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Abstract: Two universal functional principles of Grossberg’s Adaptive Resonance Theory decipher
the brain code of all biological learning and adaptive intelligence. Low-level representations of
multisensory stimuli in their immediate environmental context are formed on the basis of bottom-up
activation and under the control of top-down matching rules that integrate high-level, long-term
traces of contextual configuration. These universal coding principles lead to the establishment of
lasting brain signatures of perceptual experience in all living species, from aplysiae to primates. They
are re-visited in this concept paper on the basis of examples drawn from the original code and from
some of the most recent related empirical findings on contextual modulation in the brain, highlighting
the potential of Grossberg’s pioneering insights and groundbreaking theoretical work for intelligent
solutions in the domain of developmental and cognitive robotics.

Keywords: multisensory perception; brain representation; contextual modulation; adaptive
resonance; biological learning; self-organization; matching rules; winner-take-all principle

1. Introduction

In his latest book [1], Grossberg discusses empirical findings and his own neural net-
work models to illustrate and forecast how autonomous adaptive intelligence [2] is or may
be implemented in artificial systems at unprecedentedly high levels of brain function [3–5].
His account of how the brain generates conscious cognition and, ultimately, individual
minds provides mechanistic insights into complex phenomena such as mental disorders or
the biological basis of morality and religion. The author’s theoretical work clarifies why
evolutionary pressure towards adaptation and behavioral success not only explains the
brain but is also a source for model solutions to large-scale problems in machine learn-
ing, technology, and artificial intelligence. Adaptive brain mechanisms [6] are the key
to autonomously intelligent algorithms and robots. They may be pre-determined by a
universal developmental code, or “engram”, that is channeled through the connectome
by specific proteins/peptides embedded within pre-synaptic neuronal membranes [7] and
corresponds to information provided by the electrical currents afferent to pre-synaptic
neurons [8–10]. Grossberg’s book [1] conveys a philosophical standpoint on shared laws
of function in living systems, from the most primitive to the most advanced, showing
how neurons support unsupervised adaptive learning in all known species and how such
biological learning has enabled the emergence of the human mind across the evolutionary
process. Bearing this in mind, the present concept paper draws from the beginnings of
this journey into the mind, which is described by Grossberg’s significant early work on
neural processes for perception, perceptual learning, and memory, aimed at understanding
how the brain builds a cognitive code of physical reality. Since perception is the first step
through which a brain derives sense from the raw data of a physical environment, his
account of how elementary signals in the physical environment are processed by the neural
networks of the brain was a mandatory achievement for understanding how inner repre-
sentations of the outside world may be generated [11,12]. The ability to derive meaning
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from complex sensory input requires the integration of information over space and time, as
well as memory mechanisms to shape that integration [13] into the contents of experience.
In mammals with intact visual systems, this relies on processes in the primary visual cortex
of the brain [14], where neurons integrate visual input along shape contours into neural
association fields [15]. The geometric selectivity of ensembles of functionally dedicated
neural networks is progressively fine-tuned by contextual modulation and experience
towards long-term memory representation of all the different configurations likely to be
encountered in natural scenes. Horizontal cortical connections provide a broad domain
of potential associations in this process, and top-down control functions dynamically gate
these associations to switch the function of a given network [16]. Grossberg’s work has
provided a unified model of brain learning where horizontal cortical connections provide a
broad range of potential, functionally specific neural associations through a mechanism
called bottom-up activation [17], as will be explained and illustrated on the basis of ex-
amples. Mechanisms of adaptive resonance and top-down matching [17] then explain
how the contextual modulation of visual and other sensory input drives dynamic brain
learning to gate the links within and between neural association fields towards increasingly
complex memory representations [16,18]. This concept paper uses two of the functional
principles of adaptive resonance theory [19] to illustrate the implications for unsupervised
brain learning and adaptive intelligence. The examples chosen here are drawn from the
original models and related empirical findings. These are revisited under the light of some
of the most recent advances in a conceptual discussion aimed at highlighting the potential
of Grossberg’s pioneering insights and groundbreaking theoretical work for intelligent
solutions to some of the most difficult current problems in artificial intelligence (AI) and
robotics. The following sections will elaborate on the biological principles of multisensory
contextual modulation in the brain in Section 2 to illustrate the relevance of adaptive
resonant learning as conceptualized in the Grossberg code, the functional principles of
which are then explained further in Section 3. Section 4 provides a generic ART system
with its mathematical definition and an example of neural network architecture that could
be implemented on this basis for autonomous and self-organizing multiple event coding to
help control object-related aspects of environmental uncertainty in robotics.

