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Over the past two decades, an evolutionary effort has been established in the agricultural sector to develop efficient autonomous systems that can carry out common infield operations including harvesting, mowing, and spraying. Increasing production while decreasing costs and environmental damages is one of the main objectives for these autonomous systems. Due to the nature of these tasks, complete coverage path planning techniques are crucial to determining the best path that covers the entire field while accounting for terrain characteristics, operational needs, and robot properties.

In this study, we propose a novel complete coverage path planning approach to define the ideal path for a wheeled robot across an agricultural field. To identify all feasible solutions satisfying a set of predefined constraints, a method based on tree exploration is first proposed that examines skip-row patterns. Second, the most optimal solution is selected by a selection method. Maximizing the covered area while minimizing overlaps, non-working path length, number of turns containing reverse moves, and overall travel time are the objectives of the selection method.

We showed on 6 real-world fields geometries that the row skip approach offered benefits in terms of reduction of the required headland size, and often helped decreasing the number of necessary reverse moves and the overlaps, while increasing the covered area.

I. INTRODUCTION

Automated systems and robots are increasingly used in every sector of industry since they boost productivity while cutting expenses. In comparison to humans, they are able to do a wider range of specialized and tedious activities with a remarkable precision and accuracy. Agriculture is no exception to this.

More food and agricultural products are required due to a growing population [START_REF] Marques | Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth[END_REF], yet agriculture is also known as a remarkable source of the air and environmental pollution [START_REF] Meftaul | Pesticides in the urban environment: A potential threat that knocks at the door[END_REF]. Autonomous systems capable of optimizing the cost and efficiency of in-field operations is indispensable and demands an urgent attention.

One of the main challenges to perform an autonomous operation such as harvesting, tillage, seeding, and pulverization is to find a path that optimally covers the entire field. This challenge is commonly known as Complete Coverage Path Planning (CCPP). To generate an optimal and feasible path, it is essential to consider the geometry and characteristics of the field, the robot, and the machinery i.e. implement (Imp for short) connected to the robot.

Due to the complexity of this problem, in the majority of cases, the CCPP is referred to in the literature as two distinct and sequential tasks: Coverage Path Planning (CPP) and Agricultural Routing Problem (AVRP). CPP consists in generating a set of parallel trajectories while AVRP consists in finding an optimal sequence of these trajectories for a single or multiple robots.

Generating parallel trajectories based on a reference direction or the longest edge of the field is a prevalent CPP method chosen by [START_REF] Cariou | Mobile robot trajectory planning under kinematic and dynamic constraints for partial and full field coverage[END_REF]- [START_REF] Zhou | Route planning for capacitated agricultural machines based on ant colony algorithms[END_REF]. Furthermore, improving on this method, generating parallel trajectories to a curved reference line was also proposed [START_REF] Plessen | Freeform path fitting for the minimisation of the number of transitions between headland path and interior lanes within agricultural fields[END_REF], [START_REF] Zhou | Metric map generation for autonomous field operations[END_REF]. Another improvement was to generate straight trajectories parallel to the boundary that minimized the number of trajectories [START_REF] Edwards | Route planning evaluation of a prototype optimised infield route planner for neutral material flow agricultural operations[END_REF]- [START_REF] Cao | A tractor formation coverage path planning method based on rotating calipers and probabilistic roadmaps algorithm[END_REF].

After determining the parallel lines, the generated paths often simply links them sequentially by half-turns. To determine an optimal sequence, some authors applied a genetic algorithm [START_REF] Hameed | Intelligent coverage path planning for agricultural robots and autonomous machines on threedimensional terrain[END_REF]. Zhou et al. [START_REF] Zhou | Route planning for capacitated agricultural machines based on ant colony algorithms[END_REF] applied the ant colony optimization. Jeon et al. [START_REF] Jeon | Design and validation testing of a complete paddy field-coverage path planner for a fully autonomous tillage tractor[END_REF] examined sequential and gathering patterns. In the gathering pattern, the distance between two consecutive trajectories is around half of the width of the field.

All of these methods, however, perform CCP and AVRP separately as two distinct problems. In a previous work, we proposed a one-step CCPP algorithm [START_REF] Arab | Complete coverage path planning for wheeled agricultural robots[END_REF] to cover convex and concave fields entirely, including the headlands, for field operations in which the implement is in contact with the ground when it is engaged. We demonstrated that a one-step CCPP has the potential to find some interesting solutions that are not possible to find with a two-step CCPP. This approach provides optimal solutions with a sequential pattern of adjacent tracks and headland tracks.

However, in some cases, it may be interesting to consider skipping every other track: with some vehicles that have a large turning radius, this method may reduce the size required for headlands or avoid reversing. A human-operated vehicle will prefer to avoid reversing and will find it difficult to skip rows. But for an automated system or robot, this is a viable option that has the potential to reduce the headlands area, which are generally under-performing parts of the land due to the soil compaction.

