
HAL Id: hal-03976889
https://hal.science/hal-03976889

Submitted on 7 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deduplication algorithms and models for efficient data
storage

Laura Conde-Canencia, Belaid Hamoum

To cite this version:
Laura Conde-Canencia, Belaid Hamoum. Deduplication algorithms and models for efficient data
storage. 2020 24th International Conference on Circuits, Systems, Communications and Comput-
ers (CSCC), Jul 2020, Chania (Virtuel), Greece. pp.23-28, �10.1109/CSCC49995.2020.00013�. �hal-
03976889�

https://hal.science/hal-03976889
https://hal.archives-ouvertes.fr

Deduplication algorithms and models for efficient

data storage

Laura Conde-Canencia

Lab-STICC, CNRS UMR 6285

Université Bretagne-Sud

Lorient, France

laura.conde-canencia@univ-ubs.fr

Belaid Hamoum

Lab-STICC, CNRS UMR 6285

Université Bretagne-Sud

Lorient, France

belaid.hamoum@univ-ubs.fr

Abstract—This paper is dedicated to data deduplication algo-
rithms and models that lead to efficient solutions to reduce the
amount of data both transmitted over the network and stored in
data systems. To be specific, we consider the case where replicas
of an original file are generated by edit errors and adopt a
theoretical approach to explore data files. Our study can apply
to primary, backup or archival storage. We introduce a new
variable-length block-level deduplication algorithm that outper-
forms prior work and reduces the computational complexity by
focusing on pivots. We provide a theoretical comparative analysis
of the algorithm computational costs and experimental results to
evaluate its performance. The proposed deduplication solution
enhances prior approaches in terms of cost and achieves the
same rates as brute force or naive methods.

Index Terms—Data deduplication, inline data processing, edit
channel, insertions/deletions/substitutions, deduplication ratio,
brute force methods.

I. INTRODUCTION

Data deduplication is an emerging technology that improves

storage utilization and offers an efficient way of handling data

replication. In other words, data deduplication optimizes free

space on a volume by examining the data on the volume and

looking for duplicated portions on it. Currently, deduplication

is a key feature in many cloud and enterprise server settings

such as, for example, Microsoft OneDrive and Windows

Server. Such systems run data deduplication in the background

for optimizing the Hyper-V VDI environment, backup storage

and file servers.

The principle of data deduplication is that redundant data

blocks are removed and replaced with pointers to a unique data

copy leading to reduced storage costs (i.e., power, cooling,

floor space requirements, ...). The higher cost reductions

are achieved with the higher deduplication ratios because,

obviously, the less disk capacity is needed for storage.

Compared to classical data compression [1] [2], which is

based on small amounts of local redundancy (i.e., in the

order of 10 to 258 bytes), data deduplication considers larger

amounts of global redundancy. To be specific, the amounts of

local redundancy in data compression are in the order of 10 to

a few hundreds of bytes. In data deduplication, ranges of up

to hundreds of kilobytes have been reported with source data

of a few hundreds of gigabytes [3].

Prior art in deduplication is mostly authored by the com-

puter science community ([4] [5] among others) and contribu-

tions mainly concern hash algorithms [6]. However, only two

works [7] [8] have considered the problem of deduplication

from an information theory point of view. This paper focuses

on significantly improving the deduplication performance of

the work in [8] while keeping the low-cost characteristics.

The remainder of the paper is organized as follows: Section

II briefly describes the types of data deduplication as well as

the context and contribution of this paper. Section III presents

the problem statement, notation and definitions. Section IV

describes the innovative data deduplication algorithm which is

based on pivot matching and sliding windows techniques. A

theoretical analysis on the cost of the new algorithm compared

to brute force methods and prior work is presented in Section

V. Experimental results and data deduplication ratios are

presented and discussed in Section VI. Finally, Section VII

concludes the paper.

II. TYPES OF DATA DEDUPLICATION

Data deduplication can operate at three different levels [6]:

file, fixed-length block or variable-length block. A simple

example of file level deduplication would be the following:

consider a system that retains 100 e-mails, each with the same

2 MB attachment; by applying file deduplication, the 200 MB

needed to store the attachments would be reduced to 2 MB.

Block-level deduplication looks within a file and saves unique

replicas of each block. Files can be broken into blocks of the

same size (fixed-length block deduplication) or into blocks

of various sizes depending on their contents (variable-length

block deduplication). This last alternative allows the dedupli-

cation effort to achieve better deduplication ratios [9]. In this

paper we consider variable-length block-level deduplication.

