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Abstract

When used with deep learning, the symbolic
music modality is often coupled with language
model architectures. To do so, the music needs
to be tokenized, i.e. converted into a sequence
of discrete tokens. This can be achieved by dif-
ferent approaches, as music can be composed
of simultaneous tracks, of simultaneous notes
with several attributes. Until now, the proposed
tokenizations rely on small vocabularies of to-
kens describing the note attributes and time
events, resulting in fairly long token sequences,
and a sub-optimal use of the embedding space
of language models. Recent research has put
efforts on reducing the overall sequence length
by merging embeddings or combining tokens.
In this paper, we show that Byte Pair Encod-
ing, a compression technique widely used for
natural language, significantly decreases the se-
quence length while increasing the vocabulary
size. By doing so, we leverage the embedding
capabilities of such models with more expres-
sive tokens, resulting in both better results and
faster inference in generation and classification
tasks. The source code is shared on Github1,
along with a companion website2. Finally, BPE
is directly implemented in MidiTok3, allowing
the reader to easily benefit from this method.

1 Introduction

When used with deep learning, the symbolic music
modality is mostly represented as discrete and used
with language models (LM) such as Transformers
(Vaswani et al., 2017). These models receive se-
quences of tokens as input, convert them to learned
embedding vectors representing their semantic fea-
tures in a continuous space, and process these em-
beddings for the task at hand. A token is a distinct
element, known within a finite vocabulary. For nat-
ural language, a token can be a word, subword or

1https://github.com/Natooz/bpe-symbolic-music
2https://Natooz.github.io/BPE-Symbolic-Music/
3https://github.com/Natooz/MidiTok

punctuation mark. For symbolic music, tokens usu-
ally represent note attributes or time events, such
as pitch or duration. Tokenizing music, i.e., con-
verting raw data into tokens, can be achieved by
several ways, as music can be composed of simul-
taneous tracks, of simultaneous notes with several
attributes such as their pitch and duration. Multiple
approaches exist to represent these features.

Recently, the token representation of symbolic
music has been studied, with the goal to improve
1) the results, e.g. the quality of generated results or
the accuracy of Music Information Retrieval (MIR)
tasks, and; 2) the efficiency of the models. The
former is tackled with more expressive represen-
tations (Huang and Yang, 2020; Kermarec et al.,
2022; von Rütte et al., 2023; Fradet et al., 2021),
and the latter by representations based on either
token combinations (Payne, 2019; Donahue et al.,
2019), or embedding pooling (Hsiao et al., 2021;
Zeng et al., 2021; Ren et al., 2020; Dong et al.,
2023), which reduce the overall sequence length.

Still, these tokenizations are based on tokens
only representing the values of time events and note
attributes. This comes with a big limitation: these
tokens do not carry much information by them-
selves. We can assume that their embeddings does
not either. By analogy to natural language, these
tokens are closer to the character level than word
level. Yet, a powerful feature of LMs is their ability
to learn (embedding) representations of discrete ele-
ments such as tokens, and leverage this information
for reasoning and downstream tasks. For natural
language, LMs are usually coupled with vocabular-
ies containing up to 50k tokens, represented on a
few hundreds dimensions (often between 512 and
2048). Using a vocabulary containing fewer tokens
than the number of dimensions used to represent
them appears as a suboptimal usage of such mod-
els. Moreover, the expressive information carried
by music is deduced from the combinations of its
notes and their attributes. Considering the infinite

https://github.com/Natooz/bpe-symbolic-music
https://Natooz.github.io/BPE-Symbolic-Music/
https://github.com/Natooz/MidiTok


possible music arrangements, we can suppose that
using solely note attribute embeddings imposes to
LMs a heavier modeling effort than embeddings
of potential whole note successions that would be
more expressive and explicit.

In this paper, we show that Byte Pair Encoding
(BPE, described in Section 3) applied to symbolic
music allows to address the two goals just men-
tioned, while outperforming the previous methods
and making the model learn better distributed em-
beddings. To the best of our knowledge, BPE has
yet not been studied for the symbolic music modal-
ity, although it can be applied on top of any music
tokenization that does not perform embedding pool-
ing. This work aims at closing this gap by shedding
light on the results and performance gains of using
BPE:

• We experiment on four public datasets (Wang
et al., 2020b; Kong et al., 2021; Ens and
Pasquier, 2021; Hung et al., 2021), with two
base tokenizations, on which BPE is learned
with several vocabulary sizes, on generation
and classification tasks;

• We compare BPE with other sequence reduc-
tion techniques introduced in recent research;

• We study the geometry of the learned embed-
dings, and show that BPE can improve their
isotropy and space occupation;

• We show some limits of BPE, such as on the
proportion of sampled tokens, and that the
vocabulary size has to be carefully chosen.

2 Related work

2.1 Tokenization of symbolic music
Most deep learning models using symbolic mu-
sic generation use a specific music tokenization.
Early research introduced representations specif-
ically tied to the training data being used, such
as DeepBach (Hadjeres et al., 2017), FolkRNN
(Sturm et al., 2015) or BachBot (Liang et al., 2017).
Non-autoregressive models such as MuseGAN
(Dong et al., 2018) often represent music as pi-
anoroll matrices.

Since, more universal representations have been
studied, allowing to convert any sequence of (si-
multaneous) notes into tokens (Oore et al., 2018;
Huang and Yang, 2020; Hadjeres and Crestel, 2021;
Fradet et al., 2021). Some of them are depicted in
Figure 1.
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Figure 1: Three tokenizations of the same three notes.
Tokens are ordered from left to right, the numbers put
below are their integer ids. Top row is REMI (Huang and
Yang, 2020), middle correspond to the top row with BPE
applied to some tokens, bottom row is a tokenization
similar to (Zeng et al., 2021; Dong et al., 2023) where
the embeddings are merged (pooled).