2. Contextual Modulation in the Brain

The brain processes local information depending on the context in which this infor-
mation is embedded. The representation of contextual information peripheral to a salient
stimulus is critical to an individual’s ability to correctly interpret and flexibly respond
to stimuli in the environment. The processes and circuits underlying context-dependent
modulation of stimulus-response function have mostly been studied in vertebrates [20],
yet well-characterized connectivity patterns are already found in the brains of lower-level
species such as insects [21], providing circuit-level insights into contextual processing.
Recent studies in flies have revealed neuronal mechanisms that create flexible and highly
context-dependent behavioral responses to sensory events relating to threats, food, and
social interaction. Throughout brain evolution, functional building blocks of neural net-
work architectures with increasingly complex functional architectures have emerged across
species, with increasingly complex long-range connectivity ensuring information encoding
in processing streams that are anatomically segregated at a cellular level. The functional
specificity of individual streams, long-range interactions beyond the classic receptive field
of neurons and interneurons [22], and cortical feedback mechanisms [21,23] provide an
excellent model for understanding the complex processing characteristics inherent to in-
dividual streams as well as the extent and mechanisms of their interaction in the genesis
of brain representation. Contextual modulation in the sensory cortex coding for vision,
hearing, somatosensation, and olfaction is partly under central control by the prefrontal
cortex, as shown by some of the most recent evidence from neuroscience.
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2.1. Vision

To be able to extract structure, form, and meaning from intrinsically ambiguous and
noisy physical environments, the visual brain has evolved neural mechanisms dedicated
to the integration of local information into global perceptual representations. This inte-
gration is subject to contextual modulation [23]. Mechanisms with differential sensitivity
to relative stimulus orientation, size, relative position, contrast, polarity, and color op-
erate within specific spatial scales to integrate local visual input into globally perceived
structure [24–27]. The differential contextual sensitivity to color and luminance contrast in
visual contextual modulation involves the luminance-sensitive pathways (M-pathways)
and the color-sensitive pathways (P-pathways) of the visual brain [23,28] in a simple-
to-complex-cells processing hierarchy at the level of the visual cortex, already predicted
in Grossberg’s early models of visual form representation [29–31]. The cooperative and
competitive interactions between co-activating or mutually suppressive detectors in func-
tionally dedicated neural networks suggested in the model were confirmed several years
later in psychophysical and electrophysiological studies, taking into account response
characteristics of orientation-selective visual cortical neurons as a function of the context in
which visual target stimuli were presented [22,24,25]. Contextual modulation translates
into effects where nearby visual stimuli either facilitate or suppress the detection of the tar-
gets (behavior) and increase or decrease the firing rates of the cortical neurons responding
to the targets (brain). The cooperative and competitive brain-behavior loops depend on the
geometry of so-called “perceptive fields” [22] within a limited range of size-distance ratios.
The shorter temporal windows of achromatic context effects compared with chromatic
contextual modulation [23,27] Cooperative mechanisms of contextual modulation in vision
are subject to substantial practice (perceptual learning) effects, where top-down signals
dynamically modulate neural network activities as a function of specific perceptual task
constraints. Such top-down-mediated changes in cortical states reflect a general mecha-
nism of synaptic learning [4,8], potentiating or suppressing neural network function(s)
depending on contextual relevance.

2.2. Hearing

Sounds in natural acoustic environments possess highly complex spectral and tem-
poral structures, spanning over a whole range of frequencies, with temporal modulations
that differ within frequency bands. The auditory brain [32] is capable of reliably detecting
one and the same sound in a variety of different sound contexts, as well as distinguishing
between different sounds within a complex acoustic scene. Processing acoustic features
like sound frequency and duration is highly dependent on co-occurring, acoustic, and
other sources of stimulation and involves interactions between an auditory target′s spec-
tral and temporal context and individual behavioral states like arousal or expectation.
Current findings suggest that sensory attenuation and neuronal modulation may happen
during behavioral action as a consequence of disrupted memory expectations in the case
of unpredictable concurrent sounds [33]. The auditory system demonstrates nonlinear
sensitivity to temporal and spectral context, often employing network-level mechanisms,
such as cross-band and temporally adaptive inhibition, to modulate stimulus responses
across time and frequency [33–35]. How the auditory system modulates responses to
sensory and behavioral contexts is not yet understood. The superior colliculus (SC) is a
structure in the mammalian midbrain that contains visual and auditory neural circuits.
In mice [34], auditory pathways from external nuclei of the inferior colliculus (IC) with
direct inhibitory connections and excitatory signals driving feed-forward inhibitory circuits
within the SC were found. The lateral posterior nucleus (LP) of the thalamus projects
extensively to the sensory cortex, a previously unknown pathway. Bidirectional activity
modulations in LP or its projection to the primary auditory cortex (A1) in awake mice reveal
that LP improves auditory processing by sharpening neuronal receptive fields and their
frequency tuning [34,35]. LP is strongly activated by specific sensory signals relayed from
the superior colliculus (SC), contributing to the maintenance and enhancement of sound
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signal processing in the presence of auditory background noise and threatening visual
stimuli, respectively. This shows that multisensory bottom-up pathways play a role in
contextual [36] and cross-modality modulation of auditory cortical processing in mammals.
Cross-modality modulation of sensory perception is necessary for survival. In a natural
environment, organisms are constantly exposed to a stream of sensory input depending
on the environmental context. The response properties of neurons dynamically adjust to
contextual changes across all sensory modalities and at different stages of processing from
the periphery to the cortex.

