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Abstract

Normalizing Flows (NF) are Generative models
which are particularly robust and allow for exact
sampling of the learned distribution. They how-
ever require the design of an invertible mapping,
whose Jacobian determinant has to be computable.
Recently introduced, Neural Hamiltonian Flows
(NHF) are based on Hamiltonian dynamics-based
Flows, which are continuous, volume-preserving
and invertible and thus make for natural candi-
dates for robust NF architectures. In particular,
their similarity to classical Mechanics could lead
to easier interpretability of the learned mapping.
However, despite being Physics-inspired architec-
tures, the originally introduced NHF architecture
still poses a challenge to interpretability. For this
reason, in this work, we introduce a fixed kinetic
energy version of the NHF model. Inspired by
physics, our approach improves interpretability
and requires less parameters than previously pro-
posed architectures. We then study the robustness
of the NHF architectures to the choice of hyper-
parameters. We analyze the impact of the number
of leapfrog steps, the integration time and the
number of neurons per hidden layer, as well as
the choice of prior distribution, on sampling a
multimodal 2D mixture. The NHF architecture
is robust to these choices, especially the fixed-
kinetic energy model. Finally, we adapt NHF to
the context of Bayesian inference and illustrate
our method on sampling the posterior distribution
of two cosmological parameters knowing type Ia
supernovae observations.
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1. Introduction
Generative models are widely used for sampling high-
dimensional probability distributions with applications from
molecular biology (Lopez et al., 2020) to cosmology (Ro-
driguez et al., 2018) or medical science (Frazer et al., 2021).
Traditional architectures like Generative Adversarial Net-
works (Goodfellow et al., 2014) have shown impressive
results in image generation but since their adversarial loss
seeks a saddle point rather than a local minimum, GANs are
notoriously hard to train and may suffer from mode-collapse
(Lin et al., 2018; Arjovsky & Bottou, 2017; Berard et al.,
2020). More robust techniques like Normalizing Flows (NF)
were developed (Tabak & Vanden-Eijnden, 2010; Dinh et al.,
2014; Rezende & Mohamed, 2015). NF consist in training
a neural network to map a simple prior distribution onto the
desired target through a chain of invertible transformations.
They come with interesting characteristics, such as stability
and correctness, see for example (Papamakarios et al., 2022).
The main limitation comes from the design of an invertible
function for the mapping. In particular, computing the Ja-
cobian determinant in the change of variable formula may
be costly. Furthermore, while explainability is now under a
growing concern within the community (Gilpin et al., 2018),
and in particular regarding applications in natural science,
the transformation learned by NF models is commonly hard
to interpret.

Exploiting the Newtonian evolution in classical Mechanics,
Neural Hamiltonian Flows (NHF) (Toth et al., 2020) are NF
models that use Hamiltonian transformations. The Hamil-
tonian of a system is composed of a kinetic and potential
energy terms, which sets its dynamical evolution, which
is reversible and has a Jacobian determinant equal to one.
They come with performance similar to the ones obtained
with Real-NVPs in sampling 2D distributions (Toth et al.,
2020). Being Physics-driven models, they are expected to
enhance interpretability. However, the NHF architecture
is made of four neural networks black-boxes that render
difficult the interpretation of the learned dynamics. Further-
more, even if they have been numerically shown to transfer
multimodality from the target distribution to the potential
energy in some cases (Toth et al., 2020), this property is
not guaranteed. However, the Hamiltonian formalism could



offer a powerful formalism to design more easily interpreted
architectures. Thus, some recent works have proposed to
exploit the Hamiltonian properties to design interpretable
flows that are invariant under symmetrical transformations
(Jimenez Rezende et al., 2019).

In this work, we focus on the transfer of the negative log-
arithm of the target distribution into the learned potential,
which should be the case in any physical systems. This
leads us to propose a fixed-kinetic version of NHF where
the kinetic-energy term in the Hamiltonian is set to its true
form in classical mechanics, where momenta follow a Gaus-
sian distribution. We also discuss the impact of the hyperpa-
rameters on such transfer and study the overall robustness
of NHF towards the choice of the numerical integration
scheme and of the prior distributions. In more details, this
work provides the following four main contributions:

• We introduce a fixed-kinetic version of NHF that,
thanks to the Hamiltonian evolution, enhances inter-
pretability of the model and does so at a cheaper com-
putational price.

• We analyze the effect of multiple parameters of the ar-
chitecture on sampling a 2-dimensional multimodal dis-
tribution and show that NHF is robust to the choice of
hyper-parameters, especially the fixed-kinetic model.