2.2 Sequence length reduction strategies
More recent works put efforts on the efficiency of
the models. As most of them rely on the Trans-
former architecture (Vaswani et al., 2017) and the
attention mechanism, their time and space complex-
ity grows quadratically with the input sequence
length. This bottleneck led researchers to work
on more efficient attention estimations (Tay et al.,
2021), down to linear complexity. In the field of
symbolic music specifically, researchers worked on
strategies to reduce the sequence length in order
to increase 1) the efficiency of the models; 2) the
scope of the attention mechanism; 3) the quality of
the generated results. These strategies can be split
in two categories:

• embedding pooling such as Compound Word
(Hsiao et al., 2021) (CPWord), Octuple (Zeng
et al., 2021), PopMag (Ren et al., 2020), Sym-
phonyNet (Liu et al., 2022) or MMT (Dong
et al., 2023). Embeddings of several tokens
are merged with a pooling operation. This is
often done by concatenating the embeddings
and projecting the vector, resulting in an ag-
gregated embedding of fixed size.

• token combination such as in MuseNet
(Payne, 2019), LakhNES (Donahue et al.,
2019) or other recent works (Liu et al., 2022;
Thickstun et al., 2023), which consists of us-
ing a vocabulary of tokens representing sev-



eral attributes, e.g., Pitch-x_Dur-y repre-
senting both the pitch and velocity informa-
tion. BPE can be seen as a learned token
combination technique.

2.3 Limitations
One of the main limitation of the previous work
is the suboptimal usage of the embedding space
of LMs. Most of them use models with embed-
dings represented from 512 to 1024 dimensions,
for vocabularies of less than 500 tokens. As the
model contextually learns to gather embeddings
along dimensions representing learned features, us-
ing a number of dimensions larger than the num-
ber of elements to represent causes embeddings
to not take advantage all the space of the embed-
ding dimensions, which will stay unoccupied for a
large proportion. For comparison, the same models,
when trained on natural language data, use to learn
up to 50k embeddings on 512 to 1024 dimensions.

The sequence length reduction strategies just
introduced also have big limitations. Embedding
pooling: 1) requires specific model input and out-
put modules, which can break compatibility with
popular software libraries; 2) requires multiple
losses at training, which increases the complex-
ity; 3) for generation, inferring from such model
can be seen as sampling from a multivariate distri-
bution, which can be very delicate, as 4) the results
can easily degenerate if the pooling does not yield
semantically rich embeddings that represent the
underlying tokens. On the other hand, token com-
binations of entire types of tokens can lead to large
vocabularies with unused tokens and potentially
non-optimized or unbalanced token distributions.

To the best of our knowledge, no work has been
conducted on applying BPE (introduced in Sec-
tion 3) to symbolic music generation. Although
(Liu et al., 2022) introduced a method which they
named MusicBPE, this technique links weakly with
BPE and has a limited scope. It adds to the vo-
cabulary new tokens for recurrent chords. These
tokens represent pitch combinations for simulta-
neous notes having the exact same velocity and
duration. It can only be used for a limited pro-
portion of notes (and in turn tokens), actually less
than a quarter when a strong downsampling is ap-
plied (Appendix D). As it does not apply on token
successions, it cannot capture the contextual and
probability relations between them, including time
dependencies. For these reasons, we do not com-
pare it with BPE as it would not be relevant.

3 Byte Pair Encoding

Byte Pair Encoding (BPE) (Gage, 1994) is a data
compression technique. It converts the most re-
current successive bytes in a corpus into newly
created ones. For instance, in the character se-
quence aabaabaacaa, the sub-sequence aa occurs
three times and is the most recurrent one. Learn-
ing and applying BPE on this sequence would re-
place aa with a new symbol, e.g., d, resulting in
a compressed sequence dbdbdcd. The latter can
be reduced again by replacing the db subsequence,
giving eedcd. In practice BPE is learned on a cor-
pus until the vocabulary reaches a target size. BPE
learning is described by the pseudo-code of Algo-
rithm 1.

Algorithm 1 Learning of BPE pseudo-code

Require: Base vocabulary V , target vocabulary
size N , dataset X

1: while |V|< N do
2: Find m = {t1, t2}, the most recurrent to-

ken succession from X
3: V ← V + [t|V| : m]
4: Substitute occurrences of m in X with t|V|
5: end while
6: return V

BPE is nowadays largely used in the NLP field
as it allows to encode rare words and segment-
ing unknown or composed words as sequences of
sub-word units (Sennrich et al., 2016). Other to-
ken aggregation, or vocabulary building techniques
exist. The two other most commonly used are Uni-
gram (Kudo, 2018) or WordPiece (Wu et al., 2016),
which operations share similarities with BPE.

For natural language, bytes are the distinct char-
acters composing the text. For symbolic music, the
distinct note and time attributes can be used as the
"bytes" to merge. In this context, BPE can allow
to represent a note, or even a succession of notes,
that is recurrent in the dataset, as a single token.
For instance, a note that would be tokenized as
the succession of tokens Pitch_D3, Velocity_60,
Duration_2.0 could be replaced by a single new
one. Rare note (and attributes) can still be tok-
enized as non-BPE tokens. The same logic applies
to time tokens, that can also be associated to note
tokens.



4 Experimental settings

4.1 Models and training
As we specifically focus on LMs, we experiment
with the state of the art deep learning architecture
for most NLP tasks at the time of writing, the Trans-
former (Vaswani et al., 2017). We use the GPT2
(Radford et al., 2019) and BERT (Devlin et al.,
2019) implementations of the transformers library
(Wolf et al., 2020) for respectively music genera-
tion and classification. They are made of 12 layers,
embedding sizes of 512, eight attention heads and
feed-forward layers of 2048. They count approx-
imately 40M learned parameters. The generators
are trained with teacher forcing with the target se-
quence being the input shifted by one to the left.
The classifier are first pretrained to retrieve random-
ized tokens, and then finetuned to classify the input
sequences. More details on the training procedure
can be found in Appendix A.

