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We consider a shape optimization based method for finding the best interpolation data in the compression of images with noise. The aim is to reconstruct missing regions by means of minimizing a data fitting term in an L p -norm between original images and their reconstructed counterparts using linear diffusion PDE-based inpainting. Reformulating the problem as a constrained optimization over sets (shapes), we derive the topological asymptotic expansion of the considered shape functionals with respect to the insertion of small ball (a single pixel) using the adjoint method. Based on the achieved distributed topological shape derivatives, we propose a numerical approach to determine the optimal set and present numerical experiments showing, the efficiency of our method. Numerical computations are presented that confirm the usefulness of our theoretical findings for PDE-based image compression.

Introduction and Related Works

PDE-based methods have attracted growing interest by researchers and engineers in image analysis field during the last decades [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF][START_REF] Catté | Image Selective Smoothing and Edge Detection by Nonlinear Diffusion[END_REF][START_REF] Weickert | Theoretical Foundations Of Anisotropic Diffusion In Image Processing[END_REF][START_REF] Morel | Level lines based disocclusion[END_REF][START_REF] Weickert | Linear Scale-Space has First been Proposed in Japan[END_REF][START_REF] Bertalmio | Image inpainting[END_REF][START_REF] Scherzer | Variational Methods in Imaging[END_REF][START_REF] Lenzen | Partial Differential Equations for Zooming, Deinterlacing and Dejittering[END_REF][START_REF] Larnier | The Topological Gradient Method: From Optimal Design to Image Processing[END_REF][START_REF] Adam | Denoising by Inpainting[END_REF]. Actually, such methods have reached their maturity both from the point of view of modeling and scientific computing allowing them to be used in modern image technologies and their various applications. Image compression is one of the domain where they appear among the state-of-the-art methods [START_REF] Chan | Nontexture Inpainting by Curvature-Driven Diffusions[END_REF][START_REF] Gali Ć | Image Compression with Anisotropic Diffusion[END_REF][START_REF] Schmaltz | Beating the Quality of JPEG 2000 with Anisotropic Diffusion[END_REF][START_REF] Bae | Partial Differential Equations for Interpolation and Compression of Surfaces[END_REF][START_REF] Peter | Colour image compression with anisotropic diffusion[END_REF][START_REF] Andris | A proof-of-concept framework for PDE-based video compression[END_REF][START_REF] Mohideen | Compressing Colour Images with Joint Inpainting and Prediction[END_REF]. In fact, the aim for such problems is to store few pixels of a given image (coding phase) and to recover/restore the missing part in an accurate way (decoding). The PDE-based methods use a diffusion differential operator for the inpainting of missed parts from a available data (boundary or small parts of the initial image) therefore their efficiency for decoding is guaranteed/encoded in the operator without any pre-or post-treatment. The question then is how to ensure with these methods a good choice, if it exists, of the "best" pixels to store for high quality reconstruction of the entire image? An answer to this question is given in [START_REF] Belhachmi | How to Choose Interpolation Data in Images[END_REF][START_REF] Belhachmi | Optimal interpolation data for PDE-based compression of images with noise[END_REF] for the harmonic or the heat equation, where its reformulation as a constrained (shape) optimisation problem permitted to exhibit an optimal set of pixels to do the job. In addition, analytic selection criteria using topological asymptotics were derived. Due to the simple structure of the shape functionals considered in these previous works, the topological expansion is easily derived (more or less with formal computations) and gives an analytic criterion to characterize the optimal set in compression. The limitation in obtaining the topological expansion this way is twofold : the criterion gives pointwise information on the importance of the location (pixel) to store which results in hard thresholding selection strategy not robust with respect to the noise. Second, the technique is limited to simple functionals, namely an L 2 data-fitting term and a linear diffusion operator.

The main contribution of this article is the use of the adjoint methods to derive a soft analytic criterion for PDE-based compression. Though we restrict our selves to second order linear inpainting, the method applies without significant changes to more general elliptic operators and as we show in the article to several type of noise.

In fact, we consider the compression problem in the same framework than [START_REF] Belhachmi | How to Choose Interpolation Data in Images[END_REF], but we introduce a new approach to the characterization of the set of pixels to store using the adjoint method [START_REF] Guillaume | The Topological Asymptotic Expansion for the Dirichlet Problem[END_REF][START_REF] Garreau | The Topological Asymptotic for PDE Systems: The Elasticity Case[END_REF][START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF][START_REF] Belhachmi | Topology optimization method with respect to the insertion of small coated inclusion[END_REF]. This approach to obtain the topological expansion is more general than the one previously studied for the same problem, in the sense that it may be used for other diffusion operators and nonlinear data-fitting term, moreover it allows a better stability with respect to noise for the selection criteria. In particular, when the accuracy of the reconstruction (fidelity term) is measured with an L p -norm, p > 1 and p = 2, the adjoint problem is still linear and no further complexity is added to the considered problem. Thus, the main results in the article include the rigorous derivation of the topological expansion based on the adjoint problem. We notice that the Dirichlet boundary in the inclusion prevents from a direct transposition of the adjoint method based on a local perturbation of the material properties by insertion of a hole. Therefore, we extend the sensibility analysis to the problem under consideration and we perform the asymptotic expansion of the proposed shape functional using non-standard perturbation techniques combined with truncation techniques. The asymptotic allows us to deduce a gradient algorithm for the reconstruction.

The article is organized as follows : in Section 1, we introduce the compression problem that takes the form of a constrained optimization problem of finding the best set of pixels to store, denoted K. Section 2 is devoted to describe the adjoint method to compute the topological derivative of the cost functional considered. In Section 3, we perform the computations to obtain the topological expansion and the "shape" derivatives which involve the direct and adjoint states. Finally, in Section 4, we describe the resulting algorithm and we give some numerical results to confirm the usefulness of the theory. Some of the technical proofs and auxiliary estimates are given in appendices for ease of readability.

