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Abstract. We perform three-dimensional phase-field simulations of equiaxed solidification in Al–Cu thin
samples. Purely diVusive conditions are considered in order to describe systems where convection and grav-
ity eVects can be neglected. The use of a parallel adaptive finite element algorithm introduced recently [Gong
et al., Comput. Mater. Sci. 147 (2018) p. 338-352] allows us to reach the domain of copper concentrations used
in practical applications (c ∏ 3 wt% Cu). We compare the present results with those of a previous study which
was restricted to lower copper concentrations (c ∑ 2 wt% Cu) [Boukellal et al., Materialia 1 (2018) p. 62-69]
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due to the use of a finite diVerence code. In the fast dendritic growth regime, our results confirm that the
dimensionless growth length § is independent of the copper concentration and the average separation dis-
tance between the dendrite nuclei. The new data obtained at higher copper concentrations lead to a more
accurate estimate of§. Physical arguments are developed to specify the meaning of§ and the grounds of the
scaling law§= cst. Comparisons with available experimental results of the literature give additional support
to this scaling law.

Résumé. Nous réalisons des simulations de type champ de phase tri-dimensionnel de la solidification
equiaxe dans les échantillons minces d’Al–Cu. Des conditions purement diVusives sont considérées pour
décrire des systèmes où la convection et la gravité peuvent être négligées. L’utilisation d’un algorithme
parallèle adaptatif de type éléments finis proposé récemment [Gong et al., Comput. Mater. Sci. 147 (2018)
p. 338-352] nous permet d’atteindre le domaine des concentrations en cuivre utisées dans les applications
pratiques (c ∏ 3 wt% Cu). Nous comparons nos résultats à ceux d’une étude antérieure qui, en raison
de l’utilisation d’un code de diVérences finies, était restreinte à des concentrations de cuivre plus faibles
(c ∑ 2 wt% Cu) [Boukellal et al., Materialia 1 (2018) p. 62-69]. Dans le régime de croissance dendritique
rapide, nos résultats confirment que la longueur de croissance adimensionnée § est indépendante de la
concentration du cuivre et de la distance moyenne séparant les germes dendritiques. Les nouveaux résultats
obtenus aux concentrations plus élevées conduisent à une estimation plus précise de §. Des arguments
physiques sont développés pour préciser la signification de § et les fondements de la loi d’échelle § = cst.
La comparaison avec les résultats expérimentaux disponibles dans la litérature scientifique apporte une
confirmation supplémentaire de cette loi d’échelle.

Keywords. Metals and alloys, Solidification, Solute diVusion, Grain structure, Phase-field, Microgravity.

Mots-clés. Métaux et alliages, Solidification, DiVusion des solutés, Structure des grains, Champ de phase,
Microgravité.

1. Introduction

The isotropic physical properties of industrial metallic parts, such as cast engine blocks are
usually obtained by using equiaxed solidification processes. Many materials employed in related
applications belong to the large family of aluminum alloys [1, 2], like the numerous variants of
Al–Cu alloys that have been studied quite intensively over the last decades [3]. Since the final
properties of such parts largely depend on the multigrain structure that is formed during their
fabrication, predicting and controlling the interactions between two grains that grow toward each
other is one of the key points of the equiaxed solidification processes.

Scaling laws that govern the grain growth and the grain–grain interactions in diVusive condi-
tions were recently proposed in reference [4] (hereafter denoted as BEA). These laws are thought
to be of practical relevance because they can be extrapolated to predict the dynamics of equiaxed
dendrites in materials containing higher copper concentrations c0, which are not easy to simu-
late directly. However, it is still reasonable to question the validity of such extrapolations because
it is well known that the selection of the dendrite tip velocity and curvature is aVected by the un-
dercooling and thus by c0 in a nontrivial way [5]. In the present study, phase-field simulations
in three dimensions are performed to explore copper concentrations higher than the ones orig-
inally used in BEA. This is made possible by implementing the finite element algorithm with an
adaptive space mesh introduced in reference [6] (hereafter denoted as GEA).