2.3. Somatosensation

Cross-modality modulation implies that coincident non-auditory (visual, tactile) pro-
cessing influences the neural networks underlying contextual modulation of hearing or that
non-visual (auditory, tactile) signals may reach the neural networks underlying contextual
modulation of vision. Touch, for example, has a direct effect on visual spatial-contextual
processing [37]. Contextual modulation and neuronal adaptation in the visual and auditory
systems interact with sensory adaptation in the somatosensory system, but it is unclear
which pathways and mechanisms are involved. The ability to integrate information from
different sensory modalities is a fundamental feature of all sensory neurons across brain
areas, which makes sense in light of the fact that visual, auditory, and tactile signals origi-
nate from the same physical object when actively manipulated. The synthesis of multiple
sensory cues in the brain improves the accuracy and speed of behavioral responses [38]. In
motor tasks, task-relevant visual, auditory, and tactile signals are experienced together [39],
and pioneering work in neurophysiology from the 1960s demonstrated convergence of
visual, auditory, and somatosensory signals at the pre-frontal cortex level in cats [40]. Also,
visual signals can bypass the primary visual cortex to directly reach the motor cortex,
which is immediately adjacent and functionally connected to the somatosensory cortex [41].
Effects of neuronal adaptation on response dynamics and the encoding efficiency of neu-
rons at single-cell and population levels in the whisker-mediated touch system in rodents
illustrate that sensory adaptation provides context-dependent functional mechanisms for
noise reduction in visual processing [42]. Between integration and coincidence detection,
cross-modality modulation achieves energy conservation and disambiguates the encod-
ing of principal features of tactile stimuli. Sensory systems do not develop and function
independently. Early loss of vision, for example, alters the coding of sensory input in the
primary somatosensory cortex (S1) to promote enhanced tactile discrimination. Neural
response modulation in S1 of mammals (opossums in this case) after elimination of vi-
sual input through bilateral enucleation early in development reveals the neural origins
of tactile experience in naturally occurring patterns of exploratory behavior after vision
loss [43]. In early blind animals, overall levels of tactile experience were similar to those
of sighted controls, and their locomotion activity was unimpaired and accompanied by
normal whisking. Early blind animals exhibit a reduction in the magnitude of neural
responses to whisker stimuli in S1, combined with a spatial sharpening of the neuronal
receptive fields. The increased selectivity of S1 neurons in early blind animals is reflected
by improved population coding of whisker stimulus positions, particularly along the axis
of the snout aligned with the primary axis of the natural whisker motion. These findings
suggest that a functionally distinct form of tactile (somatosensory) plasticity occurs when
vision is lost early in development. After sensory loss, compensatory behavior mediated
through the spared senses is generated through the recruitment of brain areas associated
with the deprived sense. Alternatively, functional compensation in spared modalities may
be achieved through a combination of plasticity in brain areas corresponding to both spared
and deprived sensory modalities.