• We show that the choice of prior has an influence on the
learned dynamics. The fixed-kinetic model also allows
better robustness to the choice of prior distribution.

• Finally, aside from Generative modeling, flow-based
models have been shown to be suited as inference al-
gorithms (Rezende & Mohamed, 2015; Winkler et al.,
2019). We test a framework for Bayesian inference
using NHF and present numerical experiments for in-
ferring cosmological parameters from astronomical
observations. The methodology we propose is inspired
by Boltzmann generators (Noé et al., 2019).

The manuscript is organized as follows: in Section 2, we
present and review the related works. In Section 3, we
describe the theoretical framework and the practical imple-
mentation of NHF. In Section 4, we discuss the choice of
models for the kinetic energy and introduce a fixed-kinetic
version for enhanced interpretability and reduced complex-
ity. Section 5 discusses the choices one can make to maxi-
mize expressivity given a fixed computational budget, with
tests on a 2D Gaussian mixture and analysis of the impact of
the Leapfrog-hyperparameters and model complexity. We
also show how the choice of base distribution affects the
learned energies and thus the interpretability of the model.
Finally, in Section 6, we adapt NHF for Bayesian inference
and illustrate our method on a toy model from cosmology.

2. Related works
Generative models. These methods make the assumption
that data can be represented by an underlying probability dis-
tribution. The aim of generative models is to learn such dis-
tribution in order to produce original samples similar to the
training dataset. Various architectures have been presented
such as Generative Adversarial Networks (Goodfellow et al.,
2014) or diffusion networks (Sohl-Dickstein et al., 2015). In
this paper, we will focus on Normalizing Flows techniques
(Tabak & Vanden-Eijnden, 2010; Dinh et al., 2014; Rezende
& Mohamed, 2015) as a way of smoothly transforming a
simple prior distribution into the target posterior.

Learning Hamiltonians. Learning Hamiltonian potentials,
i.e. physical conserved quantities, is a first step towards a
better understanding of the physical processes that have gov-
erned the data generation. Multiple architectures have been
proposed, such as Hamiltonian Neural Networks (Grey-
danus et al., 2019) or Hamiltonian Generative Networks
(Toth et al., 2020). These methods parameterize the Hamil-
tonian of the system with neural networks and come with
useful properties such as exact reversibility and smooth-
ness. They have inspired applications from domain trans-
lation (Menier et al., 2022) to fault-detection in industry
(Shen et al., 2023). It is worth mentioning that they can be
combined with Markov-Chain Monte Carlo (MCMC) meth-
ods, for instance as proposals in the Hamiltonian Monte
Carlo (HMC) algorithm (Duane et al., 1987; Dhulipala et al.,
2022). In this work, we learn artificial Hamiltonians for sam-
pling and our goal is to extract the negative logarithm of the
target distribution into the potential.

Neural Hamiltonian Flows. NHF is a Normalizing Flow
architecture derived as a modification from Hamiltonian
Generative Networks. As generative models, they have been
used to sample from 2D distributions (Toth et al., 2020).
The Hamiltonian formalism is also a natural framework for
exploiting symmetries inside data and build interpretable
flows (Jimenez Rezende et al., 2019). In this paper, we
discuss its robustness with respect to hyperparameters and
choice of prior distribution. Also, we propose an alternative
version of NHF to enhance interpretability while reducing
the complexity of the model.

Inference with NHF. Inferring the posterior distribution of
parameters conditioned on data is an important problem in
science. Traditional MCMC methods (Robert & Casella,
2004) are very popular because they come with guarantees
in terms of convergence and many progress have been made
regarding their tuning (Homan & Gelman, 2014; Carpenter
et al., 2017). NF architectures have also been proposed in
this framework (Rezende & Mohamed, 2015; Winkler et al.,
2019). Here, we adapt NHF to sampling Bayesian posterior
distributions by transforming the prior distribution into the
posterior with no access to samples from the target.



Explainable AI. XAI deals with the problem of understand-
ing the decisions made by an Artificial Intelligence (Samek
& Müller, 2019). Indeed, complex architectures made of
multiple (deep) neural network are often easier to train than
to understand. Some solutions involve surrogate techniques
(Ribeiro et al., 2016), local perturbations (Ancona et al.,
2022) or meta-explanations (Lapuschkin et al., 2019). In-
cluding physical prior knowledge into neural networks may
be another solution to understand the model (Raissi et al.,
2019; Toth et al., 2020). In this work, we build on that idea
and try to make the model as explainable as possible by
fixing the kinetic energy of the model and thus enforcing a
classical Mechanics knowledge into the architecture.