All models receive sequences of 256 to 384 to-
kens, beginning with special BOS (Beginning of
Sequence) and ending EOS (End of Sequence) to-
kens. We split datasets in three subsets: one only
used for training to update the models, one for vali-
dation during training, one used to test the models
after training. The last two represent respectively
10% and 15% of the dataset for classification and
2% and 5% for generation.

4.2 Tokenization
We experiment with REMI (Huang and Yang, 2020)
and TSD (for Time Shift Duration) as base tokeniza-
tions, on top of which BPE is applied. Both tok-
enizations describe notes as a succession of Pitch,
Velocity and Duration tokens. REMI represents
time with Bar and Position tokens, which respec-
tively indicates when a new bar is beginning and at
which position within the time is. TSD represents
time with TimeShift tokens, indicating explicit
time movements. For the multitrack MMD dataset,
we prepend a Program token before the Pitch to-
ken of each note to represent its instrument.

When tokenizing symbolic music, continuous
characteristics are usually downsampled to discrete
sets of values (Huang and Yang, 2020; Oore et al.,
2018; Hadjeres and Crestel, 2021). For instance,
velocities can be downsampled from 128 to 32
values. These sets should be sufficiently precise
to keep the global information. Downsampling
these characteristics helps models to learn more
easily, as the values of the reduced sets will be more
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Figure 2: Average and maximum number of token com-
binations of tokens learned with BPE in function of the
vocabulary size.

Voc. size tokens/beat (↓) Tok. time (↓) Detok. time (↓)

Strategy TSD REMI TSD REMI TSD REMI TSD REMI

No BPE 149 162 18.5 19.1 0.174 0.151 0.031 0.039
BPE 1k 1k 1k 9.3 (-49.5%) 10.4 (-45.3%) 0.187 0.163 0.053 0.063
BPE 5k 5k 5k 7.0 (-62.2%) 8.5 (-55.2%) 0.181 0.165 0.053 0.064
BPE 10k 10k 10k 6.3 (-66.0%) 7.7 (-59.7%) 0.183 0.164 0.052 0.065
BPE 20k 20k 20k 5.8 (-68.9%) 6.9 (-63.9%) 0.184 0.163 0.052 0.063
PVm 1453 1466 13.4 (-27.8%) 13.8 (-27.4%) 0.134 0.123 0.024 0.026
PVDm 28185 28198 8.2 (-55.5%) 8.6 (-54.8%) 0.119 0.106 0.025 0.030
CP Word 188 8.6 (-54.8%) 0.169 0.034
Octuple 241 5.2 (-72.6%) 0.118 0.035

Table 1: Vocabulary size, average tokens per beat ratios,
and average tokenization and decoding times in second
using MidiTok (Fradet et al., 2021) and the Hugging
Face tokenizers4libraries, on the Maestro dataset.

distinctive. We detail our downsampling strategy
in Appendix C.

We choose to experiment with five vocabulary
sizes: without BPE, 1k, 5k, 10k and 20k tokens.

Finally, we compare BPE with other sequence
reduction strategies introduced in Section 2.2. We
experiment with merging Pitch and Velocity to-
kens (PVm), and Pitch, Velocity and Duration
together (PVDm). PVm is similar to the strategy
used with MuseNet (Payne, 2019). We also experi-
ment with embedding pooling strategies - CPWord
(Hsiao et al., 2021) and Octuple (Zeng et al., 2021)
- that we group with REMI in our experiments as
they represent time similarly. We use the same
pooling strategy, and sample independently from
the logits of each output modules. All embeddings
have the same size than the model dimension.

5 BPE learning

BPE allows to significantly reduce the sequence
length. As shown in Figure 2, the ratio of average
number tokens representing a beat can be reduced
up to more than 50%. As BPE replaces recurrent
pair of bytes in the data, the average number of
byte combinations of the vocabulary tends to first
quickly increase, then more slowly grow. The in-
verse tendency can be observed on the tokens per

4https://github.com/huggingface/tokenizers

https://github.com/huggingface/tokenizers


beat ratios shown in Table 1, while showing that
BPE increase only slightly the tokenization time.
The maximum number of byte combinations varies
depending on the data. Here, the MMD dataset
allows to learn much more combined tokens. This
shows that the Maestro dataset contain much di-
verse token successions, which is not surprising
considering that it is made of classical music while
MMD contains many genres, among which some
with very repetitive patterns. The tokenization time
with BPE naturally increases, but stays relatively
close to the baselines without.

Appendix E complements this analysis by shed-
ding light on the types of the underlying tokens
represented by the newly learned tokens.

6 Music generation

Music generation is a popular application of deep
learning models (Briot et al., 2020; Briot, 2021).
We ought to experiment on this task to demon-
strate the benefits of BPE on music modeling. For
this task, we choose to use the Maestro dataset
(Hawthorne et al., 2019), which is made of 1k pairs
of audio and MIDI files of classical piano perfor-
mances. Each MIDI file is made of one piano track,
with dynamic melodies and complex harmonies.
We generate autoregressively the next 512 tokens
of input prompts from the test subsets of the Gi-
antMIDI dataset, filtering the logits by keeping the
top p = 0, 95 probability mass (nucleus sampling
(Holtzman et al., 2020)) and top 15 token probabil-
ities (top-k sampling (Fan et al., 2018)).

Evaluation of symbolic music is still an open
issue (Yang and Lerch, 2020). In the absence of
automatic metrics measuring the distances between
subsets of data, most works evaluate generated re-
sults with human surveys along with feature simi-
larity metrics. The latter however cannot capture
the quality of music, and is subject to irregularities
in case of model over or underfitting. We decide
here to replace them with an metric measuring the
errors of prediction of the models.