In the literature about Al–Cu solidification, many of the reported phase-field studies are either
for directional solidification [7–9] or for solidification at constant applied undercooling [10].
The case of solidification with a constant cooling rate, as we consider here, is less commonly
encountered [4, 11]. In Al–Cu alloys, heat diVuses much faster than mass. Moreover, the latent
heat released at the solid–liquid interface of the growing dendrite is easily evacuated through
the highly conducting crucible walls [12]. A frozen temperature approximation is thus adopted
in the model. The resulting problem is, nonetheless, far from being trivial since the sample
temperature is steadily decreased in time, which provokes a drift of the undercooling that drives
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Tong Zhao Gong et al. 3

solute diVusion. Our model being purely diVusive, is directly suitable to describe experiments in
micro-g environments.

In Section 2, we introduce the phase-field model that is used to simulate this process. The con-
stitutive physical equations are discussed together with the corresponding phase-field equations,
and their implementation in the numerical code is described. The present numerical results are
given in Section 3 and they are used to test growth scaling laws previously obtained in BEA. Phys-
ical arguments are developed in Section 4 to justify these scaling laws. Finally, Section 5 sum-
marizes our main conclusions and strategies to compare simulations to experiments performed
both on earth and in micro-g conditions are evoked.

2. Phase-field model

2.1. Physical equations

We consider an aluminum alloy of average copper concentration c0. The partition coeYcient
k < 1 and the liquidus slope m < 0, so m(k ° 1) > 0. At the liquidus temperature T = T0, which
corresponds to the average alloy concentration, the phase diagram imposes

c0 = (T0 °TM )/m, (1)

where TM is the melting temperature of Al. In the reference frame where the material is at rest,
the copper diVusion equation reads

@c(~r , t )
@t

= Dr2
c, (2)

where c(~r , t ) is the copper concentration at location ~r and time t , and D is the solute diVusion
coeYcient that will be assumed zero in the solid phase (one-sided model). In addition, two local
equations must be verified at any interface point. The first one expresses solute conservation and
it imposes the interface normal velocity,

Vn =°D

µ
@c

@r

∂

`
, (3)

the derivative being taken on the liquid (`) side, in the direction perpendicular to the solid–liquid
interface. The second one is the Gibbs–Thomson equation that expresses local thermodynamic
equilibrium and that reads in terms of temperatures,

Ti = TM +mci °
°

Ω
° Vn

µ
. (4)

In this equation, Ω is the average radius of curvature, µ the linear kinetic coeYcient, and the
Gibbs–Thomson constant ° is related to the chemical capillary length d0 through

d0 =
°

m(k °1)c0
. (5)

In the present case, solidification results from uniform cooling at a constant rate R =
0.5 K/min. Then the interface temperature Ti = T0°Rt , and we obtain the Gibbs–Thomson equa-
tion in terms of concentrations,

U
§
i
= ci ° c0

(1°k)c0
=°d0

Ω
°ØkinVn + Rt

m(k °1)c0
, (6)

where Økin = 1/[m(k ° 1)c0µ] is the kinetic coeYcient in factor of the interface velocity. In the
following, we will use the notation

£(t ) =° Rt

m(k °1)c0
(7)

for the negative undercooling, which decreases in time as a result of the sample cooling.
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2.2. Phase-field equations

Instead of the usual phase-field °1 ∑'∑ 1, we use the preconditioned phase-field

√=
p

2tanh°1(') (8)

that was shown to increase numerical precision for a given mesh size [13]. A number of recent
phase-field studies confirmed that quantitative results are obtained when using the precondi-
tioned phase-field [4,6,14–17]. We adopt the quantitative phase-field model introduced by Karma
et al. to simulate the solidification of diluted alloys [18, 19]. The evolution equation for √ is

ø(~n)[1° (1°k)£]
@√

@t
=W (~n)2(r2√°

p
2'|~r√|2)

+
p

2['°∏(1°'2)(U +£)]+
X

i=x,y,z
W

2
0 @i

∑
(~r√)2

as

@as

@(@i√)

∏
, (9)

where ~n is the unit vector along the normal to the solid–liquid interface. The anisotropy func-
tion as of the interface width, W (~n) = W0as (~n), is taken to be that of the surface free energy,
with W0 the diVuse interface width. For Al–Cu alloys, the solid–liquid interface is rough at the
atomic scale, so the kinetic coeYcient Økin can be set to zero for the low solidification veloci-
ties considered here. In practice, this is ensured by imposing two conditions. The first is that the
anisotropic relaxation time ø(~n) = ø0a

2
s

(~n) and the second that the constant ∏ that couples the
non-dimensional concentration field U to the phase-field is equal to (75/47)Dø0/W

2
0 [20]. Since

W0 = ªd0 is adjusted by varying the numerical parameter ª, this fixes ø0 = (47
p

2/120)(d
2
0 /D)ª3.