3. Normalizing Flows with Hamiltonian
transformations

3.1. Normalizing Flows

Normalizing flows are generative models that map a com-
plex target distribution π onto a known prior distribution
π0 from which it is easy to sample (Papamakarios et al.,
2022). This mapping is a series of smooth invertible trans-
formations. Once the model is trained, one can reverse the
learned dynamics to generate samples from the target dis-
tribution starting from the prior. If X = T (Z), where T
is a C1-diffeomorphism and Z ∼ π0, then the density fol-
lowed by X reads m(x) = π0

(
T −1(x)

)
× |det JT −1(x)| ,

where det Jf−1(x) is the Jacobian determinant of the in-
verse transformation of f evaluated in x. For more expres-
sivity, it is possible to chain several invertible transforma-
tions x = TL ◦ ... ◦ T1(z). In this case, the change of vari-
able formula is now: m(x) = π0

(
T −1
1 ◦ ... ◦ T −1

L (x)
)
×∏L

k=1

∣∣∣det JT −1
k

(x)
∣∣∣ . The model parameters to optimize

are denoted Θ. The goal is to minimize the Kullback-Leibler
divergence between the target distribution π and the model
distribution m with respect to Θ, i.e. minimizing:

L(Θ) = Eπ [log π(X)− logm(X; Θ)]

= −Eπ

[
log π

(
T −1
1 ◦ ... ◦ T −1

T (X; Θ)
)

+

T∑
k=1

∣∣∣det JT −1
k

(X)
∣∣∣]+ C.

As we seek to find the minimum of this quantity, C can be
discarded. Then, one can use samples x1, ..., xm from the
target distribution for estimating the above loss via Monte
Carlo. The function to minimize becomes:

L(Θ) = − 1

m

m∑
k=1

[
log π

(
T −1
1 ◦ ... ◦ T −1

L (xk; Θ)
)

+

T∑
k=1

∣∣∣det JT −1
k

(xk)
∣∣∣] .

(1)

At this point, transformations are to some extent arbitrary.
Any smooth invertible function would be suited but the main

computational cost comes from the Jacobian determinants.
The first goal is then to reduce this computational cost,
and the second one to enhance interpretability, by a proper
choice of the transformation, and of its induced inverse.

3.2. Neural Hamiltonian Flows

To alleviate these issues, Neural Hamiltonian Flows (NHF,
Toth et al., 2020) is a NF technique that uses a series of
Hamiltonian transformations as normalizing flows. In classi-
cal Mechanics, a system is fully described by its coordinates
(q,p) in phase-space. From that description, it is possible
to define a scalar quantity called a Hamiltonian (Landau
& Lifshitz, 1982). It can be seen as the total energy of the
system and, in this paper, we make the assumption that it is
written as the sum of a potential energy V , solely depend-
ing on the generalized positions q, and a kinetic energy K,
solely depending on the momenta p. The system evolves in
phase-space following Hamilton’s equations that read:

dq

dt
=

∂H

∂p
,
dp

dt
= −∂H

∂q
. (2)

Hamiltonian transformations present at least two main ad-
vantages that make them suited for normalizing flows:

• they are invertible by construction and inversion is
easy by using a classical numerical integrator, i.e. just
reversing the speed;

• their Jacobian determinant is equal to 1, removing
the necessity to compute such determinant for each
transformation.

Numerically, the continuous solution can be approached by
a symplectic, invertible and stable integrator as a Leapfrog:

pn+ 1
2

= pn −∇V (qn)× dt
2 ,

qn+1 = qn +∇K(pn+ 1
2
)× dt,

pn+1 = pn+ 1
2
−∇V (qn+1)× dt

2 .

