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Abstract
The meso-scale enhancement of surface turbulent fluxes at the air-sea interface is

driven by the meso-scale surface wind speed variability, especially the gustiness veloc-
ity and the meso-scale wind speed standard variation. This study proposes a parameter-
ization of these two variables. A large dataset based on the operational 2.5 km-AROME
convection permitting model is used in a coarse-graining framework, to quantify various
quantities that are subgrid at the scale of a 100-km resolution global circulation model
grid cell. This provides a learning dataset to help build the parameterization. The anal-
ysis of two case studies of intense wind speed meso-scale variability, combined with
the literature review, provides a physically-based set of twelve potential predictors, ac-
counting for the convection activity and the large-scale dynamics. The least absolute
shrinkage and selection operator then frames a penalized multivariate linear regres-
sion approach to objectively identify the most relevant predictors. Five predictors are
selected for predicting the gustiness velocity: the updraft mass flux at the lifting con-
densation level, the density current spreading velocity, the large-scale horizontal shear
and divergence and the large-scale wind speed. The parameterization of the meso-scale
wind speed standard deviation requires an additional predictor, namely the cold-pool
object aggregation index. The proposed parameterization performs significantly better
than the previously published parameterizations and is able to capture 80%, 99% and
93% of the meso-scale enhancement of the momentum, sensible heat and latent heat
fluxes, respectively. In the perspective of a global circulation model implementation,
in which some predictors may be unavailable, simpler versions of the parameterization,
i.e. involving fewer predictors, are also discussed.

Citation. Blein, S., R. Roehrig and A. Voldoire, 2022: Parametrizing the mesoscale enhancement
of oceanic surface turbulent fluxes: A physical–statistical approach. Quarterly Journal of the Royal
Meteorological Society, 148( 745), 1683–1708. https://doi.org/10.1002/qj.4273

1. Introduction

The exchanges of energy, water and chemical compounds at the ocean-atmosphere interface are
critical for the Earth system and its variability (e.g., Trenberth 1995; Timmermann et al. 2018;
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Zhang 2005; Gulev et al. 2013). In a large part, they are driven by the turbulence intensity within
the atmosphere surface layer (e.g., Geernaert 1999). The associated surface turbulent fluxes (e.g., the
surface momentum flux τ , the sensible heat flux H and the latent heat flux LE) provide boundary
conditions to either the atmosphere or the ocean, especially within the context of Earth system
modelling. In atmospheric models, these fluxes have to be parameterized as they are governed by
motions of smaller scales than the model resolution. Most parameterizations (e.g., Zeng et al. 1998,
for a review) are based on the Monin-Obukhov similarity theory (MOST – Monin and Obukhov
1954), which is applied throughout the so-called bulk formulas.

The MOST describes the turbulence within the atmospheric surface layer, namely the layer
where the turbulent flux vertical variations are negligible. Its depth is typically of the order of a
few meters to a few tens of meters. The surface layer turbulence is driven locally by the wind
shear and the stratification. The MOST also assumes horizontal homogeneity of the surface and
atmospheric state over the targeted area. It therefore quantifies the locally-generated turbulence
at a scale smaller than those possibly associated with meso-scale motions such as boundary-layer
structures generated by convective processes (typically from a few hundreds of meters to a few
tens of kilometres). However, turbulence generated by processes outside from the surface layer
often significantly contributes to surface fluxes at large scale (typically between 5 and 100 km, Sun
et al. 1996) and systematically acts as a flux enhancement (e.g. Redelsperger et al. 2000). This
contribution, which will be referred here to as the meso-scale flux enhancement, remains sub-grid
in current Global Circulation Models (GCM – resolution of the order of 100 km), and thus needs to
be parameterized (Blein et al. 2020).

Above ocean, the research community has mainly focused on convective activity as a first-
order contributor to the meso-scale flux enhancement. Redelsperger et al. (2000) propose a scale
separation, between the scale of boundary-layer free convection (typically a few hundreds of meters)
and that of deep convection (typically a few tens of kilometres). Beljaars (1995) suggests that
other types of meso-scale motion not resolved by GCMs contribute to surface fluxes. Blein et al.
(2020) confirm that purely dynamical meso-scale processes, such as convergence lines or orographic
perturbations, significantly contribute to GCM-scale flux.

Since the 1990’s, several parameterizations of the meso-scale flux enhancement have been pro-
posed, based on a gustiness approach, which add a wind correction in the bulk formulas (Godfrey
and Beljaars 1991; Miller et al. 1992; Beljaars 1995; Fairall et al. 1996; Jabouille et al. 1996; Mon-
don and Redelsperger 1998; Redelsperger et al. 2000; Williams 2001; Zeng et al. 2002; Hourdin
et al. 2020). For example, Jabouille et al. (1996) suggested to relate the gustiness velocity Ug to
the precipitation rate, as a proxy of the convective downdraft and cold pool impacts on the surface
layer variability. Emanuel and Živković-Rothman (1999), Williams (2001), Hourdin et al. (2020)
followed a similar but more direct approach, without any proxy. Redelsperger et al. (2000) studied
three different parameterizations of Ug, based on the rainfall rate, the updraft mass flux and the
downdraft mass flux, respectively. Zeng et al. (2002) argued for the relevance of the cloud fraction.
More recently, Bessac et al. (2019) and Bessac et al. (2021) chose both the GCM-resolved wind
speed and the rainfall rate as two complementary Ug predictors. The authors also addressed the
stochastic component of the meso-scale flux enhancement. In the context of parameterizing sea salt
or dust emissions, a few other studies propose a parametric statistical approach to model the near-
surface wind speed meso-scale variability. The wind speed distribution is parameterized according
to a given family of distributions (e.g., Weibull) and model variables are used to derive its parame-
ters. Then, based on a stochastic sampling approach, it is used to compute the desired emission flux
(e.g. Ridley et al. 2013; Zhang et al. 2016)
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For the deterministic component of the meso-scale flux enhancement, which is the main focus
of the present study, the literature review unveils at least three main potential caveats in current
parameterizations:

• the gustiness approach is assumed valid, even though Beljaars (1995) warned that this intuitive
and pragmatic approach might not be optimal;

• convective activity is considered as the only driver of meso-scale flux enhancement;

• predictors used to parameterize Ug are chosen in a rather heuristic and univariate manner,
though based on intuitive physically-based conceptual models. This may not be optimal.

The recent availability of kilometer-scale long atmospheric simulations, which explicitly repre-
sent meso-scale circulations occurring at the scale of a few kilometers, provided a unique and large
dataset to Blein et al. (2020) to address the first two limits, at least for the scales resolved by such
simulations. On the one hand, the authors showed that the wind correction between the true wind
speed (scalar average) and the GCM-resolved wind speed (vector average) in the bulk formula is
able to account for most of the meso-scale enhancement of the sensible and latent heat fluxes. In
that sense, the gustiness velocity Ug approach, which makes use of the quadratic wind difference
is valid. For the momentum flux, another contribution associated to the wind speed meso-scale
variance must be accounted for (10% contribution on the momentum flux enhancement on average
above all the studied region during one month). On the other hand, Blein et al. (2020) illustrated
that other processes are responsible for meso-scale heterogeneity which significantly contributes to
the GCM-scale flux, such as orographic or coastal features or large-scale circulations.

The Blein et al.’s dataset now provides the opportunity to more systematically quantify the con-
tribution of many GCM-scale parameters to the GCM-scale fluxes, in a multivariate framework. In
particular, while physical intuition yields a wide number of potential predictors for the meso-scale
flux enhancement, statistical methods help to more objectively select and combine the most relevant
and less redundant ones. This trade-off between purely physical approaches (focusing in a limited
amount of physical processes) and purely statistical approaches (such as machine-learning based on
raw model parameters) seeks to benefit from the physical processes knowledge while accounting for
a potential high complexity degree, which is enhanced, for instance, by the processes co-occurrence
and interaction. Such an approach hopefully paves the way to parameterizations of a wider use,
while offering further insight in the underlying processes.

