
HAL Id: hal-03976252
https://hal.science/hal-03976252v1

Preprint submitted on 6 Feb 2023 (v1), last revised 9 Oct 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Byte Pair Encoding for Symbolic Music
Nathan Fradet, Jean-Pierre Briot, Fabien Chhel, Amal El Fallah-Seghrouchni,

Nicolas Gutowski

To cite this version:
Nathan Fradet, Jean-Pierre Briot, Fabien Chhel, Amal El Fallah-Seghrouchni, Nicolas Gutowski. Byte
Pair Encoding for Symbolic Music. 2023. �hal-03976252v1�

https://hal.science/hal-03976252v1
https://hal.archives-ouvertes.fr

Byte Pair Encoding for Symbolic Music

Nathan Fradet 1 2 Jean-Pierre Briot 1 Fabien Chhel 3 Amal El Fallah Seghrouchni 1 Nicolas Gutowski 4

Abstract

The symbolic music modality is nowadays mostly
represented as discrete and used with sequential
models such as Transformers, for deep learning
tasks. Recent research put efforts on the tokeniza-
tion, i.e. the conversion of data into sequences
of integers intelligible to such models. This can
be achieved by many ways as music can be com-
posed of simultaneous tracks, of simultaneous
notes with several attributes. Until now, the pro-
posed tokenizations are based on small vocabular-
ies describing the note attributes and time events,
resulting in fairly long token sequences. In this
paper, we show how Byte Pair Encoding (BPE)
can improve the results of deep learning models
while improving its performances. We experiment
on music generation and composer classification,
and study the impact of BPE on how models learn
the embeddings, and show that it can help to in-
crease their isotropy, i.e., the uniformity of the
variance of their positions in the space.

1. Introduction
Deep learning tasks on symbolic music are nowadays mostly
tackled by sequential models1, such as the Transformers
(Vaswani et al., 2017). These models receive sequences of
tokens as input, and convert them to learned embedding
vectors. A token is an integer associated to a high level
element, such as a word or sub-word in natural language,
and both are linked in a vocabulary that acts as a look-up
table. An embedding represents the semantic information of
a token as a vector of fixed-size, and is learning contextually
by the model. To use such models for symbolic music, one
needs to tokenize the data, i.e., convert it to sequences of
tokens that can be decoded back. This can be achieved by
several ways, as music can be composed of simultaneous
tracks, of simultaneous notes with several attributes such as

1LIP6, Sorbonne University - CNRS, Paris, France 2Aubay,
Boulogne-Billancourt, France 3 ESEO-TECH / ERIS, Angers,
France 4University of Angers, Angers, France. Correspondence to:
Nathan Fradet <nathan.fradet@lip6.fr>.

1Commonly referred as Language Models (LM)

their pitch and duration.

Recently, the token representation of symbolic music has
been extensively studied, with the goal to improve 1) the
results, e.g. the quality of generated results or the accuracy
of a certain Music Information Retrieval (MIR) task, and;
2) the efficiency of the models. The former is tackled with
more expressive representations (Huang & Yang, 2020; Ker-
marec et al., 2022), and the latter by representations based
on either token combinations (Payne, 2019; Donahue et al.,
2019), or embedding pooling (Hsiao et al., 2021; Zeng et al.,
2021; Ren et al., 2020), which reduce the overall sequence
length. Still, current tokenizations only use tokens represent-
ing the values of time and note attributes, such as Pitch or
Duration. This comes with a big limitation: these tokens do
not carry much information by themselves, and neither their
associated embeddings. By analogy to natural language,
these tokens are closer to the characters than words. Yet, the
expressive information carried by music is deduced by the
combinations of its notes and their attributes. Considering
the infinite possible arrangements, deep learning models
may struggle to implicitly learn their common features.

In this paper, we study the application of Byte Pair En-
coding (BPE, described in Section 3) for symbolic music
generation, aiming to improve the two objectives mentioned
above, while making the models learn more isotropic em-
bedding representations in some cases. To the best of our
knowledge, BPE has yet not been studied for the symbolic
music modality, although it can be applied on top of any
music tokenization that do not perform embedding pooling.
This work aims at closing this gap by shedding light on the
results and performance gains of using BPE:

• We experiment on two public datasets (Wang et al.,
2020b; Kong et al., 2021), with two base tokenizations,
on which BPE is learned with several vocabulary sizes,
on the generation and composer classification tasks,
and show that it improves the results;

• We compare BPE with other sequence reduction tech-
niques introduced in recent research;

• We study the geometry of the learned embeddings, and
show that BPE can improve their isotropy;

• We show some limits of BPE, such as on the proportion

ar
X

iv
:2

30
1.

11
97

5v
1

 [
cs

.L
G

]
 2

7
Ja

n
20

23

Byte Pair Encoding for Symbolic Music

of sampled tokens, and that the vocabulary size has to
be carefully chosen.

The source code is provided for reproducibility: https:
//github.com/Natooz/BPE-Symbolic-Music

The paper is organised as follows: Section 2 reviews the
related work while Section 3 sheds light on the BPE tech-
nique. Section 4 describes our experimental settings and
Section 5 describes the evaluation metrics that we use for
the experimental evaluation. Section 6 presents the results
and analysis. Furthermore, Section 7 provides an additional
study on the impact of BPE on how the models learn the
embeddings. Finally, Section 8 presents our conclusion and
perspectives.

2. Related work
In this section we start by reminding research of specific
music representation of symbolic music generation. Then,
we present how recent works put efforts on different strate-
gies to reduce the sequence length. Finally, we explain their
limitations which conduce us to propose our novel approach
that is to apply Byte Pair Encoding in the field of symbolic
music for reducing sequence length.

2.1. Representation of symbolic music

Most works on symbolic music generation from deep learn-
ing use a specific music representation. Early research in-
troduced representations specifically tied to the training
data being used, such as DeepBach (Hadjeres et al., 2017),
FolkRNN (Sturm et al., 2015) or BachBot (Liang et al.,
2017). Non-sequential models such as MuseGAN (Dong
et al., 2018) often represent music as pianoroll matrices.

Since, more universal representations have been studied, al-
lowing to convert any sequence of (simultaneous) notes into
tokens (Oore et al., 2018; Huang & Yang, 2020; Hadjeres
& Crestel, 2021; Fradet et al., 2021). Some of them are
depicted in Figure 1.

2.2. Sequence reduction strategies

In more recent works, efforts have been put towards the
efficiency. Indeed, most recent models are based on the
Transformer architecture (Vaswani et al., 2017). The atten-
tion mechanism, at the heart of Transformers, has however
a time and space complexity that grows quadratically with
the input sequence length. This is a well known bottleneck,
that led researchers to work on more efficient attention esti-
mations (Tay et al., 2021), down to linear complexity. In the
field of symbolic music specifically, researchers worked on
strategies to reduce the sequence length in order to increase
1) the efficiency of the models; 2) the scope of the attention
mechanism; 3) the quality of the generated results. These

Bar Pos. 0Pitch D3 Vel. 22Dur. 7Pos. 7Pitch A3 Vel. 24Dur. 7Pos. 15Pitch E4Vel. 24Dur. 7Pos. 27Pitch G3Vel. 16Dur. 3 Bar Pos. 0Pitch A3Vel. 20Dur. 31

Ti.-Sh. 0Pitch D3 Vel. 22Dur. 7 Pitch A3 Vel. 24Dur. 7 Pitch E4Vel. 24Dur. 7 Pitch G3Vel. 16Dur. 3 Pitch A3Vel. 20Dur. 31Ti.-Sh. 8 Ti.-Sh. 8 Ti.-Sh. 12 Ti.-Sh. 4

N.-On D3 Vel. 22 N.-On A3 Vel. 24 N.-Off A3N.-On E4Vel. 24 N.-Off E4 N.-On G3Vel. 16 N.-On A3Vel. 20Ti.-Sh. 7 Ti.-Sh. 7 Ti.-Sh. 7N.-Off D3 Ti.-Sh. 3 Ti.-Sh. 3N.-Off G3 Ti.-Sh. 31N.-Off A3

Music score

MIDI-Like

REMI

Structured

Figure 1. A sheet music and several token representations.

strategies can be split in two categories: 1) embedding pool-
ing strategies such as Compound Word (Hsiao et al., 2021)
(CPWord), Octuple (Zeng et al., 2021) or PopMag (Ren
et al., 2020); 2) token combination strategies such as in
MuseNet (Payne, 2019) or LakhNES (Donahue et al., 2019).
Embedding pooling consists in merging the embeddings of
several distinct tokens with a pooling operation. This is
often done by concatenating the embeddings and projecting
the sequence, resulting in an aggregated embedding of fixed
size. Token combinations is simply the use of a vocabu-
lary containing tokens that represent several values, e.g.,
Pitch-x Duration-y that represent both the pitch and
velocity information.

2.3. Limitations

However, these strategies show the following limitations.
Embedding pooling: 1) requires a more complex training
procedure; 2) for generation, inferring from such model
can be seen as sampling from a multivariate distribution,
which can be a delicate operation; 3) the results can easily
degenerate if the pooling does not yield semantically rich
embeddings that represent the underlying tokens. On the
other hand, token combinations of entire types of tokens can
lead to large vocabularies with unused tokens and potentially
non-optimized or unbalanced token distributions.