(3)

NHF is trained on a dataset consisting in realizations from
the target distribution. In order to simulate a Hamiltonian dy-
namics, one must extend the position space in which live the
samples into the phase space, by adding artificial momenta:
this is the role of the Encoder. The dynamics is integrated
in phase-space with the Leapfrog integrator (Toth et al.,
2020). More precisely, during training, NHF takes batches
of qT from the training dataset as inputs. For each qT ,
one pT is drawn from a Gaussian distribution whose mean
µ(qT ) and standard deviation σ(qT ) depend on the qT .
The resulting point in phase-space is then evolving through
a series of L Leapfrog steps with integration timestep dt.
The outputs consist in the final position q0 and momenta
p0, as well as the initial mean µ(qT ), standard deviation



σ(qT ) and pT that are used in the loss computation. Once
trained, one can easily define a sampling function that trans-
forms q0, p0 into qT , by changing the sign of integration
timestep and moving the system through the learned dynam-
ics. The architecture is illustrated in Figure 1. Following
the previous notations, let us call f(.|qT ) the density of a
normal distribution N (µ(qT ), σ(qT )

2), and T −1 the back-
ward transformation of phase-space performed by NHF i.e.
T −1(qT ,pT ) = (q0,p0). Also, we denote Π0 the joint
distribution of q0, p0. By adding artificial momenta pT

(Toth et al., 2020), the distribution modeled by our NHF is
m(qT ) =

∫
M(qT ,pT )dpT =

∫
Π0(T −1(qT ,pT ))dpT .

This integral is intractable so instead one can maximize the
following ELBO:

L(qT ) = Ef

[
log π(T −1(qT ,pT ))− log f(pT |qT )

]
.
(4)

This quantity is approximated via Monte Carlo integration.

Once it has learned the transformation, one can reverse the
sign of timesteps and use the same potentials to transform
the base distribution into the target distribution.

The first part of the architecture consists in adding artificial
momenta to simulate a Hamiltonian dynamics. This is done
by the Encoder. Here, µ and σ are approximated by two
neural networks. As for the Hamiltonian transformations,
they are made by chaining Leapfrog steps. To do so, one
must design the potential energy V and the kinetic energy K
of the system. In previous work (Toth et al., 2020), authors
have proposed to parameterize each potential by a neural
network. We will discuss this choice in the following section.
For now, let us highlight the fact that the choice of neural
network for the energies or within the Encoder is without
constraint because the properties needed for normalizing
flows are ensured by the use of a Leapfrog scheme. This is
an illustration of the model flexibility.

4. Designing the kinetic energy for NHF
MLP-kinetic NHF. If the kinetic energy is chosen to be
a MLP (Toth et al., 2020), then the model contains two
black-boxes that are not easy to interpret a priori, namely
the kinetic and potential energies K and V . In particular,
when sampling a multimodal distribution from a unimodal
prior, one may have some troubles understanding where the
transfer of multimodality occurs in the process.

Fixed-kinetic NHF. By fixing the kinetic energy inside
NHF, we expect to gain interpretability on the learned flow
by forcing the latter to obey some Physics principles. Ideally,
one would like to find a way of enforcing these energies to
be classical from a classical Physics perspective, i.e. making
learned kinetic to be a quadratic form and learned potential
to be the negative logarithm of the target distribution (or

an approximation). This is an important aspect because we
would like to keep track of the transformation dynamics.
This way, we can play with the familiar classical mechanics
framework and interpret the model more easily. By doing
so, both interpretability and maniability (less parameters)
are gained through the Fixed-kinetic NHF. In this model, K
is no longer a MLP but a fixed function. In practice, one
can impose the kinetic energy to be written as:

K(p) =
1

2
pTMp, (5)

with M a mass matrix. We impose M to be a positive
symmetric definite matrix, as it is the case in classical me-
chanics. For instance, in 2D, it comes down to optimizing
three real parameters, rather than a complete network. Start-
ing from (q0,p0) drawn from a unimodal prior distribution
and imposing a quadratic kinetic energy significantly re-
duces the number of possibilities for the potential energy
if one wants to recover a multimodal qT . Let us examine
what happens for a single Leapfrog transformation. We
have ∇K(p) = Mp. Using the first step of the Leapfrog
algorithm (3), the final expression for (q1,p1) reads:

q1 = q0 +M
(
p0 −∇V (q0)

dt

2

)
dt

p1 = p0 −∇V (q0)
dt

2

−∇V

(
q0 +M

(
p0 −∇V (q0)

dt

2

)
dt

)
dt

2
.

So, if V is quadratic, then the overall transformation is linear
and multimodality cannot be obtained from the original
Gaussian measure. Thus, multimodality can be achieved
only through the potential V in order to sample from the
correct target.

It is possible to create many different versions of NHF by
fixing its kinetic energy, which thus leads to analysis of the
learned dynamics in light of a different Physics framework.
One could, for instance, use a relativistic kinetic energy
instead of a classical one. We now numerically show how
the classical choice for kinetic energy yields an interpretable
potential V and such in a robust manner.