Considering the kind of data processing, there exists two

main methods to deduplicate redundant data: inline and post-

processing deduplication. Inline deduplication analyzes data

as it enters the backup system. Redundancies are removed

as the data is written to backup storage. Post-processing

deduplication is an asynchronous backup process that removes

redundant data after it is written to storage. Duplicate data is

removed and replaced with a pointer to the first iteration of

the block. Compared to post-processing deduplication, inline

deduplication requires less backup storage, but can cause

bottlenecks. The approach in this paper is mainly adapted to

inline deduplication and specifically focuses on reducing costs

and avoiding bottlenecks.

III. PRELIMINARIES AND NOTATION

In this work we consider servers storing data files and how

to reduce the storage needs by deduplicating a file totally or

partially. We specifically study the problem of deduplicating

file Y , i.e. not storing it in the system, but only providing a

point to file X (or a part of it). For this we consider both files

to be sufficiently similar under edit errors, and assume that

they were originated from the same source.

A. Definitions related to the files

File X contains symbols that are drawn from a non-binary

alphabet according to an arbitrary distribution. The number

of bits to represent a symbol of the non-binary alphabet is

denoted by q and we consider n to be large enough. Also, file

X is partitioned into substrings as:

X = S1, P1, S2, P2, . . . , Sk−1, Pk−1, Sk, Pk

where Si is a segment substring, Pi is a pivot substring and

k is the number of both pivots and segments.

A block is a substring that corresponds to the concatenation

of one or several consecutive Si, Pi pairs. A chunk is a block

whose content is identical in X and Y and can thus be

deduplicated.

The length of the segment substrings is LS , the length of

the pivot substrings is LP and we assume the file length to

be divisible by LB = LS + LP . We consider LS >> LP

and LP to be small enough so that the probability that a pivot

contains an edit is relatively low, but long enough to include

enough symbols to ensure a comparison that delivers enough

information.

The substring X(i, j) corresponds to symbols X(i), X(i+
1), . . . , X(j), with 1 ≤ i ≤ j ≤ n and its length is l = j−i+1.

Also, n =
∑b

t=1
lt where b is the number of blocks in a file,

lt is the length of block t and t = 1, 2, . . . , b. Note that lt can

differ from one block to another (i.e., variable-length blocks).

B. Edit channel model

In our model, we consider that the edit events (i.e., edit

errors) are applied to the data string sequentially, as follows:

let an r-length edit pattern E = (E1, E2, . . . , Er) be defined

so that the output file Y of an edit channel is obtained from

file X as in Figure 1. For 1 ≤ t ≤ r, where n ≤ r < ∞ and

n is the length of X ,

• If Et = 0, Xj is stored and the process moves on to

symbol Xj+1. This occurs with probability 1−βD −βI .

• If Et = −1, Xj is deleted and the process moves on to

symbol Xj+1. Idem with probability βD.

• If Et = 1, a new symbol taken from distribution µ(x) is

inserted. Idem with probability βI .

The number of net edits is defined as rne =
∑r

t=1
Et and

corresponds to the number of insertions minus the number of

deletions. As in [10] [8], we consider the probability of an

edit β = βI +βD to be arbitrarily small, n to be large enough

and the same edit channel model as in [10] with βI = βD.

Fig. 1: Edit channel model: the states are the n symbols of

file X . A file symbol may experience a symbol insertion

with probability βI and the edit process remains in the same

state. The following file symbol or next state is reached by

either deleting the current file symbol (with probability βD)

or transmitting it (with probability 1−βI−βD). A substitution

occurs when an insertion immediately follows a deletion.

”w.p.” stands for ”with probability”.

IV. DEDUPLICATION ALGORITHM BASED ON PIVOTS WITH

SLIDING WINDOWS

This Section describes the contribution of this paper which

is the new deduplication algorithm with the following char-

acteristics: variable-length, block-level and pivot-based. Note

that in [8] a pivot-based solution was already introduced but it

showed limited deduplication ratios due to major drawbacks.

In this Section we first present some necessary definitions

to describe the new deduplication algorithm. We then intro-

duce the sliding-window pivot-based algorithm and its core

component.