This article is organised as follow. Section 2 formalizes the meso-scale flux enhancement back-
ground based on Blein et al. (2020), especially introducing useful notations for the whole present
work. Section 3 presents the coarse-grained numerical framework at the basis of this study and the
statistical method used for the predictor selection and to design a skillful parameterization. The
reference dataset main statistical properties are documented in Section 4. Section 5 details the pro-
posed parameterization set up and its testing. Its performance for representing the meso-scale flux
enhancement is also presented in this Section. Section 6 intercompares the present parameteriza-
tion with previous ones. With the objective of preparing GCM implementation, simpler versions of
the present parameterization, involving fewer predictors, are also discussed in Section 7. Finally,
Section 8 concludes the present work.
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2. Surface fluxes and meso-scale enhancement

a. Surface fluxes

The MOST bulk formulas reads:

Fφ (∆U,∆φ) = −AφCφ (∆U,∆φ)∆φ∆U (1)

where: Fφ is either the momentum flux norm ∥τ∥, the sensible heat flux H or the latent heat flux
LE. Aφ stands for ρa, ρacpa or ρaLv, where ρa is the near-surface air density, cpa the moist air
specific heat and Lv the latent heat of vaporization. Cφ is either CD, CH and CE , namely the
transfer coefficients for momentum (drag coefficient), heat and humidity, respectively. ∆U is the
wind speed difference between the near-surface atmospheric value (the first model level) and the
surface value. ∆φ is the difference between the near-surface atmospheric value and the surface
value of the potential temperature θ, the specific humidity q or the horizontal wind speed U . As sea
surface currents are not considered in this study, ∆U will be replaced by U in the remainder of this
paper. The transfer coefficients Cφ are generally defined from empirical stability functions (e.g.,
Businger et al. 1971) and roughness lengths. The latter depends on the sea state, itself depending
on the turbulence within the surface layer (Fairall et al. 2003). Iterative methods are therefore often
used to estimate the transfer coefficients (Liu et al. 1979; Zeng et al. 1998; Fairall et al. 2003; Edson
et al. 2013). If the sea state is not available, known or considered, transfer coefficients only depend
on U and ∆φ.

b. Meso-scale surface flux enhancement

Equation 1 can be used to compute surface fluxes over a wide area such as a GCM grid cell, as long
as the horizontal homogeneity hypothesis is fulfilled. If meso-scale motions exist at subgrid scale,
the MOST should not be applied directly:

Fφ ̸= F̃φ = Fφ

(
Ũ , ∆̃φ

)
(2)

where Fφ is the true average of the surface flux over the grid cell and F̃φ is the surface flux computed
from GCM-resolved variables. For the latter, Ũ =

∥∥U
∥∥ = ∥(u, v)∥ is the GCM-resolved (vector

average) wind speed and ∆̃φ represents either Ũ , ∆θ = ∆̃θ or ∆q = ∆̃q. The meso-scale flux
enhancement is thus defined as:

FφMS = Fφ − F̃φ (3)

Blein et al. (2020) show that the true GCM-scale fluxes Fφ can be well approximated by:

∥τ∥ ≃ FU

(
Ũ + δU

)
+ ρaCD

(
Ũ + δU

)
σ2
U (4)

H ≃ Fθ

(
Ũ + δU, ∆̃θ

)
(5)

LE ≃ Fq

(
Ũ + δU, ∆̃q

)
(6)

with δU = U − Ũ = ∥U∥ − Ũ . For the momentum flux, a second correction term is needed to
account for the contribution of the meso-scale wind speed variance σ2

U = U ′2 (Blein et al. 2020, –
prime indicates local deviation to the grid-cell average). When agregated over one month and over
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a large Indian Ocean domain, approximations 4, 5 and 6 lead to average flux bias reductions from
−5.5% to −0.7%, −3.8% to −0.2% and −2.2% to 0% for momentum, sensible heat and latent
heat, respectively. When focusing only on cases of intense meso-scale flux enhancement (greater
than 10% of the GCM-computed value), Blein et al. (2020) found that the approximations (4-6)
reduce the biases from −25.8% to −2.9%, −23.4% to −1.6% and −22.3% to 0.9% for momentum,
sensible heat and latent heat, respectively. At this stage, these approximations imply that δU and σ2

U

are the two parameters to be parameterized.

c. Gustiness approach and relevant variables to be parameterized

In contrast to δU , the studies mentioned in the introduction proposed to parameterize the gustiness
velocity Ug defined as

U
2
= Ũ2 + U2

g (7)

and to use U =
√
Ũ2 + U2

g in place of U = Ũ+δU in Equations 4, 5 and 6. The two approaches are

equivalent in the end as they both lead to mathematically describe U . The only difference lies in the
chosen parameter to be parameterized. Both were tested and better scores (as those presented in the
analysis of this paper) are found when using the gustiness velocity (not shown). We therefore only
present hereafter the results for the gustiness approach. However, as, in contrast to other studies,
Bessac et al. (2021) directly parameterize δU , we also briefly discuss in Section c how the change
in the parameterized field may impact our results.

Similarly σU leads to a more skillful parameterization than σ2
U . Results for σU are thus syn-

thesized in section e. Note that none of previous studies tackled this component of the meso-scale
turbulent surface stress enhancement.

3. Numerical framework and methods

a. Protocol

A coarse-graining approach is used in order to quantify and predict the surface meso-scale wind
speed variability at the scale of a GCM grid cell (100 km). The high-resolution simulation (2.5 km)
is provided by the operational forecasts from the convection-permitting model (CPM) AROME, in
operations at Météo-France, the French weather service (see next subsection for its description).
For each GCM-like grid cell (a 100 km×100 km square), the subgrid information (40 × 40 CPM
grid points) is thereby explicitly available from the CPM simulation, considered here as a reference.
Especially, it allows to diagnose the surface wind speed variability (e.g., Ug and σU ) as well as many
other parameters characterizing e.g., convection or large-scale circulations that will be considered
to predict the meso-scale wind speed variability (see Section a for the predictors used in the present
work). As a reminder (see Blein et al. 2020), Ug is computed following:

Ug =

√
U

2 − Ũ2 (8)

with U =
√
u2 + v2 and Ũ =

√
u2 + v2. u and v are the CPM zonal and meridional wind com-

ponents, respectively. Bars indicate the horizontal average over the CPM grid-points within the

considered GCM-like grid cell. Similarly, σU =

√
(U − U)2, with U =

√
u2 + v2.
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b. Numerical model

The CPM AROME is operating for numerical weather prediction (NWP) activities over several do-
mains covering France and some of the French overseas regions in the tropical belt (Faure et al.
2020). The AROME configuration used in this study has a horizontal resolution of 2.5 km and a
90-level vertical grid with 33 levels located below the 2000-m altitude and a first level at 5 m above
the surface (Brousseau et al. 2016). The non-hydrostatic fully compressible Euler equation system
is solved by the AROME dynamical core described in Bubnová et al. (1995). The AROME physics
is detailed in Seity et al. (2011) and Brousseau et al. (2016). The subgrid shallow convection is rep-
resented by the Pergaud et al. (2009) parameterization and the turbulence by the Cuxart et al. (2000)
scheme (prognostic turbulent kinetic energy equation combined with the mixing length of Bougeault
and Lacarrere (1989)). Initial states and lateral boundary forcing are provided by the deterministic
forecast system of the European Centre for Medium Range Weather Forecasts (ECMWF). The sea
surface temperature field is derived from the Operational Sea surface Temperature and Ice Analysis
(OSTIA, Donlon et al. 2012) product and remains constant through each 36 h-long forecast run. The
realism of the AROME configurations used in the present study is assessed in Faure et al. (2020)
in terms of rainfall rate and convection organisation. AROME exhibits good performances at fine
scales when compared with radar and rain-gauge observations.

c. Datasets

Two domains which cover mainly open ocean areas are used in this study: (i) the Indien domain
which includes La Réunion Island in the tropical Indian Ocean (see Figure 1) and (ii) the Antilles
domain which covers the West Indies in the Caribbean Sea and a large fraction of the tropical At-
lantic (see Figure S1 in the Supplementary Material). Only GCM-like grid cells with a 100% sea
fraction are included in the analysis.

One month of simulation is used on each domain. The month of January 2017 is selected for the
Indien domain, as it corresponds to a convectively-active period (expected to be a significant source
of meso-scale variability, e.g., Redelsperger et al. 2000; Williams 2001). The month of August
2017 is selected for the Antilles domain, also because of its significant convective activity. Hourly
model outputs between 12 h and 36 h lead time are used so that meso-scale motions are properly
established.

The month of data available for the Indien domain provides 356 280 spatio-temporal GCM-like
samples (503 sea points every hour). In this dataset, hereafter referred to as DAll

Indien, 75 % of the
GCM-like samples are randomly sampled and dedicated to the statistical model training (DTraining

Indien

sub-dataset – see next section). The statistical model testing is based on two datasets: (i) the remain-
ing 25 % of the Indian domain (DTest

Indien sub-dataset) and (ii) the full dataset from the Antilles domain
(DAll

Antilles dataset), providing 108 720 spatio-temporal GCM-like new samples, fully independent
from the DAll

Indien dataset (different region, different time period). The statistical model testing has
been systematically performed on the three test datasets DTest

Indien, DAll
Antilles and DTest

Indien

⋃
DAll

Antilles.
No difference is observed on the parameterization skills and behaviour. However, for the sake of the
clarity and depending on the step in our following analysis, only one of these three testing datasets is
used when computing parameterization skill scores. It is clearly indicated whenever relevant. Only
the spatial distribution (monthly averaged maps) of the parameterization output biases is based on
DAll

Indien in order to get a homogeneous temporal sample number for calculating the local statistics
for each GCM-like grid cells (e.g., Figure 6). But these diagnostics are only used to illustrate the
spatial behaviour of the parameterization.
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d. Statistical modelling: penalized linear regression

A penalized linear multi-variate regression is used in order to predict the surface wind speed vari-
ability parameters (Ug and σU , referred to as y in this section) from a predefined set of p potential
predictors (xj)j=1,...,p.

