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STRUCTURE OF KAHLER FOLIATIONS WITH NEGATIVE TRANSVERSE
RICCI CURVATURE

BENOIT CLAUDON AND FREDERIC TOUZET

ABSTRACT. We investigate the structure of transversely Kéhler foliations with quasi-
negative tranverse Ricci curvature. In particular, we prove a de Rham type theorem de-
composition on the leaf space where we characterize each factor.
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1. INTRODUCTION

Preliminary warning. Unless otherwise stated, the objects considered here such as man-
ifolds, foliations, functions, tensors. .. are supposed to be smooth. For the sake of nota-
tional simplicity, we will denote by the same symbol (typically F) a foliation/distribution
and its tangent bundle.

1.1. Statement of the main results. Let F a transversely Kihler foliation of complex
codimension n on X compact; it is worth mentioning here that X is not necessarily en-
dowed with a complex structure. We denote by Jr the holomorphic transverse struc-
ture (see §3.3) and by g the transverse Kihler metric. In some holomorphic coordinates

(#1,. .., 2n) parameterizing the local space of leaves, it reads
7= g;d=dz
2%
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2 B. CLAUDON AND F. TOUZET

where g;; depends only of the transverse variables (z1,...,2,). The foliation is thus
equipped with two basic closed (1,1) forms. Namely the fundamental form w of g and
the (transverse) Ricci form v = Ric(g) respectively defined in the previous local trans-

verse coordinates as
w = \/—_129i3dzi A dz;
]
and

wn

ldz1 A -+ A dz|

v = Ric(g) = —v—1001og < ) = —v/—190log (det(gij)) )

In this paper, we will make use of the following assumptions.

(A1) The tranverse Ricci form Ric(9g) is quasi-negative: Ric(g) < 0 and Ric(g) < 0in
the transverse direction (i.e. has maximal rank n) somewhere.

(A2) F is homologically orientable, i.e. the top basic cohomology group H*"(X/F)
is non-trivial, and then generated over R by the class of the transverse volume w™
(see Theorem[3.2]).

Then we can prove the following statement.

Theorem A.

(1) There exist on X two regular foliations G and F containing F and such that
F=GnF

(2) The foliations G and F are holomorphic with respect to the complex structure Jr
on the normal bundle NF . Moreover, G/ F and .T/]-' are orthogonal and parallel
with respect to g (as subbundles of N F).

(3) The leaves of F are the topological closure of the leaves of F. In particular, they
are closed. The leaf space X | F is a compact Kiéhler orbifold with quasi-negative
Ricci curvature, in particular of general type.

We denote by — the lift on the universal cover X of any object previously defined.

Lemma B. The leaves of F are closed and the space of leaves X / Fisa complete Kihler
orbifold (with respect to the metric G).

Let G; and G, be the foliations induced on X / F by G and .% Note that they induce an
infinitesimal splitting (in the orbifold category):

T(X/F) =G @ Go.
We have then the following geometric description of these foliations.

Theorem C.

(1) The leaves of Go are all isometric to a Hermitian symmetric space F¢ of the non-
compact type.

(2) The leaves of G1 are all isometric to a Kdihler complete orbifold % with quasi-
negative Ricci curvature.

(3) The aforementioned infinitesimal splitting gives rise to a global decomposition (de
Rham decomposition)

X)F =X x.

(4) Let us consider the natural diagonal and isometric action of 71(X) (with respect
to the decomposition above). Then this action is minimal (i.e. dense) on the second
factor and discrete cocompact on the first factor.
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These statements shall be seen as foliated analogues of results obtained by Nadel
[Nad90] and Frankel [Fra93]. Both authors have studied the geometry of the universal cov-
ering X of X a complex projective manifold with ample canonical bundlel] Nadel proved
that Auto( ) is a semi- s1mple Lie group having no compact factors and he conjectured
the existence of a splitting X ~ .# x . with Aut’(.#") = {Id} and # being a bounded
symmetric domain (equivalently a Hermitian symmetric space of the non-compact type).
This was first confirmed in the case of surfaces [Nad90, Theorem 0.2] and then in full
generality [Fra95, Theorem 0.1]. Theorem[Cl can thus be seen as a foliated version of the
above-mentioned splitting.

1.2. Example. Suppose given on a compact manifold /N a minimal foliation (i.e. with
dense leaves) F whose transverse geometry is locally modeled on a Hermitian symmet-
ric space of the non-compact type J# = G/K. The foliation carries a natural trans-
verse invariant metric g induced by the G-invariant Kéhler—Einstein metric on 7. Let
(M, gpr) be a compact Kéhler manifold with quasi-negative Ricci curvature. The product
X = M x N is equipped with an induced foliation F of the same rank which restricts
to each vertical fiber {m} x N ~ N to Fy. This foliation is transversely Kihler with
respect to the transverse metric gas @ gy and satisfies moreover hypothesis[(AT) and [[AZ)]
Here, the leaves closure are precisely the vertical fibers. Moreover, if we fixe a Hermitian
symmetric space of the non-compact type .77, it is possible to exhibit a compact foliated
manifold (N, Fn) as above. Indeed, let 7 = S x - - - X J;, be the decomposition of .7
into irreducible symmetric factors. It is well known since Borel’s work [Bor63] (see also
[Mar91) Section IX.4.7, Theorem C] and [Morl5, Corollary 18.7.4]) that for every 7, there
exists a discrete torsion free subgroup of holomorphic isometries I'; of 7 x J# acting
cocompactly and diagonally and such that I'; acts densely on each factor. It is then suffi-
cient to consider the projective manifold N = (¢ x )/ [, T'; and to take as F the
holomorphic foliation which lift to the horizontal (or vertical) one on the universal cover
X . Apart this use of irreducible uniform lattices, we are not aware of other examples
of somewhat different nature. In this setting, it is worth mentionning that, under special
circumstances, Zimmer has shown that the “holonomy group” of a minimal Riemannian
foliation on a compact manifold with non-compact semi-simple structural Lie algebra is of
“arithmetic nature” [Zim&8].

1.3. The case where X is complex/Kihler. When X is a compact complex manifold
and F is a holomorphic foliation, the second item of Theorem [A] implies that F; and
Fy are also holomorphic (the tranverse complex structure being the one induced by the
complex structure of the ambient manifold X'). Moreover, if X is Kéhler, the homological
orientability is automatically fullfilled.

1.4. The case where F has complex codimension one. In this situation the preceding
results read as followsJ:

(1) Either the leaves of F are closed and the leaf space X/F is a compact Riemann
surface hyperbolic in the orbifold sense.

(2) Either F is minimal and transversely hyperbolic: the Hermitian symmetric space
4 involved in the statement of Theorem [C]is the upper half-plane H (¢ is re-
duced to a point).

ILet us recall that it is equivalent to saying that X admits a Kéhler—Einstein metric with negative Ricci
curvature.

2This can be proved with simpler arguments than those used in the rest of this paper.