To the best of our knowledge, no work has been conducted
on applying BPE, introduced in Section 3, to symbolic mu-
sic generation. A similar technique is used with Sympho-
nyNet (Liu et al., 2022), which does not rely on token adja-
cency but rather on the concurrence of multiple notes, and
they only experimented with a vocabulary size of 1k tokens.

The following section describes the Byte Pair Encoding
technique, its algorithm and depicts how it can be relevant
to use in the field of symbolic music.

https://github.com/Natooz/BPE-Symbolic-Music
https://github.com/Natooz/BPE-Symbolic-Music

Byte Pair Encoding for Symbolic Music

3. Byte Pair Encoding
Byte Pair Encoding (BPE) (Gage, 1994) is a data com-
pression technique. It converts the most recurrent succes-
sive bytes (or in our case tokens) in a corpus into newly
created ones. For instance, in the character sequence
aabaabaacaa, the sub-sequence aa occurs three times
and is the most recurrent. Learning and applying BPE on
this sequence would replace aa with a new symbol, e.g., d,
resulting in a reduced sequence dbdbdcd. The latter can
be reduced again by replacing the db subsequence, giving
eedcd. In the context of deep learning, BPE naturally in-
creases the size of the vocabulary, while reducing the overall
sequence lengths. In practice BPE is learned on a corpus
until the vocabulary reaches a target size. BPE learning is
described by the pseudo-code of Algorithm 1.

Algorithm 1 Learning of BPE pseudo-code

Require: Base vocabulary V , target vocabulary size N ,
dataset X

1: while |V|< N do
2: Find s = {t1, t2} ∈ V2, from X , the most recurrent

token succession
3: Add a new token t in V , mapping to s
4: Substitute every occurrence of s in X with t
5: end while
6: return V

BPE is nowadays largely used in the NLP field as it allows
to encode rare words and segmenting unknown or com-
posed words as sequences of sub-word units (Sennrich et al.,
2016).

In symbolic music, notes are represented by successions
of tokens that represent the values of their attributes. In
this context, BPE can allow to represent a note, or even a
succession of notes, that is very recurrent in the dataset, as
a single token. For instance, a note that would be coded
as the succession of tokens Pitch D3, Velocity 60,
Duration 2.0 could be replaced by a single new one.
Rare note (and attributes) would still be encoded as non-
BPE tokens. The same logic applies to time tokens, that can
also be associated to note tokens.

4. Experimental settings
This section details the experimental protocol by describing
the models, the training and the datasets used along with the
specific tokenization processes.

4.1. Model and training

As we specifically focus on sequential models, we exper-
iment with the state of the art deep learning architecture
for most NLP tasks at the time of writing, the Transformer

(Vaswani et al., 2017) architecture. The generator uses a
causal attention mask and is trained with teacher forcing,
while the classifier does not use attention mask and is first
pre-trained to retrieve randomized tokens then finetuned to
classify the input sequences. They are respectively similar
to GPT2 (Radford et al., 2019) and BERT (Devlin et al.,
2019). The details of implementation, such as their sizes
and training, can be found in Appendix A

All models receive sequences between 384 and 460 tokens,
beginning with special BOS (Beginning of Sequence) and
ending EOS (End of Sequence) tokens. We split datasets
in two subsets: one only used for training and updating
the models, one for validation to monitor trainings, that is
also used to test the models after training. These subsets
represent respectively 65% and 35% of the original datasets.

4.2. Datasets

We experiment with two datasets: POP909 (Wang et al.,
2020b) and GiantMIDI (Kong et al., 2021).

The POP909 dataset (Wang et al., 2020b) is composed of
909 piano tracks of Pop musics, with aligned MIDI and
audio versions. Each MIDI file contains three tracks: the
first is the lead melody, the second is secondary melodies
and bridges, the third is the arrangements with chords and
arpeggios. For our experiments we merge all three tracks
into a single one.

The GiantMIDI dataset (Kong et al., 2021) is composed
of 10k piano MIDI files, transcribed from audio to MIDI
without downbeat and tempo estimation. Each file contains
a single track of non-interrupted piano music, often with
complex melodies and harmonies. Considering the com-
plexity of its content, we make the assumption that it is a
difficult dataset for a model to learn from.

We perform data augmentation on the pitch dimension on
both datasets. Each MIDI file is augmented up and down to
two octaves.

4.3. Music tokenization

We experiment with Remi (Huang & Yang, 2020) and
TSD (for Time Shift Duration) as base tokenizations, on
which BPE will be applied on top. Both tokenizations de-
scribe notes as a succession of the Pitch, Velocity and
Duration tokens. Remi represents time with Bar and
Position tokens, which respectively indicates when a
new bar is beginning and at which position within the time
is. TSD represents time with TimeShift tokens, indicat-
ing explicitly time movements.

When tokenizing symbolic music, it is common to down-
sample continuous features to discrete sets of values. For
instance, velocities can be downsampled from 128 to 32

Byte Pair Encoding for Symbolic Music

values. These sets should be sufficiently precise so that
the global information remains coherent (Huang & Yang,
2020; Oore et al., 2018; Hadjeres & Crestel, 2021). Down-
sampling features helps models to learn more easily, as it
allows to reduce the perplexity of the predictions, especially
for values which are less commons in the training set. The
details of our downsamplings can be found in Appendix B.

BPE is learned from tokenized corpuses, up to a maximum
of 1500 randomly picked files, to reduce the learning time.
We choose to experiment with six vocabulary sizes. One
without BPE, and five where the original vocabulary size is
multiplied by 4, 10, 20, 50 and 100.

To extend our analysis, we also experiment with a version
of TSD and Remi where Pitch and Velocity tokens
are merged (PVm), and one where Pitch, Velocity and
Duration are merged (PVDm). PVm is similar to the
strategy used with MuseNet (Payne, 2019). We finally ex-
periment with the CPWord (Hsiao et al., 2021) and Octuple
(Zeng et al., 2021) embedding pooling strategies, that we
group with Remi in our experiments as they represent time
similarly. We use the same pooling strategy, and sample
independently from the logits of each output modules. For
implementation simplicity reasons, all embeddings have the
same size than the model dimension.

5. Evaluation metrics
Generative models are often evaluated with automatic met-
rics on the generated results. Image and audio models are
assessed with the Fréchet Inception Distance (FID) (Heusel
et al., 2017) and Fréchet Audio Distance (FAD) (Kilgour
et al., 2019), both comparing the distribution of original data
and generated results. Language models are often assessed
with BLEU (Papineni et al., 2002), ROUGE (Lin, 2004) or
other metrics that compare generated results with reference
sentences.

Automatic evaluation of symbolic music remains however
an open issue. It exists no reference-free metric measuring
its quality or fidelity. Metrics with reference such as BLEU
may be suited for machine translation tasks, but remains
irrelevant for open-ended generation, such as in our case.

We then perform both human and automatic evaluations, as
commonly done for symbolic music (Huang & Yang, 2020;
Huang et al., 2018; Hsiao et al., 2021). Our automatic met-
rics aim to measure the errors of prediction of the models,
and the similarity of some features.

5.1. Tokenization syntax error

Every tokenization has an underlying syntax of token type
and value successions, that can normally be made. For
instance, if the last token of an input sequence is of type
Pitch, a tokenization could require that the next token to

predict must be of type Velocity. We could also expect
a model to not predict more than once the same note at a
same moment, or to not go back in time.

Successions of incorrect token types can be interpreted as
errors of prediction. These errors can help us to measure
if a model has efficiently learned the music representation
and if it can yield coherent results. With this motivation,
we introduce a new metric we called Tokenization Syntax
Errors (TSE).

Velocity

Pitch Duration

Position Bar

(a) REMI.

Velocity

Note-On Note-Off

Time-Shift

(b) MIDI-Like

Figure 2. Directed graphs of the token types succession (without
additional tokens) for a) REMI (Huang & Yang, 2020) and b)
MIDI-Like (Oore et al., 2018).

We distinguish five categories of errors:

• TSEtype: the predicted token does not have a type
that should follow the previous one. For any tokeniza-
tion, we can draw a directed graph representing the
possible token types successions, such as in Figure 2.

• TSEtime: when using Position tokens, the pre-
dicted Position value is inferior or equal to the
current one, making the time goes backward.

• TSEdupn (duplicated note): when the model predicts
a note that has already been played at the current mo-
ment (by the same instrument).

• TSEnnof (no NoteOff): when using NoteOn and
NoteOff, and that a NoteOn token has been pre-
dicted with no NoteOff later to end it, or too distant
in time.

• TSEnnon (no NoteOn): when a NoteOff token is
predicted but the corresponding note has not been
played.

For a given sequence of tokens, TSE measures the ratio,
scaled between 0 and 1, of errors for these five categories.
A TSE of 0 means that there is no error in the sequence,
while a ratio of 1 means only errors were predicted. Our
experiments are not concerned by the last two categories as
we do not use NoteOff tokens.

Finally, we should mention that most of these errors can
be avoided by a ruled-based sampling. When predicting a
token, one can easily keep track of the time, notes played
and token types to automatically exclude invalid predictions.

Byte Pair Encoding for Symbolic Music

In practice, this can be achieved by setting the invalid indices
of the predicted logits to −∞ before applying softmax.