2.4. Olfaction

Multisensory interactions in the brain are most strongly relied upon and, therefore,
need to be optimal when the stimulus ambiguity in a physical environment is highest [44].
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Sensorial as well as central cross-modal signaling mechanisms contribute to bottom-up and
top-down contextual signaling. For example, both whisking and breathing are affected
by the presence of odors in rodents, and the odors modulate activity in a small but sig-
nificant population of barrel cortex neurons through distinct bottom-up and top-down
mechanisms [45]. In the human brain, different aspects of olfactory perception in space
and time have been identified by means of EEG recordings [46]. Sensorial (low-level)
representations of smell expand into larger areas associated with emotional, semantic, and
memory processing in activities significantly associated with perception. These results sug-
gest that initial odor information coded in the olfactory areas evolves towards perceptual
realization through computations (a long-range mechanism) in widely distributed cortical
regions with different spatiotemporal dynamics [47]. Specific brain structures act as hubs
for integrating local multisensory cues into a spatial framework [48], enabling short-term
as well as long-lasting memory traces of odors, touch sensations, sounds, and visual objects
in different dynamic contexts. Contextual modulation in the brain thus explains how olfac-
tory and other sensory inputs translate into diverse and complex perceptions, such as the
pleasurable floral smell of flowers or the aversive smells of decaying matter. The prefrontal
cortex (PFC) plays an important role in this process. Recent evidence suggests that the
PFC has dedicated neural networks that receive input from olfactory regions and that the
activity of these networks is coordinated on the basis of selective attention, producing
different brain alert states [49].

2.5. Prefrontal Control

In the mammalian brain, information processing in specific sensory regions interacts
with global mechanisms of multisensory integration under the control of the PFC. Emerging
experimental evidence suggests that the contribution of multisensory integration to sensory
perception is far more complex than previously expected [42,43]. Associative areas such as
the prefrontal cortex, which receive and integrate inputs from diverse sensory modalities,
not only affect information processing in modal sensory pathways through down-stream
signaling but also influence contextual modulation and multisensory processing (Figure 1).
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Figure 1. The prefrontal cortex receives and integrates signals from diverse sensory structures and
pathways and controls information processing in, and interaction between, modal neural networks
(visual, somatosensory, auditory, and olfactory) through down-stream signaling.
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Developmental mechanisms account for the interaction between the neuronal net-
works involved [50], with relevance for brain-inspired intelligent robotics, as will be dis-
cussed further later herein. In animals and humans, prefrontal downstream control is
necessary in cases of conflicting sensory information, where signals from different modal-
ities compete or provide incongruent input data [51]. The brain then needs to reach a
probabilistic decision on the basis of top-down control signals (perceptual experience).
However, another remarkable ability of the brain is its capacity to rapidly detect unex-
pected stimuli. Living beings depend on rapid detection of the unexpected when it is
relevant (i.e., an alarm going off, for example), because it enables them to adapt their
behavior accordingly and swiftly. Prefrontal control also explains why irrelevant sounds
are incidentally processed in association with the environmental context, even though
the contextual stimuli activate different sensory modalities [52]. This is consistent with
brain data showing that top-down effects of the prefrontal cortex on contextual modulation
of visual and auditory processing depend on selective attention to a particular sensory
signal [53] among several coincident stimuli. Attempts to understand how functional
interaction between different brain regions occurs through multisensory integration con-
stitute a leading-edge research area in contemporary neuroscience [54]. Low-level brain
representation of information is not enough to explain how we perceive the world. To
enable us to recognize and adaptively act upon objects in the physical world, lower-level
sensory network representations need to interact with higher-level brain networks capable
of coding contextual relevance.

3. Brain Signatures of Perceptual Experience

It is still unknown how the brain generates short- and long-term memory signatures of
perceptual experience, or which mechanisms allow these traces to be retrieved and updated
on a regular basis during life-long brain learning and development (ontogenesis). Well
before contextual modulation and context-sensitive neural mechanisms were identified
in neural circuits of different species, Grossberg understood that they must exist and,
considering the principles of unsupervised synaptic (Hebbian) learning [8], which had been
demonstrated in low-level species such as aplysia [55], that they would have to be universal.
In his early work on adaptive resonance [19], he proposed universal functional principles
for the generation of short-term and long-term memory traces and their activation in
context-sensitive retrieval processes. These functional principles exploit two mechanisms
of neural information processing in resonant circuits of the brain, referred to as “bottom-up
automatic activation” and “top-down matching”.