B. CLAUDON AND F. TOUZET

Maybe the simplest instance of such minimal foliation is provided by transversely hyper-
bolic holomorphic foliations on canonically polarized projective surfaces .S which appear
in Brunella’s classification [Bru97]. In loc.cit. Brunella raised the following question: is
S necessarily a quotient H? /T of a bidisk by an irreducible cocompact lattice? Up to our
knowledge, this is still an open problem.B

We give now some basic examples of transversely Kihler foliations which have a dif-
ferent behavior when the assumption or are dropped.

1.5. Counterexamples.

ey

(@)

3

The conclusions of Theorem [Al do not necessarily hold if we only require the
Ricci form to be only semi-negative. Actually, it may happen that the topological
closure of the leaves of a linear foliation on a complex torus are real hypersurfaces.
In this setting, the natural transverse metric g is flat and the Ricci form ~ vanishes
identically.

For general transversely Kahler holomorphic foliations on compact Kéhler man-
ifolds, the dimension of the topological closure of the leaves is likely to vary. A
simple instance of this phenomenon is the Riccati foliation constructed on a ruled
surface S over a curve C of genus g > 1 by the datum of a dense representation

m1(C) = S* C Aut(Pl).

In this situation, there exists exactly two closed leaves and the closure of the other
leaves are Levi-Flat hypersurfaces.The natural transverse metric is induced by the
Fubiny-study metric on P! and thus coincides with its Ricci form. We don’t know
if this equidimensionality defect can occur when the Ricci form is semi-negative
(but not quasi-negative).

We cannot drop the homological orientability assumption, even if X is complex
and F is holomorphic.

In order to justify this assertion, let us consider the examples of non-Kéhler
compact complex manifolds associated to number fields as constructed in [OT05]
generalizing some examples of Inoue surfaces [Ino74]. We retain the presentation
given in [OTOS] and we refer to loc.cit. for details.

Let K be a number field, let o;,...,05 be its real embeddings and
Os41sy---50s42¢ its complex embeddings (0s4¢4; = 0s+4). Let us assume that
s,t > 0. Let H be the Poincaré upper half-plane. Let a € O acting on
H* x C! as a translation by the vector (01 (a),...,0s1¢(a)). Letu € O be
a totally positive unit (i.e. o;(u) > 0 for all real places). Then u acts on H* x C*
by u.(z1,...,2s+t) = (01(u)z1,...,054+(u)zs4¢). Moreover, as t > 0, the set
{(o1(a),...,04(a)) | a € Ok} is dense in R®. For any subgroup U of totally
positive units, the semi-direct product U x Of acts freely on H* x Ct. This sub-
group U is called admissible if the quotient space X (K, U) is a compact complex
manifold. In particular, admissible groups must have rank s. We can always find
such admissible subgroups.

The admissible group U being given, the corresponding compact complex man-
ifold support a transversely Hermitian symmetric foliation of complex codimen-
sion s transversely locally modeled on H? and which lifts to the vertical foliation
on the universal cover H* x C!. The leaves closure are thus codimension s real

3Even if it is known that the monodromy representation of this transverse hyperbolic structure takes values in
an arithmetic group (see Theorem [I0.1).
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submanifolds of X, namely (2¢ + s)-dimensional real tori fibering over the real
s-dimensional torus T?. In any cases, these submanifolds fail to be holomorphic.

Here, the representation pr : m (X (K,U)) — PSL(2,R)® associated to the
transverse hyperbolic structure takes values in the product of affine subgroups
Aff(2,R)” and its linear part p% : 7 (X(K,U)) — (R%,, x) has non-trivial
image.

The product of Poincaré metrics (defining the transverse hyperbolic metric) on
H* is given (up to a multiplicative factor) asw = dd® (> :_, log(Im(z;))) and thus
descends to X as an exact two form, namely the differential of the 71 (X )-invariant
one form d° (3_;_, log(Im(z;))). Hence, this foliation is not homologically ori-

entable (albeit satisfying [(AT)).

1.6. Transverse action of the group of automorphisms. Consider now a foliated com-
pact complex manifold (X, F) and let Aut(X, F) be the group of biholomorphisms of
X preserving the foliation F. This group contains the normal subgroup AutFiX(X , F) of
biholomorphisms f preserving the foliation leafwise. That is, f € Aut™™(X, F) iff for
every x € X, L, = Ly(,) where L, denotes the leaf through .

Definition 1.1. We will say that the transverse action of Aut(X, F) is finite whenever the
quotient Aut(X, F)/Aut™™ (X, F) is finite.

In other words, the action is transersely finite if the set theoretic action Aut(X, F) x
X/F — X/F on the leaf space X/ F is finite (i.e. has finite image in the symmetric group
of X/F).

Assume now that F is transversely Kihler and satisfies the assumption [(AT)]

In the classical (unfoliated) situation, the quasi-negativity of the Ricci curvature implies,
according to Riemenschneider theorem [Rie73], that X is of general type. As a byproduct,
the group Aut(X) of biholomorphisms of X is nessessarily finite. In our foliated setting,
it is therefore natural to inquire whether the transverse action is finite. Actually, we cannot
expect it to hold in full generality. This is illustrated by the example given in §I.3}(3) above
and which was actually given in [LBPRT22, §5.5] to this end. Indeed, retaining the same
notations, we know from Dirichlet’s units theorem that O3, is a group of rank s + ¢ — 1.
Elements of (’)}’Jr /U induce automorphisms of X (K, U). Therefore as soon as ¢ > 1, we
obtain automorphisms with infinite transverse order.

We now turn our attention to the particular case where X is itself Kihler. As we can
see, the situation is much better.

Theorem D. Let (X, F) be a foliated compact Kihler manifold (F being holomorphic).
Assume that F is transversely Kdihler with quasi-negative Ricci curvature. Then the trans-
verse action of Aut(X, F) is finite.

Remark 1.2. We are not aware of any example satisfying [(AT) and [[AZ)] with X complex
non-Kihler such that the transverse action of Aut(X, F) is infinite.

2. OUTLINE OF THE PROOF

Let us now describe the strategy that we employ to establish the main Theorems [Al
and[Cl

As already mentioned in the introduction, the techniques are widely inspired by previous
results of Nadel [Nad90] and Frankel [Fra93] about the structure of the universal cover of
a canonically polarized manifold. In particular, we make use of “foliated twisted harmonic
maps”, available in our context.
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From a previous result by Touzet [Toul0Q] (cf. Theorem [Z)), we know that the com-
muting sheaf C of the foliation (in Molino’s theory terminology, see §5.3) is semi-simple
without compact factors. Roughly speaking, this commuting sheaf is a locally constant
sheaf of Lie algebra (with typical fiber denoted by g) of basic Killing vector fields which
encodes the dynamic of the foliation and which somehow represent the infinitesimal part of
the holonomy pseudo-group (see §6.11 this is a common feature of Riemannian foliations).
In our setting, we can derive from semi-simplicity of g the existence of a representation
(the monodromy representation of F attached to C):

p:m(X) — Aut’(g)

with dense image (up to replacing X with a finite étale cover). We can also derive from
semi-simplicity that the leaves of F (the lifted foliation F on the universal cover X ) are
closed. The latter being a complete Riemannian foliation, this implies that its space of
leaves X / Fisa complete Kihler orbifold as described in Lemma[Bl The constant sheaf c
defined on X as the lift of C can be then identified to a Lie subalgebra of the Lie algebra
of Killing fields on X /F.

