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Connectionist Temporal Classification (CTC) has become a standard for deep learning-based temporal alignment allowing relevant probabilistic distributions to be learned. However, by nature, CTC is a transcription objective that can be minimized without guaranteeing any alignment properties. This work aims to study several constraints to help CTC generating alignments. With a fully convolutional architecture coupled with multi-head attention, we investigate the task of phonetic alignment for clean speech and singing signals. The focus is set on the impact of additional losses, namely spectral envelope reconstruction, temporal structure invariance and guided monotony. Results show that, once scaled to have identical temporal dependence, combining all of these constraints produces best performances.

Introduction

Connectionist Temporal Classification (CTC) is an objective function used to train deep neural networks. It has originally been developed for labeling and segmenting sequences [START_REF] Graves | Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks[END_REF] and has gained tremendous popularity in the past few years as seen in many sequence-to-sequence (seq2seq) problems, especially towards end-to-end (E2E) architectures [START_REF] Graves | Towards end-to-end speech recognition with recurrent neural networks[END_REF][START_REF] Xu | Lcanet: End-to-end lipreading with cascaded attention-ctc[END_REF][START_REF] Xue | A novel spec-cnn-ctc model for end-to-end speech recognition[END_REF][START_REF] Zhan | Densenet-ctc: An end-to-end rnn-free architecture for context-free string recognition[END_REF].

The main idea of CTC algorithm is to output probabilistic distributions from which sequences are estimated. Its founding principle is a one-to-many prediction framework based on the existence of a blank label, usually denoted ε, that allows several acceptable sequences from a given input [START_REF] Hannun | Sequence modeling with ctc[END_REF].

The proposed framework is particularly adapted for audio data that are sequential in time. As a result, CTC has been applied with success to various audio-oriented tasks including speech recognition [START_REF] Zhang | Towards end-to-end speech recognition with deep convolutional neural networks[END_REF], note transcription [START_REF] Roman | A holistic approach to polyphonic music transcription with neural networks[END_REF], singing language identification [START_REF] Renault | Singing language identification using a deep phonotactic approach[END_REF], and detection of sung explicit content [START_REF] Vaglio | Audio-based detection of explicit content in music[END_REF].

In this work, we aim to study in details the behaviour of the CTC loss for audio alignment tasks [START_REF] Arzt | Audio-to-score alignment using transposition-invariant features[END_REF][START_REF] Fujihara | Lyrics-to-audio alignment and its application[END_REF], i.e., automatic synchronization of audio representations (e.g., voice recordings, music performances) with information often of symbolic nature (e.g., music scores, text transcripts).

CTC has launched a new trend in this literature and has the great benefit of not requiring aligned data for training models [START_REF] Stoller | End-to-end lyrics alignment for polyphonic music using an audio-to-character recognition model[END_REF][START_REF] Vaglio | Multilingual lyrics-to-audio alignment[END_REF]. Yet, alignment remains intrinsically difficult to couple with CTC precisely due to this one-to-many mapping it exploits. Indeed, CTC measures by nature a transcription cost, therefore it can be minimized without guaranteeing alignment properties.

Some approaches have tried regularization on the CTC loss to better capture the role of its blank label [START_REF] Bluche | Framewise and ctc training of neural networks for handwriting recognition[END_REF], prevent peaky probability distribution [START_REF] Liu | Connectionist temporal classification with maximum entropy regularization[END_REF], or improve its scalability with Cross-Entropy through sampling [START_REF] Variani | Sampled connectionist temporal classification[END_REF]. However, to the best of the authors' knowledge, very few works were dedicated to ensure the emergence of alignment from CTC probabilities [START_REF] Teytaut | Phoneme-to-audio alignment with recurrent neural networks for speaking and singing voice[END_REF]. This paper proposes to evaluate how constrained CTC, in opposition to basic CTC, performs for the alignment between audio and text (see Fig. 1). We set our sights on phoneme-toaudio alignment [START_REF] Yuan | Using forced alignment for phonetics research[END_REF][START_REF] Backstrom | Forced-alignment of the sung acoustic signal using deep neural nets[END_REF], which is particularly challenging due to the high temporal precision needed. We focus on the impact of additional losses, namely envelope reconstruction, temporal structure invariance and guided monotony, that we introduce.

The contributions of this work are:

• A fully convolutional network for CTC-based voice alignment, without phone transcripts as inputs and free from recurrent layers (contrary to recent works [START_REF] Schulze-Forster | Joint phoneme alignment and text-informed speech separation on highly corrupted speech[END_REF][START_REF] Teytaut | Phoneme-to-audio alignment with recurrent neural networks for speaking and singing voice[END_REF]);

• A procedure to consistently combine duration-dependent loss functions into multi-objective losses;

• An overview on how to guarantee alignment from CTC posteriogram with definition of additionnal constraints.