5.2. Feature similarity

We expect models to generate continuations that keep the
features of the input prompt consistent. For instance, it
should predict first notes within the same scale and with
the same velocity range. We measure this similarity by
calculating the overlapping area of distributions of features,
for the prompt and the first 16 generated beats.

Previous works (Yang & Lerch, 2020; Choi et al., 2020;
Mittal et al., 2021; von Rütte et al., 2022) use the proba-
bility density function of the distributions, estimated with
kernel density estimations, and emphasizes that it smooths
and transforms the distributions into more general repre-
sentations. While this method can be suited for continuous
modalities, it can lead to inaccuracies with categorical ones.
Here, pitch and duration features can be considered as dis-
crete. Their distributions are both sparse, containing for
instance many white keys and fewer black keys, yet adja-
cent and corresponding to close integer values in the MIDI
format. In order to be more accurate, we measure this simi-
larity with the histogram intersection of these features, as
described in Equation (1).

Similarity (D1,D2) = HI (Hist (D1) ,Hist (D2))

HI(x,y) =
∑

i min(xi, yi), xi ≥ 0, yi ≥ 0

(1)

Hist : R|D| 7→ Ne returns the normalized histogram of
a distribution of a feature with e elements, HI stands for
Histogram Intersection.

5.3. Human evaluations

For each experiment, we select 40 prompts of 8 beats. For
each prompts, we generate continuations of 1k tokens with
the benchmarked models. Three musicians open the con-
tinuations as a MIDI file, allowing them to listen the tracks
and also visualize them as piano rolls. Among the tracks,
they are asked to select the one: 1) with the highest fidelity
on pitch scale, velocity, note density and rhythm, with the
prompt; 2) they subjectively prefer overall, considering its
correctness, structure and richness.

6. Results and analysis
We focus on how BPE is learned on the corpuses, then on its
benefits for music generation and composer classification.

6.1. BPE learning

Figure 3 shows the distribution of token types combina-
tions of the learned BPE tokens. We observe that the
majority of the combinations learned on the Remi tok-
enization represent notes, by their Pitch, Velocity and

4 10 20 50 100
BPE Factor

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n

Pch-Vel-Dur
Pch-Vel-Dur-TimeShift
Vel-Dur-TimeShift
Vel-Dur
Pch-Vel-Dur-Pch-Vel-Dur
TimeShift-Pch
Other

(a) TSD

4 10 20 50 100
BPE Factor

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n

Pch-Vel-Dur
Pch-Vel-Dur-Pos
Vel-Dur
Pos-Pch-Vel-Dur
Pch-Vel-Dur-Pch-Vel-Dur
Pos-Pch
Other

(b) Remi
Figure 3. Normalized distributions of the token types of the BPE
tokens, per BPE factor for the POP909 dataset.

0 2k 4k 6k 8k 10k 12k 14k
Vocabulary size

2.0

2.5

3.0

3.5

4.0

Av
g.

 to
ke

n
co

m
bi

na
tio

ns

POP909 TSD
POP909 REMI
GiantMIDI TSD
GiantMIDI REMI

0 2k 4k 6k 8k 10k 12k 14k
Vocabulary size

5
10
15
20
25
30
35

M
ax

. t
ok

en
 c

om
bi

na
tio

ns

Figure 4. Average (left) and maximum (right) number of token
combinations represented by BPE tokens in function of the vocab-
ulary size.

Duration attributes. For TSD, the combinations also in-
clude TimeShift tokens early in the learning. This dif-
ference mostly comes from common TimeShift tokens
following notes, whereas for Remi the notes are distributed
at different Position(s). As the vocabulary grows, the
combinations tend to be more diverse. The distribution for
the GiantMIDI dataset are showned in Appendix C.

Figure 4 shows the evolution of the average number of non-
BPE token combinations represented by the BPE tokens.
At the beginning of the learning, the mean number of com-
binations grows more quickly as the most recurrent token
successions are often made of more than two tokens. The
POP909 dataset being smaller than GiantMIDI, it naturally
leads to a higher maximum number of combinations as the
latter is more diverse. When the vocabulary begins to con-

Byte Pair Encoding for Symbolic Music

Table 1. Metrics of generated results. TSE numbers are all scaled at e-3 for better readability. Sim stands for similarity, the best results are
the closest to the datasets. Hum. Fidelity and Overall are the human evaluations.

Data / Strategy TSEtype (↓) TSEdupn (↓) TSEtime (↓) Sim. pit. Sim. vel. Sim. dur. Hum. Fidelity (↑) Hum. Overall (↑)
POP909 TSD 0.66 ± 0.13 0.84 ± 0.12 0.69 ± 0.14

No BPE 1.0 ± 1.8 13.6 ± 8.0 - 0.59 ± 0.08 0.82 ± 0.10 0.64 ± 0.09 0.00 0.00
BPE×4 0.2 ± 0.9 21.9 ± 19.9 - 0.65 ± 0.07 0.82 ± 0.10 0.74 ± 0.08 0.24 0.19
BPE×10 0.5 ± 2.2 13.4 ± 14.6 - 0.64 ± 0.07 0.78 ± 0.12 0.74 ± 0.07 0.53 0.42
BPE×20 0.8 ± 2.1 12.8 ± 11.0 - 0.62 ± 0.07 0.79 ± 0.11 0.70 ± 0.09 0.20 0.31
BPE×50 22.4 ± 24.0 4.4 ± 5.3 - 0.56 ± 0.07 0.70 ± 0.12 0.62 ± 0.11 0.02 0.02

BPE×100 21.5 ± 40.2 35.6 ± 56.0 - 0.54 ± 0.08 0.66 ± 0.14 0.63 ± 0.10 0.00 0.00
PVm 6.1 ± 6.6 6.9 ± 9.3 - 0.59 ± 0.08 0.78 ± 0.12 0.73 ± 0.08 0.01 0.06

PVDm 23.6 ± 19.3 0.2 ± 0.7 - 0.43 ± 0.09 0.57 ± 0.19 0.54 ± 0.12 0.00 0.00
POP909 REMI 0.66 ± 0.13 0.84 ± 0.12 0.69 ± 0.14

No BPE 0.0 ± 0.1 115.4 ± 33.8 74.7 ± 26.7 0.61 ± 0.08 0.85 ± 0.09 0.72 ± 0.07 0.02 0.03
BPE×4 0.1 ± 0.4 65.7 ± 21.7 154.9 ± 27.6 0.55 ± 0.09 0.77 ± 0.12 0.70 ± 0.09 0.27 0.34
BPE×10 0.3 ± 1.1 52.3 ± 18.3 167.1 ± 30.5 0.49 ± 0.08 0.77 ± 0.10 0.63 ± 0.09 0.52 0.44
BPE×20 0.8 ± 2.2 81.8 ± 37.3 242.6 ± 46.5 0.46 ± 0.08 0.71 ± 0.13 0.61 ± 0.10 0.12 0.12
BPE×50 37.8 ± 35.5 128.2 ± 22.2 324.1 ± 21.5 0.30 ± 0.12 0.56 ± 0.20 0.55 ± 0.12 0.00 0.00

BPE×100 83.9 ± 78.0 136.3 ± 32.4 324.6 ± 28.8 0.28 ± 0.11 0.54 ± 0.22 0.55 ± 0.12 0.00 0.00
PVm 2.3 ± 7.1 160.0 ± 75.3 102.7 ± 48.2 0.60 ± 0.08 0.77 ± 0.12 0.69 ± 0.09 0.05 0.04

PVDm 49.3 ± 46.2 99.8 ± 25.1 301.9 ± 26.5 0.32 ± 0.13 0.50 ± 0.24 0.45 ± 0.12 0.02 0.02
CPWord 331.9 ± 33.8 144.5 ± 46.8 99.3 ± 16.6 0.57 ± 0.08 0.85 ± 0.07 0.73 ± 0.09 0.00 0.00
Octuple - 789.3 ± 111.1 891.9 ± 76.1 0.05 ± 0.15 0.07 ± 0.21 0.06 ± 0.17 0.00 0.00

GiantMIDI TSD 0.49 ± 0.17 0.74 ± 0.18 0.52 ± 0.23
No BPE 0.2 ± 1.1 3.9 ± 4.6 - 0.50 ± 0.10 0.77 ± 0.12 0.63 ± 0.13 0.24 0.19
BPE×4 0.5 ± 1.4 15.2 ± 18.1 - 0.51 ± 0.10 0.75 ± 0.13 0.62 ± 0.14 0.33 0.27
BPE×10 1.5 ± 3.3 35.2 ± 45.6 - 0.51 ± 0.11 0.68 ± 0.17 0.65 ± 0.13 0.29 0.37
BPE×20 0.0 ± 0.0 17.5 ± 29.3 - 0.52 ± 0.09 0.73 ± 0.15 0.65 ± 0.12 0.11 0.08
BPE×50 0.0 ± 0.3 6.8 ± 8.5 - 0.50 ± 0.09 0.70 ± 0.13 0.64 ± 0.11 0.00 0.00

BPE×100 1.5 ± 3.7 1.1 ± 1.5 - 0.46 ± 0.09 0.63 ± 0.17 0.53 ± 0.13 0.01 0.01
PVm 3.0 ± 3.7 0.7 ± 1.3 - 0.46 ± 0.11 0.69 ± 0.15 0.67 ± 0.11 0.02 0.09