For a given set of observed states of size N , the statistical model reads:

y = Xβ + ε. (9)

y is the N -vector of centred and normalized observed responses (yi = 0 and σyi = 1 for i =
1, . . . , N ), X is the N×p observed predictor value matrix (also centred and normalized per column),
β contains the unknown coefficients of the linear model and ε is the residual vector. β coefficients
are usually computed from the ordinary least square (OLS) method.

While efficient for minimizing the prediction bias, a direct applications of the linear regression is
likely to lead to over-fitting, especially when the number of a priori predictors is large. The challenge
is therefore to achieve a parsimonious model by selecting the most relevant predictors. The least
absolute shrinkage and selection operator (LASSO, Tibshirani 1996) is used here to penalize the
most complex models (i.e. those with a large number of predictors). In practice, this leads to the
cancellation of certain coefficients in β (sparse β). The LASSO problem can be written as:

argmin
β

[
1

2N
∥y −Xβ∥22 + λ ∥β∥1

]
(10)

where ∥·∥1 and ∥·∥2 are the l1 and l2 norms, respectively. λ is the regularization parameter, which
defines the degree of penalization. For each value of λ, the resolution of Equation 10 provides a
solution β̂(λ). Note the l1 norm allows to get some coefficient of β being exactly equal to zero.

The degree of penalization increases with λ, λ = 0 meaning no penalization at all, and λ = 1
corresponding to the highest degree of penalization (i.e. β = 0). The dependence of β̂j to λ draws
the so-called LASSO path (see e.g, Figure 4a for an application in the present work). The LASSO
procedure is performed based on the Scikit-learn Python package (Pedregosa et al. 2011).

The choice of λ is crucial. A K-fold cross-validation technique (Hastie et al. 2015) is used to
choose λ and thus the most parsimonious linear model. The DTraining

Indien dataset is randomly divided
into K = 100 independent groups. Each group is used once for model testing and the LASSO
procedure is run K times on the K−1 remaining groups (model training). The average and standard
deviation of the K mean-squared prediction errors (MSE) can be computed for each λ. These are
then used to select the λ that minimises the average MSE within one standard deviation (the “one-
standard-error rule”, see Hastie et al. 2015): we keep the λ, which has the smallest value of − log(λ),
and for which the average MSE reaches the minimum average value of MSE over all λ plus one MSE
standard deviation (see Figure 4 for an application).

The LASSO-based penalization introduces a bias in the resulting linear regression, and therefore
is used only to select the relevant predictors. The sparse β̂ is re-calculated through the non-biased
OLS procedure using only the LASSO-retained predictors. The intercept is kept in order to com-
pensate, on average, for potential missing predictors that could explain, for instance, a non zero Ug

when all predictors are zeros.
Note that higher-order predictors (e.g., polynomial functions of the predictors introduced here-

after) or the use of transfer functions (e.g., logarithm) have been considered but not retained as they
did not significantly improved the model skills without including a much larger number of predictors
(not shown). A simple sparse multivariate linear model based directly on the predictors is therefore
preferred.
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4. Wind speed variability characteristics

a. Preliminary analysis

In January, southeasterly trade winds prevail on the eastern half of the Indien domain (Fig. 1a).
They can reach a wind speed of 8 m s−1 or higher. The near-surface convergence (or minimal wind
speed) line positions the InterTropical Convergence Zone (ITCZ, e.g., Waliser and Gautier 1993) in
the northern part of the domain and on the eastern part of the Mozambique Channel (see also Blein
et al. 2020, for further details). The GCM-resolved wind speed in the DAll

Indien dataset has a uni-
modal spatio-temporal distribution with an average wind speed of 5.7 m s−1 and a maximum near
12 m s−1 (Fig. 1b). The distributions of the meso-scale wind speed properties Ug and σU are similar,
with a significant positive skewness (Figures 1d,f). The northeastern quarter of the domain contains a
large pattern of meso-scale variability (Figures 1c,e), which is generated by two tropical depressions
crossing the region during January 2017. In the Mozambique Channel, the meso-scale wind speed
variability is associated with regular deep convection activity, specifically along northern coast of
Madagascar, where organized deep convection is triggered every day through coastal interactions
and spreads offshore (Blein et al. 2020). The region west and southwest of La Réunion island is
subject to a regular orographic perturbation (Von Karman vortex street) on the lee-side of the island
which generates wind speed perturbations near the surface. In the rest of the domain, sporadic meso-
scale features occur, such as isolated deep convective systems, meteorological fronts, squall lines
or orographic perturbations. This spatial distribution is similar to the one of the meso-scale flux
enhancement (see Figures 3a, 3c and 3e in Blein et al. 2020), in agreement with the fact that the
wind speed variability is the main contributor to the meso-scale flux enhancement (Equations 4 to
6).

b. Meso-scale processes and first-guess predictors

Several types of meteorological meso-scale processes generate meso-scale surface wind speed vari-
ability (see previous paragraph and Blein et al. 2020). The idea of an objective classification of these
processes in order, for instance, to develop a fully process-based meso-scale wind speed parameter-
ization might be attractive. It has however been discarded due to the difficulties to easily isolate a
given process from the others, as superimposition of several mechanisms is often observed. Such
a classification is thus left for future work and an intermediate approach is followed hereafter. Yet,
we will still use two almost canonical examples to illustrate the involved mechanisms and the pa-
rameterization behaviour: (i) a case of isolated convective cells (Figures 2a, c and e) and (ii) a case
of a synoptic front (Figures 2b, d and f). Remind that these two purely illustrative examples were
hard to find and thus do not necessarily picture the complexity of most of the events of enhanced
meso-scale wind speed variability in our dataset.

Case (i) occurred on 21 January 2017 in the middle of the Mozambique Channel. The surface
wind speed horizontal distribution and streamlines exhibit the occurrence of several isolated con-
vective cells that develop from around 0200 LT (local time) and last about 8 hours under a roughly
homogeneous large-scale northerly wind field (Figure 2a). The meso-scale wind speed variability
components Ug and σU increase together at dawn as the convection cells deepen. They in turn
modify the surface wind inducing a maximum of meso-scale variability at 0700 LT (Figure 2a, see
also the vertical dashed line in the time series in panels c and e). The time evolution of the rainfall
rate R, the density current spreading velocity c and the updraft mass flux at the condensation level
Mup, which are first guess predictors inspired from previously published studies (see later for their
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Monthly average (denoted by ⟨·⟩, left column, x and y axis are expressed in ×103 km)
on the Indien domain (DAll

Indien dataset) and the corresponding spatio-temporal probability density
function (right column) of: (a) and (b) the GCM-resolved horizontal wind speed at z=5 m (Ũ , in
m s−1); (c) and (d) the gustiness velocity (Ug, in m s−1); (e) and (f) the meso-scale wind speed
standard deviation (σU , in m s−1).
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detailed definition), are also shown in Figure 2e. Their signal roughly follow the wind speed vari-
ability signal. The updraft mass flux increases first – as expected from the life cycle of a convective
cell (Houze 2018) – and seems to be the only potential predictor able to explain the meso-scale wind
speed variability during the first 2 hours.

Case (ii) occurred on 4 January 2017 in the northeastern quarter of the Indien domain. It consists
of a tropical depression centred a few hundreds of kilometres south-west of the selected grid-cell,
and which generates a synoptic front whose signature is visible in the wind speed field and stream-
lines of Figure 2b. For this case, the updraft mass flux signal is weak, with almost no rainfall during
the first 12 hours of the enhanced meso-scale wind speed event. Case (ii) thus evidences a potential
role of the large-scale dynamics in generating meso-scale wind speed variability, as suggested by
the large-scale horizontal wind convergence and wind shear emphasized by the streamline (see also
LSS and LSD on Figure 2f, defined in the next section).

Note finally that these two examples, in particular Case (ii), highlight that the gustiness velocity
Ug and the wind standard deviation σU do not necessarily peak at the same time.

