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Measuring the similarity between materials is essential for estimating their properties and revealing the associated physical mechanisms. However, current methods for measuring the similarity between materials rely on theoretically derived descriptors and parameters fitted from experimental or computational data, which are often insufficient and biased. Further, outliers and data generated by multiple mechanisms are usually included in the dataset, making the data-driven approach challenging and mathematically complicated. To overcome such issues, we apply the Dempster-Shafer theory to develop an evidential regression-based similarity measurement (eRSM) method, which can rationally transform data into evidence. It then combines such evidence to conclude the similarities between materials, considering their physical properties. To evaluate the eRSM, we used two materials datasets, including 3d transition metal-4f rare-earth binary and quaternary high-entropy alloys with target properties, Curie temperature and magnetization. Based on the information obtained on the similarities between the materials, a clustering technique is applied to learn the cluster structures of the materials that facilitate the interpretation of the mechanism. The unsupervised learning experiments demonstrate that the obtained similarities are applicable to detect anomalies and appropriately identify groups of materials whose properties correlate differently with their compositions. Furthermore, significant improvements in the accuracies of the predictions for the Curie temperature and magnetization of the quaternary alloys are obtained by introducing the similarities, with the reduction in mean absolute errors (MAE) of 36% and 18%, respectively. The results show that the eRSM can adequately measure the similarities and dissimilarities between materials in these datasets with respect to mechanisms of the target properties.

I. INTRODUCTION

The concept of machine learning has great potential for application in several areas of materials science, especially for discovering new materials. In materials science, a number of the problems addressed by data-driven approaches require the effective utilization of existing material data for predicting the properties of new materials and understanding the underlying physicochemical mechanisms 1 . From an engineering point of view, developing a datadriven model that quickly and accurately predicts the physical properties of possible materials from accumulated data can reduce the time required for material development. By applying a data-driven model to screen materials in-silico, we narrow down the candidates that require expensive calculations and experiments to verify. If there are sufficient independent supervised data from the distribution of the target material data, a model with high prediction accuracy can be built using state-of-the-art data-driven techniques. However, because materi-55 als research and development aim to develop materials 56 that are superior to existing ones, the distribution of the 57 target prediction data may be completely different from 58 the distribution of the original training data. Therefore, 59 there are concerns about whether data-driven models can 60 accurately predict the physical properties of new materi-61 als. 62 On the contrary, considering the history of materi-63 als science, researchers have discovered various materi-64 als through a loop of hypothesis and verification based 65 on their knowledge, experience, and serendipity. Partic-66 ularly, hypothesizing relies heavily on describing, inter-67 preting, and understanding the underlying physicochem-68 ical mechanisms of the observed physical phenomena of 69 materials. Scientifically, applying a data-driven approach 70 to extracting knowledge from existing complicated mate-71 rial data can accelerate the process of describing, inter-72 preting, and understanding the physicochemical mech-73 anisms underlying the observed physical phenomena of accelerated material discovery," npj Computational Materials 5, 18

materials. This reduces the time required for material development. Hence, to be effectively applied to materials science, data-driven approaches that are interpretable and understandable to humans must be developed.

One of the most intuitive and interpretable data-driven approaches for humans is analogy-based inductive reasoning, which infers the properties of a new instance using the information of the observed instances that are most similar to it 2-5 . By applying analogy-based models, we can easily explain the reasoning process behind the predictions and reveal the physicochemical mechanisms rationalizing the observations 6,7 . Materials scientists have resolved different problems in materials science by systematizing information about analogies in composition or structure between materials that exhibit similar physicochemical properties [8][9][10][11] .

Especially, in a discipline based on fundamental principles, such as condensed matter physics, it is essential to elucidate the physical mechanisms and which materials are manifested through each of these physical mechanisms. However, despite several new materials and superior properties having been discovered, it is still difficult to appropriately quantify the similarities between materials to elucidate the underlying physicochemical mechanisms of these properties. Furthermore, this difficulty arises from the fact that the mechanisms of materials' properties are typically interpreted in terms of physicochemical concepts based on relative criteria.