Problem Formulation

Let D ⊂ R 2 and f : D → R d , d ≥ 1 a given image in some region K ⊂⊂ D. We consider the mixed elliptic boundary problem for a given

u 0 in L 2 (D), Problem 1.1. Find u in H 1 (D) such that    u -α∆u = u 0 , in D \ K, u = f, in K, ∂u ∂n = 0, on ∂D. (1) 
where the available data f is a Dirichlet "boundary" condition and with homogeneous Neumann boundary condition on ∂D. This PDE corresponds to the first term in the time discretization of the homogeneous heat equation, where we assume that the initial condition is u 0 . For compatibility condition with the "boundary" data on K, we take as u 0 the image f ∈ H 1 (D), with ∆f ∈ L 2 (D) and such that ∂f ∂n = 0 on ∂D. Setting v = u-f , we can write equivalently

Problem 1.2. Find v in H 1 (D) such that    v -α∆v = α∆f, in D \ K, v = 0, in K, ∂v ∂n = 0, on ∂D. (2) 
Denoting by v K = u K -f the solution of Problem 1.2, the question is to identify the region K which gives the "best" approximation u K , in a suitable sense, that is to say which minimizes some L p -norm. The constrained optimization problem for the compression reads [START_REF] Belhachmi | How to Choose Interpolation Data in Images[END_REF], for p > 1, min K⊆D, m(K)≤c

1 p D |u K -f | p dx u K solution of Problem 1.1 , (3) 
where m is a "size measure". The optimization problem (3) is studied in [START_REF] Belhachmi | How to Choose Interpolation Data in Images[END_REF] and the existence of an optimal set is established for p = 2 and m is the capacity of sets [START_REF] Ziemer | Extremal length and $p$-capacity[END_REF] and the result extends to p > 1 as noticed in [START_REF] Belhachmi | Optimal interpolation data for PDE-based compression of images with noise[END_REF]. The optimal set K is obtained via a relaxation procedure but its regularity is not considered yet, nevertheless the relaxation technique allows us to derive first order optimality conditions via topological derivatives, which was done in [START_REF] Belhachmi | How to Choose Interpolation Data in Images[END_REF] in the case of the Laplacian as inpainting operator. In this article, we aim to compute the topological gradient [START_REF] Cea | Quelques resultats sur l'identification de domaines[END_REF][START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF] of the shape functional using the adjoint method which possesses two main advantages on the previous approaches: it is more general and systematic with respect to the inpainting operator and the exponent p ≥ 1, on one side and secondly, it leads to a better characterization of the relevant pixels as it gives a distribution of such pixels taking into account local informations from their neighborhood. Loosely speaking, to obtain the topological derivative, let x 0 ∈ D and K ε = K ∪ B(x 0 , ε) (B(x 0 , ) denotes the ball centred at x 0 with radius ε), then we look for an expansion of the form

J(u Kε ) -J(u K ) = ρ(ε) G(x 0 ) + o ρ(ε) .
where ρ is a positive function going to zero with ε and G is the so called topological gradient [START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF][START_REF] Belhachmi | Topology optimization method with respect to the insertion of small coated inclusion[END_REF][START_REF] Garreau | The Topological Asymptotic for PDE Systems: The Elasticity Case[END_REF]. Therefore, to minimize the cost functional J, one has to create small holes at the locations x where G(x) is the most negative. For the compression problem this amount to select the locations where the pixels are the most important to keep.

2 Adjoint Method and variations of the cost functional

We introduce the following abstract result which describes an adjoint method for the computation of the first variation of a given cost functional (see for instance [START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF]). Let V be a Hilbert space. We recall the involved norms in Appendix A.1. For ε ∈ [0, ζ], ζ > 0, we consider a symmetric bilinear form a ε : V × V → R and a linear form l ε : V → R such that the following assumptions are fulfilled

• |a ε (v, w)| ≤ M 1 v w , ∀(v, w) ∈ V × V (continuity of the bilinear form), • a ε (v, v) ≥ α v 2 , ∀v ∈ V (uniform coercivity), • |l ε (w)| ≤ M 2 w , ∀w ∈ V (continuity of the linear form),
with α, M 1 , M 2 > 0 independent of ε. Moreover, we suppose that there exists a continuous bilinear form δa : V × V → R, a continuous linear form δl : V → R and a function ρ : R + → R + such that, for all ε ≥ 0,

• a ε -a 0 -ρ(ε) δa L2(V ) = o ρ(ε) , • l ε -l 0 -ρ(ε) δl L(V ) = o ρ(ε) , • lim ε→0 ρ(ε) = 0.
We emphasis that δa and δl do not depend on ε. Finally, for all ε ∈ [0, ζ], consider a functional J ε : V → R, Fréchet-differentiable at the point v 0 . Assume further that there exists a number δJ(v 0 ) such that

J ε (w) -J 0 (v) = DJ 0 (v)(w -v) + ρ(ε) δJ(v) + o w -v + ρ(ε) , ∀(v, w) ∈ V × V.
Then we have [START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF] Theorem 2.1. Let v ε ∈ V be the solution of the following problem : find v ∈ V such that,

a ε (v, ϕ) = l ε (ϕ), ∀ϕ ∈ V.
Let w 0 be the solution of the so-called adjoint problem : find w ∈ V such that

a 0 (w, ϕ) = -DJ 0 (v 0 )ϕ, ∀ϕ ∈ V. Then, J ε (v ε ) -J 0 (v 0 ) = ρ(ε) δa(v 0 , w 0 ) -δl(w 0 ) + δJ(v 0 ) + o ρ(ε) .
To be more specific, for x 0 ∈ D and r > 0, we denote by B r the open ball centred at x 0 and of radius r. We set

V ε := {v ∈ H 1 (D \ B ε ) | v = 0 on ∂B ε }.
Then we consider the boundary value problem :

Problem 2.1. Find v ε in V ε such that    -α∆ v ε + v ε = h, in D \ B ε , v ε = 0, in B ε , ∂ n v ε = 0, on ∂D. (4) 
with h := α∆f , but h can be any L 2 (D) function. We denote v 0 the solution of the problem Problem 2.2. Find v 0 in H 1 (D) such that

-α∆ v 0 + v 0 = h, in D, ∂ n v 0 = 0, on ∂D. (5) 
The weak formulation of problems below reads, find v ε in V ε such that, for all ϕ in V ε ∩ H 1 (D), we have

ãε ( v ε , ϕ) = lε (ϕ), with, ãε ( v ε , ϕ) := α D\Bε ∇ v ε • ∇ϕ dx + D\Bε v ε ϕ dx, lε (ϕ) := D\Bε h ϕ dx.
The dependency of the space V ε on ε prevents us from using Theorem 2.1 directly, therefore, we introduce a truncation technique [START_REF] Guillaume | The Topological Asymptotic Expansion for the Dirichlet Problem[END_REF], which consists of inserting a ball B R , for a fixed R > ζ and splitting Problem 2.1 into two sub-problems that we glue at their common boundary (see Figure 1). More precisely, we consider the sub-problems :

an internal problem    -α∆v ε,R + v ε,R = h, in B R \ B ε , v ε,R = 0, on ∂B ε , v ε,R = v ε , on ∂B R ,
and an external problem As the two sub-problems transform the initial one into a transmission problem. We have Proposition 2.1. We have,

   -α∆v ε + v ε = h, in D \ B R , ∂ n v ε = ∂ n v ε,R , on ∂B R , ∂ n v ε = 0, on ∂D. D \ B ε B ε v ε (a) Before splitting. D \ B R B R \ B ε B ε v ε v ε,R ( 
v ε = v ε , in D \ B R , v ε,R , in B R \ B ε . Proof. We set v := v ε , in D \ B R , v ε,R , in B R \ B ε . (6) 
Let ϕ be in V ε , then,

ãε (v, ϕ) = α D\B R ∇v • ∇ϕ dx + D\B R v ϕ dx + α B R \Bε ∇v • ∇ϕ dx + B R \Bε v ϕ dx
Replacing v by its expression [START_REF] Belhachmi | How to Choose Interpolation Data in Images[END_REF] and integrating by parts yields,

ãε (v, ϕ) = D\B R (-α∆v ε + v ε ) ϕ dx + B R \Bε (-α∆v ε,R + v ε,R ) ϕ dx + α ∂B R ∂ nint v ε ϕ dσ + α ∂B R ∂ next v ε,R ϕ dσ = D\Bε h ϕ dx = lε (ϕ).
By the uniqueness of the solution of Problem 2.1, we have v = v ε .