Section 2 introduces the baseline neural architecture used for benchmarking in this study. The additive losses and their scaling are then presented in section 3. Next, section 4 exposes alignment results on clean speech and singing datasets. Finally, in section 5, we conclude on the influence of constraining CTC for temporal alignment with multi-objective training.

Neural architecture

This section presents the neural architecture used in this paper. In opposition to recent deep learning approaches for alignment [START_REF] Teytaut | Phoneme-to-audio alignment with recurrent neural networks for speaking and singing voice[END_REF][START_REF] Schulze-Forster | Joint phoneme alignment and text-informed speech separation on highly corrupted speech[END_REF], the current proposal has two main advantages: (1) it does not need non-aligned text transcripts as model's inputs, but only at inference time (forced alignment) ; and (2) it is fully convolutional to ensure that information is processed while respecting temporality. The absence of recurrent layers also leads to more stable and easier trainings. Moreover, a multi-head self-attention mechanism [START_REF] Vaswani | Attention is all you need[END_REF] is introduced following previous works inciting to link CTC with attention [START_REF] Watanabe | Hybrid ctc/attention architecture for end-to-end speech recognition[END_REF][START_REF] Kim | Joint ctc-attention based end-to-end speech recognition using multi-task learning[END_REF][START_REF] Park | Hybrid ctcattention network-based end-to-end speech recognition system for korean language[END_REF]. The complete baseline architecture is depicted on Fig. 2. From P, a sequence can be predicted ŷ ∈ (A ∪ {ε}) T ×1 along with an estimation of MFCCs features X ∈ [0, 1] T ×F .

A study on constraining CTC

This sections gives background on the loss functions that we manipulate and their combination. Since all losses are durationdependent, we propose to ensure that they all scale similarly, linearly with the time length T . Their associated scaling will be established from worst-case scenario studies. The model's learnable parameters are denoted Θ.

Connectionist Temporal Classification

The CTC loss ensures that the sequence ŷ decoded from the posteriogram P is close to the groundtruth text y ∈ A M ×1 , once that repeated labels are merged and blank labels removed with an operator B. It is defined as a negative log-likelihood computed from all acceptable sequences ŷ and time frames t,

LCTC(Θ) = -log      ∈ŷ ŷ∈B -1 (y) T -1 t=0 P[t, ]      . ( 1 
)
Worst-case scenario. The number of alignments in CTC computation, i.e., the cardinal of B -1 (y), is T +M T -M [START_REF] Hannun | Sequence modeling with ctc[END_REF][START_REF] Mao | Number of alignments in connectionist temporal classification (ctc)[END_REF]. For a uniform posteriogram, we thus estimate the loss value to

LCTC(Θ) ∼ -log T + M T -M 1 L + 1 T . ( 2 
)
To go even further, we assume 1 that there are much more time frames than sequence length, i.e., T M , leading to

LCTC(Θ) ∼ log(L + 1)T. (3) 

Envelope reconstruction

From the final dense CTC layer, we generate an estimate of the spectral envelope (MFCCs) X. It must be as close as possible to the original features X to reinforce temporal coherence in the CTC predictions as in [START_REF] Teytaut | Phoneme-to-audio alignment with recurrent neural networks for speaking and singing voice[END_REF]. We therefore minimize the L1 loss

LREC(Θ) = X -X 1 = T -1 t=0 F -1 f =0 X[t, f ] -X[t, f ] . (4)
Worst-case scenario. Given that X, X ∈ [0, 1] T ×F , the maximum difference one can observe is

LREC(Θ) ∼ F T. (5) 
Note that a key difference with [START_REF] Teytaut | Phoneme-to-audio alignment with recurrent neural networks for speaking and singing voice[END_REF] is that the envelope X is reconstructed instead of the spectrogram |S |. Indeed, |S | estimation implies that F0 values must propagate through the network, but F0 detection is not relevant for the alignment task.

Temporal structure invariance

In the same set of mind, we want the CTC predictions to have the same temporal structure as the original spectrum. To do so, we compute the cosine self-similarity matrices (SSM) [START_REF] Foote | Visualizing music and audio using self-similarity[END_REF] We then minimize the L1 between S and Ŝ, that is

LSTR(Θ) = S -Ŝ 1 = T 2 -1 t=0 T 2 -1 t=0 S[t, t] -Ŝ[t, t] . (6) Worst-case scenario. Given that S, Ŝ ∈ [0, 1] T 2 × T 2 , the maximum difference one can observe is LSTR(Θ) ∼ 1 4 T 2 . (7) 

Guided monotony

Speech/singing signals and phonetic transcripts are monotonic.