Based on our previous works [START_REF] Arab | Complete coverage path planning for wheeled agricultural robots[END_REF], in this paper we propose an extension of our one-step CCPP approach. In Section II, we first recall the main principles of our method. Then, we explain how the algorithm takes into account row skipping in the sequence of trajectories. In Section V, we detail our experiment and results, before discussing and concluding them.

II. TREE-BASED INTELLIGENT SEARCH

Our approach, explained in more detail in [START_REF] Arab | Complete coverage path planning for wheeled agricultural robots[END_REF], is performed in three primary steps: 1) preprocessing 2) exploration 3) Selection of optimal solutions. The preprocessing step determines headlands, trajectories within headlands, as well as turning spaces needed for traveling from one headland to another. Considering the accessible edges of the field also known as access segments, entry points are also determined.

The exploration algorithm finds every potential solution, while respecting some predefined constraints, and stores them in a solution space. A solution is a path i.e. a sequence of trajectories that begins at an entrance, covers the field entirely, and ends on one of the access segments. Finally, in the last step, the cost of each solution is computed and the one that has the lowest cost is selected.

In the extended algorithm, the first (preprocessing) step remains identical to our previous method. The exploration step is modified to generate solutions with a skip-row pattern instead of a sequential pattern. In a skip-row pattern two consecutive working trajectories in the main part of the field are not adjacent. As an exception, they may be adjacent when they are located close to a border of the field. This is useful to cover previously skipped tracks. In order to take into account and minimize the number of turns that include reverse moves as a soft constraint, the last step (selection of optimal solutions) is also slightly modified.

Headlands, that are used for performing half-turns, are computed adjacent to the borders of the field. Performing halfturns causes unworked areas in headlands as well as gaps before and after each half-turn due to the distance needed for lowering/raising the implement properly. Therefore, p trajectories (inner trajectories) are considered inside a headland for covering unworked areas caused by half-turns. One trajectory outside and adjacent to each headland is also considered to cover the unworked areas caused by gaps. These trajectories are known as gap covering trajectories.

During the preprocessing step, turning spaces are also computed around each corner of the field borders to ensure feasible turns from one headland to another. For further detail on the preprocessing step, we refer the readers to our previous approach [START_REF] Arab | Complete coverage path planning for wheeled agricultural robots[END_REF].

III. EXPLORATION ALGORITHM

The inputs of the exploration algorithm are the result of the preprocessing, the entry points, a set of hard constraints, γ on , γ of f , ℓ t , ℓ o and a coverage threshold, where γ on and γ of f represent, respectively, the minimum turning radius of the robot while its implement is on (lowered into the soil and activated) and off (raised from the ground). ℓ t represents the distance needed for lowering/raising the implement properly. ℓ o represents the offset between the robot and its implement.

Starting from an entrance, the exploration algorithm progressively constructs and explores a tree where each sequence of connected nodes represent a possible sequence of trajectories. A sequence of trajectories that satisfies the constraints, has a coverage rate greater or equal to the coverage threshold ∆ cov and ends on an access segment, is stored as a solution in the solution space.

Let us recall the hard constraints, defined as follows:

• the robot and its implement must remain inside the field • crossing a previously worked area with a new trajectory, during which the implement is off, is forbidden • overlaps in the main part of the field, i.e. outside the headlands and the gap covering trajectories is forbidden • the total overlap area caused by all trajectories of a sequence must not exceeds a global overlap threshold ∆ global that is a percentage of the field area • to avoid unwanted local loops, the overlap of a trajectory of a sequence with its ancestors in the same sequence must not exceed a percentage of the trajectory's worked area (∆ local ). to let the robot find an access segment and exit the field, once the coverage rate exceeds ∆ cov , this constraint is neglected • the robot must travel at least ∆ min dist while its implement is on to authorize another trajectory for which the implement is not on. The main reason is to avoid lowering the implement to the ground and raising it for short distances After initializing a tree with an entry point as its root, the construction and the exploration of the tree is performed for each unvisited leaf node as a depth first exploration.

As illustrated in Fig. 1, for each leaf node N p a ray r p is constructed based on its location and the direction of the robot at this location. The intersection of ray r p with an inner border of a headland and/or with a turning space defines the next nodes that will be generated and might be added to the tree after being validated by the hard constraints.

In case ray r p intersects with a turning space, trajectories for traveling from one headland to another are generated as detailed in our previous approach [START_REF] Arab | Complete coverage path planning for wheeled agricultural robots[END_REF].