3.1. Bottom-Up Automatic Activation

Bottom-up automatic activation is a mechanism for the processing and temporary
storage of perceptual input in short-term and working memory. Through bottom-up
automatic activation, a group of cells within a given neural structure becomes potentiated
and is eventually activated when it receives the necessary bottom-up signals. These bottom-
up signals may or may not be consciously experienced. They are then multiplied by
adaptive weights that represent long-term memory traces and influence the activation of
cells at a higher processing level. Grossberg [17] originally proposed “bottom-up automatic
activation” to account for the way in which pre-attentive processes generate learning
in the absence of top-down attention or expectation. It appears that this mechanism is
equally well suited to explain how subliminal signals may trigger supraliminal neural
activities in the absence of phenomenal awareness [56,57]. Learning in the absence of
phenomenal awareness accounts for visual statistical learning in newborn infants [58]
and non-conscious visual recognition [59], for example. Bottom-up automatic activation
may generate supraliminal brain signals, or representational contents with weak adaptive
weights, as a candidate mechanism to explain how the brain manages to subliminally
process perceptual input [60] that is either not directly relevant at a given moment in time
or cannot be made available to conscious processing because of a local brain lesion [59].
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Grossberg [9,12,17,19] suggested that bottom-up activation may automatically activate
target cell populations at higher levels of processing, as in the bottom-up activation of the
PCF by sensory cortices [47,49], for example.

3.2. Top-Down Matching

Top-down expectations are needed to consolidate traces of bottom-up representation
through mechanisms that obey three properties: (1) they select consistent bottom-up signals,
and (2) they suppress inconsistent bottom-up signals. Together, these properties initiate a
process that directs attention to a set of critical features that are consistent with a learned
expectation. However, (3) a top-down expectation by itself cannot fully activate target cells.
It can only sensitize, modulate, or prime the cells to respond more easily and vigorously if
they are matched by consistent and sufficiently strong (relevant) bottom-up inputs. If this
were not the case, top-down expectation would produce hallucinations of events that do not
exist. Top-down expectations therefore do not activate but only modulate representations,
as discussed here above in 3.4. Top-down representation matching is a mechanism for
the selective matching of bottom-up short-term or working memory representations to
already stored and consolidated (learned) memory representations (Figure 2). Subliminal
bottom-up representations may become supraliminal when bottom-up signals or represen-
tations are sufficiently relevant at a given moment in time to activate statistically significant
top-down matching signals [60]. These would then temporally match the bottom-up rep-
resentations (coincidence). A positive match confirms and amplifies ongoing bottom-up
representation, whereas a negative match invalidates ongoing bottom-up representation.
Top-down matching is a selective process where subliminal representations become embed-
ded in long-term memory structures and temporarily accessible for recall, i.e., a conscious
experience of remembering.
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Figure 2. In the ART matching rules, bottom-up signals from the environment activate short-term
memory representations in working memory, which then, in turn, send bottom-up signals towards a
subsequent processing stage at which long-term memory representations are temporarily activated
(top left). These bottom-up signals are multiplied by learned long-term memory traces, which
selectively filter short-term representations and activate top-down expectation signals (top right) that
are matched against the selected representations in working memory. The strength of the matches
determines the weighting of short-term representations (bottom) after top-down matching.
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3.3. Temporary Representation for Selection and Control