The phenomenon of superconductivity in materials, which originates from the instability of metals, is a wellknown example of the above difficulty. One of the most successful theories that describe the microscopic mechanisms is the Bardeen-Cooper-Schrieffer (BCS) theory for superconductivity 12 , the origin of which is electronphonon interactions. However, there also exist other mechanisms. For example, one of the most plausive origins of superconductivity in the high-T C cuprates is electron-electron interactions. Nevertheless, it is not easy to achieve a consensus of classifying the superconducting mechanism of materials among researchers as the origins. Although the emergence of superconductivity is basically due to the instability in the metallic phase, it is not easy to achieve the consensus because both the mentioned and other mechanisms can contribute cooperatively in increasing the T C value, for example. Although it is challenging to classify individual materials when considering phenomena that cause such a situation, it is expected that the underlying physical mechanisms can be discovered if we can inductively quantify the similarities between the materials of interest and group similar materials using all observation data. Incidentally, inductive reasoning with inefficient similarity assessment can lead to misidentification of outliers 13 and difficulty in explaining the underlying physicochemical mechanisms of datasets using single models. Therefore, regarding predefined material descriptors, an exhaustive examination of all possible hypotheses about the unknown physicochemical mecha-nisms is necessary to assess the similarity between the does not provide any information about the simi-64 larity between (x i , y i ) and (x j , y j ).

65

To quantitatively evaluate whether (x i , y i ) can be con- In other words, the interval that determines the proba-81 bility that a data instance (x i , y i ) belongs to f r is α σ xi , 82 and if the data instance falls outside this interval, it is 83 determined that it does not belong to f r . By increasing 84 or decreasing the value of the parameter α, the condition for determining whether a data instance (x i , y i ) belongs to f r is relaxed or tightened, making p(O i |f r ) larger or smaller, respectively. Optimal values of α can be chosen using statistical criteria and appropriate validation methods; however, we set α = 2 for all experiments in this work to reduce model complexity. We consider p(O i |f r ) as the probability that (x i , y i ) is generated by f r , and 1 illustrates the process of modeling the probability p(O i |f r ).

74 p(O i |f r ) = 1 if ∆ i ≤ 3 σ 2 × +∞ ∆i-3 σ N (u|0, α σ xi ) du otherwise , (1) where ∆ i = |y i -ŷi | = |y i -f r (x i )| is the deviation
p(O i |f r ) = 1 -p(O i |f r ) is the probability that (x i , y i ) is not generated by f r . Supplementary Figure
Events where (x i , y i ) or (x j , y j ) is generated by the function f r are independent events. Therefore, considering the function f r , we can evaluate the joint probabilities of observing:

• Both data instances:

p(O i , O j |f r ) = p(O i |f r ) × p(O j |f r );
(2)

• Only one of the data instances:

p(O i , O j |f r ) + p(O i , O j |f r ) = p(O i |f r ) × p(O j |f r ) + p(O i |f r ) × p(O j |f r ); (3) 
• Neither of the data instances:

p(O i , O j |f r ) = p(O i |f r ) × p(O j |f r ) = 1 -p(O i , O j |f r ) -p(O i , O j |f r ) -p(O i , O j |f r ). (4) 

B. Modeling evidence by mass functions

Considering the Dempster-Shafer theory framework 16 , we begin by defining the frame of discernment Ω. Let Ω = {s, ds} be the universal set representing the similarity states of any two data instances (x i , y i ) and (x j , y j ).

s and ds denote the similarity and dissimilarity states between the two data instances, respectively.

According to the Dempster-Shafer theory, the evidence of the similarity states between these two data instances is represented by a mass function m i,j (or a basic probability assignment) 16 . This assigns probability masses to all the nonempty subsets of Ω (X = {{s}, {ds}, {s, ds}}).

It is defined as follows:

m i,j : X → [0, 1] with E∈X m(E) = 1. (5) 
The masses assigned to {s} and {ds} reflect the degrees of belief exactly committed to the evidence to support the similarity and dissimilarity between (x i , y i ) and (x j , y j ),

respectively. The weight assigned to {s, ds} expresses the degree of belief that the evidence provides no information about the similarity (or dissimilarity) between (x i , y i ) and (x j , y j ).