6.1 Tokenization syntax error

Every music tokenization has an underlying syn-
tax of token type and value successions, that can
normally happen. For instance, if the last token of
an input sequence is of type Pitch, some tokeniza-
tion could imply that the next token to be predicted
must be of type Velocity. We could also expect a
model to not predict more than once the same note

at a same time, or to not go back in time.
Successions of incorrect token types can be inter-

preted as errors of prediction. These errors can help
us to measure if a model has efficiently learned the
music representation and if it can yield coherent
results, or not otherwise. From this motivation,
we introduce a new metric we called Tokenization
Syntax Errors (TSE).

We distinguish five categories of errors:

• TSEtype: the predicted token is of an invalid
type regarding the previous one;

• TSEtime: a predicted Position value is in-
ferior or equal to the current one, making the
time goes backward;

• TSEdupn (duplicated note): when the model
predicts a note that has already been played at
the current moment (by the same instrument);

• TSEnnof (no NoteOff): when using NoteOn
and NoteOff, and that a NoteOn token has
been predicted with no NoteOff later to end
it, or too distant in time;

• TSEnnon (no NoteOn): when a NoteOff to-
ken is predicted but the corresponding note
has not been played.

For a given sequence of tokens, TSE measures
the ratio, scaled between 0 and 1, of errors for these
five categories. A TSE of 0 means that there is no
error in the sequence, while a ratio of 1 means only
errors were predicted. Our experiments are not
concerned by the last two categories as we do not
use NoteOff tokens.

Finally, we should mention that most of these
errors can be avoided by a ruled-based sampling.
When predicting a token, it is possible to track the
time, notes played and token types to automatically
exclude invalid predictions. In practice, this can
be achieved by setting the invalid indices of the
predicted logits to −∞ before softmax.

6.2 Human evaluations
For both TSD and REMI tokenizations, we selected
about 130 prompts of 4 bars from the test subset,
and generated continuations of 512 tokens with
all models. We gathered nine participants, among
which seven are musicians, to evaluate the results.
They were asked to open the MIDI files with Dig-
ital Audio Workstation (DAW) softwares such as
Logic Pro or Ableton, play each track individually



TSEtype(↓) TSEdupn(↓) TSEtime(↓) Hum. Fidelity (↑) Hum. Correctness (↑) Hum. Diversity (↑) Hum. Overall (↑)

Strategy TSD REMI TSD REMI TSD REMI TSD REMI TSD REMI TSD REMI TSD REMI

No BPE 1.53 1.34 4.19 5.59 - 28.93 4.9% 4.0% 2.0% 2.0% 1.0% 0.0% 4.8% 0.0%
BPE 1k 1.59 0.62 3.60 4.16 - 34.65 13.6% 11.9% 11.8% 14.9% 10.8% 6.8% 8.6% 8.6%
BPE 5k 0.31 0.38 3.28 4.10 - 39.25 21.4% 31.7% 20.6% 21.8% 11.8% 11.7% 20.0% 18.1%
BPE 10k 0.49 1.04 3.83 6.39 - 48.16 23.3% 20.8% 29.4% 22.8% 18.6% 20.4% 22.9% 29.5%
BPE 20k 0.38 0.64 4.09 3.60 - 52.00 29.1% 19.8% 29.4% 24.8% 36.3% 34.0% 30.5% 30.5%
PVm 2.45 2.99 16.90 16.33 - 36.31 2.9% 2.0% 2.9% 0.0% 7.8% 2.9% 4.8% 1.0%
PVDm 0.63 6.32 2.84 10.64 - 46.75 4.9% 9.9% 3.9% 11.9% 13.7% 21.4% 8.6% 12.4%
CPWord 6.15 28.55 62.15 0.0% 2.0% 2.9% 0.0%
Octuple - 244.11 305.43 0.0% 0.0% 0.0% 0.0%

Table 2: Metrics of generated results. TSE results are all scaled at e−3 for better readability. Hum stand for human,
"-" for non-concerned (i.e. 0).

tok/sec (↑) beat/sec (↑) note/sec (↑) Voc. sampled (↑)

Strategy TSD REMI TSD REMI TSD REMI TSD REMI

No BPE 40.2 43.8 4.5 9.9 10.6 10.9 100% 100%
BPE 1k 78.5 67.0 13.0 17.9 20.8 16.8 100% 99.9%
BPE 5k 99.1 83.9 12.8 30.0 26.7 20.7 100% 99.8%
BPE 10k 97.5 85.4 12.5 26.0 26.3 21.3 99.9% 99.9%
BPE 20k 115.6 91.7 12.9 24.9 31.5 22.7 99.4% 99.7%
PVm 59.3 58.1 8.2 12.2 15.9 14.9 99.3% 99.0%
PVDm 89.7 87.3 11.4 17.1 24.7 23.4 75.9% 74.3%
CPWord 75.8 15.2 19.0 76.7%
Octuple - 14.3 58.5 57.4%

Table 3: Inference speeds on a V100 GPU and a batch
size of 64 and ratio of vocabulary sampled during gener-
ation. For tok/sec, the results account for "basic" tokens
of note attributes and time. Tok/sec for Octuple is not
calculated as the equivalent number of base tokens is
not clearly deducible.

and select the best one on four criteria: 1) fidelity
on pitch scale and rhythm regarding the prompt;
2) correctness, i.e. featuring good note succession
and harmony; 3) coherent diversity, i.e. featuring
diverse correct melodies and harmonies; 4) their
overall subjective preference. The advantage of
using DAW software is twofold: it allows to con-
veniently listen the different tracks, and compare
them by also visualizing them as pianorolls. You
can find more details on the human evaluations in
Appendix F, and all the generated samples used on
the demo website (Section 1).

6.3 Results and analysis
The TSE and human preferences results are re-
ported in Table 2.

As BPE creates new tokens that combine several
types and values, it also increases the overall com-
plexity of music modeling when using these tokens.
Thus, we initially expected the generative models
to predict higher ratios of errors. But surprisingly,
it decreases these ratios, except for the time errors
with REMI. These results show that the models eas-
ily capture the information of the tokens, and that
the vocabulary can be scaled consequently.