5. Parameterization of the meso-scale flux enhancement

In this section, a list of potential predictors is introduced to be used for building a penalized linear
regression model of the wind gustiness Ug and then of the meso-scale wind standard deviation
σU , following Section d. The obtained statistical models thus objectively select the most relevant
predictors and provide the basis of a meso-scale flux enhancement parameterization.

a. Potential predictors

The prior identification of the potential predictors for the meso-scale wind variability is subjective
though critical. It is guided here following both earlier studies and the authors’ physical intuition
about the processes that are likely to contribute to this variability. Note that the analysis of several
events such as those presented in Section b further validated the value of some predictors. Mainly
two main families of processes are considered in the following, namely processes associated with
convection and processes induced by the large-scale dynamics. For each family, a set of scalar met-
rics is defined to quantify the magnitude of the processes. Note that a given metric may ultimately
involve several processes at the same time. Besides, as the derived parameterization is aimed to be
ultimately implemented in a GCM, the choice of the metrics is partly driven by what can be available
in such models (see also Section 7). Similarly, as most GCM parameterization are uni-dimensional,
each metric is supposed to be local in the sense that it only depends on the properties of the atmo-
spheric column above the grid cell in which the meso-scale surface wind variability is diagnosed.
Non-local processes such as those induced in the lee side of small islands with orography are thus
unlikely to be accounted for (see also Section d).

The 12 potential predictors retained hereafter are listed in Table 1 and further discussed in the
two next sub-sections. Their detailed definition is given in Appendix 8. Figure S2 of the supplemen-
tary material also provides the probability density function of each predictor over the domain and
period considered in the present study, as it may be useful in future studies for e.g., parameterization
comparison and implementation.

i. Convection-related predictors Convective drafts are commonly characterized by their mass
flux. In this study, convective updraft are detected based on a positive vertical velocity and the
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Two events of enhanced meso-scale wind speed variability over the Indien domain: (left)
isolated convective cells in the middle of the Mozambique Channel on 21 January 2017 and (right)
meteorological front in the northeastern quarter of the domain on 4 January 2017. For the two cases,
(a) and (b) display the horizontal wind speed (color, m s−1) and streamlines at the AROME first
vertical level (5 m) at 0700 LT and 1400 LT, respectively, (c) and (d) the time series of the GCM-
resolved wind speed Ũ , the gustiness velocity Ug and the wind speed standard deviation σU (in m
s−1) for the corresponding GCM-like grid cell highlighted by the blue square, and (e) and (f) the
time series for a few GCM-scale predictors chosen as a first guess: the rainfall rate R (mm h−1), the
density current spreading velocity c (m s−1), the updraft mass flux at the condensation level Mup

(kg m−2 s−1), the large-scale horizontal wind shear LSS (s−1) and the large-scale horizontal wind
divergence LSD (s−1). Vertical dashed line on (c-f) indicates the time of the snapshot of (a-b).11
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Mup
(kg m−2)

Updraft mass flux X X X X

SCAIup
(‰)

Updraft objects
aggregation index

X X X X

c
(m s−1)

Cold pool
spreading velocity

X X X X

SCAIcp
(‰)

Cold pool objects
aggregation index

X X X X

R
(mm h−1)

Rainfall rate X X X X

clt
(-)

Total cloud
cover

X X X X X

CAPE
(J kg−1)

Convection available
potential energy

X X X

CIN
(J kg−1)

Convection
inhibition

X X X

D
yn

am
ic

s

Ũ
(m s−1)

GCM-resolved
wind speed

X X X X X

dU850
950

(m s−1)
Wind shear between

850 and 950 hPa
X X X

LSS
(s−1)

GCM-resolved
horizontal shear

X X X X X

LSD
(s−1)

GCM-resolved
horizontal wind divergence

X X X X X

Table 1: List of scalar metrics considered to predict the meso-scale wind speed variability. Metrics
that have not yet been used in a published parameterization are indicated in bold font. Examples
of meteorological features in which the associated processes are likely involved is also given in the
right side of the table.
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associated updraft mass flux Mup is calculated at the lifting condensation level. The choice of a
convective updraft detection without any vertical velocity threshold will be discussed in Section
c. With this definition, the downdraft mass flux at the same level is exactly the opposite of Mup,
thus it is not used in the following. The spatial organisation of the convective updrafts may be of
importance (e.g., one large updraft vs. many small updraft) and quantified by the simple convective
aggregation index (SCAIup – Tobin et al. 2012).

Cold pools have been identified as significant contributors to the meso-scale wind variability
(e.g., Jabouille et al. 1996; Williams 2001; Hourdin et al. 2020). Their intensity is measured by the
velocity scale associated to their bulk negative buoyancy (see e.g., Jabouille et al. 1996; Williams
2001; Grandpeix and Lafore 2010). The spatial organisation of the cold pools may also be of impor-
tance. It is quantified by the simple convective aggregation index SCAIcp, similarly to the convective
updrafts.

Finally, a few more standard convection parameters are introduced, namely (i) the surface rain-
fall rate R averaged over the last hour similarly to Redelsperger et al. (2000) and Bessac et al. (2019),
(ii) the total cloud cover clt as suggested by Zeng et al. (2002), and (iii) the Convective Available
Potential Energy (CAPE) and the Convection INhibition (CIN), which characterized the convective
instability of the atmospheric column.

ii. Dynamical predictors The large-scale horizontal dynamics is prone to generate meso-scale
wind variability, possibly before or without convective activity (see Section b and Blein et al. 2020).
In this study, it is quantified by the large-scale (or GCM-scale) horizontal wind shear modulus (LSS)
and the large-scale horizontal wind divergence (LSD).

Vertical wind shear may generate meso-scale eddies and is often used to forecast gust intensity
in operational weather prediction models. Therefore, the large-scale, low-level wind shear between
950 hPa and 850 hPa (dU850

950 , e.g., Bechtold and Bidlot 2009) is also considered as a potential
predictor.

Finally, following Bessac et al. (2019), the horizontal GCM-resolved wind speed Ũ is introduced
to further characterize the large-scale dynamics.

b. Correlations between potential predictors and the gustiness velocity

Before performing the penalized linear regression, the relationship between the parameters listed
in the previous section and the gustiness velocity Ug is illustrated, based on the DAll

Indien dataset
(Figure 3). Ug exhibits the highest Pearson correlations with the updraft mass flux Mup (0.87)
and the cold pool spreading velocity c (0.81). The associated scatter plots confirm such linear
relationships (bottom row on Figure 3), only up to values of Ug near 3.5 m s−1. Note that this range
contains 99 % of the data. Aggregation indices of updrafts (SCAIup) and cold pools (SCAIcp) also
show moderate correlations with Ug (0.64 and 0.7, respectively), but the relationships appear weakly
linear or display quite a large scatter. Regarding the rainfall rate R, its correlation with Ug is also
non negligible (0.66), but this dependence to Ug is weak up to 2 m s−1 (92 % of the data). For
the remaining predictors, only the two dynamical parameters LSS and LSD have correlations larger
than 0.5 (0.61 and 0.55, respectively).

If this analysis provides a first insight on the relationship between the potential predictors and
Ug, their noisiness exhibits that none of these predictors can explain alone and appropriately the
spatial and temporal variability of Ug in the dataset DAll

Indien. It thus clearly advocate for a multivari-
ate approach. Besides, the several high correlations possibly hide redundant physical information

13



between predictors, that may lead to overfitting. And even a weakly-correlated potential predictor
may convey useful additional information, not accounted for by other predictors. For instance, Mup
and c are highly correlated (0.83, Figure 3), and thus it remains unclear whether both should be kept
in a multivariate regression (the statistical predictor selection in the next section will prove that they
should). In contrast, the dynamical parameters LSS and LSD, which are moderately correlated with
Ug appear rather independent of the other predictors, and thus likely provide useful independent
information.

c. Statistical modelling of the gustiness velocity

The statistical modelling presented in Section d is now applied to build a multi-variate linear regres-
sion of the gustiness velocity Ug, based on the prior predictors detailed in Section a. The LASSO
path (Figure 4a) unveils three parameters of prominent weight for all the penalization range: Mup,
c and LSS. All the remaining parameters have weights lower than ±0.1 whatever the degree of pe-
nalization. They thus provide a weakly-relevant contribution to Ug or include information that is
redundant to Mup, c or LSS. The relative importance of the different predictors weakly varies as
a function of the regularization parameter, which supports the robustness of the statistical model.
The spread of the (β̂j)j=1,...,p coefficients as computed from the K-fold cross-validation is also
negligible (hardly visible error bars in Figure 4a, which indicate the K-fold standard deviation).