Grossberg’s universal coding rules produce temporary and long-term brain signa-
tures of perceptual experience. They address what he called the attention-pre-attention
interface problem [9,12,17,19] by allowing pre-attentive (bottom-up) processes to use some
of the same circuitry that is used by attentive (top-down) processes to stabilize cortical
development and learning. Consistently, research on human cognition [61] has confirmed
that attention ensures the selection of contents in working memory, controlled by mecha-
nisms of filtering out irrelevant stimuli and removing no longer relevant representations,
while working memory contributes to controlling perceptual attention as well as action by
holding templates available for perceptual selection and action sets available to implement
current goals [61]. Top-down matching in its most general sense generates feed-back reso-
nances between bottom-up and top-down signals to rapidly integrate brain representations
and hold them available for a consciousness experience at a given moment in time. Non-
conscious semantic priming is explained on these grounds. Statistically significant positive
top-down matching signals produced on the basis of strong signal coincidences explain
why subliminal visual representations become conscious when presented in a specific
context, especially after a certain amount of visual learning or practice [60]. Conversely,
significant negative matches produced on the basis of repeated discrepancies generating
strong negative coincidence signals could explain why a current conscious representation is
suppressed and replaced by a new one when a neutral conscious representation is progres-
sively and consistently weakened by association with a strongly biased representation, as
in evaluative conditioning and contingency learning [57,58]. Some of the above-mentioned
functional properties require long-range connectivity in cortical circuits capable of gen-
erating what Edelman [62] called “reentrant signaling”. Bottom-up representations that
activate specific structures of such circuits but do not produce sufficiently strong matches
to long-term memory signals will remain non-conscious [60]. Strong positive top-down
matching of selected representations will compete with weaker or negative matches and,
ultimately, be suppressed from conscious experience, as, for example, in cases where the
conscious integration of new input interferes with the conscious processing of anything
else [35,50]. Specific instructions telling subjects what to look for, or what to attend to,
in a visual scene may generate top-down expectation signals strong enough to inhibit
matching of other relevant signals at the same moment in time [31]. Top-down matching
generates neural computations of event coincidence [63]. Results from certain observations
of motor behavior without awareness [64] highlight the potential implications of negative
top-down matching for conscious control in learning. Individuals may become aware of
unconsciously pursued goals of a motor performance or action when the latter does not
progress well or fails. This could reflect the consequence of repeated negative top-down
matching of the non-conscious bottom-up goal representation and top-down expectation
signals in terms of either memory traces of previous successes or representations of desired
outcomes. Repeated and sufficiently strong negative matching signals might thereby trig-
ger instant consciousness of important discrepancies between expectation and reality [65].
Awake mammals can switch between alert and non-alert brain states hundreds of times
every day. The effects of alertness on two cell classes in layer 4 of primary visual cortex,
excitatory “simple” cells and fast-spike inhibitory neurons, show that for both cell classes,
alertness increases their functional (excitatory or suppressive) strength and considerably
enhances the reliability of visual responses [66]. In simple cells, alertness increases the
temporal frequency bandwidth but preserves contrast sensitivity, orientation tuning, and
selectivity for direction and spatial frequency. Alertness selectively suppresses the simple
cell responses to high-contrast stimuli and stimulus motion orthogonal to their preferred
direction of movement. This kind of conscious feedback control fulfills an important adap-
tive function and has evolved in response to the pressures of intrinsically ambiguous and
steadily changing physical environments. The mathematical development and equations
describing ART resonant learning in its most generic form were made explicit in the Cohen–
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Grossberg model [67,68], which will be detailed further here below with respect to the
development of adaptive intelligence in robotics.

4. Towards Adaptive Intelligence in Robotics

The concept of “resonant brain states” is central to ART. They arise from the self-
organizing principles of biological neural learning, whereby our brains autonomously
adapt to a changing world. Biological neural learning, unlike the learning algorithms
that fuel artificial intelligence, is driven by evolution, with a remarkable pressure towards
increasingly higher levels of consciousness across the phylogeny [69]. Pressure towards the
development of increasingly autonomous and adaptively intelligent forms of agency also
exists in the growing field of robotics, in particular neurorobotics [70]. Detailed descriptions
and equations describing the full span of potential for the development of autonomously
intelligent robots may be found in [71–74]. The most generic functional principle that ART
aims for has been termed “hierarchical resolution of uncertainty”. Hierarchical resolution
of uncertainty means that multiple processing stages are needed for brains to generate
sufficiently complete, context-sensitive, and stable perceptual representations upon which
successful action by intelligent agents can be based. The mathematical development and
equations describing ART resonant learning in its most generic form are inspired by the
principles of Hebbian neural (synaptic) learning and are given by the Cohen–Grossberg
model [67,68]. The latter is defined in terms of the following system of nonlinear differential
equations describing interactions in time t among and between neural activities xi, or
short-term memory (STM) traces, of any finite number of individual neurons or neuronal
populations (networks)

dxi/dt = ai(xi) [bi(xi) −∑ jcijdj(xj)]. (1)

With symmetric interaction coefficients cij = cji for weak assumptions of state-dependent
non-negative amplification functions ai(xi), self-signaling functions bi(xi), and competitive
interaction functions dj(xj). Magnitudes for i, j = 1, 2, . . . , n and n may be chosen arbitrarily.
Each population in (1) can have its own functions ai(xi), bi(xi) and dj(xj). One possible
physical interpretation of the symmetric interaction coefficients cij = cji is that the competi-
tive interactions depend upon Euclidean distances between the populations. Defined as
in (1), the ith population activity x can only grow to become momentarily a “winner” of
the competition at times t where the competitive balance [bi(xi) − ∑j cijdj(xj)] > 0. When
[bi(xi) − ∑j cijdj(xj)] < 0, the given population is “losing” the competition.