PVDm 35.6 ± 56.1 0.5 ± 1.2 - 0.39 ± 0.13 0.61 ± 0.18 0.25 ± 0.18 0.00 0.00
GiantMIDI REMI 0.49 ± 0.17 0.74 ± 0.18 0.52 ± 0.23

No BPE 0.2 ± 0.9 57.8 ± 40.2 95.1 ± 42.8 0.53 ± 0.10 0.75 ± 0.14 0.63 ± 0.13 0.00 0.01
BPE×4 0.2 ± 0.8 44.3 ± 23.5 82.3 ± 36.4 0.46 ± 0.11 0.71 ± 0.15 0.62 ± 0.12 0.41 0.43
BPE×10 2.5 ± 3.5 31.7 ± 20.2 175.6 ± 60.3 0.43 ± 0.10 0.63 ± 0.21 0.54 ± 0.15 0.53 0.52
BPE×20 0.7 ± 2.4 36.6 ± 29.3 221.9 ± 66.4 0.33 ± 0.12 0.65 ± 0.16 0.46 ± 0.15 0.02 0.01
BPE×50 34.8 ± 11.1 80.5 ± 53.1 316.4 ± 54.1 0.36 ± 0.11 0.58 ± 0.18 0.30 ± 0.23 0.00 0.00

BPE×100 476.1 ± 148.3 159.8 ± 60.1 285.3 ± 31.5 0.19 ± 0.10 0.59 ± 0.20 0.20 ± 0.19 0.00 0.00
PVm 0.7 ± 2.4 53.8 ± 47.4 181.5 ± 56.9 0.46 ± 0.11 0.70 ± 0.15 0.60 ± 0.14 0.00 0.01

PVDm 31.9 ± 63.9 65.6 ± 28.8 285.6 ± 32.6 0.33 ± 0.14 0.58 ± 0.19 0.29 ± 0.17 0.02 0.02
CPWord 408.9 ± 28.3 160.1 ± 54.4 69.3 ± 16.7 0.51 ± 0.11 0.81 ± 0.09 0.69 ± 0.12 0.00 0.00
Octuple - 763.8 ± 134.4 894.3 ± 62.1 0.03 ± 0.11 0.06 ± 0.19 0.04 ± 0.15 0.00 0.00

tain BPE tokens with a large number of combinations, it
starts to specialize on very specific note successions that
may appear in few data samples. In particular, big jumps
of maximum number of combinations, e.g. from 14 to 27
for POP909 Remi, indicate that two already big BPE tokens
represent the most recurrent succession. These numbers,
correlated with the model, dataset sizes and overall token
distribution of the dataset, might help to choose an optimal
vocabulary size.

Further analysis in Appendix C shows that BPE consider-
ably reduces the sequence length, and so the training and
generation time, at the cost of an increased tokenization
time. Tokenization of data is however often performed once,
and the training time gain is very likely to be larger than the
tokenization time loss.

6.2. Generated results

For the generation task, we generate continuations of input
prompt from the validation subset. The continuations are
autoregressively generated with 1024 steps, with nucleus
sampling (Holtzman et al., 2020), with p = 0.9.

The results of all metrics are reported in Table 1. For TSD,
BPE allows to reduce both the token type and note dupli-
cation errors in most cases, while the time errors slightly
increase for Remi baselines. These results show that models
can easily scale to bigger vocabularies, up to a certain limit.
Here, starting from a BPE factor of 50, the TSE seems to
increase, as do the other results. BPE tends to however
produce results with features slightly less similar, especially
with big vocabulary sizes.

We gathered a total of 400 human evaluations. They show
that BPE with factors of 4 and 10 significantly outperform
other baselines, in all experiments. BPE helps models to

Byte Pair Encoding for Symbolic Music

Table 2. Number of tokens sampled and not sampled by generative
models, respectively right and left separated by |.

Strategy POP909 TSD POP909 Remi GiantMIDI TSD GiantMIDI Remi
No BPE 116 | 23 (16%) 141 | 11 (7%) 136 | 3 (2%) 151 | 1 (0%)
BPE×4 454 | 102 (18%) 487 | 121 (19%) 456 | 100 (17%) 386 | 222 (36%)
BPE×10 479 | 911 (65%) 514 | 1006 (66%) 456 | 934 (67%) 618 | 902 (59%)
BPE×20 592 | 2188 (78%) 552 | 2488 (81%) 478 | 2302 (82%) 504 | 2536 (83%)
BPE×50 521 | 6429 (92%) 249 | 7351 (96%) 401 | 6549 (94%) 155 | 7445 (97%)

BPE×100 521 | 13379 (96%) 244 | 14956 (98%) 281 | 13619 (97%) 89 | 15111 (99%)
PVm 321 | 426 (57%) 338 | 422 (55%) 342 | 405 (54%) 369 | 391 (51%)

PVDm 391 | 13712 (97%) 144 | 13972 (98%) 252 | 13851 (98%) 166 | 13950 (98%)

Table 3. Average accuracy of classification models.

Strategy TSD (↑) Remi (↑) TSD Large (↑) Remi Large (↑)
No BPE 0.196 ± 0.031 0.169 ± 0.021 0.208 ± 0.033 0.175 ± 0.022
BPE×4 0.218 ± 0.033 0.168 ± 0.021 0.226 ± 0.034 0.171 ± 0.022
BPE×10 0.226 ± 0.038 0.190 ± 0.030 0.228 ± 0.037 0.201 ± 0.034
BPE×20 0.236 ± 0.038 0.195 ± 0.026 0.240 ± 0.039 0.210 ± 0.029
BPE×50 0.199 ± 0.027 0.207 ± 0.032 0.247 ± 0.041 0.216 ± 0.035

BPE×100 0.122 ± 0.009 0.119 ± 0.008 0.243 ± 0.037 0.126 ± 0.010
PVm 0.199 ± 0.027 0.150 ± 0.016 0.213 ± 0.029 0.188 ± 0.025

PVDm 0.226 ± 0.035 0.192 ± 0.028 0.228 ± 0.036 0.194 ± 0.029
CPWord - 0.204 ± 0.28 - 0.214 ± 0.024
Octuple - 0.274 ± 0.041 - 0.283 ± 0.043

generate more correct and pleasant music. We make the
assumption that having a larger set of learned embeddings
help the model to capture more easily the global melody, har-
mony and music structure, and in turn improve the generated
results. These embedding, when well learned contextually,
may represent richer and more explicit information.

Table 2 shows that while models give high probabilities to
more unique tokens with BPE in absolute number, the pro-
portion of sampled tokens decreases. Models tend to focus
on the sets of more recurrent tokens and omitting more rare
ones. Beyond a BPE factor of 20 (or vocabulary size be-
tween 2k and 2.5k tokens), the models are even focusing on
a more restricting sets of tokens. These numbers highlight
the limitations of using a too large vocabulary size, as the
extra effort is unlikely to result in better results.

6.3. Composer classification

Composer classification is performed with the top-10 most
present composers of the GiantMIDI dataset. The results,
reported in Table 3, show that BPE outperforms other base-
lines. Here, the model seems to benefit from larger vocabu-
lary sizes. We also remark that the model size plays in its
capacity to handle large vocabularies. While the results of
BPE100 for the small model indicate it was unable to learn
anything, the larger one performed almost as good as the top
baseline. A second observation is the good performances
of embedding pooling strategies (CPWord and OCtuple).
While they performed poorly for generative tasks, they are
among the best for this classification task. They seem to be
better for MIR tasks than generation. As stated in Section 1,
generation implies sampling, and sampling from several
distributions is delicate, as for training a model with an
autoregressive objective on several output distributions.

Table 4. IsoScore results.
Generator POP909 TSD POP909 Remi GiantMIDI TSD GiantMIDI Remi

No BPE 0.09 0.14 0.08 0.09
BPE×4 0.02 0.04 0.02 0.02
BPE×10 0.12 0.11 0.02 0.07
BPE×20 0.13 0.05 0.02 0.02
BPE×50 0.02 0.01 0.01 0.01

BPE×100 0.01 0.01 0.01 0.00
PVm 0.02 0.02 0.01 0.02

PVDm 0.00 0.00 0.00 0.00
CPWord - 0.04 - 0.08
Octuple - 0.04 - 0.02

Classifier TSD (↑) Remi (↑) TSD Large (↑) Remi Large (↑)
No BPE 0.74 0.71 0.80 0.77
BPE×4 0.35 0.33 0.54 0.37
BPE×10 0.36 0.31 0.48 0.50
BPE×20 0.54 0.57 0.64 0.53
BPE×50 0.77 0.80 0.75 0.82

BPE×100 0.82 0.90 0.87 0.89
PVm 0.27 0.27 0.32 0.32

PVDm 0.69 0.88 0.88 0.88
CPWord - 0.08 - 0.05
Octuple - 0.08 - 0.06

7. Learned embedding spaces
Results presented in this section rely on Table 4, and Fig-
ures 5 and 6. Isotropy is a measure of the uniformity of the
space occupied by a distribution, across all dimensions. In
our case, the distribution is a manifold X ∈ RN×d where
N = |V | and d is the model/embedding dimension. It
has been associated with improved performances with lan-
guage models (Biś et al., 2021; Liang et al., 2021), mostly
because embeddings are more discriminative and enable
models to capture and distinguish more easily subtle seman-
tic information. It has been observed that representations
from Transformers often exhibit anisotropy, i.e., they tend
to occupy only a small subspace of the embedding space,
and often not uniformly (Gao et al., 2019; Ethayarajh, 2019;
Wang et al., 2020a; Gong et al., 2018; Reif et al., 2019),
especially causal generative models (Ethayarajh, 2019).