The optimum degree of penalization given by the cross-validation (vertical dotted line in Figure
4) defines the sparse β̂ vector of the LASSO linear regression, which thus contains five non-zero
coefficients: the updraft mass flux Mup, the cold pool spreading velocity c, the large-scale horizontal
wind shear LSS, the large-scale horizontal wind divergence LSD and the GCM-resolved wind speed
Ũ . The five non-zero coefficients β̂j of the optimal Ug statistical model are finally computed using
OLS on the DTraining

Indien dataset and given in Table 2.
Relevant predictors include both convective and dynamical parameters. The predictors with

the two largest weights are Mup and c, and also those with the highest Pearson correlation with Ug

(Figure 3). Even if the correlation between Mup and c is high (0.83), both of them are necessary for a
skillful prediction of Ug: This probably emphasizes the complementarity of these predictors, which
can be active at different stages of the convective system life cycle (e.g., Houze 2018). On the one
hand, weak updrafts are likely to occur before any cold pool has formed, while, on the other hand,
cold pools are likely to remain after the updrafts that generated them have vanish. Besides, cold
pool may travel a few hundreds kilometers from the place they were triggered. Given the correlation
analysis of Section b, the three other selected parameters, namely LSS, LSD and Ũ would probably
not have been chosen, as their correlation with Ug was moderate or weak. The statistical method thus
reveals that these dynamical parameters bring relevant physical information to predict Ug, thereby
that the large-scale dynamics is able to generate meso-scale variability of the surface wind. Finally,
the updraft mass flux Mup has the largest weight in the multi-variate regression. As mentioned
above, updrafts are detected as CPM grid cell with a positive vertical velocity, while many previous
studies used a threshold of about 1 m s−1 on vertical velocity (e.g., Zipser and LeMone 1980; Igau
et al. 1999). Several values of this threshold were tested, but our least constrained updraft definition
remains clearly superior in terms of derived multi-variate regression (not shown). The upward mass
flux generated by vertical velocities between 0 and about 1 m s−1 thus significantly contributes to the
meso-scale surface wind variability. So far, the physical understanding of this issue remains elusive
to the authors and requires further investigation beyond the scope of the present work. Nevertheless,
the visual inspection of a few cases reveals organized features of these weak vertical velocities, thus
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Figure 3: Matrix of the Pearson correlation coefficients between all potential predictors and the
gustiness velocity Ug (filled circle). The bottom row display the joint probability density function
(shading) between each predictor and Ug, over which the associated Ug-bin-averaged scatter plot and
standard deviation are superimposed (red dots and bars, Ug bins being of 0.5 m s−1). The analysis
is based on the DAll

Indien dataset. For the sake of clarity, the CAPE, CIN, LSS and LSD parameters
are multiplied by 10−3, 10−2, 105 and 105, respectively.
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(a)

(b)

Figure 4: (a) LASSO path of each predictor weight as a function of the degree of penalization λ
(logarithmic scale). Error bars on each path, which represent the standard deviation of the weight
as derived from the K-fold cross-validation, are so small that they are hardly visible. (b) MSE of
each fold of the K-fold cross-validation as a function of the degree of penalization λ (logarithmic
scale - gray lines). The black line and error bars exhibit the mean and ±1 standard deviation of
all folds. The orange horizontal shading shows ±1 standard deviation around the fold-mean MSE
minimum (black arrow). On both panels, the vertical dotted line indicates the degree of penalisation
from which the minimum of fold-mean MSE is achieved within ±1 standard deviation, and thus its
optimum value.
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β̂Mup

(×101)

β̂c
(×10−1)

β̂LSS
(×104)

β̂LSD
(×103)

β̂
Ũ

(×10−2)

β̂0
(×10−1)

RMSE R2

5 pred.
(LASSO selec.) 2.15 4.25 1.49 9.53 -2.00 1.92 0.288 0.846

4 pred. 2.15 4.31 1.57 9.89 0.65 0.291 0.842

3 pred. 2.25 4.41 1.82 1.11 0.297 0.836

2 pred. 2.68 4.71 2.40 0.337 0.789

1 pred. 3.67 1.97 0.356 0.764

4 pred. (w.o. c) 3.03 1.52 10.3 -2.16 1.55 0.307 0.825

2 pred. (w.o. c) 3.17 1.88 0.66 0.316 0.814

Table 2: Coefficients and scores of the multivariate linear regressions of Ug. Coefficients are esti-
mated through an ordinary least square optimization using the DTraining

Indien datasets, while the RMSE
and R2 scores are calculated using the DTest

Indien

⋃
DAll

Antilles dataset. The coefficients are associated
to the raw predictors (uncentred and unnormalized) and are presented by decreasing LASSO-weight
from the left to the right. A column common factor (power of 10) is only detailed on the column title
for the sake of clarity. The first row presents the complete parameterization. Rows 2 to 6 present
the coefficients of the simpler versions of the Ug multivariate linear regression and the two last rows
present two simpler versions, with a pragmatic selection of a predictor subset (see Section 7, "w.o.
c" meaning without the parameter related to the cold pools). For each version, the grey shading
indicates the predictors that are removed from the initial version.

they are not just noise. They may be artefact of the convection-permitting model at the origin of
our dataset, but also be associated to the model grey zone of convection processes (e.g., congestus),
which are partly resolved and partly unresolved. Similar datasets based on higher-resolution models
may help better understand this issue.

As mentioned in Section c, a parameterization of Ug is preferred to δU , as the resulting param-
eterization provides better scores (not shown). Nevertheless, if δU is considered as the field to be
parameterized, the predictors selected by the LASSO procedure slightly differ, consistently with the
results of Bessac et al. (2019) (case n = 1 in their terminology): the rainfall rate R is now selected
while the LSD is removed. The resolved wind speed Ũ also becomes a more important parameter.

Finally, note that the present parameterization applied to our dataset does not generate any neg-
ative value of Ug (Ug is by definition positive), even though no such constraint is added in the
parameterization. Nevertheless, when used in a GCM, a lower bound of zero is likely to be needed.

d. Testing of the gustiness velocity parameterization

The skills of the proposed Ug parameterization is now assessed, using the independent dataset
DTest

Indien. The parameterized gustiness velocity is noted Ûg. Figure 5a shows an overall good be-
haviour in comparison to the reference, i.e. the parameterization is unbiased and the regression
coefficient of determination R2 = 0.846 is close to one. The distribution shape of the reference
gustiness (Figure 1d) is also well accounted for up to about Ug = 3 m s−1 (see inset in Figure
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β̂Mup

(×101)

β̂c
(×10−1)

β̂LSS
(×103)

̂βSCAIcp

(×10−2)
β̂LSD
(×103)

β̂
Ũ

(×10−2)

β̂0
(×10−1)

RMSE R2

6 pred.
(LASSO selec.) 1.29 2.33 7.27 2.65 4.39 -1.34 2.71 0.228 0.768

5 pred. 1.27 2.34 7.77 2.95 4.63 1.86 0.230 0.764

4 pred. 1.32 2.39 8.93 2.98 2.08 0.231 0.761

3 pred. 1.48 2.60 9.27 2.01 0.233 0.757

2 pred. 1.70 2.74 2.67 0.247 0.728

1 pred. 2.28 2.41 0.257 0.706

4 pred. (w.o. c) 1.95 7.67 4.86 -1.57 2.52 0.239 0.746

2 pred. (w.o. c) 2.02 9.60 1.75 0.243 0.737

Table 3: Same as Table 2, but for the σu parameterization

5a) which is the value of quantile 98%. The residual analysis also indicates a good behaviour of
the parameterization with only a slight negative bias tendency for large gustiness values, above 2-3
m s−1 (Figure 5b). On the inter-quantile range 2nd to 98th (evidenced by the orange lines in 5b),
the residual distribution is close to a Gaussian distribution (see inset in Figure 5b). Only the low-
est and highest quantile (approximately below the 2nd and above the 98th) evidence an associated
tails of the distribution which exhibits more weight than a Gaussian distribution. The origin of the
significant negative biases for the largest gustiness values mentioned earlier is discussed in the next
paragraph. This shape of the residual distribution highlights limited predictive skill of the parame-
terization for high gustiness velocities, possibly because of non-linear relationships not accounted
for in the present framework, additional relevant metrics not considered here, or poor sampling of
these regimes by the current training dataset.