On the other hand, it is well known that Aut® (g) is identified, via the adjoint action, to
the unique center-free Lie (and algebraic) group G having g as Lie algebra.

Let K be maximal compact subgroup of G. According to a theorem of Corlette [Cor88],
there exists a unique p-twisted harmonic map f : X -G /K (depending of a course on
a given Riemannian structure g on X). It is then natural to investigate the existence of
such f by requiring f to be constant on the leaves of F.Sucha property will be called F-
invariance. It turns out that this can be realized provided the metric g is suitably chosen.
Namely, g is bundle-like and F is taut: the leaves of F are minimal submanifolds with
respect to g. Actually, the assumption “homologically orientable” is equivalent to the
existence of this kind of metric as stated in Theorem[3.7] Basically, one way to prove the
existence of an JF-invariant harmonic map is first to construct a smooth p-equivariant and
F-invariant map fo and to deform it to a harmonic one via the usual evolution equation. By
the result of SectionH](which we hope has an interest in its own right), the solutions f; will
remain J-invariant and so will be the sough harmonic map which is obtained by taking the
limit when ¢ — oco. Actually, we do not proceed exactly in this way because it seems rather
delicate to construct directly fy from the original manifold X . To circumvent this problem,
we work on the transverse orthonormal frame bundle X * equipped with its natural structure
of U(n)-principal bundle over X . According to Molino’s theory, the foliation F lifts to X
as a transversely parallelizable foliation F* of the same rank and the commuting sheaf of
F* descends on X as the commuting sheaf C. In particular, the monodromy representation
of F* is exactly given by p. Now, we can exploit the structure of transversely parallelizable

foliations to construct on the universal covering X*# (see [Mol88| p. 162]) a p-equivariant
map Fy with values in G/ K. We can then deform Fj following the evolution equation

OF; t
ot

preserving the p-equivariance of the map F;.
Using that the representation p is dense and in particular reductive, we get, taking the
limit, a p-equivariant and Ft-invariant harmonic map o, which is by uniqueness aspect

= —dyd(F})

of Corlette’s Theorem invariant by the isometric action of the structural group U(n) of X*.
This actually implies that F,, descends on X as a F-invariant harmonic map foo (With
respect to the original bundle-like metric g)
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Alternatively, this enables us to consider f., as a p-equivariant harmonic map
foo: X/F — G/K

which can be easily seen to be a surjective submersion with connected fibers. In addition
we can prove that

(1) C projects via fs to isom(G/K) (the Lie algebra of the isometry group
Isom(G/ K) of the symmetric space G/ K).

(2) For every fiber F' of f, for every x € F, there does not exist any V' € C such
that V(z) # 0 and V() € T, F/F,.

(3) foo is H-equivariant with respect to a subgroup of the isometry group Isom()? / F )
which integrates C.

If we combine this with the rigidity properties of harmonic maps as proved by Carlson—
Toledo and Jost—Yau, we obtain that ¢ := G/ K is a Hermitian symmetric space and that
foo 1s indeed holomorphic (up to switching the complex structure of 7 to its conjugate).
The proof is widely inspired from Frankel’s article [Fra93] and is somehow simpler, at
least as far the H-equivariance property is concerned. On the other hand, the item @) is a
byproduct of the existence of solutions of a foliated Monge—Ampere equation in the spirit
of what is done in [EIK90]] and which requires a fairly more technical analysis.

Again relying on Frankel’s argumentation [Fra89, |[Fra95], we can deduce the existence
of a holomorphic splitting

T(X/F)=G1 &G

where G, is the foliation induced by the orbits of C and > is the fibration defined by foo-
Keeping in mind the dynamical meaning of C, we obtain Theorems[A]land [Cl

Theorem [DI turns to be a consequence of the latter statements together with results
concerning linear representations of Kéhler groups that we will recall subsequently (see
Section[9).

Organization of the article. Let us describe briefly the content of this article. Section[3]
gathers standard results on Riemannian foliations and the basic objects attached to them.
The (foliated) harmonic flow is studied in Section 4] and more precisely how the tangential
energy behaves with respect to the heat operator. This fundamental estimate will be used to
produce harmonic maps that are constant along the leaves of the foliation. Using this and
Molino’s theory of Riemannian foliations, foliated harmonic maps are constructed in Sec-
tions[Aland[6l The Kahler case is studied in the remaining sections. In Section[7 we show
the existence of a supplementary foliation and prove the main statements (Theorems
and[C)). Section[8]is devoted to the proof of a doubly foliated version of Yau’s theorem and
Section [0 gives the proof of Theorem [Dl In Section we formulate final questions and
remarks.

3. RECOLLECTIONS/NOTATION

Let (X, F) be a foliated manifold. One will denote repectively by m and n the rank
and the codimension of F H We follow notation from [Mol88| Chapter 2]: X(X) (resp.

“4For the time being, we deal with real foliations. However, from Section[Zlfor the sake of notational simplicity,
we will also denote by n the complex codimension of transversely Kéhler foliations (hence of real codimension
2n). Actually this is the notation used in the introductory part.
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X(F)) stands for the Lie algebra of vector fields on X (resp. tangent to F). Let us denote
by L(X, F) C X(F) the Lie algebra of foliated vector fields:

L(X,F)={veX(X)|[X(F),v] CcX(F)}.

Remark that L(X, ) is a module over the ring Q°(X/F) of basic functions (i.e. functions
constant on the leaves). Let us finally consider (X, F) the Lie algebra of basic vector
fields defined by the quotient

UX,F):=L(X,F) X(F).
It is also a module over Q°(X/F).

Definition 3.1 (c¢f. [Mol88|, Chapter 1, §1.1 and 1.4]).
(1) An open subset U C X is said to be distinguished (with respect to the foliation

JF) if there exists a diffeomorphism ¢ = (21, ..., Zm,Y1,-..,Yn) : U — Q onto
a domain §2 of R™T" = R™ x R™ such that the restriction of F to U is given by
{dys = -+ = dy, = 0}.

(2) The foliation JF is said to be simple if its leaves can be defined as the fibers of some
surjective submersion f : X — Y. In particular the space of leaves X /F (with
the quotient toplogy) is homomeorphic to Y and thus inherits a natural structure
of manifold such that the projection map X — X /F is submersive.

Of course, we can cover X by open subsets U which are both distinguished and simple
(with respect to the projection (z,y) — y) for the restricted foliation F | - In the sequel,
when we will consider local foliated/basic objects or local space of leaves, it should be
understood that this means “in restriction to these peculiar neighborhoods”. The pair (U, ¢)
as above will be refered as a foliated chart.