We gathered total of 814 human preferences,
with a bit more than 100 for each criteria for TSD
and REMI. There is a clear preference for results
with BPE, especially with vocabularies of 10k and
20k tokens. Baselines without BPE still accounts
for a few preferences for the fidelity and correctness
criteria, but are less preferred overall, especially
with REMI. We note that the PVDm baselines show
competitive preferences with BPE baselines, espe-
cially for diversity. Octuple and CP Word perform
poorly on the other hand, which is not surprising as
they are not 100% autoregressive, and the sense of
the combinations of tokens sampled uncondition-
ally is likely to degenerate, especially when time
and notes are handled all at once. Overall, BPE
helps models to generate more natural and pleasant
music. The new contextually learned embeddings
may represent richer and more explicit information,
helping to model the musical information.

Besides results quality, the second big advantage
of BPE is the inference speed increase. We reported
three inference metrics - tokens, beat and note per
second - in Table 3, along with the proportion of
the vocabulary ever sampled by the models.

We first highlight that models with BPE, up to
the maximum vocabulary size tested here, do use
most of the tokens of the vocabulary, with a slight
decrease as the vocabulary grows. This also sup-
ports that the vocabulary can easily be scaled while
keeping tokens that are still used by the models.

BPE increases all inference speeds measured by
at least two times, even with small vocabularies.
We note that the increase of beat/sec does not in-
crease linearly with the vocabulary size, which also
indicates that the models predict a higher number
of notes per beat. CP Word, despite having low to-
kens per beat ratios (Table 1), yields lower tokens
per second generation speeds, due to the additional
input and several sampling steps.



Genre (↑) Artist (↑)

Strategy TSD REMI TSD REMI

No BPE 0.836 0.796 0.907 0.876
BPE 1k 0.882 0.871 0.934 0.920
BPE 5k 0.901 0.875 0.933 0.925
BPE 10k 0.904 0.869 0.937 0.922
BPE 20k 0.851 0.877 0.909 0.923
PVm 0.853 0.810 0.905 0.886
PVDm 0.875 0.818 0.914 0.893
Octuple - 0.923 - 0.941

Table 4: Average accuracy of classification models.

7 Classification

For our classification task, we experiment with the
MMD dataset (Ens and Pasquier, 2021). It is, to
our knowledge, the biggest MIDI dataset publicly
available. It features more than 430k MIDI files
of all genres of music with multiple tracks. Each
piece is matched to Spotify and MusicBrainz ids,
allowing to link them with a wide variety of in-
formation such as artist or music genre. In order
to get a more quality training corpus, we perform
a preprocessing step which deduplicates the files
of the same music and keeps only the best. This
is explained in Appendix B. We also merged the
tracks of the instruments of the same class in order
to reduce the overall complexity (Appendix C).

To handle multiple tracks, we placed Program
tokens before each Pitch token of each note to
specify its instrument. This strategy is similar to
REMIPlus (von Rütte et al., 2023).

We perform genre and artist classification, from
the 40 and 100 most present genres and artist in
the MMD dataset. The results, reported in Table 4,
show that BPE improves the models performances
compared to the baselines without, and outperform
the other token combination techniques. The mod-
els seem to benefit from larger vocabulary sizes. It
however shows limits, as the accuracy does not in-
crease from a vocabulary of 10k to 20k tokens. The
Octuple baseline outperforms the others. Here, the
model is bidirectional (no attention mask) and we
do not sample from multiple distributions. Our as-
sumption is that the reduced sequence length allows
to carry more information within a same number of
tokens, allowing the models to capture more easily
the global melody, harmony and music structure
and directly improving their performances.

It concurs with our results, and is explored in
the next section by analyzing the geometry of the
learned embeddings.

Isoscore (↑) PCA ID (↑) FisherS ID (↑)

Gen / Maestro Pt. / MMD Gen / Maestro Pt. / MMD Gen / Maestro Pt. / MMD

Strategy TSD REMI TSD REMI TSD REMI TSD REMI TSD REMI TSD REMI

No BPE 0.899 0.883 0.925 0.730 62 66 44 45 5.4 5.2 8.1 7.9
BPE 1k 0.919 0.953 0.981 0.986 100 99 113 102 7.3 6.7 15.5 12.2
BPE 5k 0.965 0.962 0.989 0.989 131 119 145 119 9.0 8.6 16.7 13.7
BPE 10k 0.973 0.973 0.991 0.993 132 118 164 118 9.8 9.6 18.3 15.2
BPE 20k 0.976 0.981 0.993 0.995 146 122 187 137 10.8 10.5 21.4 16.9
PVm 0.987 0.989 0.961 0.961 71 67 52 52 7.1 6.8 13.9 14.7
PVDm 0.945 0.942 0.898 0.909 38 39 98 87 4.4 4.4 24.1 22.8

Table 5: Isoscore, and intrinsic dimension (ID) estima-
tions. Gen. corresponds to the causal generative models,
Pt. to the pretrained bidirectional models.

8 Learned embedding spaces

We have shown so far that BPE improves the results
of music modeling on the generation and classifi-
cation tasks. Our assumption is that, non-only the
reduced sequence length allows to pack more in-
formation (longer music piece) within the same
number of tokens, but mostly the vocabulary can
be scaled while making the model efficiently learn
and use the embedding representations of the newly
created tokens with BPE.

The embedding space, i.e. the way LMs learn to
represent tokens into a continuous space Rd of d
dimensions, has recently been studied (Gao et al.,
2019; Biś et al., 2021; Cai et al., 2021). More
specifically, it has been shown that most LMs learn
anisotropic embedding distributions (Ethayarajh,
2019; Reif et al., 2019), despite that their isotropy
have been linked to improved performances on
downstream tasks (Gong et al., 2018; Wang et al.,
2020a; Biś et al., 2021; Liang et al., 2021; Rajaee
and Pilehvar, 2022).