In case ray r p intersects with an inner border of a headland, first a sequence of three trajectories are generated to reach the corresponding inner border. As illustrated in Fig. 1, this sequence contains a gap trajectory of length ℓ t from N p to N c1 for lowering the implement, a working trajectory from N c1 to N c2 and an inverse gap trajectory of length ℓ t + ℓ o from N c2 to N c3 for raising the implement. Afterwards, four -Fig. 1: Trajectory and tree representation of back-and-forth moves. The purple point represents an exit node. For readability purposes, only inner border of two headlands are represented side rays r ( r1), r ( r2), r ( l1), and r ( l2) are defined. They are parallel to r p , with two on each side of r p , and are located at a respective distance of w and 2w from r p . The closest rays r ( r1) and r l1 correspond to the adjacent tracks, while rays r ( r2) and r l2 correspond to a track skipping move. If the intersections of the most distant rays r ( r2) and r l2 with an inner border both exist, two corresponding nodes N c6 and N c7 are generated. Otherwise, nodes N c4 and N c5 are also generated at the intersection with r ( r1) and r l1 . Finally a turn from N c3 to each of these new nodes is generated and they are added to the tree after being validated.

When the intersection of either N c6 or N c7 with an inner border exist, it means that taking an adjacent track is needed to fill all previous skips.

The node generation scheme is repeated for all unvisited leaves of the tree. If an access segment is nearby and the coverage rate is already satisfied, a possible sequence of trajectories to exiting the field is also generated. The sequence of nodes N p , N c1 , N c2 , N c3 and N c9 in Fig. 1 illustrate an example of this case.

IV. SELECTING THE MOST OPTIMAL SOLUTION

Assuming that e entrances are proposed in the preprocessing step, the exploration algorithm is performed for each of the entrances. The results of all explorations are stored in a single solution space. Afterwards, coverage rate S cov , overlap rate S ovl , non-working distance S nwd , operation time S otm and number of turns having reverse moves S rvs are computed for each solution and normalized by [START_REF] Marques | Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth[END_REF].

S =

S -S min S max -S min [START_REF] Marques | Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth[END_REF] where S min and S max represent the minimum and maximum value of the corresponding metric over all solutions of the solution space. For a solution i.e. a sequence of trajectories, the coverage and overlap rates are respectively computed as the sum of worked and overlap area caused by each trajectory. The operation time for each solution is computed by [START_REF] Meftaul | Pesticides in the urban environment: A potential threat that knocks at the door[END_REF]. 

S otm = L on V on + L of f V of f + L gap V gap (2) 
where L on , L on and L gap are respectively the length of all trajectories during which the implement is on, of and in transition (from on to off or vice versa). Accordingly V on , V of f and V gap are the average speed of the robot when its implement is in on, off and in transition. Non-working distance for the corresponding solution is then computed as L of f + L gap .

Considering C = (1 -S cov S ovl S nwd S otm S rvs ) and W = (W cov W ovl W nwd W otm W rvs ) where W cov , W ovl , W otm , W nwd , and W rvs are weights given as input for the corresponding soft constraint, the final cost of each solution is computed by [START_REF] Cariou | Mobile robot trajectory planning under kinematic and dynamic constraints for partial and full field coverage[END_REF].

f = CW ⊺ W cov + W ovl + W otm + W nwd (3) 
Finally the solution that has the lowest cost is represented as the most optimal solution found by our approach.

V. RESULTS

To compare the presented approach (Skip-Row pattern CCPP, SR-CCPP for short) against our previous CCPP approach (simple CCPP), six real-world fields were selected. The area of these fields varies from 4.34 to 8.23 hectares (see Fig. 2). Both approaches were implemented and run on an Intel Xeon(R) W-2135 CPU @ 3.70GHz × 12 with 32GB RAM.

To compare the final cost of the most optimal result found by each approach, the solution spaces acquired by their exploration algorithms were combined and the selection method was applied on the combined solution space.

To compare SR-CCPP and simple CCPP, we considered two different value for γ of f ; 2m and 3m, while other parameters remain the same. The number of trajectories within a headland was set to two (p = 2). Other parameters are given in 3 summarizes numerical results of these comparisons and Fig. 4 illustrate the most optimal results for Field #6.

VI. DISCUSSION

Let us recall that for performing turns and half-turns, our approach first tries to employ only forward moves by applying the method proposed by [START_REF] Dubins | On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents[END_REF]. If it is not possible, turns that include reverse moves are also considered. This second type of turns are generated by the method proposed by [START_REF] Reeds | Optimal paths for a car that goes both forwards and backwards[END_REF].

Table 3a summarizes the results obtained by the presented approach (SR-CCPP) and our previous approach (simple CCPP) while γ of f = 2m. According to these results, in general SR-CCPP performed better than simple CCPP for five fields out of six. For Fields #1, #2 and #3, SR-CCPP achieved a better coverage rate. For Fields #1, #2, #3, #5 and #6, SR-CCPP did considerably less overlaps. However, Increasing γ of f to three meters, SR-CCPP performed better for all cases. As summarized in Table 3b, skipping feature of SR-CCPP made it able to use less turns including reverse moves for all fields. It also decreased the overlap rate by almost 1% or even more, for the last four fields. However, skipping tracks also caused more non-working traveled distance.