A. Definitions

Let pivot P be (p1, p2, . . . , pLP
). The shift operator T (P, u)

shifts the symbols in P |u| positions to the right if u > 0 or

to the left if u < 0. For example:

• T (P, 2) = (∆,∆, p1, p2, . . . , pLP−2),
• T (P,−3) = (p4, p5, . . . , pLP

,∆,∆,∆)

where ∆ is the null value and pi ⊙∆ = 0, ∀pi.
Let Px = (px,1, px,2, . . . , px,LP

) be a pivot in X and Py =
(py,1, py,2, . . . , py,LP

) the corresponding pivot in Y .

The pivot-matcher operator is defined as:

Px ⊙ Py = (px,1 ⊙ py,1, px,2 ⊙ py,2, . . . , px,Lp
⊙ py,Lp

).

where ⊙ is the symbol-matcher operator, defined as:

px,i ⊙ py,j =

{
1 if px,i = py,j
0 if px,i 6= py,j

Py is a good match of pivot Px if Px⊙Py = (1, 1, . . . , 1) and

in this case rne = 0.

B. Principle of the sliding-window pivot-based algorithm

As already described, the algorithm partitions the files

into alternating components, called pivots and segments, with

the length of pivots being much smaller than the length of

segments. The idea is to significantly reduce the computational

costs related to symbol comparisons and improve naive or

brute force methods by only focusing on the pivots.

Fig. 2: Principle of the sliding-window pivot-based algorithm.

The core element of the proposed protocol is the

Consecutive-Pivot-Matching Sliding-Window (CPM-SW)

module which determines the size of the chunks. The

algorithm uses the CPM-SW module as many times as

necessary until all the pivots in X are compared to the

corresponding subsequences in Y . The system knows at the

end of the algorithm which chunks can be deduplicated and

which blocks contain edit errors and cannot be deduplicated.

The key parameters in the algorithm are:

• Dx: first position of the pivot in file X , from which the

comparison starts.

• Dy: first position of the pivot in file Y .

• G: number of consecutive matched pivots, which is

provided for each chunk by the CPM’SW module.

The general principle of the algorithm is:

1) Consider substrings of files X and Y to start comparison

at the first pivot.

2) Use the core module (CPM-SW in Figure 2) to deter-

mine the size of the chunk for deduplication and the

number of net edits in the last segment (i.e., rne,G+1).

3) Update substrings of files X and Y to continue the

comparison (with the CPM-SW Module) until the end

of the files is reached.

Fig. 2 and Algorithm 1 provide further details to this descrip-

tion.

Data: Files X and Y , parameters LS and LP .

Result: Chunks for deduplication.

Initialization: Dx = Dy = LS + 1;

while Dx < n do
Execute the CPM-SW module. Inputs are:

X(Dx, n) and Y (Dy, ny);
Outputs are: G and rne,G+1 ;

Chunk for deduplication is:

Y (Dy − LS , Dy − LS +G(LS + LP));
Update parameters:

Dx,new = Dx + (G+ 1) ∗ (LS + LP) and

Dynew
= Dx,new + rne,G+1

end
Algorithm 1: sliding-window pivot-based algorithm for

variable-length deduplication of file Y , which is an edited

version of file X . Parameters LS , LP , n and ny were

introduced in Section III.

Fig. 3: Principle of the CPM-SW module.

C. Description of the CPM-SW module

This module is the core component of our deduplication

algorithm and its goal is to determine G and rne,G+1, even

when there are edit errors in pivots.

Fig. 3 describes the steps of the CPM-SW module. In this

figure:

Px,j = X(Dx + gLB + s,Dx + gLB + LP + s− 1)

Py,j = Y (Dy + gLB + s,Dy + gLB + LP + s− 1)

where j = 1, . . . , k; g = 0, . . . , k; LB = LP + LS ; s =
0, . . . , ns and ns denotes the maximum number of slides,

The ’Compute u’ block calculates rne,G+1 knowing that:

• if Px,G+1 ⊙ T (Py,G+1, u) = (1, . . . , 1
︸ ︷︷ ︸

LP−u

, 0, . . . , 0
︸ ︷︷ ︸

u

), then

rne,G+1 = −u > 0
• if Px,G+1 ⊙ T (Py,G+1, u) = (0, . . . , 0

︸ ︷︷ ︸
u

, 1, . . . , 1
︸ ︷︷ ︸

LP−u

), then

rne,G+1 = −u < 0.