We follow the usual convention where lengths are scaled by W0 and times by ø0. The resulting
non-dimensional evolution equation for √ is then

a
2
s

[1° (1°k)£]
@√

@t
= a

2
s

(r2√°
p

2'|~r√|2)

+
p

2['°∏(1°'2)(U +£)]+
X

i=x,y,z
@i

∑
(~r√)2

as

@as

@(@i√)

∏
, (10)

where the crystal cubic anisotropy reads

as = (1°3≤4)+4≤4(n
4
x
+n

4
y
+n

4
z

), (11)

with nx ,ny ,nz are the three components of ~n and ≤4 the anisotropy strength [21]. As in the
case of directional solidification, the imposed undercooling £(t ) is also introduced on the left
hand side of this equation to prevent the kinetic coeYcient Økin from deviating in time from
its imposed value (zero here) [19]. The non-dimensional concentration field U is related to the
physical concentration field c through

U = fU (')c ° c0

(1°k)c0
, (12)

with

fU (') = 2
(1+k)° (1°k)'

. (13)

This is the diVuse interface version of the physical definition given in Equation (6): in the liquid
phase, '=°1.0, so fU (') = 1.0.

As solute diVusion is neglected in the solid (one-sided model), a corrective solute current

~jat =
W0

2
p

2
c0(1°k)[1+ (1°k)U ]

1°'2

p
2

@√

@t
~n (14)
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is introduced in the concentration evolution equation in order to counterbalance the excess of
solute trapping and other spurious corrections due to the finite interface thickness W0 [18, 19].
The non-dimensional evolution equation for U then reads [6]

[(1+k)° (1°k)']
@U

@t
= [1+ (1°k)U ]

1°'2

p
2

@√

@t

+~r ·
©
D

§(1°')~rU
™

+~r ·
(

[1+ (1°k)U ]
1°'2

2
@√

@t

~r√
|~r√|

)

, (15)

where
D

§ = Dø0

W
2

0

. (16)

2.3. Implementation

In the present work, we very closely follow the numerical implementation described in GEA.
The finite element method, together with parallel computing with multiple processors using
distributed memory based on MPI protocol, is employed to solve the phase-field (PF) equations
(10) and (15). The code is developed based on the open source package of deal.II (DiVerential
Equations Analysis Library) [22]. For PF simulations, a suYciently fine mesh is necessary to get
quantitative results but this usually leads to very low computing eYciency when c0 is increased.
Since the PF varies steeply across the interface but remains constant in the bulk solid and liquid
phases, an adaptive mesh refinement/coarsening algorithm is thus preferable to accelerate the
calculations. With this mesh adaptation we obtain a non-uniform computational mesh with
refined elements in the interface layer while grid elements are coarser in the bulk phases. As
a result, the number of grid points automatically increases during the dendrite growth. The
dimensionless minimum grid size in the interface layer is set to (¢x)min = 0.78, and the maximum
grid size in the bulk liquid and solid phases (¢x)max = 8(¢x)min. Time is discretised using the
implicit Euler method with the dimensionless time step ¢t/ø0 = 0.1. More detailed information
about this procedure can be found in the documentation of deal.II [23] and our previous work [6].

The advantage of using GEA algorithm is evidenced in Figure 1, where the number of grid
points in the adaptive mesh is estimated at time when the tip velocity reaches a maximum and is
compared with the the finite diVerence method used in BEA, where a uniform mesh was adopted.
Obviously, using the adaptive mesh results in a substantial drop in the grid points number. The
grid number gain is already 2 times for a two percent copper concentration but it greatly increases
at higher concentrations because the number of mesh points continues to increase as the cube
of copper concentration in the finite-diVerence code, while it slowly decreases in the adaptive
mesh code. This is the reason why simulations at copper concentrations higher than 2 percent
were not considered in [4]. In addition, the grid refinement algorithm we use does not pose
serious overhead problems since the computing time required for grid refinement takes a very
small proportion of the total calculation time (less than five percent) [24]. Comparisons of the
numerical results obtained by both algorithms were made for c0 = 2 wt% Cu. As seen below (for
instance in Figures 4 and 6), we obtained very similar results from the two codes. This confirmed
that the two implementations are compatible and are very likely to be free of numerical artifacts.