3.1. Basic tensor fields/basic cohomology. Let NF = T'X/F denote the normal bundle
to F. The respective duals F*, N*F are called the cotangent and conormal bundle of F.
The (local) sections of the latter are precisely (local) forms of degree one whose restriction
to the leaves vanish identically. More generally, a transverse (p, ¢) tensor field is a section
of 'Y := NF®P @ N*F®1,

We can alternatively define a basic vector field as a section of NJF which is flat with
respect to the partial Bott connection

V/ :NF S NF®F*

defined for every local sections X and Y (respectively sections of F and N.F) by V%Y =
[X, Y] (well defined as a section of NF by integrability).

We can more generally define a basic (p, ¢) transverse tensor field as a section s of F’;q
such that V7's = 0 (here, we denote by the same symbol the extension of the Bott con-

nection to I'’2%). In local foliated transverse coordinates x = (z1,...,2,), this amounts
to saying that s can be written as a sum of simple tensors of the form
0
x Q- ® ®drj, @ Qdxj, .
f( )axil axip J1 Ja

For instance, a (transversely) Riemannian foliation is a foliation equipped with a basic
transverse metric g, that is a basic section g of the symmetric power Sym?N*F c N*F®?
which is positive definite on N F. In the same way, a basic endomorphism of NF is a basic
section of NF @ N*F, etc... We can easily check that a g-form § € T'(A\? T* X)) is basic
(then in particular is a section of N* F®9) if and only if we have i,0 = i,(df) = 0 for
every vector field v tangent to F.
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Note that any automorphism of X preserving the foliation naturally induces an auto-
morphism f, of the vector space of basic transverse tensor fields.

The algebra Q* (X /F) of basic differential forms is then a subcomplex of (X) whose
cohomology H*(X/F) is the so-called basic (de Rham) cohomology.

In the case where F is (a codimension n) Riemannian foliation on a compact mani-
fold X, the basic cohomology turns out to be finite dimensional, according to [EIKHE6].
Moreover, the same authors prove in the same setting the following.

Theorem 3.2 (¢f. [EIKH86, Théoréme de dualité 4.10]). We have the following alterna-
tive:
(1) either H"(X/F) = 0,
(2) or H"(X/F) ~ R, in which case F is transversely orientable, H" (X /F) is gen-
erated by the class of the basic volume form and H* (X / F) satisfies the Poincaré—
Hodge duality.

3.2. Bundle-like metrics. Let (X, F) be a foliated manifold where in addition F is as-
sumed to be Riemannian. Let us denote by ¢ the tranverse invariant metric defined on the
normal bundle N F and by vr the associated transverse volume form, assuming that NJF
is oriented. A metric g on X is said to be bundle-like (with respect to the given Riemannian
transverse structure) if the metric induced on F+ ~ N is precisely g. This amounts to
saying that F can be locally described by the fibers of a Riemannian submersion where
the basis of the fibration is equipped with the metric g. It is well known (see [[Re159])
that there always exists a bundle-like metric. The triple (X, F, g) will be referred as a
Riemannian foliated manifold. The pair (F, g) stands for a Riemannian foliation together
with a bundle-like metric g on the ambient manifold.

3.3. (Riemannian) extensions/Jr holomorphic functions.

Definition 3.3 (Extension of a foliation). Let (X, F) be a foliated manifold. A foliation G
on X is said to be an extension of F if F C G.

Suppose in addition that there exists on X a basic i symmetric form o € Sym? N*F
such that the restriction of o to G/F is positive. This implies that F is Riemannian in
restriction to the leaves of G with respect to o’ := a’ g - We will say that o' is a F-basic
G-leafwise metric. For any (local) basic section v of G/F, it is then meaningful to consider
the F-basic G-leafwise divergence divg(v) well defined as a (local) basic function of F.
Similarly, we can consider the F-basic G-leafwise gradient Vg (f) (with respect to §| g )
of a (local) basic function as a (local) basic function of F. We can thus consider the
associated F-basic G-leafwise Laplacian Ag acting on local basic functions by

Ag(f) = —divg(Vg(f)).
It is well defined on X as a basic differential operator of order 2 (see [EIK90]). It will play
a prominent role in our work (see §8.1).

Consider now the situation where (X, F) is a foliated manifold such that F is trans-
versely holomorphic of complex codimension n. Recall that this means that we can cover
X by foliated charts U; of the form f; : U; — V; C R™ x C” such that for every i, j such
that U; NU; # 0, the local transformation map f;; = f; o fi_l of R™ x C™ takes the form

fij(x,2) = (gij (=, 2), hij(2))

SHere and hereafter, we mean basic with respect to F.
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where h;; is holomorphic.

As usual this is equivalent to the datum of a basic endomorphism Jr : NF — NJF
satisfying J% = —Id (a transverse basic complex structure) fulfilling the Newlander—
Nirenberg integrability property:

for all local basic sections v, w of NF!, [v,w] is still a section of NFUL,

Here, N F"! is the second summand in the splitting
NF®C=NF"a NF"!

determined by the ++/—1 eigenspaces of Jx (more generally, if E is any .Jz-stable sub-
bundle of N F, we can analogously consider E*% and E:!).

Let f : X — Y be a smooth basic function taking values in a complex manifold Y.
Let J be the complex structure on Y. Then f is said to be transversely-holomorphic or
merely Jx-holomorphicif f.oJr = Jo f.. This exactly means that the local factorization
f:U/F — Y of f through the local leaves spaces is holomorphic.

Similarly, we will say that an extension G of F is Jr-holomorphic if the foliation in-
duced by G on U/F is holomorphic. Alternatively, holomorphicity of G can be character-
ized by

e The vector bundle G/F C NF is Jx-stable.

e (G/F)"" ¢ NF0 is locally spanned by basic holomorphic vector fields (i.e.
local sections of N F"* that project to holomorphic vector fields on U/ /F).

3.4. Characteristic and mean curvature forms. Let (X, F) be a foliated manifold. We
also assume that F is oriented. Let g be a Riemannian metric on X. The characteristic
form y r is the m-form (where m = rk(F)) defined by the following properties:

(1) the restriction of x = to the leaves is the volume form associated to g = (the leafwise
metric induced by g);
(2) forallv € I'(F1),i,(xr) = 0.
Let 7, € I'(F) be the mean curvature vector of the leaves with respect to g. We can
define the mean curvature form k4 by setting

kg(s) = g(14,s) forse(TX).
The following fundamental result was proven by Dominguez [Dom9g].

Theorem 3.4. Let (X, F) be a foliated compact manifold. Assume that F is Riemann-
ian. Then there exists a bundle-like metric g such that kg is basic (or equivalently, T, is
foliated).

Remark 3.5. As noticed in [Ton97, Chapter 7], when (X, F, g) is a compact Riemannian
foliated manifold, this basic mean curvature form x, is indeed closed and its cohomology
class [k] := [kg] € H'(X,R) does not depend on the choice of the bundle-like metric
g. Moreover, [k] vanishes if and only if there exists a bundle-like metric g such that g4
vanishes identically, i.e. the leaves are immersed minimal submanifolds.