Note that if there is an edit error in the pivot, any of

the patterns (1, . . . , 1
︸ ︷︷ ︸

LP−u

, 0, . . . , 0
︸ ︷︷ ︸

u

) or (0, . . . , 0
︸ ︷︷ ︸

u

, 1, . . . , 1
︸ ︷︷ ︸

LP−u

) appears,

rne,G+1 cannot be determined and it is not possible to update

Dy and continue the deduplication algorithm. This was one

of the main drawbacks of the work in [8]. To overcome this

issue, we propose to use a sliding window technique, where

the window corresponds to the pivot. To be specific, if there

is an edit in the pivot, the CPM-SW module slides Px,j and

Py,j to the right until there are no edits that affect Px,j or the

number of slides reaches ns.

Example Let us consider the hexadecimal alphabet (i.e., q =
4) and LP = 5. Let the beginning of file X be:

1, ..., A,B, 3,
︸ ︷︷ ︸

LS

4, C,D, 5, E,
︸ ︷︷ ︸

LP

6, F, ..., 8, 9
︸ ︷︷ ︸

LS

B, 2, C, 3, 1
︸ ︷︷ ︸

LP

C,B,A, ...

and the corresponding edit pattern:

E = 0, . . . , 0,−1,−1
︸ ︷︷ ︸

LS

0, . . . , 0
︸ ︷︷ ︸

LP+LS

0, 0, 0,−1, 0
︸ ︷︷ ︸

LP

so that the beginning of file Y is:

1, ..., A, 4, C,D, 5, E, 6, F,
︸ ︷︷ ︸

LP

..., 8, 9,
︸ ︷︷ ︸

LS

B, 2, C, 1, C,
︸ ︷︷ ︸

LP

B,A, ...

First execution of the CPM-SW module performs the

pivot matching with Px,1 = (4, C,D, 5, E) and Py,1 =
(D, 5, E, 6, F). Following the scheme in Fig. 3: Px,1⊙Py,1 6=
(1, ..., 1), G = 0, the ’Compute u’ block is activated and

because Px,1 ⊙ T (Py,1, 2) = (0, 0, 1, 1, 1), u = 2, ’no error’

and rne,1 = −2.

Second execution of the CPM-SW module performs the

pivot matching with Px,2 = (B, 2, C, 3, 1) and Py,2 =
(B, 2, C, 1, C). Again Px,1⊙Py,1 6= (1, ..., 1), G = 0. Because

there is an edit in the pivot, ∀u ∈ (1, ..., LP), u cannot be

computed, thus ’error’ and the sliding window technique is

activated:

• for s = 1, Px,2 = (2, C, 3, 1, C) and Py,2 =
(2, C, 1, C,B), then ’error’ and s = 2;

• for s = 2, Px,2 = (C, 3, 1, C,B) and Py,2 =
(C, 1, C,B,A), then ’error’ and s = 3;

• for s = 3, Px,2 = (3, 1, C,B,A) and Py,2 =
(1, C,B,A, 4), then u = 1, ’no error’, rne,2 = −1, and

the SW-PD can continue its search for chunks.

V. THEORETICAL ANALYSIS OF THE ALGORITHM COSTS

In order to evaluate the benefits of our sliding-window pivot-

based algorithm compared to prior work in [8] and to naive

or brute force methods, we derive expressions for the average

number of compared symbols in a n-length file for all these

techniques. The cost function depends on the edit probabilities

β = βI + βD. The brute force methods compare data symbol

by symbol from the beginning of the file. In our study we

consider file- and fixed-block-level deduplication [6].

The file-level brute force method compares the files sequen-

tially from the beginning and stops as soon as an edit error is

detected. The average number of compared symbols is thus:

NF =

n−1∑

i=1

iβ(1− β)i−1 + n[β(1− β)n−1 + (1− β)n]

For block-level brute force methods, the principle is the

same but once and edit error is detected, the comparison

continues at the beginning of the following block and so on,

until the last block in the file. In this case, the average number

of compared symbols is:

NB = k

LB−1∑

i=1

iβ(1−β)i−1+LB [β(1−β)LB−1+(1−β)LB]

where k is the number of blocks in the n-length file and LB is

the length of a block. When an edit is detected, the comparison

continues at the beginning of the following block.

For the algorithm in [8], the average number of compared

symbols is:

NPD = LP .k.(1− β)LS + (LP)
2.k.[1− (1− β)LS].