For the internal problem, we introduce the notation v h,φ ε instead of v ,R , the solution of the more general problem

Problem 2.3. Find v h,φ ε in {v ∈ H 1 (B R \ B ε ) | v = 0 on ∂B ε } such that    -α∆v h,φ ε + v h,φ ε = h, in B R \ B ε , v h,φ ε = 0, on ∂B ε , v h,φ ε = φ, on ∂B R . (7) 
Therefore, v ε,R = v h,φ ε , when φ = v ε . We also notice that,

v h,φ ε = v h,0 ε + v 0,φ ε . We remind the Dirichlet-to-Neumann operator T ε : H 1/2 (∂B R ) → H -1/2 (∂B R ) by T ε (φ) := ∇v 0,φ ε • n. and we set h ε := -∇v h,0 ε • n ∈ H -1/2 (∂B R ). Hence, setting V R = H 1 (D \ B R ),
we can rewrite the external problem using this operator as following (we still denote by v ε the solution) :

Problem 2.4. Find v ε in V R such that    -α∆v ε + v ε = h, in D \ B R , -∂ n v ε + T ε v ε = h ε , on ∂B R , ∂ n v ε = 0, on ∂D. ( 8 
) For ε ∈ [0, ζ], R > ζ, and v, ϕ in V R := H 1 (D \ B R ), we define a ε (v, ϕ) := α D\B R ∇v • ∇ϕ dx + α ∂B R T ε v ϕ dσ + D\B R v ϕ dx, l ε (ϕ) := D\B R h ϕ dx + α ∂B R h ε ϕ dσ.
So that the associated variational formulation reads : find v ∈ V R , such that

a ε (v, ϕ) = l ε (ϕ), ∀ϕ ∈ V R . FEBRUARY 7, 2023
It is easily checked that a ε is symmetric and l ε is continuous. In the sequel we write the cost functional in a slightly more general form, in particular to cope with the lack of differentiability for p = 1. We take as cost function,

J ε ( v) := D\Bε g(x, v(x)) dx, ∀ v ∈ V ε ,
where g is such that :

(H1) for all x ∈ D, s → g(x, s) is C 1 (R) and we denote its derivative by g s , (H2) for all

x ∈ D, s → g s (x, s) is M -Lipschitz continuous, (H3) x → g s (x, 0) is in L 2 (D) and x → g(x, 0) is in L p (D), p > 1.
Under these assumptions, it is readily checked that Proposition 2.2. For all (x, s, t) ∈ D × R × R, we have

• |g(x, s)| ≤ |g(x, 0)| + |g s (x, 0) s| + M 2 s 2 , • |g s (x, s)| ≤ |g s (x, 0)| + M |s|, • g(x, t) -g(x, s) ≤ g s (x, s)(t -s) + θ(x, s, t)(t -s) 2 , with |θ(x, s, t)| ≤ M 2 .
We define now the cost functional on V R as follows :

for v ∈ V R , we set v ε ∈ V ε the extension of v in D \ B ε such that, • v ε | D\B R = v, • v ε | B R \Bε = v h,φ ε , for φ = v on ∂B R .
We notice that v ε do not satisfy Problem 2.1 except if v is the solution of Problem 2.4. Then, we may define the restriction of J ε to V R by :

J ε (v) := J ε ( v ε ), ∀v ∈ V R .

The Adjoint Problem and Related Estimates

We state now the adjoint problem associated to Problem 2.4 when ε = 0 : we denote by w 0 the weak solution in V R of a 0 (w

0 , ϕ) = -DJ 0 (v 0 ) ϕ, ∀ϕ ∈ V R ,
where v 0 is the solution of Problem 2.4. The adjoint state w 0 is then the solution of

Problem 2.5. Find w 0 in V R such that    -α∆w 0 + w 0 = -g s •, v 0 (•) , in D \ B R , -∂ n w 0 + T 0 w 0 = h 0 , on ∂B R , ∂ n w 0 = 0, on ∂D. (9) 
We aim to find δa, δl and δJ from the adjoint method, Theorem 2.1. Let h ∈ L 2 (D) and φ ∈ H 1/2 (∂B R ). We consider the solution v h,φ ω of the following exterior problem,

   -α∆v h,φ ω + v h,φ ω = 0, in R 2 \ B 1 , v h,φ ω = v h,φ 0 (x 0 ), on ∂B 1 , v h,φ ω = 0, at ∞. Since v h,φ ω is a radial function, we can explicitly compute it : for x ∈ R 2 \ B 1 , v h,φ ω (x) = 1 K 0 (α -1/2 ) v h,φ 0 (x 0 ) K 0 (α -1/2 |x -x 0 |),
where K 0 is the modified Bessel function of the second kind [START_REF] Oldham | An Atlas of Functions[END_REF]. We extend this solution to R 2 \ {x 0 } (we still denote by v h,φ ω this extension in the sequel) by setting for

x ∈ R 2 \ {x 0 }, v h,φ ω (x) := 1 K 0 (α -1/2 ) v h,φ 0 (x 0 ) K 0 (α -1/2 |x -x 0 |). 6 FEBRUARY 7, 2023

Variations of the Bilinear Form

We start by giving the following lemma, Lemma 2.1. For ε small enough, we have,

T ε -T 0 -ε 1/2 δT L H 1/2 (∂B R ),H -1/2 (∂B R ) = O ε 1/2 .
Proof. We set for x ∈ R 2 \ B ε ,

Ψ 0,φ ε (x) := v 0,φ ε (x) -v 0,φ 0 (x) + ε 1/2 v 0,φ ω (x). By linearity, Ψ 0,φ ε is the solution of    -α∆Ψ 0,φ ε + Ψ 0,φ ε = 0, in B R \ B ε , Ψ 0,φ ε = ε 1/2 v 0,φ ω -v 0,φ 0 , on ∂B ε , Ψ 0,φ ε = ε 1/2 v 0,φ ω , on ∂B R .
We notice that (ε