Isotropy is a measure of the uniformity of the
space occupied by a manifold across all dimen-
sions. A high isotropy is associated with a uniform
variance of the distances between the points of the
manifold across all dimensions. In our case the
manifold is the collection of contextually learned
embeddings X ∈ RV×d where V is the vocabu-
lary size and d the model/embedding dimension.
An isotropic embedding space can be viewed as a
space where the embeddings are uniformly spaced
with uniform densities.

Isotropy is often estimated by different ways:
singular value decomposition (SVD) (Biś et al.,
2021; Gao et al., 2019; Liang et al., 2021; Wang
et al., 2020a), intrinsic dimension (Cai et al., 2021),
partition function (Arora et al., 2016; Mu and
Viswanath, 2018), average cosine similarity (Etha-
yarajh, 2019). We chose the two firsts, along
with IsoScore (Rudman et al., 2022) which alle-
viates some of their shortcomings, to have results
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Figure 3: Normalized singular values of the embedding matrices. Pretrained refers to the (bidirectional) classification
models after pretraining, and generators to the (causal) models for generation after training.

that complement themselves. We did not measure
isotropy on models using embedding pooling, as
it would be untractable considering the very large
number of possible embeddings, and that the low
frequency of the majority of them would result in
unreliable results.

SVD, for which results are plotted in Figure 3,
allows to visualize the relative domination of some
dimensions. Baselines without BPE and PVm and
PVDm show quicker singular value decays, indi-
cating that fewer dominate, whereas baselines with
BPE show more uniformly distributed values.

The intrinsic dimension is an estimation of the
minimal number of dimensions n required to repre-
sent a manifold in Rd, d > n. It links with isotropy
in the sense that an isotropic manifold occupies
all the dimensions, hence its intrinsic dimension is
close to d. We chose to estimate it with the Prin-
ciple Component Analysis (PCA) (Fukunaga and
Olsen, 1971) and FisherS (Albergante et al., 2019)
methods as they are insensitive to redundancy, fo-
cus on common similarities and can scale to large
number of points and dimensions. As the embed-
ding matrix is often initialized with a stochastic
method around the origin, a simple method can
estimate high intrinsic dimensions even though the
points coordinates have been very little or not even
optimized. This can be the case when a large num-
ber of tokens has low frequencies or are absent
from the training data, such as with PVDm. The in-
trinsic dimensions results are reported in Section 8,
along with the IsoScores. In all cases, as the vo-
cabulary grows with BPE, the intrinsic dimension
increases, the embeddings occupy more space.

IsoScore is an estimation of isotropy based on
the distance of the covariance matrix of a Principle
Component Analysis (PCA) and the identity matrix,
and is normalized between 0 and 1. As for the
intrinsic dimension, the isoscore grows with the
vocabulary size, indicating that the embeddings are

more uniformly distributed.

We also note that similarly to models trained
on natural language (Ethayarajh, 2019), our bidi-
rectional models learn more isotropic embeddings
than causal (generative) ones. Appendix G depicts
UMAP representations of the embedding, showing
the narrow cones and clusters they form.

9 Conclusion

We showed that BPE can increase the quality of
results of Transformer models for symbolic music
generation, and classification tasks, while signif-
icantly improving their efficiency and inference
speed and making better use of their embedding
spaces. BPE can be applied on top of any tok-
enization. The tokenization and decoding times
are almost not affected by this extra step, when
performed by a well-optimized Rust code. Con-
sidering the considerable benefits and low require-
ments of this technique, we advise anyone using
Transformer models with symbolic music to use
BPE.

There are still questions that remain uncovered.
We showed that 40M parameters models can handle
well vocabularies up to 20k tokens with medium-
size datasets. We however do not know what are the
limits in vocabulary and dataset sizes over which
the results might not improve. Moreover, we ex-
perimented with BPE, but other common vocab-
ulary building techniques exist, such as Unigram
(Kudo, 2018) and WordPiece (Wu et al., 2016).
Recent work on natural language showed that Uni-
gram yielded higher model performances than BPE
(Bostrom and Durrett, 2020), it might also be the
case for symbolic music. Future research will
study these questions and hopefully find optimal
tokenization guidelines to improve model perfor-
mances under more various settings.



Limitations

BPE allows to build vocabulary based on data.
Hence, in case the data has specific token distribu-
tions, a model trained with this vocabulary might
not generalize and perform well on data with oppo-
site token distributions.

BPE implies an additional step during data tok-
enization. In Table 1 we showed that the impact on
tokenization time is very limited. The impact on
decoding time is however more substantial.

Finally, although we experimented with two pub-
lic datasets, two tokenizations and two tasks, we
did not find a "limit" vocabulary size above which
the results might not increase with. More research
must be performed in order to find such limit.

Ethics Statement

We believe that open science and open sourcing
code and model parameters ensure an equal ac-
cess to the latest research to everybody. Neverthe-
less, we acknowledge that generative models can
be used in harmful ways to artists and copyright
owners. Generative models can be used to create
new content, that can be conditioned on human
prompt such as text description. Malevolent users
might control them to copy, alter or use content
of artist without their approval. Moreover, such
model can represent an unfair competitive tool to
music creators, which is a time of writing an open
issue and subject to ethic considerations.
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Figure 4: Distributions of the note durations and velocities of five popular MIDI datasets. The duration axis is
limited to 7 beats for better readability.

A Model training

The generator and classifiers are respectively trained and pretrained on 100k steps. For classifiers
pretraining, we use the same objective than done with BERT (Devlin et al., 2019): 15% of each input
sequences is masked with a special MASK token, 10% of these masked tokens are randomized, and the loss
is computed on the capacity of the model to recover the original tokens. Additionally each sequence is
divided into two equal parts separated with a special SEP token, and half of the batch sequences have
non-related parts. The model predicts if the second part is the next part of the first. The input embedding
and output pretraining module weights are tied to improve the performances (Press and Wolf, 2017).

The classifiers are then finetuned on 10k steps on the downstream tasks. We feed the output hidden
state of the first position (BOS token) to an output fully connected layer, to train the model to classify the
input sequence.