Definition 3.6. We will say that a Riemannian foliation (F, g) is fense if x4 is basic and
(F,g) is taut if k4 vanishes identicallyf{

OThis slightly differs from the usual terminology, according to which F is tense/taut if there exists bundle-like
metrics g fullfilling these properties, but which are not necessarily the one we are working with. For this peculiar
metrics, tense/taut (in our sense) corresponds to isoparametric/minimal.
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Theorem 3.7 (¢f: [Mas92]). Let (X, F) be a compact foliated manifold such that F is
transversely Riemannian. Suppose that F is transversely orientable. Then the following
two properties are equivalent:

— There exists a bundle-like metric g such that (F, g) is taut.
— The foliation F is homologically orientable.

3.5. Relationship between characteristic form and mean curvature form. It is given
by the so-called Rummler’s formula [Ton97, Corollary 4.26]. We assume here that (X, F)
is a foliated manifold, that F is oriented and we fix a Riemannian metric g on X. Set as
before m = rk(F), then:

(3.1) dxr + kg A xF € F2A™H

where F2A™*! denotes the space of (m + 1)-forms ¢ on X such that iy,¢ = 0 for any
m-multivector field tangent to F (i.e. V € T'(A™ F)). In particular, if n € Q"1 (X/F)
is a basic (n — 1)-form where n is the codimension of F, then n A dxr = —n A kg A X F.

As a straightforward but fundamental consequence of Stokes’ Theorem that we will
used repeatedly, we have the following result.

Lemma 3.8. Letr (X, F) be an oriented compact foliated manifold and g be a Riemannian
metric on X. Assume that F is oriented and that .4 vanishes identically. If n = codim(F)
andn € Q"1 (X/F), we then have:

/dn/\x}-:().
X

3.6. Some adapted orthonormal frame bundle. Let (X, F, g) be a Riemannian foliated
manifold (see §3.2). Set m + n = dim(X) where m = rk(F). Denote by V¥ the Levi-
Civita connection associated to g. Recall the two basic fundamental properties of V,
namely the torsion freeness and metric compatibility

(3.2) Vu,v e T(TX), Viv—Viu=[u,v],
(3.3) Vu,v,w € T(TX), u-(v,w)y = (VIiv,w)y + (v, Viw),.
Definition 3.9. Let (€;);_; _,, be a local orthonormal frame of F near z € X. The

family (e;) is said to be tangentially geodesic (with respect to F) at the point x € X if for
allv € T, X, we have:

Viei(x) € (]:x)l.

If (e;) is tangentially geodesic, note that the Lie bracket [e;, ;] vanishes at the point =
as an immediate consequence of the torsion freeness of V9 and the involutivity of F:

Vu € Fy, <[€i7€j]vu>g = <Vgi€j’u>g - <vgjeivu>g =0.

Lemma 3.10. For every x € X, there exists a tangentially geodesic frame of F at the
point x.

Proof. Let L be the leaf of F through z and g, be the metric induced by g on L. Take
(fi) an orthonormal frame with respect to g, defined in some neighborhood V' C L of
x and geodesic in the usual sense at = and extend it as a orthonormal frame (¢;) of F
in some neighborhood U C X of the ambient manifold. For all v € F,, we have thus
Vg (x) € Fo . We want to extend this property for all v € T, X by modifying suitably
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the &’s. To this aim, pick a basis (vg), kK = m + 1,...,m + n of F.t. For every
(i, 7, k) € [1,m]? x [m + 1,m + n], there exist a;;;, € R, v € (ToF)" such that

Vi.Gi(@) =D auné; (@) + vir.
¥

From (3.3), we can infer the skew-symmetry property a;jx = —aj;; so that there cer-
tainly exists a family (A;;) of smooth function A;; : U — R (shrinking U if necessary)
fulfilling the followings:

e A;; vanishes along the leaf £,

o vi(Aij)(x) = aijr,

° Aij = _Ajz
Fori=1,...,m,sete; = & — Zj A;;&;. By construction, the family (¢;) forms a local
frame of F around x and satisfies

Viei(x) € Fpt, forevery v € T, X.

Let (e;) be the local orthonormal frame of F produced by Gram—Schmidt orthonormal-
ization process applied to the family (¢;). The properties of the A;;’s listed above guarantee
that for ¢ # j, (€;,€;)4 vanishes at x at order at least 2. This easily implies that the jets
of e; and ¢; at the point = coincide up to order 1, thus proving that (e;) is tangentially
geodesic at z. (]

The following lemma will be useful in the proof of the forthcoming Proposition .4 to
be found in §4.2

_____ m+n be a local orthonormal frame of T'X near x € X such
that (€;),_, _,, is tangentially geodesic at x and e; is foliated for i > m. Then for any
indices i,l € [1,m] and k € [m + 1,m + n], we have

<[ei7 ek]v el>g(‘r) = <[el7 ek]v ei>g(x)

Proof. This a straightforward consequence of (3.2)), (3.3) and the fact that F is stable under
Lie bracket. (]

Concerning the transverse behavior of the Levi-Civita connection, we have the follow-
ing (see [O’N66, Lemma 1]):

Lemma 3.12. Let u, v be local foliated vector fields orthogonal to F. Then, the orthogonal
projection of VIv on F is still foliated.

3.7. Tangential energy. Let (X, F, g) be a foliated Riemannian manifold and f : X —
Y be a smooth function with values in a Riemannian manifold (Y, h). Let us denote by
fT the restriction of the differential f, to F and let us define the tangential energy density
(with respect to F) as the function

' X — Rt
eT“"{ v YIATIE = Avace (1)) = § 5, 1fue)l?

where (e;) is any orthonormal basis of F,.. Here, the star exponent stands for the adjoint.



KAHLER FOLIATIONS 13

3.8. Tension field and basic maps. We maintain notation/assumptions form §3.7 In the
sequel, we will denote indifferently the differential of f by df orf,.. Recall that the tension
field is the section of f*(TY") defined by

7(f) = Trace (V(df)) = div(df) = —dgdf.

Here, V is the pull-back by f of the Levi-Civita connection V" on Y and d3, is the adjoint
operator of the differentiation

dy : AM(X, T*X @ f*(TY)) — AMTU(X, T*X @ f*(TY))

of forms on X valued in f*(TY).
In more layman terms, once we have fixed a local orthonormal frame (e;) of TX,

(3.4) T(f) =D Ve fuei = fD_V,e0).

Let us now focus on the case where f is basic (i.e. leafwise constant). Consider the
curvature form of the connection V:

Z(v,w) = VyVy = ViV = Vi, )

where v,w € T'(TX). If v € I'(F), fsv = 0 and from the definition of V, we can infer
that

(3.5 iv# =0

for every v € T'(F). Let us fully justify this vanishing property. Pick 2 € X and any local
section s of T'Y defined near f(x). Set s; = so f. This is well defined as a local section of
f*(TY) near z. By multilinearity of the curvature tensor, it is then sufficient to check that
Z(v,w)(sy) = 0 for any local foliated vector field w. This last point is just a consequence
of the fact that both s, and V,,(s) are constant along the leaves and that [v, w] is tangent
to F, the vector field w being foliated. This yields

Vu(sf) = Vvvw(sf) = v[v,w] (Sf) =0.