The use of the entire dataset DAll
Indien shows that the derived parameterization is weakly-biased

over the Indian Ocean (∼ 0.1 m s−1), except over the West and Southwest of La Réunion Island
where the parameterization bias reaches −0.8 m s−1 (Figure 6a). The latter region also corresponds
to that of highest RMSE and highest frequency of occurrence of residuals being below the 2nd

percentile (Figure 6b). When removing these few GCM grid cells from the available dataset, the
negative tendency of the residuals almost vanishes (not shown). The illustration in Blein et al.
(2020) suggests that most of these deficiencies are likely attributed to the streets of Von Karman
vortices continuously generated during the 21 first days of the time period through an interaction
between the prevailing northeasterlies and the high orography of La Réunion Island. As a result,
large surface wind speed perturbations occur in the lee side of the island. Such a process is clearly
non-local (i.e. induced by processes occurring in remote GCM grid cells), and thus cannot be
properly captured by our prior predictors. The definition of the corresponding predictors is left for
future work. The proposed parameterization thus captures well the gustiness velocity generated by
most of the open ocean processes. This is confirmed when using the DAll

Antilles dataset as another
testing dataset (Figure S1 in the supplementary material). It is reminded that a small intercept is
found in the parameterization (β̂0 = 1.92 × 10−1, Table 2) and is interpreted as a compensation
effect, on average, of non-local missing predictors when all other predictors are zeros.
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(a) (b)

Figure 5: Joint probability distribution (a) between the parameterized gustiness velocity Ûg and its
targeted reference Ug and (b) between the parameterization residual ϵ = Ûg − Ug and the refer-
ence Ug. On panel (b), contours are equally spaced by 0.29 in the logarithmic space starting from
1.3× 10−6, and the two horizontal orange lines indicate the 2nd and 98th percentiles of the residual
distribution. The inset in both panels shows the quantile-quantile plot (black bullets: quantiles 1% to
99%, grey bullets: quantiles 0.1%, 0.5%, 99.5% and 99.9% and dashed grey line: "1 : 1" line) of (a)
the Ûg distribution against the reference Ug distribution (see Figure 1d for the Ug distribution) (b)
the residual ϵ distribution against the corresponding normal distribution (ϵN , the normal distribution
of ϵ, scaled by the standard deviation of the samples and centered on the samples mean). Only the
testing dataset DTest

Indien is used here.

(a) (b)

Figure 6: Spatial distribution based on the entire DAll
Indien dataset of (a) the median of the proposed

Ug parameterization bias Ûg − Ug (in m s−1) and (b) the root mean square error (RMSE colours)
and the frequency of occurrence of residuals below the 2nd percentile of the residual distribution
(contours – see also the lowest horizontal orange line in Figure 5b). x and y axis are expressed in
×103 km.
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(a) (b)

Figure 7: Time series of the parameterized Ûg (solid black thick line), the reference Ug (dotted
black thick line) and the different contributing terms of the parameterization (thin lines) for (a) the
case of isolated convective cells and (b) that of a large-scale synoptic front discussed in Section b.

The parameterization behaviour is further analyzed using the two cases introduced in Section
b. The predicted Ûg matches well the temporal evolution of the reference Ug both for the case of
isolated convective cells and that of a large-scale synoptic front (Figure 7). In the isolated convective
cells case, Ûg is mainly governed by the updraft mass flux Mup and the cold pool spreading velocity
c. The cold pool contribution starts about 2 hours after the strong increase of the updraft mass flux
contribution, in agreement with the life cycle of convective systems (e.g., Houze 2018). The other
input parameters of the parameterization have a negligible contribution. In the front case, convective
updrafts significantly contributes all along the gustiness event. As for the first case, cold pools
generate wind variability during the second part of the event. But here, the large scale dynamics
(LSS and LSD) contribution is significant, the large-scale shear contributing in the same way as
convective updrafts, especially during the first part of the event. In both cases, the contribution of
the GCM-resolved wind speed Ũ is fairly weak, but always acts as a gustiness damping.

e. Model for σU

A similar work is performed for parameterizing the meso-scale wind standard deviation σU , which
is required to fully capture the meso-scale momentum flux enhancement. While there is no math-
ematical relationship between σU and Ug, both parameters are highly correlated (0.84). A simple
parameterization of σU based only on Ug would thus be possible. Nevertheless, as discussed later in
this section, a multivariate regression proves to be more skillful. The processes generating gustiness
and wind variance are assumed similar, so that the 12 predictors of Section a are used to statistically
model σU . The corresponding LASSO path is shown on Figure S3 and the retained predictors and
associated weights are provided in Table 2. The five predictors retained for Ug are also retained for
σU and a sixth one appears relevant, namely the spatial organisation of cold pools (SCAIcp). The
correlation between the parameterized wind standard deviation σ̂U and its targeted reference (0.88)
is higher than that between σU and Ug, meaning that the multivariate parameterization performs
better than a parameterization based on Ug only. This is even clearer when comparing the RMSE of
the multivariate and Ug-only parameterizations (0.228 vs 0.465).
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f. Back to the meso-scale flux enhancement

To conclude this section on the added value of the derived parameterization, we come back to the key
variables for a GCM, namely the turbulent surface fluxes, and assess the ability of the parameteriza-
tion to capture the meso-scale flux enhancement. The parameterized meso-scale flux enhancement
is identified by the ̂ symbol. The reference meso-scale flux enhancement (FφMS, Figures 8a, f
and i) shows a similar regional distribution than the gustiness velocity Ug (Figure 1c) and the wind
speed variance σ2

U (not shown but similar to that of σU on Figure 1e). This is expected as these
two parameters drive the meso-scale flux enhancement (Blein et al. 2020). In a “perfect parame-
terization” framework, in which the true Ug and σU (i.e. as derived from the convection-permitting
simulation) is used to compute the meso-scale flux enhancement (noted F PP

φMS, PP standing for per-
fect parameterization), the obtained bias is mostly negligible everywhere on the domain (Figures 8e,
h and k). Note that, in the case of the momentum flux, a Ug-only perfect parameterization leads to
rather large biases and only 57% of the meso-scale momentum flux enhancement is captured on av-
erage (Figure 8c). The implementation of the proposed parameterization allows to catch most of the
meso-scale flux enhancement for the three surface fluxes (Figures 8d, g and j): on average over the
month of data, 80%, 99% and 93% of the meso-scale momentum, sensible heat and latent heat flux
enhancements are caught, respectively. As expected from the rather large bias of the parameterized
Ug (Figure 6b) and σU , especially near La Réunion Island, surface fluxes also exhibit significant
biases there.

6. Comparison with published Ug parameterizations

a. Ug inter-comparison

The introduction of this work mentions several published parameterizations of the gustiness veloc-
ity Ug. The associated formulations are synthesized in Table 4. They are applied to the entire test
datasets (DTest

Indien

⋃
DAll

Antilles) to assess their performance against that of the proposed parameteri-
zation (hereafter referred to as the BRV parameterization, according the authors’ names). For a fair
comparison, the empirical coefficient used in two of them (E1999 and WAPE) is tuned using the
training dataset DTraining

Indien .
The published parameterizations show a wide variety of behaviours (Figure 9). In four of them

(R2000-R, R2000-Mup,R2000-Mdown and Z2002), the proposed types of function lead to an unre-
alistic saturation value at high Ug. Several parameterizations (R2000-R and WAPE) also strongly
underestimate the frequency of occurrence of weak Ug. The B2019 parameterization is unable to
generate weak Ug values, below 0.5-0.6 m s−1. In contrast the E1999 and WAPE parameterizations
perform rather well over most of the range of Ug. In any case, the BRV parameterization performs
better than any of the previously-published parameterization (weakest heteroscedasticity and best
shape of the residuals). We suppose that the use of a multivariate framework helps the parame-
terization render a larger range of behaviours. For instance, Figure 7 shows that meso-scale wind
variability can arise prior to a precipitating event (and sometimes even without any), so that param-
eterizations based on R or c only cannot catch these regimes. The skillfull behaviour of the E1999
and WAPE parameterizations is consistent with our use of a linear approach, which includes similar
predictors.

The behaviour of the available parameterizations is further synthesized in a Taylor diagram
(Taylor 2001) and a normalized bias versus normalized RMSE plot (Figure 10). If some parameter-
izations show a reasonable Ug variability (standard deviation of R2000-Mup, R2000-Mdown, WAPE
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(a)

(b) (c)

(d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 8: Monthly average of the meso-scale flux enhancements and associated parameterization
biases for momentum (a-e), sensible heat (f-h) and latent heat (i-k): (a, f and i) reference meso-scale
flux enhancement ⟨FφMS⟩, (b, d, g and j) bias of the parameterized meso-scale flux enhancement
based on the parameterization derived from Sections a-e, i.e. ⟨F̂φMS−FφMS⟩ and (c, e, h and k) bias
of the meso-scale flux enhancement based on a perfect paramterization using the true Ug and σU
(⟨F PP

φMS − FφMS⟩). For the momentum flux, two parameterization biases are considered: (b) and (c)
only includes the Ug contribution (τ̂MS(Ug) and τPP

MS(Ug)) and (d) and (e) includes the contributions
of both Ug and σU (τ̂MS(Ug, σU ) and τPP

MS(Ug, σU )).The ⟨·⟩ operator indicates a time average. x and
y axis are expressed in ×103 km.
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References Short name Parameterization Comments

Emanuel and
Živković-Rothman
(1999)

E1999 Ug =
βMdown

ρσd

Mdown in kg m−2 s−1

σd: downdraft fractional area, fixed
at 0.05
β: constant parameter, originally
fixed at 10.0, and here tuned at
2.46.