1/2 v 0,φ ω -v 0,φ 0 ) is in H 1/2 (∂B ε ) and that ε 1/2 v 0,φ ω is in H 1/2 (∂B R ). In fact, ε 1/2 v 0,φ ω 1/2,∂B R = C ε 1/2 v 0,φ 0 (x 0 ) K 0 α -1/2 | • -x 0 | 1/2,∂B R = C ε 1/2 |v 0,φ 0 (x 0 )|.
From the maximum principle for v 0,φ 0 , we have |v 0,φ 0 (x 0 )| ≤ φ 1/2,∂B R , and then,

ε 1/2 v 0,φ ω 1/2,∂B R ≤ C ε 1/2 φ 1/2,∂B R . (10) 
Thus,

ε 1/2 v 0,φ ω (ε •) -v 0,φ 0 (ε •) 1/2,∂B1 ≤ ε 1/2 v 0,φ ω (ε •) -v 0,φ 0 (x 0 ) 1/2,∂B1 + v 0,φ 0 (x 0 ) -v 0,φ 0 (ε •) 1/2,∂B1
. And the first term in the right hand side,

ε 1/2 v 0,φ ω (ε •) -v 0,φ 0 (x 0 ) 1/2,∂B1 ≤ ε 1/2 v 0,φ ω (ε •) 1/2,∂B1 + v 0,φ 0 (x 0 ) 1/2,∂B1
Using the trace theorem and (10),

ε 1/2 v 0,φ ω (ε •) -v 0,φ 0 (x 0 ) 1/2,∂B1 ≤ ε 1/2 v 0,φ ω (ε •) 0,B1 + |v 0,φ ω (ε •)| 1,B1 + C φ 1/2,∂B R
By re-scaling, we rewrite,

ε 1/2 v 0,φ ω (ε •) -v 0,φ 0 (x 0 ) 1/2,∂B1 ≤ ε 1/2 ε -1/2 v 0,φ ω 0,Bε + ε 1/2 |v 0,φ ω | 1,Bε + C φ 1/2,∂B R ≤ v 0,φ ω 0,B1 + ε|v 0,φ ω | 1,B1 + C φ 1/2,∂B R ≤ C φ 1/2,∂B R + Cε φ 1/2,∂B R + C φ 1/2,∂B R ≤ C φ 1/2,∂B R . Similarly, v 0,φ 0 (x 0 ) -v 0,φ 0 (ε •) 1/2,∂B1 = ε ε -1 v 0,φ 0 (x 0 ) -v 0,φ 0 (ε •) 1/2,∂B1 ≤ C ε φ 1/2,∂B R .
Applying Proposition A.6 from the appendix, we have,

Ψ 0,φ ε 1,B R \B R/2 ≤ C ε 1/2 v 0,φ ω 1/2,∂B R + e -R/(2ε √ α) ε 1/2 v 0,φ ω (ε •) -v 0,φ 0 (ε •) 1/2,∂B1 ≤ C ε 1/2 φ 1/2,∂B R . FEBRUARY 7, 2023
Finally, Proposition A.2 gives,

(T ε -T 0 -ε 1/2 δT )φ -1/2,∂B R = ∇ v 0,φ ε -v 0,φ 0 + ε 1/2 v 0,φ ω • n -1/2,∂B R = ∇Ψ 0,φ ε • n -1/2,∂B R ≤ C Ψ 0,φ ε 1,B R \B R/2 ≤ C ε 1/2 φ 1/2,∂B R .
Now, we give the asymptotic development of the variations of the bilinear form in the following proposition :

Proposition 2.3. Let δT : H 1/2 (∂B R ) → H -1/2 (∂B R ) such that for all φ in H 1/2 (∂B R ), δT φ = -∇v 0,φ ω • n. Let v, w be in V R , we set, δa(v, w) := α ∂B R δT v w dσ.
Then, for ε small enough, we have,

a ε -a 0 -ε 1/2 δa L2(V R ) = O(ε 1/2 ). Proof. Let v, w ∈ V R , we have, a ε (v, w) -a 0 (v, w) = α ∂B R (T ε -T 0 )v w dσ.
From Lemma 2.1, we get the result.

Variations of the Linear Form

Then, we give the following lemma, Lemma 2.2. For ε small enough, we have,

h ε -h 0 -ε 1/2 δh -1/2,∂B R = O ε 1/2 . Proof. We set for x ∈ R 2 \ B ε , Ψ h,0 ε := v h,0 ε -v h,0 0 + ε 1/2 v h,0 ω . Thus, Ψ h,0 ε is the solution of    -α∆Ψ h,0 ε + Ψ h,0 ε = 0, in B R \ B ε , Ψ h,0 ε = ε 1/2 v h,0 ω -v h,0 0 , on ∂B ε , Ψ h,0 ε = ε 1/2 v h,0
ω , on ∂B R . Tedious computations similar to the proof of the previous lemma, lead to

h ε -h 0 -ε 1/2 δh -1/2,∂B R = ∇ v h,0 ε -v h,0 0 + ε 1/2 v h,0 ω • n -1/2,∂B R = ∇Ψ h,0 ε • n -1/2,∂B R ≤ C Ψ h,0 ε 1,B R \B R/2 ≤ C ε 1/2 h L 2 (D) .
We give the asymptotic development of the variations of the linear form in the following proposition :

Proposition 2.4. We set δh = ∇v h,0 ω • n. let w be in V R , we set, δl(w) := α ∂B R δh w dσ.
Then, for ε small enough, we have,

l ε -l 0 -ε 1/2 δl L(V R ) = O(ε 1/2 ). Proof. Let w ∈ V R , we have, l ε (w) -l 0 (w) = α ∂B R (h ε -h 0 ) w dσ.
The result follows from Lemma 2.2.

Variations of the Cost Function

Finally, we give the asymptotic development of the variations of the cost function. We start, by giving an estimate of the variations of the solution with the proposition below : Proposition 2.5. We set δv h,φ := -v h,φ ω . Then, for ε small enough, we have,

v h,φ ε -v h,φ 0 -ε 1/2 δv h,φ 0,B R \Bε = o(ε 1/2 ).
Proof. We proceed as in the previous lemmas, and set for

x ∈ R 2 \ B ε , Ψ h,φ ε := v h,φ ε -v h,φ 0 + ε 1/2 v h,φ ω . Thus, Ψ h,φ ε is the solution of    -α∆Ψ h,φ ε + Ψ h,φ ε = 0, in B R \ B ε , Ψ h,φ ε = ε 1/2 v h,φ ω -v h,φ 0 , on ∂B ε , Ψ h,φ ε = ε 1/2 v h,φ
ω , on ∂B R . using Proposition A.6, we get

Ψ h,φ ε 0,B R \Bε ≤ C ε 1/2 v h,φ ω 1/2,∂B R + e -R/(2ε √ α) ε 1/2 v h,φ ω (ε •) -v h,φ 0 (ε •) 1/2,∂B1 ≤ C ε 1/2 φ 1/2,∂B R + h L 2 (D) .
Now we can state the estimate of the variations of the cost function.