The main physical parameters of the Al–Cu alloys are listed in Table 1. For the partition
coeYcient k and the liquidus slope m, we use the average values k = 0.14 and m =°2.6 K/wt% Cu
taken from [25]. Closer looks at the phase diagrams of diluted alloys indicate that the liquidus
and solidus lines are usually curved, even at small solute concentrations c0 [26]. However, as
shown recently, taking into account the variations of k and m with c0 does not significantly aVect

C. R. Mécanique — 0000, 1, nO 0, 000-000



6 Tong Zhao Gong et al.

Figure 1. Comparison at the maximum tip velocity V =Vm of the number of grid points in
the 3D PF simulations between BEA using uniform mesh and a finite diVerence scheme and
GEA using adaptive mesh and a finite element scheme. L = 1000 µm. The dotted portion of
the BEA curve is extrapolated from the size of the numerical domains used with c0 ∑ 2 wt%
Cu. The reduction factor in grid points of GEA compared with BEA is 49%, 86% and 96%,
respectively for c0 = 2, 3, and 4 wt% Cu.

Table 1. Physical parameters of the Al–Cu alloys considered in the simulations

Symbol Physical parameter Value Unit
D Copper diVusion coeYcient in the liquid 3000.0 µm2/s

TM Aluminum melting temperature 933.0 K
cp Aluminum specific heat at melting temperature 2.8£10°12 J/K/µm3

c0 Copper concentration 1.0–4.0 wt% Cu
≤4 Crystal cubic anisotropy 0.01 –
° Gibbs–Thomson coeYcient 0.236 K·µm

the scaling growth laws for the copper concentrations considered here [27]. The accuracy of the
present algorithm is mainly conditioned by the minimum grid spacing used to mesh the region
near the solid–liquid interface [6]. To ensure comparable accuracy for the two concentrations
considered (3 and 4 wt% Cu), we use the same interface width, W0 = 1.0 µm, which results in the
same interface grid size, (¢x)min = 0.78 µm in both cases. As seen in Equation (5), the capillary
length is smaller at higher concentrations. The convergence numerical parameter ª = W0/d0 is
thus set to 28.4 and 37.9, respectively. For c0 = 4 wt% Cu, a convergence test with ª showed that
variations of a small percentage are expected when ª is further decreased. Moreover, for the finite
diVerence algorithm used in BEA, convergence with W0 was found to be satisfactorily reached for
comparable ª values [4]. The time step is set to 0.1ø0, that is 5.248£10°4 s and 6.998£10°4 s for
c0 = 3 and 4 wt% Cu, respectively.

The initial value for the preconditioned phase field is √(~r ) = R0 ° r , with R0 the radius of
the spherical solid seed and r the distance from point ~r to the seed center. The initial value of

C. R. Mécanique — 0000, 1, nO 0, 000-000
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Figure 2. Dendrite tip velocity V as a function of time. c0 = 4.0 wt% Cu and L = 1000 µm.

the rescaled solute concentration field is U (~r ) = 0. Mirror (no-flux) conditions are constantly
imposed at all the domain boundaries. Thus, it is suYcient to simulate a quarter of the whole
sample plane xz, for instance, x ∏ 0 and z ∏ 0. For the same reason, only one half of the sample
thickness is necessary, for instance, y ∏ 0. Altogether, we only simulate an eighth of the sample
and complete it by applying symmetries; the origin of the numerical domain is thus the center of
the solid. Due to the no-flux boundary conditions, mirror dendrites develop and progress toward
the reference dendrite from the right and from above, causing dendrite-dendrite collisions after
some time. The dimensions L £L £H of the simulated physical domains are the same as in BEA,
i.e., L = 800.0,1000.0,1200.0 µm and H = 100.0 µm. They are chosen to reproduce the geometry
of recent experiments using thin samples in order to visualize dendritic growth by real-time X-ray
imaging [4, 12].