Isotropy is often estimated by different ways: singular value
decomposition (Biś et al., 2021; Gao et al., 2019; Liang
et al., 2021; Wang et al., 2020a), intrinsic dimension (Cai
et al., 2021), partition function (Arora et al., 2016; Mu &
Viswanath, 2018), average cosine similarity (Ethayarajh,
2019). Although these methods are correlated with isotropy,
recent research shed light on some of their limits (Rudman
et al., 2022). We choose to estimate it with intrinsic value,
IsoScore (Rudman et al., 2022), singular value and cosine
similarity, to have results that corroborate and complement
themselves. The results of the two latter can be found in
Appendix D. For tokenizations with embedding pooling, we
used 50k randomly sampled embeddings of combinations
of tokens representing notes, as using all the embedding
combinations would be intractable and would not reflect the
ones actually learned by the models. Results for tokeniza-
tions where N . d (no BPE) have to be interpreted loosely.
Isotropy cannot be reliably measured with less samples than
the number of dimensions they occupy. The estimations are
more accurate when N � d, as more samples populate all

Byte Pair Encoding for Symbolic Music

Gen. POP909 TSD
no

BP
E

bp
e4

bp
e1

0
bp

e2
0

bp
e5

0
bp

e1
00

PV
m

PV
Dm

0

20

40

60

80

Di
m

en
sio

n

lPCA
MLE
MOM
TLE
TwoNN
FisherS

Gen. POP909 Remi

no
BP

E
bp

e4
bp

e1
0

bp
e2

0
bp

e5
0

bp
e1

00
PV

m
PV

Dm
CP

W
or

d
Oc

tu
pl

e

0

20

40

60

lPCA
MLE
MOM
TLE
TwoNN
FisherS

Gen. GiantMIDI TSD

no
BP

E
bp

e4
bp

e1
0

bp
e2

0
bp

e5
0

bp
e1

00
PV

m
PV

Dm

0

5

10

15

20

25 lPCA
MLE
MOM
TLE
TwoNN
FisherS

Gen. GiantMIDI Remi

no
BP

E
bp

e4
bp

e1
0

bp
e2

0
bp

e5
0

bp
e1

00
PV

m
PV

Dm
CP

W
or

d
Oc

tu
pl

e

0

20

40

60

80

lPCA
MLE
MOM
TLE
TwoNN
FisherS

Clasmall TSD

no
BP

E
bp

e4
bp

e1
0

bp
e2

0
bp

e5
0

bp
e1

00
PV

m
PV

Dm

0

20

40

60

80

Di
m

en
sio

n

200

300

400

500

600

700
lPCA
MLE
MOM
TLE
TwoNN
FisherS

Clasmall Remi
no

BP
E

bp
e4

bp
e1

0
bp

e2
0

bp
e5

0
bp

e1
00

PV
m

PV
Dm

CP
W

or
d

Oc
tu

pl
e

0

20

40

60

80

100

200

300

400

500

600

700

800
lPCA
MLE
MOM
TLE
TwoNN
FisherS

Clalarge TSD

no
BP

E
bp

e4
bp

e1
0

bp
e2

0
bp

e5
0

bp
e1

00
PV

m
PV

Dm

0

20

40

60

80

100

200

400

600

800

1000

lPCA
MLE
MOM
TLE
TwoNN
FisherS

Clalarge Remi

no
BP

E
bp

e4
bp

e1
0

bp
e2

0
bp

e5
0

bp
e1

00
PV

m
PV

Dm
CP

W
or

d
Oc

tu
pl

e

0

20

40

60

80

100

200

400

600

800

1000

lPCA
MLE
MOM
TLE
TwoNN
FisherS

Figure 5. Intrinsic dimension estimations. A second x axis has been added on the right for lPCA on classifier plots for better readability.

Gen. POP909 no BPE Gen. POP909 BPE×20

Clasmall GiantMIDI no BPE Clasmall GiantMIDI BPE×20

Figure 6. 3d UMAP representations of learning embedding spaces,
with TSD tokenization. Abbreviations in legend stand for: Pi:
Pitch; V: Velocity; D: Duration; Po: Position: TS: TimeShift.

dimensions of Rd.

The IsoScore results (See Table 4), show that BPE does
not increase the score for generative models. It seems that
big vocabularies with BPE yield lower IsoScore results,
that corroborate with the intrinsic dimension results (Fig-

ure 5). Causal generative models have been shown to learn
anisotropic embedding representations (Cai et al., 2021;
Ethayarajh, 2019). Embeddings form cones and clusters,
that can be observed in Figure 6. As we estimated isotropy
on all embeddings altogether, the presence of clusters nat-
urally correlate with anisotropy, as the variance is mostly
pronounced on their distances. The cluster themselves might
be more isotropic (Cai et al., 2021).

On the other hand, BPE can help bi-directional models
to learn more isotropic embedding representations. The
IsoScore grows with the vocabulary size, as do the intrinsic
dimension. In Figure 6 we observe that the embeddings
have no preferred direction in space, forming a sphere (See
more figures in Appendix D).

8. Conclusion
We showed that BPE can increase the quality of results
for symbolic music generation, and composer classifica-
tion, while improving the performances, with a well chosen
vocabulary size. BPE can be applied on top of any tokeniza-
tion, and we advice the reader to do so for projects involving
symbolic music. The drawbacks are a time-consuming vo-
cabulary learning, and a slower tokenization of data. BPE
can also helps models to learn more isotropic embedding
representations. Future work will explore more in depth
the isotropy of clusters of embeddings of generative models.
We also plan to experiment with larger model, dataset and
vocabulary sizes, hoping to find guidelines for choosing an
optimum vocabulary size.

Byte Pair Encoding for Symbolic Music

References
Arora, S., Li, Y., Liang, Y., Ma, T., and Risteski, A. A Latent

Variable Model Approach to PMI-based Word Embed-
dings. Transactions of the Association for Computational
Linguistics, 4:385–399, 07 2016. ISSN 2307-387X. doi:
10.1162/tacl a 00106. URL https://doi.org/10.
1162/tacl_a_00106.

Biś, D., Podkorytov, M., and Liu, X. Too much in com-
mon: Shifting of embeddings in transformer language
models and its implications. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, pp. 5117–5130, Online, June
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.naacl-main.403. URL https://
aclanthology.org/2021.naacl-main.403.

Cai, X., Huang, J., Bian, Y., and Church, K. Isotropy in the
contextual embedding space: Clusters and manifolds. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=xYGNO86OWDH.

Choi, K., Hawthorne, C., Simon, I., Dinculescu, M., and
Engel, J. Encoding musical style with transformer au-
toencoders. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Ma-
chine Learning Research, pp. 1899–1908. PMLR, Jul
2020. URL https://proceedings.mlr.press/
v119/choi20b.html.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171–4186,
Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

Donahue, C., Mao, H. H., Li, Y. E., Cottrell, G. W., and
McAuley, J. J. Lakhnes: Improving multi-instrumental
music generation with cross-domain pre-training. In
Proceedings of the 20th International Society for Mu-
sic Information Retrieval Conference, ISMIR 2019,
Delft, The Netherlands, November 4-8, 2019, pp. 685–
692, 2019. URL http://archives.ismir.net/
ismir2019/paper/000083.pdf.

Dong, H.-W., Hsiao, W.-Y., Yang, L.-C., and Yang,
Y.-H. Musegan: Multi-track sequential genera-
tive adversarial networks for symbolic music gen-
eration and accompaniment. Proceedings of the

AAAI Conference on Artificial Intelligence, 32(1), Apr.
2018. URL https://ojs.aaai.org/index.
php/AAAI/article/view/11312.

Ethayarajh, K. How contextual are contextualized word rep-
resentations? Comparing the geometry of BERT, ELMo,
and GPT-2 embeddings. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 55–
65, Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1006.
URL https://aclanthology.org/D19-1006.

Fradet, N., Briot, J.-P., Chhel, F., El Fallah Seghrouchni,
A., and Gutowski, N. Miditok: A python package
for midi file tokenization. In Extended Abstracts for
the Late-Breaking Demo Session of the 22nd Interna-
tional Society for Music Information Retrieval Con-
ference, 2021. URL https://archives.ismir.
net/ismir2021/latebreaking/000005.pdf.

Gage, P. A new algorithm for data compression.
C Users J., 12(2):23–38, feb 1994. ISSN 0898-
9788. URL https://dl.acm.org/doi/10.
5555/177910.177914.

Gao, J., He, D., Tan, X., Qin, T., Wang, L., and Liu, T.
Representation degeneration problem in training natural
language generation models. In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=SkEYojRqtm.

Gong, C., He, D., Tan, X., Qin, T., Wang, L., and Liu, T.-Y.
Frage: Frequency-agnostic word representation. In Ben-
gio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/
e555ebe0ce426f7f9b2bef0706315e0c-Paper.
pdf.

Hadjeres, G. and Crestel, L. The piano inpainting applica-
tion, 2021. URL https://arxiv.org/abs/2107.
05944.