In the terminology of [KT75| Definition 2.33] (see also [Mol88, §2.6]) f*(TY) is a
Soliated vector bundle and V is a basic connection on it. Equivalently, the pair f*(T'Y)
belongs to the category of F-vector bundles as defined in [EIK90 Section 2.2]. In our
context, a section s of f*(TY) is said to be basic if V,s = 0 for every v € T'(F).
Local basic sections form a free module over the ring of local basic functions whose rank
coincides with that of Ty .

More generally, denote by AF C A* := A¥(X,T*X ® f*(TY)) the subspace of
twisted basic forms of degree k, that is o € A¥ iff for every v € I'(F), we have i, () = 0
and i, (dya) = 0. More explicitly, o« € A¥ is basic if and only if it can be written locally as
a finite sum of simple tensors of the form s ® £ where s and £ are respectively (local) basic
sections of f*T'Y and A¥N*F C A*T*X. Thanks to (3.3), the differential dv induces a
differential on the graded algebra Aj.

Remark that for every local foliated vector field v, f.v is constant along the leaves, so
that V,, fov = 0 for every w tangent to F. In particular the tension field of f takes the
simplified expression:

(36 () = S Vefeei — 1. (Z v) - (7).

Here, (e;) is any local orthonormal frame of F*. Suppose in addition that F is tense
with respect to g (i.e. 74 is foliated). By choosing the e;’s to be foliated and thanks to
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Lemma[3.12]and (3.3), we immediately check that 7(f) is basic in the previous sense, that
is

Vur(f) =0
for every w € T'(F).

As noticed before we can restrict the operator dy to the graded algebra A; of basic
forms. Moreover, when F is transversely oriented, the basic star operator * defined at
the level of local basic forms (c¢f. [Ton97, Chapter 7]) extendsvia the metric structure to
f*(TY) as an operator that we denote by the same symbol * : Ay — A;'~* so that we can
consider the adjoint d : A7 — A$~'. As f € A), we can thus define its basic tension
field

™(f) = —dgdf.
More explicitly, let us consider U a sufficiently small distinguished simple open set of X
and f : U/F — Y the map that factorizes f through the projection 7 : U — U/.F. Note
that 7 induces a bundle map 7, : f*(TY) — f (TY). The (local) space of leaves U/ F is
equipped with the transverse metric g and we have

T (f) = 7(f) o .

If (e;) is a local orthonormal frame of - and (;) the corresponding orthononormal frame
with respect to g (regarded as vector fields on U/F), we have

- Y VT T, (T VA

where V = f*(V"). In view of (3.6) and in the particular case where 7, vanishes identi-
cally, this somehow means that the notion of harmonicity (with respect to ¢g) and transverse
harmonicity (with respect to g) coincide.

We gather the previous observations in the following.

Proposition 3.13. Let (X, F, g) be a Riemannian foliated manifold and f : X — Y be a
leafwise constant smooth map to a Riemannian manifold (Y, h). Then the ordinary tension

field T(f) and the basic tension field Ty(f) are related by

T(f) = 1 (f) = fe(Tg)-
In particular 7(f) is basic if (F, g) is tense and 7(f) = 7,(f) whenever (F, g) is taut.
Remark 3.14. A special occurence of Proposition is given in [Ton97, Chapter 7],

when Y = R equipped with the standard euclidean metric. In this context, —7 and —;
are nothing but the usual and basic Laplacian.

4. BEHAVIOR OF THE TANGENTIAL ENERGY UNDER THE EVOLUTION EQUATION

4.1. Setting. Let (X, F) be a (m+n)-dimensional compact foliated manifold where F is
Riemannian and has rank m. Let us equip F with a bundle-like metric g such that the mean
curvature vector field of the the leaves is foliated. This can be always achieved thanks to
Theorem[3.4]

Let (Y, h) be a Riemannian manifold together with a representation

p:m(X) — Isom(Y).

of the fundamental group of X, seen as the group of deck transformations of the universal
cover X, into the isometry group of Y.
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Let fo : X — Y be a smooth p-equivariant mapping and let us also consider a smooth
variation (f;);c; of fo (with I = [0, to]), that is a mapping F' € C*(I x X), f; := F(t,-)
such that

(1) f;is p-equivariant,
(2) The family (f;) satisfies the evolution equation

4.1 % =7(/ft)
where 7(f;) € T(f*TY) is the tension field of f; (see §3.8).

Finally, let us denote by e : X x I — Rsq the function (z,t) — er(f;)(z) where
the tangential energy density (introduced in §3.7) is taken with respect to the foliation and
the complete metric on X obtained by respective pull-backs of F and g. Obviously, er
descends on X X I as a function denoted in the same way.

Theorem 4.1. The tangential energy density et is a subsolution of the heat operator, i.e.
there exists a positive constant C such that

0
(& + A(J) (GT) S CeT.

Let us introduce the following terminology.

Definition 4.2. A smooth p-equivariant mapping f : X — Y is said to be F-invariant
whenever f is basic, i.e. leafwise constant (with respect to the lifted foliation F).

Corollary 4.3. If the initial datum fy is F-invariant, then the maps fi are F-invariant as
well for all time t € 1.

Here and hereafter A9 (resp. V) denotes indifferently the Laplace—Beltrami operator
A9(u) = —div (grad(u)) (resp. the Levi-Civita connection) with respect to the metric g or
the lifted metric g, depending on whether we work on X or X.

Proof. This is a completely standard application of the maximum principle in the presence
of subsolutions of the heat operator En + A9 (Moser—Harnack’s inequality [Mos64]): we

write a(z,t) = er(x,t)e~C* and observe that it satisfies

(57 +A0(@ <0

so that the maximum principle yields a(z,t) < sup,¢ ya(z, 0) or equivalently

er(z,t) < eCtsupwexeT(x, 0).

Now, it is obvious that the map f; is F-invariant if and only if the function e (-, t) vanishes
identically and the corollary follows. ]

4.2. Proof of Theorem Here and henceforth, we will identify F, F L and their dual
to subbundle of 7'X and 7T X thanks to the ortogonal decomposition.

Let f: X — Y be a smooth function and fT its tangential differential in the direction
of the foliation. We can regard f7 as a section of f*(TY) @ F* C f*(TY) @ T*X. Let

V:T(f*(TY)@T*X) — T(f*(TY) @ T*X @ T*X)

be the connection induced on the tensor product by V9 and V := f*(V"). It is defined by
the following rule

Vu(s®@t)=Vy,s@t+s® VIt
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The connection V splits as V = V77 + V7 F~ 4 vFF " 4 VFF according to the
canonical decomposition

"X @T*X = (f* ® f*) ® (fl* ® f”) ® (f* ® f“) ® (f* ® f*)

. . L
We will also consider V7> as an operator

FHTY)RT*X — f*(TY)® Ft* @ F*
via the canonical isomorphism Flx & F*~ F* ® FL*. With this at hands, Theorem 4.1]
is an easy consequence of the following result.