Redelsperger et al.
(2000)

R2000-R Ug = log(1.0 + 6.69R− 0.476R2) R in cm day−1

R2000-Mup Ug = log(1.0 + 386.6Mup − 1850.0M2
up) Mup in kg m−2 s−1

R2000-Mdown Ug = log(1.0− 600.4Mdown − 4375.0M2
down) Mdown in kg m−2 s−1

Zeng et al. (2002) Z2002 Ug = min
[
3,max

(
2.4R1/2, 1.8f

1/3
c

)]
with: fc = min(clt, 1− clt)

R in mm h−1

clt is the total cloud cover

Jabouille et al.
(1996)
Williams (2001)
Hourdin et al.
(2020)

WAPE Ug = γc

c in m s−1

γ: coefficient tuned at 0.36 in
Jabouille et al. (1996), 0.46 in
Williams (2001), 0.2 in Hourdin
et al. (2020) (personal communica-
tion), and here at 1.8

Bessac et al. (2019) B2019

Ug =
√
10ϵN,2

with:
ϵN,2 =P1(Ũ) + P2(R)+ΨN,2

P1(Ũ) =− 0.06 + 0.1log(Ũ2)

− 0.01
[
log(Ũ2

]2
− 0.05

[
log(Ũ2)

]3
P2(R) =− 0.29 + 0.75R1/4 − 0.25R2/4

+ 0.05R3/4 − 0.003R4/4

ΨN,2 ∼N (0, σ2
Ψ) with σΨ = 0.74µNλ

Ũ in m s−1

R in mm day−1

ΨN,2 is a stochastic residual (cen-
tered Gaussian distribution with a
variance σ2

Ψ that scales as a power
law of the coarsening scale N (in
degree, here N = 1.15◦).
µ = 0.42 and λ = −0.31

Table 4: Synthesis of state-of-the-art Ug parameterizations.
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and E1999), their correlation with the reference is always weaker and their RMSE larger than the
BRV parameterization. These diagrams thus highlight the step improvement provided by the present
BRV Ug parameterization. The spatial distribution of each parameterization bias is also provided
in Figure S5 and mainly reveals a horizontally homogeneous bias sign for the most biased param-
eterization (R2000-Mup, R2000-Mdown, R2000-R, WAPE). Contrarily, the B2019 parameterization
have a homogeneous positive bias above regions of weak Ug and a negative bias above regions
of large Ug. Both E1999 and BRV have a less organised residual bias. Besides, as expected, no
parameterization is yet able to capture the regional pattern on the lee side of La Réunion Island.

b. Meso-scale flux enhancement

Published parameterizations of Ug, together with the BRV parameterization developed here (thus
incorporating both Ug and σU ), are now compared in terms of their capability in representing the
meso-scale flux enhancement. Taylor diagrams and scatter plots between the normalized bias and
the normalized RMSE are provided for the meso-scale enhancement of the momentum, sensible
heat and latent heat fluxes on Figures 11 to 13. The monthly-mean spatial patterns of each predicted
meso-scale flux enhancement bias are available in the Supplementary Material (Figures S6, S7 and
S8). Consistently with the results presented in the previous subsection for Ug, the BRV parameter-
ization outperforms in representing the meso-scale enhancement of the three fluxes (weakest bias
and RMSE and highest correlation with the reference). The E1999 parameterization exhibits scores
often close to those of the BRV-(Ug) parameterization (including only the Ug contribution for the
momentum flux). The Z2002 parameterization has also weak biases, but poorly captures the vari-
ability of the meso-scale flux enhancement. This is also the case for the B2019 parameterization
which has similar biases to the BRV-(Ug) parameterization. The B2019 parameterization would
probably be improved when considering the subgrid standard deviation of the wind speed.

7. Simpler versions of the proposed parameterization

The present study developed a parameterization of the meso-scale flux enhancement throughout a
parameterization of Ug and σU in a framework where the subgrid-scale variability can be assessed
and quantified. A subjective step provided a set of prior physically-based predictors and a statis-
tical method helped identify those that were key to build a multivariate linear regression for each
of the two parameters to be predicted (five for Ug and six for σu). However, in the perspective of
a GCM implementation of the present parameterization, all retained predictors will not necessarily
be available. Therefore, the performance of simpler versions of the parameterization, which would
involve fewer predictors is assessed here. These versions are built by sequentially removing the pre-
dictor with the lowest weight in the regression model and re-conducting an OLS optimization using
the fewer predictors. For instance, it is expected that the LSS and LSD, though probably easily
computable in atmospheric dynamical cores, might not be easily accessible to the GCM physical
component. Besides, parameterizations without the cold pool spreading velocity predictor are also
proposed, as this parameter is generally not available in GCMs (To our knowledge, only the LMDZ
GCM incorporate a cold pool parameterization from which c can be derived, e.g., Hourdin et al.
2020). Parameterizations of this predictor may however be considered for implementation (e.g.,
Grandpeix and Lafore 2010; Pantillon et al. 2015). The RMSE and R2 scores of these intermediate
versions are provided in Table 2 and 3, while their corresponding joint probability distributions are
available in the Supplementary Material (Figures S9 and S10). The bias of each version is always
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: Intercomparison of the previously-published Ug parameterizations (see Table 4) together
with the BRV parameterization derived from Section a-d, using the test datasets DTest

Indien

⋃
DAll

Antilles.
On each panel, the color shading indicates the joint probability distribution between the gustiness
velocity simulated by a given parameterization and its targeted reference value, the gray line being
the x = y diagonal. The top-right sub-plot exhibits the scatter plot of the residuals, i.e the bias of the
parameterized Ug against its reference value as a function of the reference Ug. The mean bias (in m
s−1), the determination coefficient R2 and the RMSE (in m s−1) are also indicated in the upper-left
corner of each panel. The considered parameterizations are (a) E1999, (b) R2000-Mup, (c) R2000-
Mdown, (d) R2000-R, (e) Z2002, (f) WAPE, (g) B2019 and (h) the BRV parameterization.
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(a) (b)

Figure 10: Statistical scores of previously-published Ug parameterizations together with the present
BRV parameterization, using the test datasets DTest

Indien

⋃
DAll

Antilles: (a) Taylor diagram (Taylor 2001,
radial distance: standard deviation with the reference represented by the filled black circle along the
x-axis; angular position: Pearson correlation coefficient; grey iso-contours: centered RMSE) and
(b) scatter plot between the bias and the RMSE of each parameterization, both normalized by the
mean reference Ug. A common way to read the Taylor diagram on panel (a) is the following: the
closer the marker of a parameterization to the reference filled black circle on the x-axis, the better.

(a) (b)

Figure 11: Same as Figure 10 but for the meso-scale enhancement of surface momentum flux as
predicted by the intercompared parameterizations. For the BRV parameterization developed in the
present work, two versions are indicated, a first one considering only the use of the gustiness veloc-
ity (BRV-(Ug)) and a second one including further the impact of the subgrid wind speed standard
deviation (BRV-(Ug + σu)).
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(a) (b)

Figure 12: Same as Figure 11 but for the meso-scale enhancement of sensible heat flux.

(a) (b)

Figure 13: Same as Figure 11 but for the meso-scale enhancement of latent heat flux.
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close to zero, as a result of the OLS optimization (not shown). As expected, the full version out-
performs the simpler ones. As already emphasized with the E1999 parameterization, the use of the
updraft mass flux only (Mup) provides a version that seems already skillful. And as expected from
the LASSO path (Figure 4), the successive addition of the cold pool spreading velocity (c) and the
large-scale horizontal shear (LSS) provides two major step improvements of the parameterization.
In particular, the large-scale shear enables the parameterization to capture the weakest but frequent
values of Ug, below 0.3 m s−1 (Figure S9b and c).

8. Conclusions

Blein et al. (2020) recently argued that the meso-scale enhancement of turbulent surface fluxes at
the air-sea interface could be parameterized using the concept of gustiness velocity (e.g., Jabouille
et al. 1996), together with a term including the meso-scale wind speed variance. The present study
follows this work and develops a parameterization for these two parameters, through the gustiness
velocity Ug and the meso-scale wind speed standard deviation σu.

To develop such a parameterization, a coarse-graining framework based on the operational 2.5-
km AROME convection-permitting model and gathering groups of 40×40 grid-cells (100×100 km,
mimicking a GCM resolution) is used. This numerical set up allows to quantify explicitly the meso-
scale (or subgrid in the context of a GCM) variability, thus both the targeted parameters Ug and σu
and any relevant predictor, which accounts for the processes which generate such a variability. The
available dataset provides two months of hourly forecasts over two oceanic domains covering the
tropical Indian Ocean and the western tropical Atlantic Ocean respectively. This large dataset is used
in a statistical framework to determine multivariate regressions of Ug and σu, which then serve as the
roots of a parameterization of the meso-scale enhancement of surface fluxes. The parameterization
sensitivity to the coarse resolution scale may be addressed in a future work.