3. Growth scaling law

Figure 2 shows a typical curve for the dendrite tip velocity as a function of time that is obtained
in our simulations. In BEA, we proposed to characterize such curves by the maximum velocity,
V =Vm , and by the time ¢tm necessary for the tip to accelerate from Vm/2 to Vm (see Figure 2). It
was shown in [4, 11] that this fast growth regime corresponds to a crossover between free growth
(before the inflexion point) during which the initial globular nuclei basically develop primary
dendritic arms, to early growth during which the interactions between two opposite dendrites
develop with the increasing overlap of their diVusion fields (after the inflexion point). The grain
morphological evolution from an initial spherical seed to the final coarsened dendrite with de-
veloped sidebranches is shown in Figure 3. Owing to the drastic increase of the computing re-
sources needed at the late solidification stage when the secondary arms develop, the simulations
are ended before late ripening, as the one shown in BEA, is reached.

C. R. Mécanique — 0000, 1, nO 0, 000-000
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Figure 3. Snapshots showing the growth of a dendrite simulated in a thin domain of size
1000£100£1000 µm3 (√= 0 isosurfaces are represented). Perspective views are shown to
give a better 3D impression: (a) initial condition, (b) slow growth, (c) fast growth, (d) end of
the fast growth (V =Vm), (e) early ripening, (f) ongoing ripening. c0 = 4.0 wt% Cu.

The numerical values of Vm and ¢tm obtained in the present study are shown in Table 2,
together with the ones obtained in BEA at lower copper concentrations. For the latter ones, the
dimensionless length

§= Lm

L
= Vm¢tm

L
, (17)

was found to be roughly a constant, § = cst [4]. The value § ' 0.546 was quoted in BEA
but a recent reanalysis of the original data rather gave the value § ' 0.550 that will be used
hereafter [27].

Figure 4 represents the dimensionless length§ as a function of the dimensionless variable

æ= c0

c
§
0
+ L°L

§

L§ . (18)

This variable expresses both the concentration dependence of § through the ratio c0/c
§
0 and

its domain size dependence through the group L/L
§ ° 1, where c

§
0 and L

§ are two reference
quantities that are respectively taken equal to 1 wt% Cu and 1000.0 µm here. In Figure 4, the
§ data are grouped by triplets corresponding to a given value of c0 and increasing values of L.
Concerning the evolution of § with L, one obtains diVerent behaviors for the diVerent triplets
(globally increasing, globally decreasing, strongly nonuniform). This suggests that, on average,
§ does not vary significantly with L, as already remarked in BEA. Concerning the evolution of §
with c0, if each triplet is replaced by a single point placed at the triplet average coordinates, one
again observes no obvious dependence on c0. Thus, it is a very good approximation to consider
that§ is roughly equal to a dimensionless constant, as in BEA. A simple average of the§ estimates
obtained for all the concentrations and all the system sizes roughly gives 0.539, which is very close

C. R. Mécanique — 0000, 1, nO 0, 000-000
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Figure 4. Dimensionless growth length § = Lm/L as a function of the dimensionless vari-
able æ= (c0/c

§
0 )+ (L°L

§/L
§) (c

§
0 = 1 wt% Cu and L

§ = 1000.0 µm). Each color corresponds
to a triplet of data obtained at a given c0 and for increasing values of L. The filled circle
results from a simulation using the present parallel adaptive code for c0 = 2 wt% Cu and
L = 1000.0 µm and the empty circle just above is the corresponding result found in BEA
with a finite diVerence code.

Table 2. Numerical estimates of Vm(c0,L), and ¢tm(c0,L) obtained in BEA and in the
present study at diVerent copper concentrations c0 and for diVerent numerical domain
length L. Also given is the growth length ¢xm defined later in Equation (20)