Proposition 2.6. We set for v in V R ,

δJ(v) := B R g s (x, v 0 ) δv h,v dx -α ∂B R ∂ n w 0 δv h,v dσ.
Then, for ε small enough, we have,

J ε (v) -J 0 (v) -ε 1/2 δJ(v) = o(ε 1/2 ).
Proof. Let v ∈ V R , we consider its extension in D, namely v 0 , and in D \ B ε , namely v ε . We remind that v 0 and v ε are not necessarily solutions of Problems 2.2 and 2.1, respectively, since v do not solve necessarily 2.4.

I ε := J ε (v) -J 0 (v) -ε 1/2 δJ(v) = J ε ( v ε ) -J 0 ( v 0 ) -ε 1/2 δJ(v) = D\Bε g(x, v ε ) dx - D g(x, v 0 ) dx -ε 1/2 B R g s (x, v 0 ) δv h,v dx + ε 1/2 α ∂B R ∂ n w 0 δv h,v dσ. FEBRUARY 7, 2023 Since v ε = v 0 on D \ B R , I ε = B R \Bε g(x, v ε ) -g(x, v 0 ) dx - Bε g(x, v 0 ) dx -ε 1/2 B R g s (x, v 0 ) δv h,v dx + ε 1/2 α ∂B R ∂ n w 0 δv h,v dσ.
Using Proposition 2.2,

I ε = B R \Bε g s (x, v 0 )( v ε -v 0 ) dx + B R \Bε θ(x, v 0 , v ε )( v ε -v 0 ) 2 dx - Bε g(x, v 0 ) dx -ε 1/2 B R g s (x, v 0 ) δv h,v dx + ε 1/2 α ∂B R ∂ n w 0 δv h,v dσ = B R \Bε g s (x, v 0 )( v ε -v 0 -ε 1/2 δv h,v ) dx + ε 1/2 B R \Bε g s (x, v 0 ) δv h,v dx + B R \Bε θ(x, v 0 , v ε )( v ε -v 0 ) 2 dx - Bε g(x, v 0 ) dx -ε 1/2 B R g s (x, v 0 ) δv h,v dx + ε 1/2 α ∂B R ∂ n w 0 δv h,v dσ = B R \Bε g s (x, v 0 )( v ε -v 0 -ε 1/2 δv h,v ) dx -ε 1/2 Bε g s (x, v 0 ) δv h,v dx + B R \Bε θ(x, v 0 , v ε )( v ε -v 0 ) 2 dx - Bε g(x, v 0 ) dx + ε 1/2 α ∂B R ∂ n w 0 δv h,v dσ.
Thus,

|I ε | ≤ B R \Bε g s (x, v 0 )( v ε -v 0 -ε 1/2 δv h,v ) dx + ε 1/2 Bε g s (x, v 0 ) δv h,v dx + M 2 B R \Bε ( v ε -v 0 ) 2 dx + Bε |g(x, v 0 )| dx + ε 1/2 α ∂B R ∂ n w 0 δv h,v dσ.
and

• B R \Bε g s (x, v 0 )( v ε -v 0 -ε 1/2 δv h,v ) dx ≤ C ε 1/2 . • ε 1/2 Bε g s (x, v 0 ) δv h,v dx ≤ ε 1/2 B R g s (x, v 0 ) δv h,v dx ≤ C ε 1/2 . • B R \Bε ( v ε -v 0 ) 2 dx = B R \Bε ε 1/2 δv h,v + o(ε 1/2 ) 2 dx = o(ε 1/2 ) B R \Bε dx ≤ o(ε 1/2 ) B R dx ≤ C ε 1/2 . • Bε |g(x, v 0 )| dx ≤ Bε g(x, v 0 ) 2 dx 1/2 Bε 1 2 dx 1/2 ≤ B R g(x, v 0 ) 2 dx 1/2 Bε dx 1/2 ≤ C ε. • ε 1/2 ∂B R ∂ n w 0 δv h,v dσ = C ε 1/2 .
Finally,

|I ε | ≤ C ε 1/2 .
Similar computations give, Proposition 2.7. J 0 is differentiable on V R and for v, w in V R , we have, for ε small enough,

J ε (w) -J 0 (v) = ε 1/2 δJ(v) + DJ 0 (v)(w -v) + o(ε 1/2 + w -v V R ).

Computation of the topological derivative

We now gather the previous section results to derive the topological derivative. We consider the adjoint problem of Problem 2.2 :

Problem 3.1. Find w 0 in H 1 (D) such that -α∆ w 0 + w 0 = -g s •, v 0 (•) , in D, ∂ n w 0 = 0, on ∂D. (11) 
Then, we have the following proposition, Proposition 3.1. w 0 , solution of Problem 2.5, is the restriction of w 0 to D \ B R .

Proof. We set w R := w 0 | D\B R . We have to show that w R = w 0 i.e. a 0 (w

R , ϕ R ) = -DJ 0 (v 0 )ϕ R , ∀ϕ R ∈ V R . Let ϕ R ∈ V R . We denote ϕ ∈ V 0 the extension of ϕ R to V 0 such that -α∆ ϕ + ϕ = 0 in B R . Thus, a 0 (w R , ϕ R ) = α D\B R ∇w R • ∇ϕ R dx + α ∂B R T 0 w R ϕ R dσ + D\B R w R ϕ R dx = α D\B R ∇w R • ∇ϕ R dx + α ∂B R T 0 w R ϕ R dσ + D\B R w R ϕ R dx + B R (-α∆ ϕ + ϕ) =0 w 0 dx.
And after integrating by parts,

a 0 (w R , ϕ R ) = α D\B R ∇w R • ∇ϕ R dx + D\B R w R ϕ R dx + α B R ∇ ϕ • ∇ w 0 dx + B R ϕ w 0 dx = α D ∇ w 0 • ∇ ϕ dx + D w 0 ϕ dx = a 0 ( w 0 , ϕ) = -D J 0 (v D ) ϕ.
Moreover, by definition J 0 (v D ) = J 0 (v R ), thus,

D J 0 (v D ) ϕ = DJ 0 (v 0 )ϕ R . By uniqueness of the solution, w R = w 0 .
It follows that the topological gradient based on the adjoint method is given by: Proposition 3.2. For ε small enough, we have,

j(K ε ) -j(K) = c ε 1/2 v 0 (x 0 ) w 0 (x 0 ) + o(ε 1/2 ),
with v 0 solution of Problem 2.2 and w 0 solution of Problem 3.1.