5. Robustness and optimization of NHF
We present the results of numerical experiments for ana-
lyzing the robustness of NHF. The experiments consist in
sampling a 2D Gaussian mixture with 9 modes (see figure
2). Such toy example, similarly studied in (Toth et al., 2020),
is interesting in the sense that it will allow us to discuss var-
ious aspects, from memory usage to interpretability. Also,
traditional generative models like GAN may suffer from
mode-collapse problems even in simple multimodal 2D set-
tings (Eghbal-zadeh et al., 2019). It should be noted that we



Figure 1. NHF architecture

never observed such issue with NHF in all the experiments
that have been conducted.

In each model, µ and σ are MLPs with size (D,H,H,D).
The energies are MLPs with size (D,H,H, 1), D being
the dimension of data, except for the fixed-kinetic version
of NHF where K is a fixed quadratic form. Models are
trained on a 5,000 points dataset with minibatches of size
512. Weights and biases are optimized with Adam (Kingma
& Ba, 2015), setting the learning rate to 5× 10−4.

5.1. Impact of Leapfrog-hyperparameters and model
complexity

We first discuss the effect of Leapfrog-hyperparameters L
(number of Leapfrog steps) and T = L × dt (integration
time) on the optimization, but also the impact of the model
complexity. The latter is governed by the total number
of neurons in the model, this number being an increasing
function of H , the number of neurons per hidden layer in
each MLP of the model. If the model is complex enough, we
expect it to learn how to adjust to the number of Leapfrog
steps and choice of integration time. If not, we expect
the model to perform better by increasing the number of
computations, i.e. increasing L. As L increases, we do not
expect to see any difference as the number of computations
becomes sufficient to solve the problem.

We tested both fixed-kinetic and MLP-kinetic NHF with
various choices of L, T and H . We use a soft-uniform prior
∝ s(x+3)s(−x+3), where s is the sigmoid function. The
corresponding loss decays are illustrated in Figure 3 and
additional details can be found in Appendix A.

Firstly, the fixed-kinetic NHF model is shown to be more
robust than the MLP-kinetic one to the choices of L and T ,
at fixed H , as discrepancy in the loss decay more clearly
appears only with H = 8. Then, regarding the tuning
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6

Figure 2. Density estimation of the 2D multimodal target distribu-
tion that is used in Section 5 with its marginals. It consists in 9
equally-weighted Gaussians with same covariance matrix 0.52I2.

of the Leapfrog scheme, at fixed-integration time, models
with L = 1 always reach higher final value of the loss,
this effect being less visible with the fixed-kinetic model.
Increasing the number of leapfrog steps leads to better final
performance of the model even if this effect disappears
once the number of Leapfrog steps gets sufficient and no
further expressivity can be achieved. Finally, as for the
effect of integration time T , it barely appears for the fixed-
kinetic model, showing that the latter efficiently adjusts to
this parameter. As for the MLP-kinetic model, the effect
of the integration time is clearer, but mostly at H = 8,
where performance improves for T = 1, 10 compared to
T = 0.1. Overall, as the number of parameters in the model
is increasing (H = 32 or 128), the impact of the choice of
the integration time is very limited.

Thus, for a given training dataset, there are basically four
hyperparameters that require tuning: three are usual in learn-
ing (minibatch size, learning rate and number of neurons
per hidden layer, i.e. number of learning parameters of the
model) and only one is specific to NHF (minimum number
of Leapfrog steps), whose tuning is especially less sensitive
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Figure 3. Training loss as a function of epochs for models with
different H (number of neurons per hidden layer in each neu-
ral network of the model), L (number of Leapfrog steps) and
T (integration time). First row: MLP-kinetic NHF; second row:
fixed-kinetic model. From left to right: H = 128, 8. Models
were trained for 15, 000 epochs on a 5,000-point dataset with mini-
batches of size 512.

when using the fixed-kinetic variant.

5.2. Impact of the prior distribution on the learned
dynamics

Now we illustrate the impact of the prior choice on the
transfer of characteristics of the target distribution on the
potential V , especially regarding the multimodality nature.
All models were trained for 15,000 epochs using H = 128,
T = 1 and L = 10, with a 5,000 points training dataset.