Hadjeres, G., Pachet, F., and Nielsen, F. DeepBach:
a steerable model for Bach chorales generation. In
Precup, D. and Teh, Y. W. (eds.), Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning
Research, pp. 1362–1371. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/
hadjeres17a.html.

https://doi.org/10.1162/tacl_a_00106
https://doi.org/10.1162/tacl_a_00106
https://aclanthology.org/2021.naacl-main.403
https://aclanthology.org/2021.naacl-main.403
https://openreview.net/forum?id=xYGNO86OWDH
https://openreview.net/forum?id=xYGNO86OWDH
https://proceedings.mlr.press/v119/choi20b.html
https://proceedings.mlr.press/v119/choi20b.html
https://aclanthology.org/N19-1423
http://archives.ismir.net/ismir2019/paper/000083.pdf
http://archives.ismir.net/ismir2019/paper/000083.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/11312
https://ojs.aaai.org/index.php/AAAI/article/view/11312
https://aclanthology.org/D19-1006
https://archives.ismir.net/ismir2021/latebreaking/000005.pdf
https://archives.ismir.net/ismir2021/latebreaking/000005.pdf
https://dl.acm.org/doi/10.5555/177910.177914
https://dl.acm.org/doi/10.5555/177910.177914
https://openreview.net/forum?id=SkEYojRqtm
https://openreview.net/forum?id=SkEYojRqtm
https://proceedings.neurips.cc/paper/2018/file/e555ebe0ce426f7f9b2bef0706315e0c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e555ebe0ce426f7f9b2bef0706315e0c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e555ebe0ce426f7f9b2bef0706315e0c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e555ebe0ce426f7f9b2bef0706315e0c-Paper.pdf
https://arxiv.org/abs/2107.05944
https://arxiv.org/abs/2107.05944
https://proceedings.mlr.press/v70/hadjeres17a.html
https://proceedings.mlr.press/v70/hadjeres17a.html

Byte Pair Encoding for Symbolic Music

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
8a1d694707eb0fefe65871369074926d-Paper.
pdf.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi,
Y. The curious case of neural text degeneration. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rygGQyrFvH.

Hsiao, W.-Y., Liu, J.-Y., Yeh, Y.-C., and Yang, Y.-H. Com-
pound word transformer: Learning to compose full-
song music over dynamic directed hypergraphs. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 35(1):178–186, May 2021. doi: 10.1609/
aaai.v35i1.16091. URL https://ojs.aaai.org/
index.php/AAAI/article/view/16091.

Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Shazeer, N.,
Simon, I., Hawthorne, C., Dai, A. M., Hoffman, M. D.,
Dinculescu, M., and Eck, D. Music transformer, 2018.
URL https://arxiv.org/abs/1809.04281.

Huang, Y.-S. and Yang, Y.-H. Pop music transformer:
Beat-based modeling and generation of expressive pop
piano compositions. In Proceedings of the 28th ACM
International Conference on Multimedia, MM ’20, pp.
1180–1188, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450379885. doi: 10.
1145/3394171.3413671. URL https://doi.org/
10.1145/3394171.3413671.

Kermarec, M., Bigo, L., and Keller, M. Improving tokeniza-
tion expressiveness with pitch intervals. In Extended Ab-
stracts for the Late-Breaking Demo Session of the 23nd In-
ternational Society for Music Information Retrieval Con-
ference, 2022. URL https://ismir2022program.
ismir.net/lbd_369.html.

Kilgour, K., Zuluaga, M., Roblek, D., and Shar-
ifi, M. Fréchet audio distance: A reference-
free metric for evaluating music enhancement
algorithms. In Interspeech, pp. 2350–2354, 09
2019. doi: 10.21437/Interspeech.2019-2219. URL
https://www.isca-speech.org/archive_
v0/Interspeech_2019/pdfs/2219.pdf.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May

7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Kong, Q., Li, B., Chen, J., and Wang, Y. Giantmidi-
piano: A large-scale midi dataset for classical
piano music. In Transactions of the Interna-
tional Society for Music Information Retrieval, vol-
ume 5, pp. 87–98, 2021. doi: 10.5334/tismir:
80. URL https://transactions.ismir.net/
articles/10.5334/tismir.80/#.

Liang, F. T., Gotham, M., Johnson, M., and Shotton,
J. Automatic stylistic composition of bach chorales
with deep LSTM. In Proceedings of the 18th In-
ternational Society for Music Information Retrieval
Conference, ISMIR 2017, Suzhou, China, October
23-27, 2017, pp. 449–456, 2017. URL https:
//ismir2017.smcnus.org/wp-content/
uploads/2017/10/156_Paper.pdf.

Liang, Y., Cao, R., Zheng, J., Ren, J., and Gao, L. Learning
to remove: Towards isotropic pre-trained bert embedding.
In Artificial Neural Networks and Machine Learning –
ICANN 2021: 30th International Conference on Artificial
Neural Networks, Bratislava, Slovakia, September 14–17,
2021, Proceedings, Part V, pp. 448–459, Berlin, Heidel-
berg, 2021. Springer-Verlag. ISBN 978-3-030-86382-1.
doi: 10.1007/978-3-030-86383-8 36. URL https://
doi.org/10.1007/978-3-030-86383-8_36.

Lin, C.-Y. ROUGE: A package for automatic evalua-
tion of summaries. In Text Summarization Branches
Out, pp. 74–81, Barcelona, Spain, July 2004. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/W04-1013.

Liu, J., Dong, Y., Cheng, Z., Zhang, X., Li, X., Yu, F.,
and Sun, M. Symphony generation with permutation
invariant language model. In Proceedings of the 21rd
International Society for Music Information Retrieval
Conference, Bengalore, India, December 2022. ISMIR.
URL https://arxiv.org/abs/2205.05448.

McInnes, L., Healy, J., Saul, N., and Grossberger, L.
Umap: Uniform manifold approximation and projec-
tion. The Journal of Open Source Software, 3(29):861,
2018. URL https://joss.theoj.org/papers/
10.21105/joss.00861.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed precision training. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=r1gs9JgRZ.

https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://ojs.aaai.org/index.php/AAAI/article/view/16091
https://ojs.aaai.org/index.php/AAAI/article/view/16091
https://arxiv.org/abs/1809.04281
https://doi.org/10.1145/3394171.3413671
https://doi.org/10.1145/3394171.3413671
https://ismir2022program.ismir.net/lbd_369.html
https://ismir2022program.ismir.net/lbd_369.html
https://www.isca-speech.org/archive_v0/Interspeech_2019/pdfs/2219.pdf
https://www.isca-speech.org/archive_v0/Interspeech_2019/pdfs/2219.pdf
http://arxiv.org/abs/1412.6980
https://transactions.ismir.net/articles/10.5334/tismir.80/#
https://transactions.ismir.net/articles/10.5334/tismir.80/#
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/156_Paper.pdf
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/156_Paper.pdf
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/156_Paper.pdf
https://doi.org/10.1007/978-3-030-86383-8_36
https://doi.org/10.1007/978-3-030-86383-8_36
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2205.05448
https://joss.theoj.org/papers/10.21105/joss.00861
https://joss.theoj.org/papers/10.21105/joss.00861
https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=r1gs9JgRZ

Byte Pair Encoding for Symbolic Music

Mittal, G., Engel, J. H., Hawthorne, C., and Simon,
I. Symbolic music generation with diffusion mod-
els. In Proceedings of the 22nd International Soci-
ety for Music Information Retrieval Conference, IS-
MIR 2021, Online, November 7-12, 2021, pp. 468–475,
2021. URL https://archives.ismir.net/
ismir2021/paper/000058.pdf.

Mu, J. and Viswanath, P. All-but-the-top: Simple and
effective postprocessing for word representations. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=HkuGJ3kCb.

Oore, S., Simon, I., Dieleman, S., Eck, D., and Si-
monyan, K. This time with feeling: Learning
expressive musical performance. Neural Comput-
ing and Applications, 32:955–967, 2018. URL
https://link.springer.com/article/10.
1007/s00521-018-3758-9.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu:
a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, pp. 311–
318, Philadelphia, Pennsylvania, USA, July 2002. As-
sociation for Computational Linguistics. doi: 10.3115/
1073083.1073135. URL https://aclanthology.
org/P02-1040.

Payne, C. Musenet, 2019. URL https://openai.
com/blog/musenet.

Press, O. and Wolf, L. Using the output embedding to
improve language models. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers, pp. 157–163, Valencia, Spain, April 2017. As-
sociation for Computational Linguistics. URL https:
//aclanthology.org/E17-2025.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners, 2019. URL https://openai.com/blog/
better-language-models/.

Reif, E., Yuan, A., Wattenberg, M., Viegas, F. B., Co-
enen, A., Pearce, A., and Kim, B. Visualizing and
measuring the geometry of bert. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F.,
Fox, E., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.
pdf.

Ren, Y., He, J., Tan, X., Qin, T., Zhao, Z., and Liu, T.-
Y. Popmag: Pop music accompaniment generation.
In Proceedings of the 28th ACM International Confer-
ence on Multimedia, pp. 1198–1206. Association for
Computing Machinery, 2020. ISBN 9781450379885.
doi: 10.1145/3394171.3413721. URL https://doi.
org/10.1145/3394171.3413721.