Proof. Unlike in previous proofs, we have that v 0 and w 0 are the solutions of Problem 2.2 and Problem 3.1 respectively and are the extensions of v 0 , solution of Problem 2.4, and w 0 , solution of Problem 2.5, respectively. Since the conditions for the adjoint method are fulfilled, we have, 

j(ε) = j(0) + δa(v 0 , w 0 ) -δl(w 0 ) + δJ(v 0 ) ε 1/2 + o(ε 1/2 ). Using that v h,v0 ω = v h,0 ω + v 0,v0 ω , δj(x 0 ) = δa(v 0 , w 0 ) -δl(w 0 ) + δJ(v 0 ) = -α ∂B R ∂ n v 0,v0 ω w 0 dσ -α ∂B R ∂ n v h,0 ω w 0 dσ - B R g s (x, v 0 ) v h,v0 ω dx + α ∂B R ∂ n w 0 v h,v0 ω | ∂B R dx = -α ∂B R ∂ n v h,v0 ω w 0 dσ - B R g s (x, v 0 ) v h,v0 ω dx + α ∂B R ∂ n w 0 v h,v0 ω dx.
δj(x 0 ) = -α ∂B R ∂ n v h,v0 ω w 0 dσ - B R g s (x, v 0 ) v h,v0 ω dx + α ∂B R ∂ n w 0 v h,v0 ω dx. Since -α∆ w 0 + w 0 = -g s •, v 0 (•) , δj(x 0 ) = -α ∂B R ∂ n v h,v0 ω w 0 dσ + B R (-α∆ w 0 + w 0 )v h,v0 ω dx + α ∂B R ∂ n w 0 v h,v0 ω dx = -α ∂B R ∂ n v h,v0 ω w 0 dσ -α B R ∆ w 0 v h,v0 ω dx + B R w 0 v h,v0 ω dx + α ∂B R ∂ n w 0 v h,v0 ω dx = -α ∂B R ∂ n v h,v0 ω w 0 dσ + α B R ∇ w 0 • ∇v h,v0 ω dx -α ∂B R ∂ n w 0 v h,v0 ω dσ + B R w 0 v h,v0 ω dx + α ∂B R ∂ n w 0 v h,v0 ω dx = -α ∂B R ∂ n v h,v0 ω w 0 dσ + α B R ∇ w 0 • ∇v h,v0 ω dx + B R w 0 v h,v0 ω dx = -α ∂B R ∂ n v h,v0 ω w 0 dσ -α B R w 0 ∆v h,v0 ω dx + α ∂B R ∂ n v h,v0 ω w 0 dσ + B R w 0 v h,v0 ω dx = -α B R w 0 ∆v h,v0 ω dx + B R w 0 v h,v0 ω dx = B R (-α∆v h,v0 ω + v h,v0 ω ) w 0 dx = 1 E(1) v h,v0 0 (x 0 ) B R -α∆E(x -x 0 ) + E(x -x 0 ) w 0 dx = 1 E(1) v h,v0 0 (x 0 ) B R δ x0 w 0 dx = 1 E(1) v h,v0 0 (x 0 ) w 0 (x 0 ).
Finally, using Proposition 3.1, we have v h,v0 0 (x 0 ) = v 0 (x 0 ) and we get the result.

We notice that with this expansion, we get the main theoretical result of the paper which might be summarized as follows: to minimize the L p -error between an image and its reconstruction from linear diffusion inpainting, we have to keep in the mask the pixels x 0 which maximize the product v 0 (x 0 ) w 0 (x 0 ). Such an analytic result gives a soft threshold criterion for the selection of K. In fact, the adjoint state is a smooth function obtained by solving a linear PDE, so that it gives a continuous distribution taking into account not only the influence of a single pixel in the cost variations but also its neighborhood. Moreover, choosing the best pixels this way may be enhanced by halftoning techniques which increase the quality of the set selection.

Numerical Results

In this section we present some numerical results when the cost functional is the L 1 -error and the L 2 -error, respectively, as they are the most representative for noise in practice. In fact, we take these specific values of p, depending on the nature of the noise considered, but for p = 1, we introduce an approximation of the L 1 -norm that fulfills the assumptions of the previous sections. Let us denote by f the original image, f δ the noisy one, and we denote by u the reconstructed image. We emphasis that the inpainting masks are built from f δ , that is to say f δ is available in D during the mask selection step while the data for the reconstruction are only available in K. We denote by Lp-ADJ-T the algorithm using the adjoint method by selecting the pixels given by -v 0 w 0 and we denote Lp-ADJ-H the algortihm combining with a halftoning technique (see [START_REF] Ulichney | Digital Halftoning[END_REF][START_REF] Floyd | Adaptive algorithm for spatial greyscale[END_REF])). For comparisons purpose, we consider H1-T and H1-H which correspond to the mask selection following the asymptotic expansion given in [START_REF] Belhachmi | How to Choose Interpolation Data in Images[END_REF], and where we take directly as criterion the hard/soft-thresholding of |∆f δ | (see. [START_REF] Belhachmi | How to Choose Interpolation Data in Images[END_REF]- [START_REF] Belhachmi | Optimal interpolation data for PDE-based compression of images with noise[END_REF]).

Salt and Pepper Noise

A common way to deal with impulse noise like salt and pepper, is to minimize the L 1 -error [START_REF] Nikolova | Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers[END_REF][START_REF]A Variational Approach to Remove Outliers and Impulse Noise[END_REF]. In our algorithm, When p = 1, we replace the norm, as follows: for > 0, we set t → g(x, t) = t 2 + , which satisfies the hypotheses (H1), (H2) and (H3). We give in Table 1, Table 2 and Table 3 the L 1 -error for the methods described above and several amount of salt and/or pepper noise (in these examples we take = 0.0001).

We notice that L1-ADJ-H gives the lower L 1 -error and most of the corrupted pixels are not selected in K for the L1-ADJmethods, while they are selected in the case of H1-ones. In fact, the impulse noises induce a high laplacian at the location of the corrupted pixels, thus satisfy the criterion for these methods. On the other hand, the adjoint state w 0 and v 0 are respectively solutions to a linear PDE (i.e. A(z) = -α∆z + z), with -| v 0 | and ∆f as second members, so that they give smooth distribution (e.g. formally v 0 = A -1 (∆f )). In addition, and for the same reason, in the L1-ADJmasks, we can distinguish the edges of the image, while its not the case with the H1methods, so that the asymptotic given by the adjoint method is more edge-preserving. Interestingly, the L1-ADJ-H method gives also better visual results than the H1-H method when the image is free from any noise.

In Figure 3, Figure 4, Figure 5 and Figure 6, the resulting masks and reconstruction are given for different level of noise. 1: L 1 -error between the original image f and the reconstruction u (build from f δ ) with 5% of total pixels saved. 

Noise L1-ADJ-T L1-ADJ-H H1-T H1-H Salt Pepper α f -u 1 α f -u 1 f -u 1 f -u 1 0% 0% 0.
Noise L1-ADJ-T L1-ADJ-H H1-T H1-H Salt Pepper α f -u 1 α f -u 1 f -u 1 f -u 1 0% 0% 0.
Noise L2-ADJ-T L2-ADJ-H H1-T H1-H σ α f -u 2 α f -u 2 f -u 2 f -u 2 0 0.