In terms of sampling, all considered schemes recover the
nine correct modes from the target distribution, as illustrated
in Figure4. We now consider the learned potential V , as
illustrated in Figure5. As the Hamiltonian evolution only
involves its derivative, we also include a shifted version
in Figure6. When choosing a relatively flat soft-uniform
prior distribution that covers the target region, multimodal-
ity transfers to the potential energy for both fixed-kinetic
and MLP-kinetic NHF. The potential exhibits indeed local
extrema centered at the modes of the target, which can either
be minima or maxima for the MLP-kinetic NHF but are min-
ima for the fixed-kinetic one. Indeed, with a MLP-kinetic
model, the orientation of the learned energies may change
from one numerical experiment to another, as we do not en-
force the positiveness of the output of V and K making this
variant of NHF indifferent to the sign of the learned ener-
gies. Finally, similar results were obtained using a Gaussian
base N (0, 2.52I2) with variance large enough to cover the
support of the target distribution, which stresses the impact
of the spatial expansion rather than the nature of the prior

distribution.

On the other hand, when choosing a ”peaked” prior distri-
bution N (0, I2), we remark that, for the MLP-kinetic NHF,
the momenta pT generated by the Encoder inherit from
the multimodality of the target distribution, with the same
number of modes. As a consequence, learned energies are
different from the classical Physics ones. Learned potential
energy is different from one model to another but in the case
of fixed-kinetic NHF, multimodality is always transferred to
the potential energy, showing the robustness of the model to
the choice of prior distribution.

Thus, using a fixed-kinetic model allows to more robustly
transfer important properties of the target distribution into
the learned potential. For both models though, choosing a
wide prior that covers the support of the target distribution is
improving such transfer. Finally, when the learned potential
is not multimodal, it is an indication that multimodality
has been transferred instead to the artificial momenta pT

generated by the Encoder.
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Figure 4. Density estimation of the samples produced by the six
models previously defined. First row: MLP-kinetic NHF; second
row: Fixed-kinetic model. From left to right: wide soft-uniform
prior; peaked Gaussian prior; wide Gaussian prior. Models were
trained for 15, 000 epochs on a 5,000-point dataset with mini-
batches of size 512, H = 128, L = 10 and T = 1.

6. Adapting NHF for Bayesian inference
6.1. Methodology, derivation of the new loss function

We present how NHF can be used to perform Bayesian in-
ference. It consists in using Hamiltonian flows to transform
the prior distribution, in the sense of Bayes’ theorem, π0 of
some vector of parameters q into the target posterior dis-
tribution π(q|d) of these parameters, knowing some data
d and likelihood ℓ. The main difference with the above
described NHF lies in the loss inspired from the KL phase
in Boltzmann Generators (Noé et al., 2019), as well as in the
learning procedure. During training, this NHF takes batches
of q0 from the prior distribution as inputs. For each q0, one
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Figure 5. Potential energies learned by the six models previously
defined. First row: MLP-kinetic NHF; second row: Fixed-kinetic
model. From left to right: wide soft-uniform prior; peaked Gaus-
sian prior; wide Gaussian prior. Models were trained for 15, 000
epochs on a 5,000-point dataset with minibatches of size 512,
H = 128, L = 10 and T = 1.
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Figure 6. Shifted potential energies learned by the six models pre-
viously defined. First row: MLP-kinetic NHF; second row: Fixed-
kinetic model. From left to right: wide soft-uniform prior; peaked
Gaussian prior; wide Gaussian prior. Models were trained for
15, 000 epochs on a 5,000-point dataset with minibatches of size
512, H = 128, L = 10 and T = 1.

p0 is drawn from a Gaussian distribution whose mean and
standard deviation depend on the q0. The resulting point in
phase-space is then evolved through a series of L Leapfrog
steps with integration time dt. The outputs consist in the
final positions qT and momenta pT , as well as the initial
mean µ(q0), standard deviation σ(q0) and p0. All these
outputs, as well as the data d, are used in the loss compu-
tation. Once trained, it is able to transform the prior into
the desired posterior distribution of the parameters. Thus,
both training and sampling are now made following the
forward-direction flow from the prior to the posterior.

In order to compute the loss, one needs to have access
to the likelihood distribution ℓ of the model, which en-
capsulates the covariance matrix of the data as well as
the underlying physical mapping between vectors of pa-
rameters and the corresponding data. Then, in the frame-
work of Hamiltonian dynamics, the full system is made
of both positions (the parameters of interest) and artifi-
cial momenta. Let us call q0,p0 the initial position and
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Figure 7. Density estimation of the artificial momenta drawn by
the Encoder for the six models previously defined. First row: MLP-
kinetic NHF; second row: Fixed-kinetic model. From left to right:
wide soft-uniform prior; peaked Gaussian prior; wide Gaussian
prior. Models were trained for 15, 000 epochs on a 5,000-point
dataset with minibatches of size 512, H = 128, L = 10 and
T = 1.