The ART-inspired neural network architecture for multiple event coding, represented
schematically here above, can be implemented by exploiting the properties and parameters
of the system described in (1). This would permit implementing robot intelligence with
capacities beyond reactive behavior. The selective filtering of relevant sensory input from a
multitude of external inputs and the ability to autonomously generate adaptive sequences
of memory steps to identify and recognize specific visual objects in the environment permit
the control of external perturbations acting on a robot–object system. This is possible
in a system like the one depicted above solely because of the internal dynamics of the
resonant network. The ability to correctly identify objects despite multiple changes across
time is a competence required in many engineering applications that interact with the real
world, such as robot navigation. Combining information from different sensory sources
promotes robustness and accuracy in place recognition. However, mismatches in data
registration, dimensionality, and timing between modalities remain challenging problems
in multisensory place recognition [75]. We may, as ART stipulates, define intelligence as the
ability to efficiently interact with the environment and to plan for adequate behavior based
on the correct interpretation of sensory signals and internal states. This means that an
intelligent agent or robot will be successful in accomplishing its goals, be able to learn and
predict the effects of its actions, and continuously adapt to changes in real-world scenarios.
Ultimately, embodied intelligence allows a robot to interact swiftly with the environment in
a wide range of conditions and tasks [76]. The ART model made explicit here above in (1), a
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Hebbian-learning-based and mathematically parsimonious system of non-linear equations,
can be directly implemented to enable intelligent multi-event coding across time t (Figure 3)
for robot control by adaptive artificial intelligence (neurons or neural populations).

Information 2023, 14, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 3. ART-inspired neural network architecture for adaptively intelligent event coding across 
time t. 

5. Discussion 
Grossberg’s universal coding rules allow for learning in a non-stationary, unpre-

dictable world, whereas the traditional machine learning approaches assume a predicta-
ble and controlled environment [2]. Unlike passive adaptive filters [77], they enable 
self-organized unsupervised learning akin to biological synaptic learning [2,4,5,8,55]. The 
ART matching rules actively focus attention to selectively generate short- and long-term 
brain signatures of critical features in the environment, which is achieved by dynamic, 
non-passive, steadily updated synaptic weight changes in the neural networks 
[9,12,17,19]. The top-down control of selective processing involves the activation of all 
memory traces to match or mismatch bottom-up representations globally using win-
ner-take-all best-match criteria. Neural network architectures driven by the ART matching 
rules do not need labeled data to learn, as previously explained in [2]. In short, the 
Grossberg code overcomes many of the computational problems of back propagation 
and deep learning models. Equipping cognitive robots with artificial intelligence that 
processes and integrates cross-modal information according to such self-organized con-
textual learning ensures that they will interact with the environment more efficiently, in 
particular under conditions of sensory uncertainty [4,78]. The universal ART matching 
rules are directly relevant to a particular field in robotics that is motivated by human 
cognitive and behavioral development, i.e., developmental robotics. The goal is to probe 
developmental or environmental aspects of cognitive processes by exploring robotic ca-
pabilities for interaction using artificial sensory systems and autonomous motor capabil-
ities on challenging environmental platforms [79]. As illustrated here in this paper, 
low-level sensory and high-level neural networks interact in a bottom-up and top-down 
manner to create coherent perceptual representations of multisensory environments. 
Similarly, bottom-up and top-down interactions for the integration of multiple sensory 
input streams play a crucial role in the development of autonomous cognitive robots by 
endowing agents with improved robustness, flexibility, and performance. In cases of 
ambiguous or incongruent cross-sensory inputs, for example, biological inspiration plays 

Figure 3. ART-inspired neural network architecture for adaptively intelligent event coding across
time t.