Therefore, the mass function m i,j fr , which models a piece of evidence of the similarity between (x i , y i ) and (x j , y j ) collected from f r , is defined as follows:

m i,j fr ({s}) = p(O i , O j |f r ) γ i,j (6) 
m i,j fr ({ds}) = p(O i , O j |f r ) + p(O i , O j |f r ) γ i,j (7) 
m i,j fr ({s, ds}) = 1 -

1 γ i,j + p(O i , O j |f r ) γ i,j , (8) 
where γ i,j = (e σ ∆y +1)×( Assuming that we can collect q pieces of evidence from 55 F r = {f 1 r , . . . , f q r }, a set of q reference functions is gen- 

σx i σ +1)×( σx j σ +1)
64 m i,j {f l r ,f k r } (E) = (m i,j f l r ⊕ m i,j f k r )(E) = Et∩Ev=E m i,j f l r (E t ) × m i,j f k r (E v ) 1 - Et∩Ev=∅ m i,j f l r (E t ) × m i,j f k r (E v ) , (9) 
where E, E t , and E v are nonempty subsets of Ω. Demp-65 ster's rule is commutative and associative.
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Based on Dempster's rule, the obtained mass functions 67 corresponding to the q pieces of evidence are combined 68 to assign the final mass m i,j Fr as follows:

69 m i,j Fr (E) = m i,j f 1 r ⊕ m i,j f 2 r ⊕ • • • ⊕ m i,j f q r (E). (10) 
We perform similar analyses for all pairs of data in- between them. Thereafter, the obtained matrix is applied for further unsupervised data mining analysis, such as clustering or data visualization.

III. EXPERIMENTS AND RESULTS

In this section, we perform three experiments to demonstrate the application of our similarity measurement in dealing with outliers and data generated by multiple mechanisms when designing materials descriptors.

We apply the eRSM to measure similarities between magnetic of three datasets for detecting subgroups of ma- 

A. Datasets

The details of the datasets investigated in this study are as follows.

• The remaining alloys do not show apparent similarities with alloys in groups G T C 1 and G T C 2 ; thus, they are not assigned to any group.

(b) (a) 𝐺 ! "#$ 𝐺 % "#$ Outlier 𝐺 ! "#$ 𝐺 % "#$ Outlier Model 𝐺 ! "#$ Model 𝐺 % "#$ (c) 𝐺 ! & ! 𝐺 % & ! Outlier 𝐺 ! &! 𝐺 % &! Outlier Model 𝐺 ! &! Model 𝐺 % &! Model Outlier (e) (d) (f)
Following the same analysis procedure as in the previous section, we trained regression models for Curie temperature using data from each of the three groups Co-X when focusing on the magnetization mechanisms. 

G T C 1 , G T C 2 ,

  59materials. Furthermore, similarity measures are usually 60 context-dependent. Because the context changes, the 61 similarity measure must be modified to adequately cap-62 ture the phenomena under study14,15 . Thus, a quanti-63 tative measure of similarity needs to consider the uncer-64 tainty arising from the context or the measurement itself, 65 especially in situations where material data are often in-66 sufficient and heavily biased. Moreover, similarities from 67 different contexts may not be directly comparable in the 68 integration to draw conclusions about the similarity be-69 tween materials. These reasons make it challenging to 70 apply data-driven approaches to materials science. 71 To overcome such issues and efficiently extract knowl-72 edge from the data, we propose a new approach that 73 shifts from measuring the similarity between materials 74 to quantitatively measure the confidence in their simi-75 larities. We adopt the Dempster-Shafer theory 16-18 , re-76 ferred to as the evidence theory, to develop an eviden-77 tial regression-based similarity measurement (eRSM) for 78 detecting subgroups of materials such that leaned mod-79 els from the subgroups show high correlations between 80 descriptors and the target property of the constituent 81 materials. Further analysis of models describing the sub-82 groups provide valuable information to extract, interpret, 83 and understand physical mechanisms. The Dempster-84 Shafer theory can be regarded as a generalization of the 85 Bayesian approach for solving the problem of incomplete 86 and insufficient information. Moreover, it is suitable for 87 solving material data problems 19,20 . The measure of sim-88 ilarity here refers to whether the observed physical prop-89 erties of the materials under study are described using 90 the same hidden mechanism that has not yet been re-91 vealed. In other words, we consider any pair of materials 92 (in the dataset) as similar if their physical properties can 93 be described by the same hidden mechanism; otherwise, 94 the pair of materials is considered dissimilar. We then 95 first generate numerous hypothetical mechanisms by ran-96 domly choosing subsets of data instances and construct-97 ing regression models for each subset. Each regression 98 model is considered a source of evidence of the similari-99 ties between materials. Thereafter, the Dempster-Shafer 100 theory 16-18 , which has a foundation for modeling and 101 combining the uncertainty of evidence, is applied to inte-102 grate the collected pieces of evidence to draw conclusions 103 about the similarities between materials. The eRSM con-104 sists of three main steps as follows: 105 1. Collect sources of evidence: Hypothetical mecha-106 nisms are collected from a dataset by applying re-107 gression analysis with single or mixture models and 108 are used as sources of evidence to rationalize the 109 similarity states of materials.