Rudman, W., Gillman, N., Rayne, T., and Eickhoff,
C. IsoScore: Measuring the uniformity of embedding
space utilization. In Findings of the Association for
Computational Linguistics: ACL 2022, pp. 3325–3339,
Dublin, Ireland, May 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.findings-acl.
262. URL https://aclanthology.org/2022.
findings-acl.262.

Sennrich, R., Haddow, B., and Birch, A. Neural machine
translation of rare words with subword units. In Pro-
ceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 1715–1725, Berlin, Germany, August 2016. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/
P16-1162. URL https://aclanthology.org/
P16-1162.

Sturm, B. L., Santos, J. F., and Korshunova, I. Folk mu-
sic style modelling by recurrent neural networks with
long short-term memory units. In Extended abstracts
for the Late-Breaking Demo Session of the 16th Inter-
national Society for Music Information Retrieval Con-
ference, 2015. URL https://ismir2015.ismir.
net/LBD/LBD13.pdf.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P., Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena : A benchmark for efficient transformers. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=qVyeW-grC2k.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. Attention is all you need. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

von Rütte, D., Biggio, L., Kilcher, Y., and Hoffman, T.
Figaro: Generating symbolic music with fine-grained
artistic control, 2022. URL https://arxiv.org/
abs/2201.10936.

https://archives.ismir.net/ismir2021/paper/000058.pdf
https://archives.ismir.net/ismir2021/paper/000058.pdf
https://openreview.net/forum?id=HkuGJ3kCb
https://openreview.net/forum?id=HkuGJ3kCb
https://link.springer.com/article/10.1007/s00521-018-3758-9
https://link.springer.com/article/10.1007/s00521-018-3758-9
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://openai.com/blog/musenet
https://openai.com/blog/musenet
https://aclanthology.org/E17-2025
https://aclanthology.org/E17-2025
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://proceedings.neurips.cc/paper/2019/file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf
https://doi.org/10.1145/3394171.3413721
https://doi.org/10.1145/3394171.3413721
https://aclanthology.org/2022.findings-acl.262
https://aclanthology.org/2022.findings-acl.262
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://ismir2015.ismir.net/LBD/LBD13.pdf
https://ismir2015.ismir.net/LBD/LBD13.pdf
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2201.10936
https://arxiv.org/abs/2201.10936

Byte Pair Encoding for Symbolic Music

Wang, L., Huang, J., Huang, K., Hu, Z., Wang, G., and Gu,
Q. Improving neural language generation with spectrum
control. In International Conference on Learning Rep-
resentations, 2020a. URL https://openreview.
net/forum?id=ByxY8CNtvr.

Wang, Z., Chen, K., Jiang, J., Zhang, Y., Xu, M., Dai,
S., Bin, G., and Xia, G. Pop909: A pop-song dataset
for music arrangement generation. In Proceedings of
21st International Conference on Music Information Re-
trieval, ISMIR, 2020b. URL https://arxiv.org/
abs/2008.07142.

Yang, L.-C. and Lerch, A. On the evaluation of gener-
ative models in music. Neural Comput. Appl., 32(9):
4773–4784, may 2020. ISSN 0941-0643. doi: 10.1007/
s00521-018-3849-7. URL https://doi.org/10.
1007/s00521-018-3849-7.

Zeng, M., Tan, X., Wang, R., Ju, Z., Qin, T., and Liu,
T.-Y. MusicBERT: Symbolic music understanding with
large-scale pre-training. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021, pp.
791–800, Online, August 2021. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2021.findings-acl.
70. URL https://aclanthology.org/2021.
findings-acl.70.

https://openreview.net/forum?id=ByxY8CNtvr
https://openreview.net/forum?id=ByxY8CNtvr
https://arxiv.org/abs/2008.07142
https://arxiv.org/abs/2008.07142
https://doi.org/10.1007/s00521-018-3849-7
https://doi.org/10.1007/s00521-018-3849-7
https://aclanthology.org/2021.findings-acl.70
https://aclanthology.org/2021.findings-acl.70

Byte Pair Encoding for Symbolic Music

A. Model and training

Table 5. Model configurations. The number of parameters is based on the baseline with no BPE, and may vary depending on the baseline
with the size of the first and last layers. Gen stands for generator and Cla for classifier.

Gen Clasmall Clalarge
Dimension 512 768 1024

Nb attention heads 8 12 16
Nb layers 10 10 18

Feedforward size 2048 2048 3078
Parameters 32.6M 58.0M 193.3M

The sizes of the models are reported in Table 5. The generator is trained with a teacher forcing objective on 100k steps. The
classifier pre-trained on 60k steps to retrieve the value of randomized positions. Between 1 to 15% of each input sequences
is randomized during pre-training. It is then fine-tuned on 100k steps to predict the composer of the input sequence, from
the first output hidden state, i.e., the BOS position, which is projected through an output classification layer. The input
embedding and output pre-training module weights are tied to improve the performances (Press & Wolf, 2017).

The batch size is set to 16 for the generator, and 24 for the classifier. All trainings are done with automatic mixed-precision
(Micikevicius et al., 2018), the Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.999 and ε = 10−8, and
dropout, weight decay and a gradient clip norm of respectively 10−1, 10−2 and 3. We use a one cycle learning rate scheduler:
the initial learning rate is close to 0 and gradually grows for the 30% first steps to 5e−6, 1e−6 and 5e−7 for the generators,
classifier pre-training and classifier fine-tuning respectively, then slowly decreases down to 0. We perform 5 validations steps
every 30 training steps, and compute their average accuracy and loss. The model parameters are saved when the validation
loss is the lowest ever observed, and after training the last version saved is used for testing. The training is stopped early if
the validation losses did not decrease for 15k steps and 25k steps for respectively the generator and classifier.

B. Data downsampling

0 1 2 3 4 5 6 7
duration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

de
ns

ity

Dataset
POP909
GiantMIDI

0 20 40 60 80 100 120
velocity

0.000

0.005

0.010

0.015

0.020

0.025

0.030

de
ns

ity

Dataset
POP909
GiantMIDI

Figure 7. Distributions of the note durations and velocities of the POP909 and GiantMIDI datasets. The duration axis is limited to 7 beats.

Figure 7 shows the distributions of velocity and duration values of the notes from the two datasets we use. As there is a
larger proportion of low note durations (below two beats), we decided to downsample the Duration and TimeShift
tokens with different resolutions: those up to one beat are downsampled to 8 samples per beat (spb), those from one to
two beats to 4 spb, those from two to four beats to 2 spb, and those from four to eight beats to 1 spb. This way, short
notes are represented more precisely than longer ones, reducing the vocabulary size. For Remi, Position tokens are
downsampled to 8 spb, resulting in 32 different tokens as we only consider the 4/* time signature. This allows to represent
the 16th note. We only consider pitches within the recommended range for piano (program 0) specified in the General MIDI
2 specifications2: 21 to 108. We then deduplicate all duplicated notes. Velocities are downsampled to 8 distinct values. No
additional token (e.g., Chord, Tempo) is used.

2Available on the MIDI Manufacturers Association website

https://www.midi.org/specifications-old/

Byte Pair Encoding for Symbolic Music

C. BPE Learning

Table 6. Vocabulary sizes, mean tokens per beat (tpb), and variation of tpb from without BPE, average tokenizing time and detokenizing
time. A maximum of 1000k randomly sampled MIDI files were used for each row. Vocabulary sizes for CPWord and Octuple are the
product of the sizes of their ”sub-vocabularies”, or in other words the number of possible token combinations, and are rounded for better
readability. Tokenizing and detokenizing times were run on an Intel Xeon Gold 5128 CPU.

Data Vocab. size tpb tpb variation (%) Tok. time (sec) Detok. time (sec)
POP909 TSD

No BPE 139 17.81 ± 4.12 - 0.04 ± 0.02 0.01 ± 0.02
BPE×4 556 9.71 ± 2.12 -45.50 0.20 ± 0.05 0.02 ± 0.02

BPE×10 1390 8.05 ± 1.75 -54.80 0.44 ± 0.10 0.02 ± 0.02
BPE×20 2780 6.95 ± 1.53 -60.99 0.77 ± 0.18 0.02 ± 0.02
BPE×50 6950 5.84 ± 1.28 -67.20 1.59 ± 0.37 0.02 ± 0.02

BPE×100 13.9k 5.33 ± 1.16 -70.10 2.72 ± 0.63 0.02 ± 0.02
PVm 747 12.72 ± 2.92 -28.59 0.03 ± 0.01 0.01 ± 0.01

PVDm 14.1k 7.63 ± 1.73 -57.17 0.02 ± 0.01 0.01 ± 0.01
POP909 Remi

No BPE 152 18.06 ± 4.12 - 0.03 ± 0.02 0.01 ± 0.01
BPE×4 608 10.55 ± 2.26 -41.61 0.21 ± 0.05 0.02 ± 0.02

BPE×10 1520 8.85 ± 1.90 -51.00 0.47 ± 0.11 0.02 ± 0.02
BPE×20 3040 8.01 ± 1.74 -55.64 0.86 ± 0.19 0.02 ± 0.02
BPE×50 7600 7.32 ± 1.58 -59.46 1.97 ± 0.43 0.02 ± 0.02

BPE×100 15.2k 6.70 ± 1.43 -62.92 3.64 ± 0.79 0.02 ± 0.02
PVm 760 12.97 ± 2.92 -28.19 0.02 ± 0.01 0.01 ± 0.01