Trainings are performed on V100 and RTX2080ti GPUs, each time in distributed setups of pairs of the
same GPU model, for a total batch size of 128. All trainings are done with automatic mixed-precision
(Micikevicius et al., 2018), the Adam optimizer (Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.999 and
ϵ = 10−8, and dropout, weight decay and a gradient clip norm of respectively 10−1, 10−2 and 3. We use
a one cycle learning rate scheduler: the initial learning rate is close to 0 and gradually grows for the 30%
first steps to 1e− 4 for the generators and classifier pretraining and 3e− 5 for the classifier fine-tuning,
then slowly decreases down to 0. The model parameters are saved when the validation loss is the lowest
ever observed, and after training the last version saved is used for testing.

B MMD preprocessing

With more than 436k MIDI files, the MMD dataset contains many duplicated songs, corrupted files and
poor quality performances. In order to train our models with a well balanced dataset composed of pieces
of good quality, we perform a preprocessing step to deduplicate each song, and keep the best versions.

Each MIDI file has a matching score with audio files linked to Spotify and MusicBrainz ids. Hence,
each MIDI file can have high matching scores with several different ids, and an Spotify or MusicBrainz id
can have have high matching scores with several different MIDI files.

In order to deduplicate the songs, we represented the matching scores as a weighted bipartite graph,
and computed its matching. To build the graph, we first read each MIDI file, add it to the graph if it is not
corrupted, has a 4

∗ time signature and has at least three tracks. The opposite nodes are the Spotify ids, and
the edges (weights) are the MIDI-audio matching scores. When the graph is complete, we compute its
matching in order to have the maximum sum of the weights between pairs of distinct and unique MIDIs
and Spotify ids. After matching, we end up with 30k distinct MIDI files.

C Data downsampling

Figure 4 shows the distributions of velocity and duration values of the notes from the two datasets we use,
along with the POP909 (Wang et al., 2020b), Maestro (Hawthorne et al., 2019) and EMOPIA (Hung et al.,



POP909 Maestro GiantMIDI MMD EMOPIA

Ticks 0.014 0.000 0.002 0.143 0.002
Preprocessed (32nd) 0.124 0.129 0.182 0.203 0.124
Preprocessed (16th) 0.175 0.229 0.236 0.222 0.145

Table 6: Ratio of notes played simultaneously with the same velocity. Preprocessed rows means that the onset and
offset times in ticks of the notes have been aligned, to the corresponding portion of bar. For a fair comparison,
results for POP909 are for all tracks being merged, and those for MMD are for the unprocessed (vanilla) dataset.

2021) datasets which are commonly used in the music information retrieval (MIR) community. As there is
a larger proportion of low note durations (below two beats), we decided to downsample the Duration and
TimeShift tokens with different resolutions: those up to one beat are downsampled to 8 samples per beat
(spb), those from one to two beats to 4 spb, those from two to four beats to 2 spb, and those from four to
eight beats to 1 spb. This way, short notes are represented more precisely than longer ones, reducing the
vocabulary size. For REMI, Position tokens are downsampled to 8 spb, resulting in 32 different tokens
as we only consider the 4

∗ time signature. This allows to represent the 16th note. We only consider pitches
within the recommended range for piano (program 0) specified in the General MIDI 2 specifications5: 21
to 108. We then deduplicate all duplicated notes. Velocities are downsampled to 8 distinct values. No
additional token (e.g., Chord, Tempo) is used.

We finally apply a downsampling on the instruments for the MMD dataset. The General MIDI 2
protocol features 128 instruments, called programs. In practice, many programs are very similar in their
sounds and the way they are played. A model could struggle to capture the differences between these
similar programs, especially considering that the program choices were made by humans and potentially
subject to bias or subjective preferences. In order to reduce alleviate this complexity, we merge the
tracks with programs of the same category, for the twelfth first categories (programs from 0 to 95) except
ensembles (programs 48 to 55), and drums, ending up with twelve distinct programs.

D Proportion of simultaneous notes in common datasets

Table 6 shows the ratios of notes being played simultaneously (having the same onset and offset times),
with the same velocity, for the datasets used in this paper, as well as POP909 (Wang et al., 2020b),
GiantMIDI (Kong et al., 2021) and EMOPIA (Hung et al., 2021).

The proportion of simultaneous note is low, even with a strong downsampling of their attributes, onset
and offset times. Hence, the scope of token aggregation techniques such as in SymphonyNet (Liu et al.,
2022) is arguably limited.

5Available on the MIDI Manufacturers Association website

https://www.midi.org/specifications-old/
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Figure 5: Normalized distributions of the token types of the BPE tokens, per vocabulary size. Abbreviations in the
legend stand for: Pit: Pitch; Vel: Velocity; Dur: Duration; Pos: Position; TS: TimeShift; Prg: Program.

E Types of learned byte pairs

Figure 5 shows the distribution of token types combinations of the learned BPE tokens. The majority of
the learned combinations represent single notes in all cases, except for the case of MMD when tokenized
with TSD. In this latter case, most BPE tokens begin with Velocity base tokens, indicating that the dataset
contains a lot of recurrent Velocity - Duration token successions. With REMI however, the Position token
seems to be more recurrent, showing that the notes have more common onset positions, which is not
surprising considering that the MMD dataset features many music of genre known to have repeating
patterns. As the vocabulary grows, the combinations tend to be more diverse.

F Human evaluations

We report here the human evaluation instructions given to the participants to assess the generative models:

Each MIDI file contains several music tracks generated from different Deep Learning models,
that are the continuations of the same 4-bars prompt. For each file, you have to choose the best
track on several criteria:

• Fidelity: the track with the best fidelity (coherent) relative to the prompt, from a tonal and
rhythm point of view;

• Correctness: the track with the most correct note successions and harmonies, contrarily to
tracks with dissonant notes or unnatural melodies;

• Diversity: the track with the best coherent diversity, i.e. featuring diverse correct melodies,
contrarily to a music that would repeat the same note patterns. A "bad" or uncertain music
(i.e. non-correct) cannot be consider as diverse;

• Overall preference: the track that you overall prefer subjectively;

Do not answer to all for all the files, as the evaluations can be time-consuming. Fix yourself a
number of files to evaluate, and randomly pick them from the list.