momentum, respectively, and qT ,pT the corresponding fi-
nal position and momentum, respectively, obtained after L
Leapfrog transformations T dt

1 , ..., T dt
L with timestep dt, i.e:

(qT ,pT ) = T dt
L ◦ ... ◦ T dt

1 (q0,p0) := T (q0,p0). Also,
we introduce the notations for the projections along the
final positions and momenta, i.e. qT := Tq(q0,p0) and
pT := Tp(q0,p0). By the change of variables formula and
the fact that the Jacobian determinant of each Hamiltonian
transformation is one, the model joint distribution M is
written as:

M(qT ,pT ) = 1×Π0(T −dt
1 ◦ ... ◦ T −dt

L (qT ,pT ))

= Π0(q0,p0) = π0(q0)× f(p0|q0),

where Π0 is the joint prior distribution, π0 the prior dis-
tribution of the parameters of interest and f the Gaussian
distribution of the Encoder. We fix the target density of
the final momenta g(p) (e.g. Gaussian). We now seek to
minimize the KL-divergence between the model joint distri-
bution and the desired target joint distribution conditioned
on data Π(q,p|d) = π(q|d)g(p). We write the latter as the
product of a density depending on q and an other density de-
pending on p so that the two are independent. Using Bayes’
theorem, we have (see Appendix B for more details):

DKL(M(qT ,pT ) || π(qT |d)g(pT )) =∫
π0(q0,p0)

[
log π0(q0) + log f(p0|q0)− log π0(Tq(q0,p0))

− log ℓ(d|Tq(q0,p0))− log g(Tp(q0,p0)
]
dq0dp0 + cst.

(6)

6.2. Application to cosmology

We apply the herein-above architecture to cosmological anal-
ysis. One typical case is the determination of the cosmic
expansion, and more generally of the cosmological param-



eters, from the observation of brightness and recession ve-
locity of Type Ia supernovæ (e.g. Riess et al., 1998; Betoule
et al., 2014). We use it as a toy example, however, while
the model used so far has been simple, it may be expanded
in very complicated direction for which sampling from the
probability distribution becomes very complex. New obser-
vatory are presently being built which is expected to deliver
tens of thousands of new supernovæ Ia over the next decade
(LSST Science Collaboration, 2009). We now present the
essential feature of the model that we need before applying
our method to the toy example.

According to the Λ-CDM model, the relation between the
distance and the brightness of Type Ia supernovae is of great
interest because it depends on two cosmological parameters:
the matter density parameter Ωm and the adimensional Hub-
ble parameter h. To be more specific, database of type Ia
supernovae report the distance modulus µ. This quantity is
defined as the difference between the apparent and the ab-
solute magnitude of an astronomical object, and is directly
related to luminosity distance (Weinberg, 1972) and thus a
function of the redshift z, Ωm and h:

µ(z,Ωm, h) = 5 log10

(
D∗

L(z,Ωm)

h10pc

)
where D∗

L(z,Ωm) = c(1+z)
H0

∫ z

0
ds√

1−Ωm+Ωm(1+s)3
, and

H0 = 100 km s−1 Mpc−1, c being the speed of light. In
practice, we avoid computing the integral in D∗

L by using
an approximation (Pen, 1999) which is only valid for a flat
Universe:

D∗
L(z,Ωm) =

c(1 + z)

H0

[
η(1,Ωm)− η

(
1

1 + z
,Ωm

)]
,

with

η(a,Ωm) = 2
√
1 + s3

(
1

a
− 0.1540

s

a3

+0.4304
s2

a2
+ 0.19097

s3

a
+ 0.066941s4

)
.

The formal definition of these quantities imposes constraints
on the possible values of the parameters, that can only be
comprised between zero and one. We avoid the problem by
outputting a sigmoid of qT .