c0 (wt% Cu) L (µm) Vm (µm/s) ¢tm (s) ¢xm (µm)
BEA 1.0 800.0 16.52 25.50 303.00

1000.0 25.74 21.09 397.00
1200.0 33.12 21.00 540.00

1.5 800.0 12.13 36.00 327.00
1000.0 20.38 26.94 410.00
1200.0 31.14 20.83 473.00

2.0 800.0 9.610 45.35 333.00
1000.0 15.67 36.86 432.00
1200.0 24.77 26.24 504.00

Present 2.0 1000.0 16.63 32.21 415.00
3.0 800.0 7.440 50.35 293.56

1000.0 12.18 45.79 443.75
1200.0 18.90 35.42 522.60

4.0 800.0 6.010 60.18 286.07
1000.0 9.790 55.28 416.69
1200.0 15.00 45.48 514.67

C. R. Mécanique — 0000, 1, nO 0, 000-000



10 Tong Zhao Gong et al.

Figure 5. Two experimental examples of dendritic interactive growth in Al–4 wt% Cu
samples (top row). The sample sections represented are both 3 £ 3 mm2 in size. The
reference dendrites are encircled and, in each case, an arrow indicates the growth direction
of the dendrite tip that is observed. The corresponding tip growth velocities are represented
as functions of time (bottom row): (a) adapted from Ref. [4], and (b) adapted from Ref. [11].

to the value 0.550 obtained for the lower copper concentrations c0. This result definitely confirms
the scaling law

§= cst ' 0.539. (19)

It is to be noted that the initial condition imposed to the concentration field U in the present work
(U = 0) diVers from the one imposed in BEA (solid–liquid equilibrium condition). Our results thus
confirm that no significant influence of the initial condition can be detected, as it was already the
case in reference [27].

As illustrated in Figure 5, direct comparison with experiments at 4 wt% Cu is possible for
a few cases that have been recently described in the literature [4, 11]. In these experimental
situations, little gravity eVects are expected. The experimental results for the dimensionless
length§ are reported in Table 3. In this table, the first entry corresponds to the situation shown in
Figure 5a: this case is very comparable to the present simulations because a single dendrite arm
grows toward the crucible boundary. The second table entry corresponds to a more complicated
situation shown in Figure 5b: several dendrites simultaneously grow toward each other. The free

C. R. Mécanique — 0000, 1, nO 0, 000-000
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Table 3. Dimensionless ratio § = (Vm¢tm)/L estimated from two experiments at copper
concentration c0 = 4.0 wt% Cu

Ref. §

[4] 0.549
[11] 0.533–0.648

distance ahead of the reference dendrite (that is encircled in the figure), may be taken with
respect to the cross-shaped dendrite that sits in the bottom left corner of the figure or to the
elongated slanted dendrite that grows from below in between them. These two choices explain
the interval reported in the last entry of Table 3. In both cases, the experimental results are in
good agreement with the estimate§' 0.539 predicted by the present study.

4. Physical justification of the scaling law for the growth length

The main result of the previous section is that the dimensionless growth length § remains
constant when c0 and L vary in an extended range of values. A simple justification of this result
can be provided by simple considerations, some of which were already mentioned in BEA. To
proceed, it is useful to switch to a simple physical quantity related to the dendrite tip position,
xtip(t ). An alternative growth length is obtained by integrating the tip velocity, V (t ) over a given
time interval. We consider again the time interval [t

0
m

, tm] during which the tip velocity increases
from Vm/2 to Vm . The corresponding growth length,

¢xm =
Z

tm

t
0
m

V (t ) dt = xtip(tm)°xtip(t
0
m

), (20)

corresponds to the growth of the dendrite tip during the crossover regime already discussed in
the previous section. Figure 6 shows the time evolution of xtip for a given copper concentration
and three diVerent values of the domain length L. It is obvious from this figure that the three
curves can be rescaled to a common master curve by rescaling the time (see below) and rescaling
the tip position by L. The natural scaling variable for the tip position is thus xtip/L, so we expect
that the scaled alternative growth length

¬=¢xm/L (21)

is a constant. One can object that, instead of xtip/L, a better choice for the scaling variable would
be (xtip °R0)/(L °R0), where R0 is the radius of the initial solid nucleus. Although this choice is
more rigorous, it would not modify ¬ by much because L is always much larger than R0 here.

We now return to BEA, where it was shown that a universal law relates the scaled velocity

Y = (2V °Vm)/Vm (22)

to the scaled time
X = (t ° t

0
m

)/¢tm , (23)

with ¢tm = tm ° t
0
m

. For these scaled coordinates one obtained a universal curve Y (X ) that
could be parametrized by a fourth-order polynomial, Y = A1X + A2X

2 + A3X
3 ° A4X

4. The four
prefactors A1°4 were obtained by a numerical fit to the data points. The area A below the
universal curve Y (X ) is given by

A =
Z1

0
Y dX = 2

Lm

Z
tm

t
0
m

V (t )dt °1 = 2
Lm

¢xm °1, (24)

with Lm =Vm¢tm . Using (21), one finally sees that

§= Lm

L
= 2¬

A +1
. (25)
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Figure 6. Tip position xtip as a function of time t . Increasing curves correspond to increas-
ing values of L (800.0,1000.0,1200.0 µm). c0 = 4.0 wt% Cu.