For the sliding-window pivot-based (SW-PD) algorithm, the

average number of compared symbols is:

NSW−PD =LP .k.(1− β)LB+

+ LP
2.k.ns.(1− β)LS [1− (1− β)LP]+

+ LP
2.k.ns.[1− (1− β)LS].[1− (1− β)LP]

+ LP
2.k.[1− (1− β)LS](1− β)LP

where ns is the maximum number of slides and the first term

represents the case of without edits in the whole block; the

second term represents cases with no edits in the segment and

one or more edits in the pivot; the third term, idem represents

cases with one or more edits in both the segment and the pivot;

finally, the forth term, one or more edits in segment and no

edits in pivot. Note that (LP)
2 symbols are compared at each

execution of the ’Compute u’ block.

10
-6

10
-5

10
-4

10
-3

10
-2

N
u
m

b
e
r
 o

f
c
o
m

p
a
r
e
d
 s

y
m

b
o
ls

10
1

10
2

10
3

10
4

10
5

10
6

N
F

N
B

N
PD

N
SW-PD, n

S
=L

P

N
SW-PD, n

S
=2L

P

N
SW-PD, n

S
=3L

P

Fig. 4: Number of compared symbols as a function of β; n =
120000, LS = 94, LP = 6 (in symbols), k = 1200. PD stands

for the work in [8].

10
-6

10
-5

10
-4

10
-3

10
-2

N
u
m

b
e
r
 o

f
c
o
m

p
a
r
e
d
 s

y
m

b
o
ls

10
1

10
2

10
3

10
4

10
5

10
6

N
F

N
B

N
PD

N
SW-PD, n

S
=L

P

N
SW-PD, n

S
=2L

P

N
SW-PD, n

S
=3L

P

Fig. 5: Number of compared symbols as a function of β; n =
120000, LS = 9994, LP = 6 (in symbols), k = 12. PD stands

for the work in [8].

Figures 4 and 5 compare the costs of the four different

algorithms for two different values of k and files of size n =
1.2 × 105 symbols. For β < 10−4 the work in [8] and the

new SW-PD reduce costs by 10 (for k = 1200) and 1000
(for k = 12). Costs for the file-level brute force method drop

for higher β, however deduplication ratios become extremely

10
−6

10
−5

10
−4

10
−3

10
−2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β
D

D
e

d
u

p
lic

a
ti
o

n
 r

a
ti
o

BFM File

BFM Block, k = 1200

BFM Block, k = 12

PD, k = 1200

PD, k = 12

SW−PD, k = 1200

SW−PD, k = 12

Fig. 6: Data deduplication ratio as a function of β for the four

different algorithms. For the PD and SW-PD, LP = 6 and

LS = 94 (i.e., k = 1200) or LS = 9994 (i.e., k = 12).

poor as simulations will show in Section VI. Also, costs for

block-level brute force methods and the new SW-PD tend to

equalize when β increases. We thus conclude that the benefits

in terms of cost of the new SW-PD are undeniable up to β
values around 10−3.

Concerning the cost of the new SW-PD algorithm and the

influence of the maximum number of slides (ns), we observe

that it is only for β values over 10−3 that the cost slightly

increases for ns = LP compared to [8], and that higher values

of ns do not increase cost significantly.

VI. EXPERIMENTAL RESULTS

We consider the data deduplication ratio to compare the

efficiency of our new SW-PD to prior work. This ratio is

calculated as the amount of data after deduplication divided

by the total capacity of data to back up (i.e., the data that was

examined for duplicates). The more redundant data, or the

lower edit probabilities, the higher deduplication ratios can be

expected. In a more general context than ours, an environment

that contains only primarily Windows servers with similar files

will lead to much higher deduplication ratios than a multiple-

platform environment with different operating systems.

We evaluate performance of the new SW-PD algorithm,

the work in [8], and the brute force methods in terms of

data deduplication rates through simulation. Our simulations

generate 1000 pairs of files X and Y , with n = 120000
symbols that are independent identically distributed according

to an arbitrary distribution. The size of the alphabet is 2q = 64
(i.e., 720 million bits are simulated to obtain each value in a

curve). File Y is an edited version of X under the edit channel

model described in Section III with βD = βI .