Proposition 4.4. When applied to the function et the heat operator has the following
expression:

(% + Ag) (er) == Ricg (fous fir) + Riemy (fil fous fous fii))

2
4.2) _ ‘ vFF 717+ vf{fft*T

2
F,.F T
- ’v ft*

2

2
+ ‘ VAR O ’ VT f

Before entering into the details of the proof, let us firstly explain the meaning of the two
first terms in the right-hand side which involve the Ricci and Riemann curvature tensors and
why it implies Theorem@.1l Both terms Ric ¢ and Riemy in are defined respectively
from the Ricci tensor of g on X and the full curvature tensor of & on Y and extended in
a natural way to tensors in f*(TY) ® T*X. We have chosen to keep notation Ric 5 and

Riemy to avoid cumbersome expressions. In the sequel we use the notation (—, —) for the
scalar product induced by g (or g) and (—, —)}, for the scalar product induced by h. We
will denote (e1, .. ., €mytr) any local orthonormal frame of T X such that (e1,...,em)is
a local othonormal frame of F and (e1,-..,€n.,) the dual coframe.

Ifu; = s; ®¢t; (fori =1,...,4) are decomposable tensors in f*(TY) ® T*X, we can
set Ric g (u1,u2) := (s1, s2)nRicg(t1,t2) and extend to general tensors by bilinearity. In
particular, in terms of local frame as above, we can easily check that

Ricg(fel, fil)(x) = > (Ricg (e, €i) fror, frueidn

i,k<m
= Z (<vglvgk617 el) - <vgkvglel7 el) - <v?el)ek]ei7 el>) <ft*ek?7 ft*ei>h
“4.3) i, k<m
<m+4+n
= (<V31V§l€zaek> — (VI Vieer) - <eri,el]€l=€k>) (feeerw: froeidn
i, k<m
<m+4n

where the last equality comes directly from the symmetry property

(Rg(u,v)w, z) = (Rg(w, 2)u, v)
of the Riemannian curvature tensor on ()N( ,G)- Let us now focus on the second term in the
right hand side of (@.2) and denote by Ry the Riemannian curvature tensor on the target

manifold Y . _
For decomposable tensors of f*(T'Y") ® T*X as above, we can set

Ry (u1,u2)ug = (ta,t3)gRy (s1,82)s3 @ t1 € f*(TY) ® T X.
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This formula allows to extend by multilinearity this map to general tensors u; € f*(TY)®
T*X and also define

Riemy (u1, ug, us, us) := (Ry (u1, u2)us, Us) heg

where h ® g stands for the metric induced by h and g on f*(TY) ® T*X.In particular, in

the local frame (eq, .. ., €+ ), We obtain the explicit formula:
(4.4)
Riemy (fif frs feas fii) = Y (Ry(fruei frner) frihs foneidn
ki
= Z (Ve; Ve frier, frsei)n — (Ve Ve, frer, fra€i)n — (Vie, e frahs fra€i)n-
kSmin

Moreover, we have

€ L
V}- T ft,f: Z (Vakei,eﬁgft*ei@e;@e}:

i<m
J,k>m
so that
2
FrFLeT
(4.5) VIR = S (e Ve e, frein.
i,I<m
k>m
In the same vein, we can write
FLF T
(4.6) V5 fr = Z (VI e, er) fruer @ ef @ e}
i,I<m
k>m

and infer that
2

= Z <V‘gk€i=ngelﬂft*elaft*@ﬁh-

i,l,k<m

.7 A

It is now easy (modulo the proof of Proposition [4.4) to get the upper bound given in
Theorem 4.1l Indeed, fix a compact fundamental domain K C X with respect to the
action of my (X )H It then follows from the compactness of ;g 4, ft() together with
the multilinearity of Ric ¢, Riemy and expressions (£.3)-@.7).

Remark 4.5. When F has codimension zero, the terms in the right-hand side involving F+
of the equation (£.2) do not appear and we recover the classical Eells-Sampson’s formula
[ES64, Chapter II, §8-A] (see also [Don87, Formula 11]).

Proof of Propositionl4.4] Let (€;)i<m-+n be alocal orthonormal frame centered at x € X
such that e; is tangent to F fori < m and e; is foliated otherwise. In particular, [e;, ef]
remains tangent to F for every k£ and every ¢« < m. We first proceed like the classical
calculus of the first variation formula of the energy (see for instance [[Ura93, p.130]). To

TRecall that the energy density is a well defined function on X. More generally, it is not difficult to see that
each of the six terms appearing in the RHS of remains unchanged when replacing f; by ¢ o fi, where ¢ is
an isometry of Y. In particular, it descends to X.
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this end, let us consider the mapping F' : I x X — Y defined by F(t,z) = fi(z) for
[t| < e. Set f:= fo. Inloc. cit., it is proven that
0.1
&(§|ft*(6i)|;21) = (Ve,7(ft), fra€i)n

so that, in view of the local writing of the tension field 7(f;) given in (3.4):

0
(48) E(eT) = Z <Veivekft*ek7ft*ei>h - <vei(<v,€k>ft*€k),ft*8i>h
i<m
k<m+n
where v = Zzgm +n VI e and V still denotes (without specifying the parameter ¢) the
pull-back of the Levi-Civita connection on Y by f;.

Setvy =3 ., Vderandvg = >, V9 e;. Since the mean curvature vector field 7
is assumed to be foliated, we derive that e; - (v1, ;) vanishes identically for i < m and
k > m. This is indeed the key point of the calculation. According to Lemmal[3.12] the
same holds for e; - (va, ex), i < m, k > m.

We also recall that for any vector fiels u, w on X, we obtain the identity

(4.9) Vufe(w) = Vi fulu) = fu ([u, w])

as a consequence of the torsion-freeness of the Levi-Civita connection on Y (see for in-
stance [[Ura93, Lemma 1.16, p.129]). Combining this with the previous vanishing proper-
ties, we get

@10) > (Ve (voer)fren) fredn = > (VL Ve en) foaers frein

i<m i,k<m
k<m+4n I<m-+n
+ ) (W, V% er)(fraek, friein
i,k<m
+ Y e (Ve fraeis frueidn + (frulei el froeiln).-
i<m
I<m+n

Write VY ex = 31,1, (VE, ek, er)er. From torsion-freeness (3.2), metric compatibil-
ity (3.3) and involutivity of F, we get

D W Ve (fren fren = Y (ve) D (Vier,e)(frien), frein

i,k<m <m+4n i,k<m

=0 thanks to (vglek,€¢>:—<vgl ei,ek)

- Z <va el><ft*[ei7 61], ft*€i>h

[t
According to (4.8) and (@.10), this leads to the simplified writing:
%(GT) = Z (Ve Ve, froer, friei)n — Z (VI VY er,en)(fraeh, fruti)n
i<m i, k<m
k<m+n I<m4n
— Y (W) (Ve feuei, fruei)n.

i<m
k<m+n
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On the other hand, the Laplace operator reads

Af(er) = Z (v, ex)(Vey frs€is fra€idn
kmin

— Y (Ve fueifren+ Ve, freiln.
i<m

k<m+n

Still exploiting repeatedly identity (4.9), we get

vik ft*ei = vek vei ft*ek - v[ei,ek]ft*ek + ft* ([eku [ekv 61]])
If we combine this with the last lines of (4.3) and (@.4)), we can deduce that

ot

- Z |v8k ft*ei|}2L - 2<v[ei,ek]ft*eka ft*ei>h + <ft*([ek7 [ekv ei]])a ft*ei>h
4.11) i<m
k<m+4n
- > (Vi enrer e (fraeis fraen)n + (VE VE ex, er)(fe.er, fraein.

i,I<m
k<m+n

(g + Ag) (er) = RiemY(ftfa Jtas Jta ft*T) - RiC;}(ft*Taft*T)

On the other hand, [eg, [ek, e;]] is tangent to F for i < m, so that we can write

lews [ewsedl] = D (lens [exs eil] ener.