As can be noticed in Fig. 4, when skipping rows, turns use less space in the headlands. A tight turn will tend to have a bulbous shape that occupies more space, whereas a wider turn may be flatter. This highlights the ability of the row skip pattern to decrease the size required for headlands. Given that a headland is generally a less productive area of the field, this can potentially increase the productivity of the field.

In general, depending on the features of the robot, the field shape and accessibility, the headlands width and the goals of optimization, one method might outperform another. For instance, considering the minimization of non-working traveled distance as the primary goal of the optimization by modifying the weight of constraints, simple CCPP may perform better. As a result, allowing the decision-making algorithm to try each approach, or to combine them into a more sophisticated CCPP, could improve the effectiveness of the final method for finding a good solution for a variety of machinery, operations and field shapes.

VII. CONCLUSION

In this paper, a one-step CCPP method that can provide a coverage path with a skip-row pattern is proposed. The presented approach maximizes the covered area while minimizing overlaps, non-working path length, number of turns containing reverse moves and overall travel time. It covers the headlands automatically while consider the geometry of both the robot and its implement. We compared the proposed approach with our previous approach and we showed that considering both sequential and skip-row pattern increases the possibility of finding the optimum solution. It also increases the ability of a CCPP approach to find a proper solution for a variety of parameters and field shapes.
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 2 Fig. 2: Green segments are accessible edges of the field. Entrances are represented by red arrows

Fig. 3 :

 3 Fig. 3: Numerical results. The exploration time is referred to as time for short. Rvs represents the number of turns that include reverse moves and L nw represents the non-working traveled distance

Fig. 4 :

 4 Fig. 4: Most optimal results obtained for Field #6 while γ of f = 2m. The black arrows indicate where the robot enters and exits

Table Parameter Value

 Parameter 

			Parameter	Value
	w	3m	∆ global	5%
	γon	15m	∆ local	95%
	Von	3.5m/s	∆ min dist	4m
	Vgap	2.5m/s	Wcov	0.65
	V of f	1.5m/s	W ovl	0.15
	ℓt	2m	W nwd	0.05
	ℓo	2m	Wotm	0.05
	∆cov	96%	Wrvs	0.10

TABLE I :

 I Inputs and parameters

	Field Approach time (s) Coverage Overlap Rvs L nw (m)	f
	#1	SR-CCPP 160.59	98.93%	1.23%	2	1184, 17 0.110
		CCPP	9.73	98.80%	2.27%	4	3005.92	0.281
	#2	SR-CCPP 131.47 CCPP 10.01	98.80% 98.21%	2.05% 3.58%	0 2	1485.36 0.118 1433.84 0.336
	#3	SR-CCPP 282.28 CCPP 18.65	98.96% 98.86%	1.39% 2.15%	0 0	1565.47 0.118 1303.98 0.136
	#4	SR-CCPP CCPP	27.58 7.63	97.52% 98.23%	2.46% 2.11%	0 1	1990.87 1957.83 0.168 0.363
	#5	SR-CCPP 222.69 CCPP 10.99	99.00% 99.05%	0.31% 2.38%	0 2	1249.25 0.074 1402.57 0.180
	#6	SR-CCPP 335.91 CCPP 31.23	98.71% 98.81%	1.20% 3.15%	0 0	1314.63 0.105 1194.58 0.135
				(a) γ of f = 2m		
	Field Approach time (s) Coverage Overlap Rvs L nw (m)	f
	#1	SR-CCPP	58.08	98.61%	1.68%	10	2916.47 0.193
		CCPP	14.14	98.42%	0.23%	57	882.89	0.199
	#2	SR-CCPP CCPP	35.92 8.70	98.65% 98.75%	2.01% 3.31%	48 71	1415.98 0.201 1080.41 0.224
	#3	SR-CCPP CCPP	38.48 9.01	98.73% 98.66%	3.39% 4.35%	34 74	1206.01 0.193 1117.74 0.312
	#4	SR-CCPP 132.44 CCPP 23.96	99.08% 97.48%	2.28% 4.24%	10 103 1485.31 2013.52 0.137 0.585
	#5	SR-CCPP CCPP	98.97 10.54	98.99% 99.20%	0.31% 2.09%	4 80	1243.58 0.088 1093.59 0.188
	#6	SR-CCPP CCPP	51.86 13.73	98.56% 98.76%	1.20% 3.12%	48 48	1222.81 0.140 969.11 0.220

(b) γ of f = 3m
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