The prior analysis of two case studies of intense wind speed meso-scale variability indicates
that the prior predictors should at least account for both convection processes (e.g., updrafts and
cold pools) and large-scale dynamical features that can imprint meso-scale wind variability. The
identified processes are often combined in complex ways, so that a statistical approach is preferred
to a purely mechanistic one. This prior analysis, combined with the input of previous studies ad-
dressing the parameterization of surface gustiness, provides a comprehensive set of twelve potential
predictors. The least absolute shrinkage and selection operator (LASSO) then frames a penalized
multivariate linear regression approach to objectively keep the most relevant metrics for predicting
Ug and σU .

Five predictors are finally selected for Ug: the convective updraft mass flux at the condensation
level, the cold pool spreading velocity, the large-scale horizontal shear and divergence and the large-
scale wind speed. The σU parameterization requires a sixth predictor, namely the cold-pool objects
aggregation index. The parameterizations of Ug and σU are described by the regression coefficients
listed in Table 2. The proposed parameterizations exhibit high skills and their error distributions
marginally deviate from a Gaussian distribution (below approximativelly the 2nd percentile). The
associated negative residual (i.e. an underestimate of the wind-speed variability) is attributed to
non-local processes which result from the interaction between the large-scale flow and a substantial
topography (e.g. La Réunion Island). Such processes probably can be accounted for, but this is left
for future work. Note also that some atmospheric processes may also act on the near-surface wind
mesoscale variability with some delay, so that time-lagged predictors may also be of interest for
such a parameterization.
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The proposed Ug parameterization performs significantly better than the previously published
parameterizations, as it exhibits no bias, the weakest RMSE and the highest correlation with the
reference data. Besides, it also better captures the weak values of the gustiness velocity and does not
exhibit any unrealistic saturation behaviour. Note that the σU parameterization, which does not have
any equivalent in the literature, clearly improves the prediction of the momentum flux enhancement.
We suggest that the use of a multivariate framework helps our parameterization to render a larger
range of behaviour, and thus partly explains its better skills. Finally, the resulting parameterization
is able to capture 80%, 99% and 93% of the meso-scale enhancement of the momentum, sensible
heat and latent heat fluxes, respectively. In the perspective of the implementation in a GCM, in
which some predictors may be unavailable, simpler versions of the propsoed parameterization, i.e.
with fewer predictors, are also proposed. Though less skillful than the complete parameterization,
the simpler versions perform significantly better than the previously published ones.

Because of the variety of situations explored in our training dataset, the parameterization de-
rived here does not hopefully depend too much on it. Nevertheless, the weights between the se-
lected predictors may depend on the way the convection-permitting model AROME represents or
parameterizes some key processes playing in e.g., convection (turbulence, microphysics, resolu-
tion). Therefore, similar studies based on different models and domains are encouraged to further
consolidate the results presented here, and possibly introduce other relevant predictors accounting
for processes not seen in our dataset. Besides, because of the horizontal resolution of AROME,
a wide range of processes at play in the boundary layer (e.g., thermals) is still excluded from the
present work. This will require a significant endeavour in the future.

Finally, the next step is evidently the implementation and testing of the proposed parameteriza-
tion in a GCM. Besides a possible practical selection of the predictors, it will require validation of
the parameterization input parameters as simulated by the GCM (some of them will clearly rely on
other parameterizations such as convection). The implementation may also require specific tuning
if one wants to achieve similar meso-scale enhancement effects as quantified here and thus compen-
sate for some of the model errors. In this perspective, the exact value of the regression coefficients
provided here should mainly be taken as indicative of the relative weight between processes and, to
some extent, may serve as tuning parameters.
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Appendix 1: Predictor definitions

This appendix details the computation of the predictors introduced in Table 1. As a reminder (see
Section 2), the operator · stands for the average over all the CPM grid cells contained in the
considered GCM-like grid cell.

a. Convective updrafts

Updrafts are simply detected as CPM grid cells with a positive vertical velocity. This provides a
fraction αu of the GCM grid cell covered by the updrafts and a mean updraft vertical velocity wu.
The associated updraft mass flux Mup is defined as:

Mup = ραu (wu − w) (11)

with w the GCM-scale vertical velocity. Mup is calculated at the lifting condensation level obtained
from the GCM-scale thermodynamics variables. The level of free convection was also tested but did
not improve the results (not shown). Previous studies have often used a strictly positive threshold
on the vertical velocity to detect convective updraft (e.g., Redelsperger et al. 2000), but the testing
of a few thresholds between 0 to 1 m s−1 led to statistical models of significantly weaker quality
(see discussion in Section c). Note also that the downdraft mass flux has also been used in previous
studies (Emanuel and Živković-Rothman 1999; Redelsperger et al. 2000). In the present study, this
is simply the opposite of Mup and therefore it is not considered.

The meso-scale organisation of convective updrafts is quantified by the simple convective aggre-
gation index (SCAI) proposed by Tobin et al. (2012). It accounts for both the number of convective
clusters N and the clusters clumping throughout the mean distance D between each cluster mass
center. The SCAIup, expressed in per thousand, is defined as:

SCAIup =
N

Nmax

D

L
× 103 (12)

with Nmax the maximum cluster number (here fixed at 800, half the number of GCM-subgrid points)
and L is the characteristic length of the GCM-like grid cell (here 100 km). Clusters are defined by
an object identification based on watershed algorithm (Scikit-image Python package, van der Walt
et al. 2014).

b. Cold pools

Following Grandpeix and Lafore (2010), a velocity scale c is introduced for the horizontal spread-
ing of cold pools (or wakes) due solely to their bulk negative buoyancy. It is related to the Wake
Available Potential Energy (WAPE – see also Jabouille et al. 1996; Williams 2001; Grandpeix and
Lafore 2010) as

1

2
c2 = WAPE = −g

∫ h

0

δθv

θv
dz (13)

where h is the cold pool top height, θv is the virtual potential temperature and δθv = θcpv − θv with
θcpv the virtual potential temperature averaged over the cold pools. Cold pools are detected between
the surface and the layer where the local buoyancy (θv − θv) becomes weaker than −0.008 m s−2.
This threshold is consistent with those used by Tompkins (2001, −0.005 m s−2) or Feng et al.
(2015, −0.003 m s−2). It is slightly more restrictive as weaker values led to erroneous cold pool
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detection as seen from visual inspection (not shown). This may be related to the AROME model
representation of cold pools.

To characterize the cold pool organisation within a GCM-like grid cell, the simple convective ag-
gregation index of Tobin et al. (2012) is adapted, following the same definition as for the convective
updrafts (see Equation 12) and yielding the metric SCAIcp.

c. Other convection parameters

A few other more standard metrics characterizing the convection intensity are also considered:

• The rainfall rate R (in mm h−1) being the average over the last hour and over the GCM-like
grid cell of surface liquid precipitation.

• The total cloud cover clt being the instantaneous total cloud cover averaged over the GCM-
like grid cell, based on the total cloud cover computing by the CPM AROME. The inclusion
of this parameter as a potential predictor follows the study of Zeng et al. (2002).

• The Convective Available Potential Energy CAPE and the Convective INhibition CIN com-
puted from the GCM-resolved thermodynamic state assuming no dilution and a pseudo-
adiabatic transformation of the lifted air parcel.

d. Large-scale horizontal wind shear and divergence

The large-scale horizontal shear (LSS, in s−1), is defined as the modulus of the horizontal wind
shear calculated at the AROME first vertical level (5 m) from the four adjacent GCM-like grid cells,
based on a centered difference scheme:

LSSi,j =

√√√√( ∂u

∂y

∣∣∣∣
i,j

)2

+

(
∂v

∂x

∣∣∣∣
i,j

)2

=

√(
ui,j+1 − ui,j−1

2∆y

)2

+

(
vi+1,j − vi−1,j

2∆x

)2

(14)

Similarly, the large-scale horizontal wind divergence (LSD, in s−1) at the AROME first vertical
level is computed as:

LSDi,j =

√√√√( ∂u

∂x

∣∣∣∣
i,j

)2

+

(
∂v

∂y

∣∣∣∣
i,j

)2

=

√(
ui+1,j − ui−1,j

2∆x

)2

+

(
vi,j+1 − vi,j−1

2∆y

)2

(15)

e. Large-scale, low-level vertical wind shear

The large-scale, low-level vertical wind shear dU850
950 is estimated from the GCM-scale horizontal

wind speed difference between 850 hPa and 950 hPa:

dU850
950 = Ũ(p = 850 hPa)− Ũ(p = 950 hPa) (16)
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