5. Discussion

Grossberg’s universal coding rules allow for learning in a non-stationary, unpredictable
world, whereas the traditional machine learning approaches assume a predictable and
controlled environment [2]. Unlike passive adaptive filters [77], they enable self-organized
unsupervised learning akin to biological synaptic learning [2,4,5,8,55]. The ART matching
rules actively focus attention to selectively generate short- and long-term brain signatures
of critical features in the environment, which is achieved by dynamic, non-passive, steadily
updated synaptic weight changes in the neural networks [9,12,17,19]. The top-down control
of selective processing involves the activation of all memory traces to match or mismatch
bottom-up representations globally using winner-take-all best-match criteria. Neural net-
work architectures driven by the ART matching rules do not need labeled data to learn,
as previously explained in [2]. In short, the Grossberg code overcomes many of the com-
putational problems of back propagation and deep learning models. Equipping cognitive
robots with artificial intelligence that processes and integrates cross-modal information
according to such self-organized contextual learning ensures that they will interact with the
environment more efficiently, in particular under conditions of sensory uncertainty [4,78].
The universal ART matching rules are directly relevant to a particular field in robotics
that is motivated by human cognitive and behavioral development, i.e., developmental
robotics. The goal is to probe developmental or environmental aspects of cognitive pro-
cesses by exploring robotic capabilities for interaction using artificial sensory systems and
autonomous motor capabilities on challenging environmental platforms [79]. As illustrated
here in this paper, low-level sensory and high-level neural networks interact in a bottom-up
and top-down manner to create coherent perceptual representations of multisensory envi-
ronments. Similarly, bottom-up and top-down interactions for the integration of multiple
sensory input streams play a crucial role in the development of autonomous cognitive
robots by endowing agents with improved robustness, flexibility, and performance. In
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cases of ambiguous or incongruent cross-sensory inputs, for example, biological inspiration
plays a major role. Autonomous robots with odor-guided navigation [80] can benefit from
multisensory processing capabilities similar to those found in animals, allowing them to
reliably discriminate between chemical sources by integrating associated auditory and
visual information. Cross-modal interaction with top-down matching can enable the au-
tonomous learning of desired motion sequences [81], matching expected outcomes from
audio or video sequences, for example. Approaches to multisensory fusion in robotic
systems directly inspired by the distributed functional architecture of the mammalian
cortex have existed for some time [82]. Biological inspiration exploiting top-down cross-
modal processing is mandatory for autonomous cognitive robots that acquire perceptual
representations on the basis of active object exploration and groping. By actively pro-
cessing geometric object information during motor learning, aided by tactile and visual
sensors, it becomes possible to reconstruct the shape, relative position, and orientation of
objects. Service robotics is a fast-developing sector that requires embedded intelligence
in robotic platforms that interact with humans and the surrounding environment. One
of the main challenges in this field is robust and versatile manipulation in everyday life.
Embedding anthropomorphic synergies into the gripper′s mechanical design [83] helps,
but autonomous grasping still represents a challenge, which can be resolved by endowing
robots with self-organizing multisensory adaptive capabilities, as discussed here above.
Combining biological neural network learning with compliant end-effectors would not
only permit optimizing the grasping of known deformable objects [84], but also help intelli-
gent robots anticipate and grasp unforeseen objects. Bottom-up activation combined with
top-down control gives robots the capability to progressively learn in an ever-changing
multisensory environment by means of self-organizing interaction with the environment
(Figure 4). Implementing multisensory memories in robotics in such a way permits equip-
ping intelligent agents with sensory-cognitive adaptive functions that enable the agents to
cope with the unexpected in complex and dynamic environments [85]. On the other hand, a
lack of multisensory perceptive capabilities compromises the continuous learning of robotic
systems because internal models of the multisensory world can then not be acquired and
adapted throughout development.
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Adaptive resonance is a powerful concept that provides model approaches for a
multitude of human interactions. The relationship between the physical mechanism of
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resonance and its biological significance in the genesis of perceptual experience in neural
networks across all species, from mollusks to humans, makes it a powerful concept for
human–robot interaction at all functional levels and within a wider cultural and scientific
context. Resonant brain states, established on the basis of matching processes involving
top-down expectations and bottom-up activation signals, drive all biological learning at
lower and higher levels. Learning in biological neural networks is by nature unsupervised
and best accounted for in terms of competitive winner-take-all matching principles [86,87].
A resonant state is predicted to persist long enough and at a high enough level of activity
to activate long-term signatures of perceptual experience in dedicated neural networks.
This explains how these signatures can regulate the brain’s fast information processing,
observed at the millisecond level, without any awareness of the signals that are being
processed. Through resonance as a mediating event, the combination of universal matching
rules and their attention-focusing properties makes learning and responding to arbitrary
input environments stable. In the mammalian brain, such stability may be reflected by
the ubiquitous occurrence of reciprocal bottom-up and top-down cortico-cortical and
cortico-thalamic interactions [88].

6. Conclusions

Well before contextual modulation and context-sensitive mechanisms were identified
in neural circuits of different species, Grossberg understood that they had to exist. The
principles of unsupervised synaptic (Hebbian) learning had been demonstrated in low-
level species such as aplysia, pointing towards universal principles of perceptual coding.
In his earliest work on adaptive resonance, Grossberg laid the foundations of univer-
sal functional principles of neural network learning for the generation of brain traces of
perceptual experience and their activation by context-sensitive, dynamic, self-organizing
mechanisms producing resonant brain states. Equipping cognitive robots with artificial
intelligence based on adaptive resonance and processing and integrating cross-modal infor-
mation in self-organized contextual learning will produce intelligent robots that interact
with complex environments adaptively and efficiently, in particular under conditions of
sensory uncertainty.
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