PVDm 14k 7.88 ± 1.73 -56.38 0.02 ± 0.01 0.01 ± 0.01
CPWord 49k 7.88 ± 1.73 -56.38 0.03 ± 0.01 0.03 ± 0.02
Octuple 161k 5.09 ± 1.21 -71.81 0.02 ± 0.01 0.02 ± 0.02

GiantMIDI TSD
No BPE 139 15.64 ± 6.29 - 0.08 ± 0.10 0.03 ± 0.05
BPE×4 556 8.87 ± 3.30 -43.26 0.45 ± 0.57 0.08 ± 0.16

BPE×10 1390 7.88 ± 2.86 -49.64 1.04 ± 1.29 0.07 ± 0.16
BPE×20 2780 7.04 ± 2.40 -54.98 1.90 ± 2.34 0.07 ± 0.15
BPE×50 6950 5.94 ± 2.20 -62.03 4.11 ± 5.03 0.07 ± 0.14

BPE×100 13.9k 5.45 ± 2.04 -65.15 7.49 ± 9.16 0.07 ± 0.14
PVm 747 11.26 ± 4.46 -28.03 0.06 ± 0.08 0.03 ± 0.04

PVDm 14.1k 6.57 ± 2.59 -57.98 0.06 ± 0.07 0.02 ± 0.03
GiantMIDI Remi

no BPE 152 15.89 ± 6.42 - 0.08 ± 0.10 0.04 ± 0.05
BPE×4 608 9.58 ± 3.39 -39.70 0.53 ± 0.67 0.08 ± 0.18

BPE×10 1520 8.18 ± 2.96 -48.51 1.22 ± 1.51 0.08 ± 0.17
BPE×20 3040 7.22 ± 2.78 -54.56 2.18 ± 2.70 0.08 ± 0.17
BPE×50 7600 6.41 ± 2.42 -59.67 4.87 ± 5.98 0.08 ± 0.16

BPE×100 15.2k 5.96 ± 2.20 -62.51 9.08 ± 11.12 0.07 ± 0.15
PVm 760 11.30 ± 4.66 -28.90 0.06 ± 0.08 0.03 ± 0.04

PVDm 14k 6.94 ± 2.63 -56.29 0.05 ± 0.06 0.02 ± 0.03
CPWord 49k 6.90 ± 2.55 -56.60 0.07 ± 0.09 0.07 ± 0.10
Octuple 161k 4.37 ± 1.88 -72.51 0.05 ± 0.06 0.05 ± 0.07

4 10 20 50 100
BPE Factor

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n

Vel-Dur-TimeShift
Pch-Vel-Dur
Pch-Vel-Dur-TimeShift
Vel-Dur-Pch
Vel-Dur
Pch-Vel-Dur-Pch
Other

(a) TSD

4 10 20 50 100
BPE Factor

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n

Pch-Vel-Dur
Pch-Vel-Dur-Pos
Vel-Dur
Pch-Vel-Dur-Pch-Vel-Dur
Pos-Pch-Vel-Dur
Pos-Pch
Other

(b) Remi

Figure 8. Normalized distributions of token types per BPE factor for the GiantMIDI dataset.

Table 6 shows the vocabulary sizes, sequence length variation and tokenization times of all baselines. When learning BPE,
the average number of tokens per beat (tpb) quickly decreases, so the sequence length. As the vocabulary grows, the tpb
decreases more slowly, as the most recurrent token successions have already be learned and replaced. A lower tpb allows to
generate faster.

Byte Pair Encoding for Symbolic Music

The tradeoff of BPE, besides the vocabulary learning time, is the tokenization time, as a MIDI file is first tokenized without
BPE, then BPE is applied by finding the token subsequences to be replaced by the BPE tokens. The decoding step time, i.e.,
the time of the conversion of tokens to a MIDI file, is almost not impacted by BPE. The tokenization and detokenization
times have been gotten with MidiTok (Fradet et al., 2021) which is implemented in Python. The tokenization time could be
decreased if performed by a faster compiled language such as Rust or C. The Figure 8 complements the Figure 3, with the
GiantMIDI dataset.

D. Learned embedding space
Figure 9 shows the singular values for the generative and classification models. As the different tokenizations features
vocabularies with very different sizes, the values are normalized for better readability. Note that the NoBPE tokenizations
feature vocabularies with a size inferior to the embedding dimension. NoBPE adj. corresponds to the NoBPE results adjusted
to cover the x-axis on the whole embedding size.

Figure 10 shows the pairwise cosine similarity of the learned embedding vectors, for the TSD and Remi representation on
the POP909 dataset. The first tokens up to 90 are Pitches, followed by Velocities up to 125, Durations up to 160
and then Time-Shift or Position. Without BPE, we can clearly distinguish patterns in the cosine similarity matrices.
These high similarities shows that embeddings are close to each other. With BPE and larger vocabulary sizes, the average
cosine similarity tend to decrease, especially between BPE tokens. Embeddings are less similar and more discriminative.

UMAP (McInnes et al., 2018) representations shown in Figure 6, Figure 12 and Figure 11 have been calculated with the
default parameters of the official Python package. We clearly see that generative models learn clusters of embeddings of the
same type, distant from each other. The embeddings do not occupy the space uniformly. On the other hand, pre-trained
bi-directional models learn more isotropic embedding representations. The embeddings are spread uniformly across all
directions, for all token types.

Byte Pair Encoding for Symbolic Music

G
en

PO
P9

09

100 101 102

Dimension

0.0

0.2

0.4

0.6

0.8

1.0

Si
ng

ul
ar

 v
al

ue

noBPE
bpe4
bpe10
bpe20
bpe50
bpe100
PVm
PVDm
noBPE adj.

100 101 102

Dimension

0.0

0.2

0.4

0.6

0.8

1.0

Si
ng

ul
ar

 v
al

ue

noBPE
bpe4
bpe10
bpe20
bpe50
bpe100
PVm
PVDm
CPWord
Octuple
noBPE adj.

G
en

G
ia

nt
M

ID
I

100 101 102

Dimension

0.0

0.2

0.4

0.6

0.8

1.0

Si
ng

ul
ar

 v
al

ue

noBPE
bpe4
bpe10
bpe20
bpe50
bpe100
PVm
PVDm
noBPE adj.

100 101 102

Dimension

0.0

0.2

0.4

0.6

0.8

1.0

Si
ng

ul
ar

 v
al

ue

noBPE
bpe4
bpe10
bpe20
bpe50
bpe100
PVm
PVDm
CPWord
Octuple
noBPE adj.

C
la

s
m

a
ll

100 101 102

Dimension

0.0

0.2

0.4

0.6

0.8

1.0

Si
ng

ul
ar

 v
al

ue

noBPE
bpe4
bpe10
bpe20
bpe50
bpe100
PVm
PVDm
noBPE adj.

100 101 102

Dimension

0.0

0.2

0.4

0.6

0.8

1.0

Si
ng

ul
ar

 v
al

ue

noBPE
bpe4
bpe10
bpe20
bpe50
bpe100
PVm
PVDm
CPWord
Octuple
noBPE adj.

C
la

la
r
g
e

100 101 102 103

Dimension

0.0

0.2

0.4

0.6

0.8

1.0

Si
ng

ul
ar

 v
al

ue

noBPE
bpe4
bpe10
bpe20
bpe50
bpe100
PVm
PVDm
noBPE adj.

TSD

100 101 102 103

Dimension

0.0

0.2

0.4

0.6

0.8

1.0

Si
ng

ul
ar

 v
al

ue

noBPE
bpe4
bpe10
bpe20
bpe50
bpe100
PVm
PVDm
CPWord
Octuple
noBPE adj.

Remi

Figure 9. Normalized singular values of embedding matrices of classifier models.

Byte Pair Encoding for Symbolic Music
T

SD

0 20 40 60 80 100 120
0

20

40

60

80

100

120

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
0 100 200 300 400 500

0

100

200

300

400

500 0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0 0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200
0.2

0.0

0.2

0.4

0.6

0.8

1.0
0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500 0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
em

i

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140 0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

No BPE

0 100 200 300 400 500 600
0

100

200

300

400

500

600
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

BPE x4

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

1200

1400

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

BPE x10

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000 0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

BPE x20

Figure 10. Pairwise cosine similarity matrix of learned embedding of the generative models, on the POP909 dataset.

No BPE BPE x4 BPE x10 BPE x20

BPE x50 BPE x100 PVm PVDm

Figure 11. UMAP 2d representations of the embeddings of classifier models pre-trained with the GiantMIDI dataset and TSD tokenization.
Abbreviations in legend stand for: Pi: Pitch; V: Velocity; D: Duration; Po: Position; TS: TimeShift.

Byte Pair Encoding for Symbolic Music

TSD No BPE TSD BPE×4 TSD BPE×10 TSD BPE×20

TSD BPE×50 TSD BPE×100 TSD PVm TSD PVDm

Remi No BPE Remi BPE×4 Remi BPE×10 Remi BPE×20

Remi BPE×50 Remi BPE×100 Remi PVm Remi PVDm

Figure 12. UMAP 3d representations of the embeddings of generative models with the POP909 dataset. Abbreviations in legend stand for:
Pi: Pitch; V: Velocity; D: Duration; Po: Position: TS: TimeShift.