Aligning audio with such sequences implies uncovering a pseudo-diagonal matrix showing that labels are pronounced with the flow of time. Let D ∈ [0, 1] T ×M be a Gaussiandecreasing matrix, with σ = 0.1, defined ∀t, ∀m by the rule

D[t, m] = exp - t T - m M 2 /2σ 2 . ( 8 
)
One can notice that the element-wise product between D and the multiplication of posteriogram P (without blank) and one-hot target sequence y ∈ {0, 1} M ×L precisely yields the alignment matrix which is expected to be monotonic (e.g., Fig. 2 and Fig. 3). This can happen only if CTC systematically highlights the full duration of each label. Hence, we define and impose the guided monotony (inspired by guided attention [START_REF] Tachibana | Efficiently trainable text-to-speech system based on deep convolutional networks with guided attention[END_REF]) constraint:

LDIA(Θ) = D softmax Py T -D 1 . (9) 
Worst-case scenario. This loss is maximized when CTC does not recognize any target labels, that is LDIA(Θ) = ||D||1. The pseudo-diagonal structure of the matrix implies that its total L1 norm is equal to 3 4 of the sum of Gaussian integrals on each of the M lines. It comes:

LDIA(Θ) ∼ 3 4 √ 2πσM T ∼ 2σM T. (10) 
Note that this constraint is exclusively exploited during training, so that phoneme sequences are not inputs of the model at inference time, in opposition to both systems [START_REF] Teytaut | Phoneme-to-audio alignment with recurrent neural networks for speaking and singing voice[END_REF][START_REF] Schulze-Forster | Joint phoneme alignment and text-informed speech separation on highly corrupted speech[END_REF].

Losses scaling

The present study aims to couple various losses, raising the question of how to combine them and their respective trade-off, which is a concern for all multi-task learning problems [START_REF] Kim | Joint ctc-attention based end-to-end speech recognition using multi-task learning[END_REF][START_REF] Liang | A simple approach to balance task loss in multi-task learning[END_REF].

It has been shown that chosen objective criteria do not result in similar variations when audio length changes. This is a major issue since different elements in the training set will not end up inducing comparable updates for gradients and weights.

Consequently, from previous worst-case scenario estimates, we propose to scale each loss so that they have identical, linear dependency on T , which is reasonable because time segments in sequences will always have the same impact independently of the phrase they are found in. The scaled losses are defined as 

L n CTC (Θ) ←
L(Θ) = L n CTC (Θ) + 1 3 i δiL n i (Θ) (11) 
with i an index over all above-mentioned constraints and δi the Kronecker delta. This results in 8 configurations to be tested. Their effect during training is shown on Fig. 3. The factor 1 3 ensures that even all joint constraints do not dominate the CTC.

Evaluations

Datasets

To evaluate the impact of constraining CTC for phoneme-toaudio alignment, voice datasets are considered. For speech, TIMIT [START_REF] Zue | Speech database development at mit: Timit and beyond[END_REF] offers 5h of clean solo English spoken by various speakers. We use 73.4%/13.3%/13.3% of data in training, validation, and test sets. For singing, DIMITRIOS proposes 3h of solo Greek byzantine singing [START_REF] Grammalidis | The i-treasures intangible cultural heritage dataset[END_REF]. We split it according to biphone (i.e., two consecutive phonemes) distribution, making sure that unique biphones are in the train set, and balance less rare biphones between validation and test sets. The final split is 70.0%/10.0%/20.0%. The size of phonetic alphabet A, with pause, is L = 45 for TIMIT and L = 50 for DIMITRIOS. All convolution blocks are made of batch normalization, 512-filter Conv1D with a kernel of 3, and 0.2 dropout layers. When necessary (i.e., Fig. 2), a final dense layer with relevant dimension and activation is applied. The number of attention heads has been fixed to H = 4 after a brief ablation study.

Trainings are done on a single GeForce GTX 1080 Ti. One epoch is composed of 128 steps, each processing 16-sample batch. Early stopping prevents overfitting. Codes are TF2.6based and inspired from [START_REF] Soullard | Ctcmodel: a keras model for connectionist temporal classification[END_REF]. For all possible configurations, we minimize one or several objective(s), that are summed, with default ADAM optimizer and a learning rate set to 10 -4 .