110 2 .FIG. 1 .

 21 FIG.1. Illustrative figures of the three possible similarity states between two data instances (blue circles), including similar (a), dissimilar (b), and uncertain (c), considering a referential regression model fr (black line). The gray region is the interval that determines whether a data instance can be considered to have been generated by regression model fr.
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  have been generated by the function f r (Fig.1 a).

57••

  Dissimilar: Only one of the data instances can be 58 considered to have been generated by the function 59 f r (Fig. 1 b).60 Uncertain: Neither of the data instances can be 61 considered to have been generated by the function 62 f r (Fig. 1 c). The uncertain state indicates that f r 63
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  sidered to have been generated by the regression function 67 f r , we use the likelihood p(O i |f r ), the probability of event 68 O i that a data instance (x i , y i ) is observed, considering 69 f r . The likelihood p(O i |f r ) is modeled using a normal 70 distribution with mean and standard deviation depend-71 ing on the predicted target value ŷi = f r (x i ) and the cor-72 responding standard error σ xi by f r , respectively. This 73 is expressed as:

75

  from the true to the predicted target values of data in-76 stance i using f r , and σ is the average of the predictive 77 standard error of all the data instances in D ref . α is 78 the hyperparameter used to adjust the condition that re-79 stricts the data instances belonging to the function f r . 80
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  erated from D to evaluate the similarity between a pair 57 of data instances with indices i and j. According to the 58 Dempster-Shafer theory framework, any two pieces of ev-59 idence collected from the reference functions f l r and f k r , 60 which are modeled by the corresponding mass functions 61 m i,j f l r and m i,j f k r , respectively, can be combined using the 62 Dempster rule of combination to assign the joint mass 63 m i,j {f l r ,f k r } to each nonempty subset E of Ω as follows:

  70stances in D to construct symmetric matrices M com-71 prising the similarities (M [i, j] = M [j, i] = m i,jFr ({s}))

terials: 1 )

 1 The experimentally observed Curie temperature dataset (D binary ) of binary alloys for transitioning rare earth metals, 2) Dataset of calculated magnetization of quaternary high-entropy alloys (D M ag quaternary ), and 3) Dataset of calculated Curie temperature of quaternary high-entropy alloys (D T C quaternary ). Note that the datasets D M ag quaternary and D T C quaternary contain similar alloys and differ only in the target properties.

Figure 2 7 30 tering analysis results. 31 To

 23031 FIG. 2. (a) Observed and predicted Curie temperature of alloys in the dataset D binary using model generated for nickel (Ni), iron (Fe), and manganese (Mn)-based alloys. The blue and gray points indicate cobalt (Co)-based alloys and alloys of other transition metals (Ni, Fe, Mn), respectively. (b) Prediction error of Co-based alloys when excluding (top) or including (bottom) data of other Co-based alloys to the training dataset.

30 T 31 G M ag 1 and G M ag 2 ,

 303112 FIG. 5. (a,d) Heatmaps illustrating the similarity matrices M M ag quaternary (a) and M T C quaternary (d) extracted from datasets D M ag quaternary and D T C quaternary , focusing on mechanisms of magnetization and TC , respectively. (b,e) The confusion matrix summarizes the differences between the magnetization (b) or TC (e) mechanisms of alloys in extracted groups. (c,f) Visualization of quaternary alloys in the two-dimensional embedding spaces constructed by applying the T-distributed Stochastic Neighbor Embedding (t-SNE) to M M ag quaternary (c) and M T C quaternary (f). Red, blue, and gray contours indicate gaussian models ĜMag 1

FIG. 7 ., G M ag 2 ,Figure 7 , G M ag 2 ,

 7272 FIG. 7. Proportions of quaternary alloys containing Fe or Co in group G M ag 1
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  figuration, the T C can be estimated from the spin-spin 35

  

  ). The gray region is the interval that determines whether a data instance can be considered to have been generated by regression model fr. , y i ) and (x j , y j ) in D eval .