Fig. 6 shows the evolution of the data deduplication ratio

as a function of βD for the four considered algorithms. The

most interesting result in these curves is the outstanding

performance of the new SW-PD technique: for k = 1200 and

for all βD < 10−3, the SW-PD attains the same deduplication

rates as the block-level brute force method while reducing

costs by a factor of 10 (see Fig. 4). Note that the state-of-the-

art [8] presents much lower deduplication rates (curve drops

10-6 10-5 10-4 10-3 10-2

D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
ed

up
lic

at
io

n
R

at
io

k=1200 |n
s
=L

P
|

k=120

k=12

k=1200 |n
s
=2L

P
|

k=120

k=12

k=1200 |n
s
=3L

P
|

k=120

k=12

Fig. 7: Effect of ns on the performance of the SW-PD algo-

rithm. LP = 6, k = 12, 120, 1200 and ns = LP , 2LP , 3LP .

from βD > 10−5). For k = 12, the block-level BFM, [8] and

the new SW-PD show roughly similar deduplication ratios.

However (see Fig. 5) both [8] and SW-PD present costs that

are 1000 times smaller than the cost of the brute force methods

(for βD < 10−4).

Figure 7 explores the impact of the maximum number

of slides (parameter ns) on the performance of the SW-PD

algorithm. For k = 1200, ns = 2LP and ns = 3LP present

significantly better deduplication ratios; which makes sense

as LS/LP < 10 and the relatively high number of pivots

makes the use of sliding windows more likely and with better

performance for ns > LP . For lower values of k, increasing

ns does not lead to higher deduplication rates. As the cost of

the SW-PD is almost similar for ns = LP and 2LP , we would

consider ns = 2LP for k > 100.

ACKNOWLEDGEMENT

The authors would like to thank Professors Lara Dolecek

and Tyson Condie (University of California Los Angeles) for

discussions on the topic of the paper.

VII. CONCLUSION

This paper was dedicated to variable-length block-level data

deduplication in the context of edit errors. We particularly

considered the challenge of introducing an original dedupli-

cation algorithm based on pivots that resulted in an efficient

low-cost solution. This solution proposes a sliding window

technique to outperform the state of the art. The theoretical

expressions on the cost of the algorithm show reduction factors

from 10 up to 1000 (compared to brute force methods and

depending on the values of the k parameter). Simulation results

show deduplication ratios that achieve the same values as the

equivalent brute force methods.

We can conclude that the new sliding-window pivot dedu-

plication algorithm constitutes a robust data deduplication

technique for edit probabilities below 10−3 and real time data

reduction applications (i.e., inline deduplication), where the

rapidity of the protocol is a priority.

Future work will consider the analysis of order topics in data

deduplication: structured vs. non-structured data, edit distance

between files, size of the alphabet... among others.

REFERENCES

[1] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337–343, May 1977.

[2] J. Cleary and I. Witten, “Data compression using adaptive coding and
partial string matching,” IEEE Transactions on Communications, vol. 32,
no. 4, pp. 396–402, Apr 1984.

[3] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and S. Sengupta,
“Primary data deduplication—large scale study and system design,” in
Annual Technical Conference, Boston, MA, 2012, pp. 285–296.

[4] L. L. You, K. T. Pollack, and D. D. E. Long, “Deep store: an archival
storage system architecture,” in 21st International Conference on Data

Engineering (ICDE’05), April 2005, pp. 804–815.
[5] D. Bhagwat and K. E. et al, “Extreme binning: Scalable, parallel

deduplication for chunk-based file backup,” in IEEE Int. Symp. on

Modeling, Analysis Simulation of Computer and Telecommunication

Systems, Sept 2009.
[6] A. Venish and K. S. Sankar, “Study of chunking algorithm in data

deduplication,” Proc. of Int. Conf. on Soft Computing Systems, Advances

in Intelligent Systems and Computing, Springer India, 2016.
[7] U. Niesen, “An information-theoretic analysis of deduplication,” in IEEE

Int. Symp. on Information Theory (ISIT), June 2017, pp. 1738–1742.
[8] L. Conde-Canencia, T. Condie, and L. Dolecek, “Data deduplication

with edit errors,” in 2018 IEEE Global Communications Conference

(GLOBECOM), Dec 2018, pp. 1–6.
[9] “Quantum white book: Effectiveness of variable-block vs fixed-

block deduplication on data reduction: A technical analysis,”
www.quantum.com, Tech. Rep., 2015.

[10] F. Sala, C. Schoeny, N. Bitouze, and L. Dolecek, “Synchronizing files
from a large number of insertions and deletions,” IEEE Transactions on

Communications, vol. 64, no. 6, pp. 2258–2273, June 2016.