This is indeed equivalent to the scaling relation§= cst, provided that our physical argument that
¬ is a constant is justified. Figure 7 shows our simulation data for ¬ versus æ. They do confirm
with a good accuracy that ¬ is a constant ' 0.411. Using the A1–4 coeYcients obtained in BEA,
one can estimate that the area A ' 0.5057. Combining both results, one finally obtains

§= 2¬
A +1

' 0.546, (26)

a value that is very close to the estimate 0.539 obtained in the previous section. To summarize this
section, the scaling law §= cst can be shown to result from a simple physical scaling argument,
¢xm/L = cst, relating the growth length ¢xm during the crossover regime to the total available
free growth distance L.

5. Summary and conclusion

In summary, the scaling law§= cst predicted in BEA has been tested for the dimensionless length
§ = Lm/L, where Lm = Vm¢tm is a length related to the increase of the dendrite tip velocity
in the fast growth regime, and L is half the average distance between dendritic nuclei, related
to the volume density of the nuclei in the sample. New simulation results have been obtained
at higher copper concentrations that are used in industrial applications. This has been made
possible by using a parallel adaptive finite element algorithm. A careful analysis of the data has
confirmed that, within numerical errors,§ is indeed a constant, thus confirming that it shows no
concentration and no dendrite density dependence. Physical arguments have been developed to
justify this scaling law.

A few remarks can be formulated in conclusion. The addition of thermodynamic eVects, like
thermal fluctuations or concentration dependence of the phase diagram, was recently consid-
ered [27]. There again, the scaling laws predicted in BEA were found to be very robust against
these eVects. The combination of these results with the ones of the present study thus conveys an
impression of great robustness for the proposed scaling relation. Confinement eVects are neces-
sarily present for the thin experimental samples considered here through numerical simulations.
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Figure 7. Dimensionless alternative growth length ¬ = ¢xm/L as a function of the dimen-
sionless variable æ = (c0/c

§
0 ) + (L°L

§/L
§) (c

§
0 = 1 wt% Cu and L

§ = 1000.0 µm). Each
color corresponds to a triplet of data obtained at a given c0 and for increasing values of
L. The filled square results from a simulation using the present parallel adaptive code for
c0 = 2 wt% Cu and L = 1000.0 µm and the empty square slightly above is the corresponding
result found in BEA with a finite diVerence code.

Quantifying these eVects would be important to generalize the present results to a wider class
of experimental situations corresponding to diVerent confinement levels. As discussed above, in
the experimental studies of equiaxed solidification the situation generally diVer from the simpli-
fied geometry assumed in the present simulations. The main diVerences are that more than two
dendrites simultaneously interact, their respective orientations are not correlated, and their rel-
ative separation distances vary from one experimental case to the other. It would be interesting
in the future to test dendritic interactions in a more statistical way by performing simulations at
larger scales and by analyzing a suYciently large number of diVerent cases. In a wider context, it
would be very instructive to test the possibility to extend the present scaling laws to other alloys.
Indeed, the growth dynamics may substantially depend on materials characteristics as surface
energy anisotropies that can vary either in strength or in crystal symmetries (or both). Recent re-
sults obtained for AlGe alloys that, in addition to the four-fold anisotropy of Al–Cu, also display
a six-fold anisotropy show that this alloy would probably be a good candidate to conduct such
tests [28,29]. The present phase-field code models solidification of Al–Cu in purely diVusive con-
ditions. In ground experiments this is very seldom the case because gravity may induce convec-
tion in the liquid, solute accumulation at the sample bottom, and grain buoyancy or grain sed-
imentation [30]. To compare simulations to experiments, two approaches are thus possible: ei-
ther perform experiments in microgravity conditions or refine the phase-field models to include
gravity eVects. Both approaches are currently explored.
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