				36	sidering D ref , we can generate a single or multiple ref-
				37	erence functions f r : R n → R using a Gaussian process
				38	(GP) 21 or a mixture of Gaussian processes (MGP) 22 , re-
				39	spectively. This study applies GP-or MGP-based models
				40	instead of other nonlinear regression models such as ker-
				41	nel ridge regression 23 , random forest regression 24 , or arti-
				42	ficial neural networks 25 because GP or MGP can quantify
				43	the uncertainty of its prediction without introducing any
				44	other statistical validation. The sampling ratios of D ref
				45	from D are fixed at 0.3 and 0.7 for the experiments with
				46	GP and MGP, respectively. Each reference function f r
				47	is considered as a source to provide pieces of evidence
				for the similarity between (x i 48
				49	The function f r is not used to provide any information
				50	about the similarities between the data instances in D ref
				51	or between a data instance in D ref and a data instance
	1 2	combination is used to integrate the pieces of the evidence.	52 53 54	in D eval . This is to exclude self-evaluation to ensure the objectivity of the evidence. Regarding a reference func-tion f r , we consider the state of the similarity between
	3	The steps of the eRSM are explained in detail in Sec-	55	(x i , y i ) and (x j , y j ) as:
	4 5	tion II. Regarding the framework of the evidence theory, the essential contributions of the eRSM are collecting		• Similar: Both data instances can be considered to
	6	sources of evidence about the similarities between mate-	
	7	rials from datasets and designing suitable mass functions	
	8	to model the pieces of evidence rationally. The effective-	
	9	ness of obtained similarities using the eRSM for subdi-	
	10	viding alloys from datasets into homogenous subgroups	
	11	is supported by experiments on 1) a dataset of binary	
	12	alloys with their Curie temperature as a target property	
	13	(Section III B); and 2) two dataset of quaternary alloys	
	14	with their magnetization (Section III C) and Curie tem-	
	15	perature (Section III D) as the target properties. Further	
	16	analysis of the detected subgroups to interpret the under-	
	17	lying physical mechanisms is shown in Section III E	
	18	II. METHODOLOGY		
	19	We consider a dataset D consisting of p data in-	
	20	stances. We assume that a data instance with index	
	21	i in D is described by n predefined descriptors and	
	22	is represented by an n-dimensional numerical vector,	
		x i = x 1 i , x 2 i , . . . , x n i	∈ R n . The target property of	
	24	the data instance x i is y i ∈ R. Thereafter, the dataset	
	25	D = {(x 1 , y 1 ), (x 2 , y 2 ) . . . (x p , y p )} is represented using	
	26	a (p × (n + 1)) matrix. In this study, we consider that	
	27	D may contain pairs of data instances x i and x j , where	
	28	x i ≈ x j ; however, the value of y i is far from y j .	
	29	A. Collecting sources of similarity evidence	
	30	We perform random subset sampling of the data in-	
	31	stances without replacement to collect a large amount of	
	32	evidence of the similarity between pairs of data instances	
	33	in D. Considering each sample, we obtain two datasets:	
		the reference dataset, D ref , and the evaluation dataset,	

  is a discount-

	41
	ing factor 16,26 , which describes the unreliability of evi-

42

dence about the similarity between (x i , y i ) and (x j , y j ) 43 collected from a source of evidence f r . ∆ y is the varia-44 tion range of the target variable y in the dataset D. The 45 smaller σ is relative to ∆ y , the more reliable the learned 46 regression function f r is. Also, when σ xi and σ xj are 47 smaller than σ, f r can provide reliable evidence for the 48 relationship between (x i , y i ) and (x j , y j ). By contrast, 49 when σ xi and σ xj are large compared to σ, f r cannot pro-50 vide reliable evidence for the relationship between (x i , y i ) 51 and (x j , y j ). A detailed explanation of each component 52 in γ i,j is provided in Supplementary Section I. 53 C. Dempster's rule in combining evidence 54
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