Conclusion and Discussions

In this article, we have formulated the PDE-based compression problem as a shape optimization one, and we have performed the topological expansion for the optimality condition by the adjoint method. Following the approaches of [START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF] and [START_REF] Garreau | The Topological Asymptotic for PDE Systems: The Elasticity Case[END_REF], we compute the asymptotic development for variations of the cost functionals with general exponents p ≥ 1, which leads to an analytic soft threshold criterion to select relevant pixels of the mask. The inpainting from the masks to reconstruct the images is performed with a Laplacian, but all the approach may be extended without significant changes to more involved linear operator of second order. Moreover, it can be extended to other (linear and non linear) elliptic operators, and other form of insertions (not necessarily discs) at the price of some technicalities and computations details. Finally, we presented some numerical experiments in the case of the L 2 -error and of a regularized L 1 -error. It appears that this method for selecting the mask outperform the other expansions when the image to compress contains gaussian noise or impulse noise and is easy to implement with a reasonable cost, the adjoint problem is linear even if the operator for the reconstruction is nonlinear.
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Proposition A.4. For y in R 2 \ B 1 , we have

v ω (y) = ∂B1 E(y -x)p(x) dσ(x),
where E is the fundamental solution (radial) in R 2 \ {0} given by

E(y) := 1 2π K 0 1 √ α |y| ,
where K 0 is the modified Bessel function of the second kind [START_REF] Oldham | An Atlas of Functions[END_REF] and p is the solution in H -1/2 (∂B 1 ) of ∂B1 E(y -x)p(x) dσ(x) = φ(y), ∀y ∈ ∂B 1 .

Proof. We differentiate and we use [START_REF] Oldham | An Atlas of Functions[END_REF] :

K 0 (z) = -K 1 (z) and K 1 (z) = -K 0 (z) -1 z K 1 (z). Proposition A.5.
For |y| large enough, it exists C 1 and C 2 , only dependant on α, such that,

|v ω (y)| ≤ C 1 |y| -1/2 e -|y|/ √ α φ 1/2,∂B1 , |∇v ω (y)| ≤ C 2 |y| -1/2 e -|y|/ √ α φ 1/2,∂B1 .
Proof. Since K 0 is a positive and decreasing function, we have for (

x, z) ∈ (∂B 1 ) 2 , E(x -z) ≥ 1 2π K 0 (2α -1/2 ) ⇔ 2π K 0 (2α -1/2 ) E(x -z) ≥ 1. Then, for z ∈ ∂B 1 , ∂B1 p(x)dσ(x) ≤ 2π K 0 (2α -1/2 ) ∂B1 E(x -z)p(x) dσ(x) = 2π K 0 (2α -1/2 ) |φ(z)|.
We integrate on ∂B 1 with respect to z the square of the previous inequality and get,

∂B1 p(x)dσ(x) 2 ≤ 2π K 0 (2α -1/2 ) 2 ∂B1 |φ(z)| 2 dσ(z). Let u = φ on ∂B 1 . Then, ∂B1 p(x)dσ(x) 2 ≤ 2π K 0 (2α -1/2 ) 2 B1\B 1/2 |u(z)| 2 dz,
this been true for every u, we take the sup,

∂B1 p(x)dσ(x) 2 ≤ 2π K 0 (2α -1/2 ) 2 φ 2 1/2,∂B1 .
With [START_REF] Oldham | An Atlas of Functions[END_REF], we have for z big enough, K 0 (z) = O(z -1/2 e -z ), thus, there exists C > 0, such that, for |y| large enough, A.3 Some Estimates for the Various Elliptic Problems in the Previous Sections

In this appendix, we give the estimates of the solution of the problem below with the norms defined in Appendix A.1.

Proposition A.6. Let ψ ∈ H 1/2 (∂B ε ) and φ ∈ H 1/2 (∂B R ). Let v ε be the solution of the problem below :

   -α∆v ε + v ε = 0, in B R \ B ε , v ε = ψ, on ∂B ε , v ε = φ, on ∂B R .
Then, for ε small enough, The proposition above can be derived easily from the results bellow :

v ε 0,B R \Bε ≤ C 1 φ 1/2,∂B R + e -R/(2ε √ α) ψ(ε •) 1/2,
Lemma A.1. Let φ ∈ H 1/2 (∂B R ). Let v ε be the solution of the following problem :

   -α∆v ε + v ε = 0, in B R \ B ε , v ε = 0, on ∂B ε , v ε = φ, on ∂B R .
Then, it exists 0 < ε 0 < R and C > 0 such that, for all 0 < ε < ε 0 , we have

v ε 1,B R \Bε ≤ C φ 1/2,∂B R .
Proof. Let R/2 < ε 0 < R, them it is readily checked that :

v ε0 1,α,B R \Bε 0 ≤ C v 1,B R \B R/2 .
Next, we take ε < ε 0 . Then, D ε0 ⊂ D ε and we denote by v ε0 the extension by 0 of v ε0 to D ε . As v ε is solution of the problem, it follows :

v ε 1,B R \Bε ≤ C v ε 1,α,B R \Bε .
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Lemma A.2. Let ψ ∈ H 1/2 (∂B ε ). Let v ε be the solution of the following problem :

   -α∆v ε + v ε = 0, in B R \ B ε , v ε = ψ, on ∂B ε , v ε = 0, on ∂B R .
Then, for ε small enough,

v ε 0,B R \Bε ≤ C 1 e -R/(2ε √ α) ψ(ε •) 1/2,∂B1 , |v ε | 1,B R \Bε ≤ C 2 e -R/(2ε √ α) ψ(ε •) 1/2,∂B1 , v ε 0,B R \B R/2 ≤ C 3 e -R/(2ε √ α) ψ(ε •) 1/2,∂B1 |v ε | 1,B R \B R/2 ≤ C 4 e -R/(2ε √ α) ψ(ε •) 1/2,∂B1 .
Proof. We consider the following exterior problem :

   -α∆v ωε + v ωε = 0, in R 2 \ B 1 , v ωε = ψ(ε •), on ∂B 1 , v ωε = 0, at ∞. Therefore, v ε = v ωε (•/ε)| B R \Bε -w ε ,
where w ε is solution of

   -α∆w ε + w ε = 0, in B R \ B ε , w ε = 0, on ∂B ε , w ε = v ωε (•/ε), on ∂B R .
Using Proposition A. The other estimations are obtained similarly.

  b) After splitting.

Figure 1 :

 1 Figure 1: Illustration of the splitting.

FEBRUARY 7

 7 

  (a) Without noise. (b) With 2% of salt noise. (c) With 2% of pepper noise. (d) With 2% of salt and pepper noise.

Figure 2 :

 2 Figure 2: Input images.

  (a) Without noise. (b) σ = 0.03. (c) σ = 0.05. (d) σ = 0.1.