We aim to sample from the posterior distribution
π(Ωm, h|data) quantifying the probability that we are living
in a universe whose mean density and expansion is equal
to Ωm and h given D observations data = {zi, µi}1≤i≤D

of type Ia supernovae, and the covariance matrix C of the
observed distance moduli. The likelihood of the problem is
supposed to be Gaussian, i.e. the observed data and the sim-
ulated output from parameters are different up to a Gaussian
noise. The final momenta distribution g is set to a Normal

distribution. The cumulative plots in figure 8 compare the
performance of a fixed- and MLP-kinetic NHF with a HMC.
They are both biased which is expected since they minimize
the KL-divergence between the model distribution and the
target, but less than with an ELBO. We leave for future work
a possible correction using importance sampling methods at
the end of training.
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Figure 8. Cumulative plots of means and standard deviations of
both Ωm and h produced by trained NHF models and a HMC on a
20,000-sample dataset, compared to the ground truth. Soft-uniform
prior, 30,000 training epochs, g chosen to be a N (0, I2)

7. Conclusion
In this work, we analyzed how well Hamiltonian Normaliz-
ing Flows are suited to solving some issues in Generative
modeling. The main advantage of these methods is twofold.
First, the volume-preservation in phase-space avoids the
costly computation of Jacobian determinants. Then they al-
low for flexibility in the type of neural networks that is used
since reversibility is ensured by the symplectic integrator.
It is this flexibility that allows us to propose a NHF variant
based on classical kinetic energy. By exploring 2D sam-
pling problem, we showed that both variants are robust to
the choice of hyperparameters and prior distribution. In par-
ticular, we illustrate how the explicit classical design of the
kinetic energy is a way to increase such robustness and make
the model more easily interpretable. Finally, we explained
how to adapt NHF to the context of Bayesian inference to
obtain a sampler of the posterior distribution. Further work
could then address how the offsets could be corrected by
importance sampling techniques on a trained model. More
generally, a next step would be testing such architectures on
more complex problems such as image generation to attest
their behavior in a high-dimensional setting.
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A. Additional plots about robustness and optimization of NHF
We present the results of additional experiments with H = 32 in figure 9. Removing more than 90% of parameters (passage
from H = 128 to H = 32), the final values are always higher by less than 4%, for both models. The different final values
of the loss function can be represented on scatter plots, see Figure 10. The latter clearly illustrate the robustness of the
fixed-kinetic model, see Figure 9. It also shows that models with L = 1 perform poorer than with L = 2, 10, 50.
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Figure 9. Training loss as a function of epochs for models with different H (number of neurons per hidden layer in each neural network of
the model), L (number of Leapfrog steps) and T (integration time). First row: MLP-kinetic NHF; second row: fixed-kinetic model. From
left to right: H = 128, 32, 8. Models were trained for 15, 000 epochs on a 5,000-point dataset with minibatches of size 512.

B. Derivation of the KL-divergence and ELBO for the inference problem
The KL-divergence suited to the inference problem is derived as follows:

DKL(M(qT ,pT ) || π(qT |d)g(pT )) =

∫
M(qT ,pT ) logM(qT ,pT )dqT dpT −

∫
M(qT ,pT ) [log π(qT |d) + log g(pT )] dqT dpT

=

∫
Π0(T −1(qT ,pT )) logΠ0(T −1(qT ,pT ))dqT dpT −

∫
M(qT ,pT ) [log π0(qT ) + log ℓ(d|qT )− log p(d) + log g(pT )] dqT dpT

=

∫
Π0(q0,p0) [log π0(q0) + log f(p0|q0)] dq0dp0 −

∫
M(qT ,pT ) [log π0(qT ) + log ℓ(d|qT ) + log g(p)] dqT dpT + cst

=

∫
Π0(q0,p0) [log π0(q0) + log f(p0|q0)− log π0(Tq(q0,p0))− log ℓ(d|Tq(q0,p0))− log g(Tp(q0,p0)] dq0dp0 + cst.

(7)
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Figure 10. Scatter plots L vs. T of final values of the loss averaged on last 500 epochs. First row: MLP-kinetic NHF; second row:
fixed-kinetic model. From left to right: H = 128, 32, 8. Models were trained for 15, 000 epochs on a 5,000-point dataset with
minibatches of size 512.

We can also adapt the ELBO from (Toth et al., 2020) to our inference framework:

lnπ0(q0) = ln

∫
Π0(q0,p0)dp0

= ln

∫
Π0(q0,p0)

f(p0|q0)
f(p0|q0)dp0

= lnEf

[
Π0(q0,p0)

f(p0|q0)

]
≥ Ef [lnΠ0(q0,p0)− ln f(p0|q0)]

= Ef [lnM(T (q0,p0))− ln f(p0|q0)]

Then, expliciting M(q, p) = π0(q)ℓ(d|q)g(p):

ELBO(q0) = Ef [ln [π0(Tq(T (q0,p0)))ℓ(d|Tq(T (q0,p0)))g(Tp(T (q0,p0)))]− ln f(p0|q0)] (8)