Results

Alignment predictions

In inference mode, the model is applied on a spectrogram and generates a posteriogram P ∈ [0, 1] T ×(L+1) . Then, a forced alignment is computed on the (non-aligned) phonetic transcript y ∈ A M ×1 following the procedure in [START_REF] Hannun | Sequence modeling with ctc[END_REF][START_REF] Teytaut | Phoneme-to-audio alignment with recurrent neural networks for speaking and singing voice[END_REF], i.e., cumulative score, blank distribution and beam search decoding.

Performance analyses

In Fig. 4, are depicted the alignment Mean Average Error (MAE), computed over each phone's edge (begin/end) timestamp, on the test sets for all configurations and reference [START_REF] Teytaut | Phoneme-to-audio alignment with recurrent neural networks for speaking and singing voice[END_REF].

Regarding our contributions, one can see that (1) our neural baseline is suitable for clean voice alignment ; (2) there is a clear, significant impact of the proposed multi-training scaling procedure, changing the MAE's order of magnitude ; and (3) combining all introduced and scaled constraints with the CTC results in best performances, much comparable to the reference.

Yet, one must note that the similarity constraint by itself cannot guarantee alignment. In practice, posteriograms can be trickily shaped to have correct structures yet without predicting the full duration of labels. A positive impact is measured when coupled with envelope reconstruction and guided monotony.

The best configuration, CTC and all scaled constraints, leads to a MAE of 22.6ms on speech and 29.8ms on singing. This is in line with reference performances reported in Fig. 4. Although a bit weaker on speech (22.6ms vs 20.6ms), which will be addressed in future works, our network uses 10× less parameters (4.5M vs 48M) and trains twice faster (2.1h vs 4.8h).

Perspectives

This work is meant to be continued in diverse research axes:

1) Informed guided monotony. In its current form, pseudodiagonal matrix D used to force monotony carries a prior that all labels have similar duration, which is intrinsically not true. One could investigate a phoneme-informed or duration-focused approach by learning parameters defining matrix D.

2) Improve alignment precision. The results obtained on speech motivates for further improvement in alignment quality. For instance, pre-training the acoustic model with large speech corpora (e.g., audio books) may be an interesting starting point.

3) Real world use cases. A major challenge is to apply our model on complete songs. Non-a cappella recordings are much harder to process due to the presence of music accompaniment. One can rely on singing voice extraction as a pre-processing step, though these separation algorithms introduce artifacts that might crop voice or some phonemes, which is hard to quantify.

Conclusion

This paper was aimed at constraining Connectionist Temporal Classification (CTC) to guarantee the emergence of temporal alignment properties from generated posteriograms. However currently limited to clean voice datasets, we have (1) designed a fully convolutional neural baseline with multi-head attention well-adapted to CTC-based alignment ; (2) presented a multitask scaling method from worst-case scenario studies of each loss ; [START_REF] Xu | Lcanet: End-to-end lipreading with cascaded attention-ctc[END_REF] shown that additional constraints such as envelope reconstruction, structural invariance and guided monotony are, once scaled, highly beneficial to phonetic alignment, inducing results in line with state-of-the-art precision.
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Figure 2 :

 2 Figure 2: Baseline network architecture. Spectrograms are processed with convolutional layers and (self-)multi-head attention towards the generation of robust CTC posteriograms allowing envelope (MFCCs) reconstruction, structural invariance, and sequence monotony.

  of |S | and the final CTC dense layer, denoted S and Ŝ ∈ [0, 1] T 2 × T 2 , respectively. The SSM are ( T 2 × T 2 )-shaped because we use an (4 × 4)average pooling operation with stride (2 × 2) to smooth local structural singularities and reduce memory storage as well.

Figure 3 :

 3 Figure 3: Impact of the several losses constraining CTC throughout training. Columns, from left to right, depict original envelope (MFCCs), envelope reconstruction, CTC posteriogram, text-to-audio monotony and input/output structures as self-similarity matrices.
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 11 L+1) LCTC(Θ)....L n REC (Θ) ← LREC(Θ)................ L n STR (Θ) ← 4 T LSTR(Θ)..............L n DIA (Θ) ← 1 2σM LDIA(Θ)............. The goal now is to quantify how alignment performances evolve when minimizing the global loss

Figure 4 :

 4 Figure 4: Evaluation of alignment systems when mixing CTC, reconstruction (REC), structural (SIM) and monotonic (DIA) losses, with or without scaling. Error bars correspond to standard deviations. MAEs greater than 200ms are masked for the sake of readability.

Note that the CTC algorithm necessarily needs that T > M . It is also worth mentioning that T and M may vary for each audio-text pair.