Figure 6: Example of MIDI file given to participants for human evaluations, opened with the Logic Pro DAW.

You will find generated results than can be very similar, even identical sometimes. As such, you
might feel uncertain or unable to decide. In such cases, do not answer for all criteria and just
skip to the next file. There is no good or wrong answer, you just have to answer subjectively.
Trust yourself and trust your musical instinct.

An example of MIDI file open with the Logic Pro DAW is shown in Figure 6.

G Learned embedding space

UMAP (McInnes et al., 2018) representations shown in Figure 7, Figure 8, Figure 9 and Figure 10 show
the embeddings of the models of the paper, computed with the official UMAP Python package with default
parameters. For each figure, only 1k randomly sampled points are represented in order to keep them in
vector format without adding too much weight in this file document. We encourage the reader to visualize
them on our demo website for a more convenient readability.

The models learn clusters of embeddings of the same type. The embeddings do not occupy the space
uniformly, but rather have preferred directions following their type and value. We still note that bi-
directional (pretrained) models tends to occupy more space than causal (generative) ones. This especially
noticeable for the PVm and PVDm models. For generative models, the embeddings tends to be oriented
towards common dimensions, and slightly spread towards orthogonal one.

Pretrained bi-directional models learn more isotropic embedding representations. The embeddings are
spread more uniformly across all directions.

https://ugtqphgirx.github.io/bpe-symbolic-music/


11 12 13 14 15 16

12

13

14

15

16

17
Special
Pitch
Velocity
Duration
TimeShift

TSD + No BPE

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5
2

4

6

8

10

12

Special
Pitch
Velocity
Duration
TimeShift
Pi-Ve-Du-TS
Ve-Du-TS
Pi-Ve-Du
Ve-Du
Ve-Du-Pi
Other BPE

TSD + BPE 1k

15 10 5 0 5 10 15

10

5

0

5

10

15

20
Special
Pitch
Velocity
Duration
TimeShift
Pi-Ve-Du-TS
Pi-Ve-Du
Ve-Du-TS
TS-Pi
Ve-Du-Pi
Other BPE

TSD + BPE 5k

0 5 10 15 20
10

5

0

5

10

15

20 Special
TimeShift
Pitch
Velocity
Duration
Pi-Ve-Du-TS
Pi-Ve-Du
Ve-Du-TS
TS-Pi
Ve-Du-Pi
Other BPE

TSD + BPE 10k

2 4 6 8 10 12 14 16

5

0

5

10

15

Special
Pitch
TimeShift
Velocity
Duration
Pi-Ve-Du-TS
Pi-Ve-Du
Pi-Ve-Du-Pi
Pi-Ve-Du-Pi-Ve-Du
Ve-Du-TS
Other BPE

TSD + BPE 20k

2 0 2 4 6 8 10 12

2

0

2

4

6

Special
PitchVel
Duration
TimeShift

TSD + PVm

5 0 5 10 15

0

2

4

6

8

Special
PitchVelDur
TimeShift

TSD + PVDm

2 3 4 5 6 7

5

6

7

8

9

Special
Bar
Pitch
Velocity
Duration
Position

REMI + No BPE

5 0 5 10 15 20

5

0

5

10

15

20

Special
Bar
Pitch
Velocity
Duration
Position
Pi-Ve-Du
Ve-Du
Bar-Po
Bar-Bar
Other BPE

REMI + BPE 1k

10 5 0 5 10 15 20
15

10

5

0

5

10

15

20

Special
Duration
Pitch
Position
Velocity
Pi-Ve-Du
Po-Pi
Pi-Ve-Du-Po
Ve-Du
Po-Pi-Ve-Du
Other BPE

REMI + BPE 5k

5 0 5 10 15

2.5

0.0

2.5

5.0

7.5

10.0

12.5

Special
Pitch
Velocity
Position
Duration
Pi-Ve-Du
Pi-Ve-Du-Po
Po-Pi-Ve-Du
Po-Pi
Pi-Ve-Du-Pi-Ve-Du
Other BPE

REMI + BPE 10k

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
2

0

2

4

6

8

10

12

14

Special
Position
Pitch
Duration
Velocity
Pi-Ve-Du-Po
Pi-Ve-Du
Po-Pi-Ve-Du
Pi-Ve-Du-Pi-Ve-Du
Po-Pi
Other BPE

REMI + BPE 20k

0 2 4 6 8 10 12 14
4

2

0

2

4

6

8

10

12 Special
Bar
PitchVel
Duration
Position

REMI + PVm

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0

2

4

6

8

10

Special
PitchVelDur
Position

REMI + PVDm

Figure 7: UMAP 2d representations of the embeddings of the generators, trained with the Maestro dataset.
Abbreviations in legend stand for: Pi: Pitch; Ve: Velocity; Du: Duration; Po: Position; TS: TimeShift.
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Figure 8: UMAP 2d representations of the embeddings of the pretrained bidirectional models, trained with the
Maestro dataset. Abbreviations in legend stand for: Pit: Pitch; Ve: Velocity; Du: Duration; Po: Position; TS:
TimeShift; Pr: Program.
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Figure 9: UMAP 3d representations of the embeddings of generative models, trained with the Maestro dataset.
Abbreviations in legend stand for: Pi: Pitch; Ve: Velocity; Du: Duration; Po: Position; TS: TimeShift.
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Figure 10: UMAP 3d representations of the embeddings of pretrained bidirectional models, trained with the MMD
dataset. Abbreviations in legend stand for: Pi: Pitch; Ve: Velocity; Du: Duration; Po: Position; TS: TimeShift; Pr:
Program.