Figure 7 :

 7 Figure 7: Input images f δ with gaussian noise of deviation σ.

Figure 10 :

 10 Figure 10: Masks and reconstructions from image with gaussian noise of deviation σ = 0.1 and with 10% of total pixels saved.
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 23 |E(x -y)| ≤ C |x -y| -1/2 e -|x-y|/ √ α .Moreover, for |y| large enough,|x -y| -1/2 e -|x-y|/ √ α ≤ C|y| -1/2 e -|y|/ √ α , then, |E(x -y)| ≤ C |y| -1/2 e -|y|/ √ α . Therefore |v ω (y)| ≤ C 1 |y| -1/2 e -|y|/ √ α φ 1/2,∂B1 . yi v ω (y) = ∂ yi ∂B1 E(y -x)p(x) dσ(x) = ∂B1 ∂ yi E(y -x)p(x) dσ(x),and∂ yi E(x -y) = 1 2π ∂ yi K 0 (α -1/2 |x -y|) = -1 2π α -1/2 |y -x| -1 K 1 (α -1/2 |y -x|) y i .Thus|∇v ω (y)| = 1 2π α -1/2 |y| ∂B1 |y -x| -1 K 1 (α -1/2 |y -x|) p(x) dσ(x) ,in the same way that before, for |y| big enough,[START_REF] Oldham | An Atlas of Functions[END_REF],|∇v ω (y)| ≤ C |y| -1/2 e -|y|/ √ α φ 1/2,∂B1 .

  ∂B1 , |v ε | 1,B R \Bε ≤ C 2 φ 1/2,∂B R + e -R/(2ε √ α) ψ(ε •) 1/2,∂B1 , v ε 0,B R \B R/2 ≤ C 3 φ 1/2,∂B R + e -R/(2ε √ α) ψ(ε •) 1/2,∂B1 , |v ε | 1,B R \B R/2 ≤ C 4 φ 1/2,∂B R + e -R/(2ε √ α) ψ(ε •) 1/2,∂B1 .

  1 and Proposition A.3, for ε small enough, we havew ε 1,B R \Bε ≤ C e -R/(2ε √ α) ψ(ε •) 1/2,∂B1 .It follows from scaling argument,v ε 0,B R \Bε ≤ v ωε (•/ε) 0,B R \Bε + w ε 0,B R \Bε ≤ C e -R/(2ε √ α) ψ(ε •) 1/2,∂B1 .

Table 2 :

 2 L 1 -error between the original image f and the reconstruction u (build from f δ ) with 10% of total pixels saved.

			01	4236.82	2.27	993.28	4211.56	1123.36
	2%	0%	0.41	2598.67	0.66	1314.63	3299.89	3404.45
	0%	2%	0.36	2438.89	0.71	1238.11	3381.13	3269.42
	1%	1%	0.56	2336.34	0.76	1584.95	3175.27	3075.79
	4%	0%	0.36	3426.40	0.56	1478.08	10730.48	8869.47
	0%	4%	2.07	2909.84	0.56	1479.31	13511.53	10243.84
	2%	2%	0.46	3214.27	0.61	2469.22	6905.52	6072.67
	10%	0%	0.26	7620.77	0.51	1796.54	25741.62	22299.13
	0%	10%	2.42	4907.27	0.51	1852.31	30239.03	27683.34
	5%	5%	0.36	6442.23	0.51	5112.88	18885.30	15814.61

Table 3 :

 3 L 1 -error between the original image f and the reconstruction u (build from f δ ) with 15% of total pixels saved.

Table 4 :

 4 L 2 -error between the original image f and the reconstruction u (build from f δ ) with 5% of total pixels saved.

		01	35.02	2.62	16.98	34.46	11.43
	0.03	0.31	13.94	1.37	9.62	16.02	13.95
	0.05	0.66	15.88	2.07	12.56	19.85	16.64
	0.1	1.16	28.58	1.81	23.40	30.35	24.24
	0.2	0.01	67.07	0.01	52.58	66.36	41.54
	Noise	L2-ADJ-T	L2-ADJ-H	H1-T	H1-H
	σ	α	f -u 2	α	f -u 2	f -u 2	f -u 2
	0	0.01	23.08	0.01	9.70	22.99	6.02
	0.03	0.71	8.88	0.96	7.76	11.49	10.38
	0.05	0.86	13.42	0.76	12.50	15.74	13.85
	0.1	0.71	26.81	0.66	24.40	27.01	23.42
	0.2	0.01	55.74	2.27	47.17	55.32	42.12

Table 5 :

 5 L 2 -error between the original image f and the reconstruction u (build from f δ ) with 10% of total pixels saved.

	Noise	L2-ADJ-T	L2-ADJ-H	H1-T	H1-H
	σ	α	f -u 2	α	f -u 2	f -u 2	f -u 2
	0	0.01	11.62	0.01	6.58	11.26	3.96
	0.03	0.71	7.98	0.56	7.64	9.78	8.92
	0.05	0.51	12.81	0.66	12.28	14.18	12.92
	0.1	0.31	25.79	0.76	24.62	25.59	23.50
	0.2	0.01	50.94	1.11	47.25	50.59	42.90

Table 6 :

 6 L

2 

-error between the original image f and the reconstruction u (build from f δ ) with 15% of total pixels saved.

Gaussian Noise

Now, we consider images with gaussian noise. In this case we take p = 2, and although the algorithms which are not based on the adjoint method perform well, we notice that this method gives better results again. We give in Table 4, Table 5 and Table 6 the L 2 -error for the methods L2-ADJ-T, L2-ADJ-H, H1-T and H1-H with respect to the deviation σ > 0 of gaussian noise. Formally, the criterion -v 0 w 0 is close to |∆f | 2 which is similar to the result found in [START_REF] Belhachmi | Optimal interpolation data for PDE-based compression of images with noise[END_REF], but the fact that the adjoint state w and primal variable v are computed by solving linear PDEs improves distribution of the topological derivative. We see that for a reasonable level of noise, the L2-ADJ-H gives lower L 2 -error and that the reconstructed image seems to have less noise than the original one. Similarly to L1-ADJ-methods, we can distinguish the edges of the image in the L2-ADJ-masks, while its not the case with the H1-methods.

We plot in Figure 8, Figure 9 and Figure 10 the resulting masks and reconstruction from various noise level. 

A Preliminaries A.1 Recall on the Sobolev Norms

We recall the definition of the norms and some of their properties used in the proofs. Let O be an open subset of R 2 . For v in H 1 (O), we recall the following Sobolev norms :

On the boundary of a ball of radius r > 0, namely ∂B r , we define for φ in H 1/2 (∂B r ),

and for ψ in H -1/2 (∂B r ), we define the dual norm,

Then, it is standard that

A.2 Exterior Problem

Now, we give estimates of the solution to the exterior problem with the norms defined previously. For φ in H 1/2 (∂B 1 ), we define the exterior problem as the following :

The aim of this appendix is to prove the following proposition : The proposition above can be derived easily from the results bellow :