(
A′

B′

)
= M

(
a′

b′

)
Suppose M = (u, u′; v, v′) and A′, B′ ≥ 0, u, v′ > 0, u′, v ≥ 0 then only one of
a′, b′ can be negative. Write

A′ = ua′ + u′b′

B′ = va′ + v′b′

If both a′, b′ were negative, A′, B′ would also need to be negative, a contradic-
tion.

If a′ ≥ 0 (otherwise b′ ≥ 0 and the same reasoning applies for #D)

C = 2pc+ a′ ≥ 2pc ≥ 2p2s = 2p+bn/2c+1

then
#C > p+ bn/2c+ 1

Previously Lemma 6 stated #C,#D ≥ p + bn/2c + 1 whereas now it has
been shown that the equality can hold for at most one of #C,#D.

Lemma 2. If #(A−B) > S, the first loop iterates by at least one sdiv step.

Proof. If #(A − B) ≤ S, HGCD-D can exit as no further progress is possible.
Otherwise, by Lemma 1, the new A, B after the first recursive call satisfy

#(A,B) > p1 + bn1/2c+ 1 = bN/2c+ b(N + 1)/4c+ 1 = b3N/4c+ 1

Thus the condition of the second branch is never satisfied during the first iter-
ation and at least one sdiv step is performed.

Lemma 3. Provided HGCD-D does not terminate early, the quotients generated
by the first sdiv loop that are accumulated into M are identical to the classical
Euclidian reduction steps of bA/Bc or bB/Ac. As a consequence a quotient q
cannot be split into last factor of M and first factor of M ′.

Proof. Recall that sdiv operation “never returns a too small ‘remainder’” and
that it splits one from the quotient if needed. As #(A−B) > S, all sdiv steps
are identical to Euclid steps using standard division, by the definition of sdiv,
and thus all of the quotients are not split.

3



Informally, whenever the difference between div and sdiv is being exercised,
HGCD-D can exit early. Otherwise the (s)div step returns the “complete”
quotient. So even if the first recursive call returned M with its last factor
split into q − 1 and 1 subtractions, the first (s)div step will “un-split” it, i.e.
accumulate the single remaining subtraction into M .

Corollary 4. If the last factor of M is (1, q; 0, 1), then the first factor of M ′ is
(1, 0; q′, 1) or M ′ is the identity and vice versa.

Proof. Suppose A > B. As the last quotient q cannot be split, the next remain-
der A − qB < B and then a ≤ b for the second recursive call. Same holds for
A < B.

Theorem 5. #(M ·M ′) ≥ #M + #M ′ − 1

Proof. If neither matrix is the identity and the last factor of M is (1, q; 0, 1)
then

M = (u1, u
′
1; v1, v

′
1)(1, 1; 0, 1) = (u1, u1 + u′1; v1, v1 + v′1)

M ′ = (1, 0; 1, 1)(u2, u
′
2; v2, v

′
2) = (u2, u

′
2;u2 + v2, u

′
2 + v′2)

Since all elements are non-negative, max(M) = max(u1 + u′1, v1 + v′1) and
max(M ′) = max(u2 + v2, u

′
2 + v′2). Let

M ·M ′ =

(
u1u2 + (u1 + u′1)(u2 + v2) u1u

′
2 + (u1 + u′1)(u′2 + v′2)

v1u2 + (v1 + v′1)(u2 + v2) v1u
′
2 + (v1 + v′1)(u′2 + v′2)

)
(1)

and notice that the product exhaustively enumerates each of the four combina-
tions formed by the two candidates for the maximal element of M and the two
candidates of M ′. Write

max(M ·M ′) ≥ max((u1 + u′1)(u2 + v2), (u1 + u′1)(u′2 + v′2),

(v1 + v′1)(u2 + v2), (v1 + v′1)(u′2 + v′2))

= max(u1 + u′1, v1 + v′1) max(u2 + v2, u
′
2 + v′2)

= max(M) max(M ′)

Seen in the terms of bit sizes

max(M ·M ′) ≥ 2#M−12#M ′−1 = 2#M+#M ′−2

and then
#(M ·M ′) ≥ #M + #M ′ − 1

Same holds if the last factor of M is (1, 0; q, 1) and in the case of either
matrix being the identity the bound applies trivially.

4 Conclusion

We have shown that tightening one of the bounds by a single bit has the con-
sequence of having the matrix product size estimate off by at most two bits,
i.e.

#M + #M ′ − 1 ≤ #(M ·M ′) ≤ #M + #M ′ + 1

4



References

[1] Niels Möller. On Schönhage’s algorithm and subquadratic integer GCD
computation. Mathematics of Computation, 77:589–607, 2008.

5