I<m
Using (3.2), this yields
<ft*([ek7 [ekv ei]])a ft*ei>h = - Z <ngvgieka 6[><ft*€l, ft*ei>h
I<m
+ Z <eri78k]ek, el><f*eia f*el>h + Z(ng ngei, el><f*ei7 f*el>h
I<m <m

Applying again (3.2)) together with (3.3), we can express the last term as
Z(ngvgkei,€l><f*€i7f*€l>h =— Z(ngeuvgkelﬂfuel, fro€i)n

I<m <m
— ey Z<ei, ng€l><f*€i7f*€l>h
<m
whence
Z <ft*([eka[ekaei]])vft*ei>h:_ Z <ngVgiek7€l><ft*€laft*ei>h
ki e
+ D (VE gers e (fulen), fule)n — (Ve e, VI e (feeer, frein
4.12) 3,l<m
k<m+4n
— > ene Y (en Vi e fues, frer)n
k<m+n i,\<m

=0 thanks to (ei,ngeﬁ:—(el,ngei).
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When re-injecting (@.12)) into .11)), we thus find

0 . .
(at + Aq) ( ) = RlemY(ft57ft*7 ftfft*) - Rlcf((ftfu ft;z:)
+ Z v[el ek]ft*ekuft*ez> - |v€kft*ei|}27/

(4.13) k%fnﬁn

+ Z (<VZ;C€17V el> —2<V[e Jen] ekael>) <f*ez7f*el>
kglflrn

In order to simplify our computations, we will suppose hereafter, without loss of
generality, that the orthonormal frame (e;), of F is tangentially geodesic at x (see

i<m

Lemma[3.10). Because [e;, ¢;](x) = 0 for 4,/ < m, the formula (.13) becomes

0 . .
(815 + Aq) ( ) = Rlemy(ftfa ft*u ftfft*) - RlCX(ftfu ft;z:)
+ Z 2<v[8i,8k]ft*ek7 ft*ei>h - Z |vekft*ei|}27/

= ki
+ Y (Vien VEen(fuen froein

kzlfzfn

-2 Z les ek]ek7el><f*eluf*el>

,I<m
k>m

4.14)

Now, in view of proving the equality of Proposition[4.4] let us compute

@15) VT RT =NV feiw e @el + Y (VI ene) frei®e @,

i<m I<m
k>m B =0
On the other hand, by noticing that
Y (Viener) e ==Y (e, Veex) fruer
I<m I<m
== Z< er, [eis exl) frer = — frilei ex]
I<m
and accordingly to (&.6), we get
(4.16) VTR ==Y fulened @ ep @,
i<m
k>m

As a consequence of (#.13) and (#.16), we have:

Vf,fL ft*T + VFL,fft*T
Z |vekft*ei|}2l + |ft*[ei7€k]|}21 - 2<V€kft*ei7ft*[eiaek]>h'

i<m
k>m
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By virtue of (4.9), we can rewrite
Z <vekft*eiu ft*[eiu ek]>h = Z <vez‘ft*eku ft*[eiu ek]>h - |ft*[ei7 ek”i .

i<m i<m
k>m k>m

Now, thanks to the expansion
leiver] = > ([ei ex] ees
I<m

and Lemma[3.11] we conclude that

Z <v8ift*eka ft*[eiv 6k]>h = Z <V[ei,ek]ft*eka ft*ei>h

i<m i<m
k>m k>m
so that
‘ vFF" 17+ va',FftT 2 _
4.17 2 2
“417) 3 Ve feneily + 3l ealeis erllh — 2V, cntfraehs Fracidi.
i<m
E>m

On the other hand, comparison of (4.7) and (£.16) yields

2
= Y (Vee, Ve (@) (freer, freidn

il k<m

= Z |ft*[€iaek]|i-

i<m
k>m

FLrFeT
‘V ft*

(4.18)

Recall also (cf. (&.3) that

€1 € 2
.19 | VTR = Y (Ve e Ve e @) e, fuein:
,I<m
k>m

According to the equations @.17), (@18), .19) and to the equality

2
= Z |V€kft*e’i|}2u

i,k<m

F,F T
’v ft*

the equation (@.14) can be rewritten as

(5 +7) fer) = ~Ricg (4T 1) + Rieauy (4T, fes fr 1)

2 2 2
way | VTRE VTR = [ e
B 2
=2 YV, e el (feei fuehn +4 | 97T AT
i,I<m
k>m

It remains to identify the quantity (evaluated at the point x)

S = Z <eri,ek]ek’el><f*ei7f*el>h'

,I<m
k>m
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To do so, let us first expand [e;, ex] with respect to the basis (e;) j<m. This yields:

S = Z <[eive/€]7ej><v2jekael><f*eiaf*el>h~
i,éjﬁm
>m

Finally, let us remark that
(leirex], e5) = —(ex, VE ei)(x) and (VI ek, er)(x) = —(ex, VI er)(@).

According to (4.6), we get after summation

s=|v |

We thus obtain the sough formula of Proposition [£.4] by reporting this identification into
the heat operator expression given in the equation (€.20). O

5. CONSTRUCTION OF EQUIVARIANT FOLIATED HARMONIC MAPS

5.1. Transversely parallelizable and Lie foliations: recollection. Let (X, F) be a foli-
ated manifold with dim(X') = m + n and rk(F) = m. Recall (¢f Section[3) that X(X),
X(F) and ¢(X, F) denote respectively the Lie algebras of vector fields, tangent and basic
vector fields.

Definition 5.1 (¢f. [Mol88| Chapter 4]). The foliation F is said to be transversely paral-
lellizable or to admit a transverse parallelism if there exists n = codim(F) basic vector
fields Y7, ..., Y, that form a global frame of the normal bundle of F.

Remark that such foliations can be equipped with a holonomy invariant metric g. In-
deed, it suffices to consider the metric on NJF with respect to which Y3,...,Y,, is an
orthonormal frame. Thus, transversely parallellizable foliations turn out to be particular
cases of Riemannian foliations.

Definition 5.2. A transversely parallelizable foliation is said to be complete (TC for short)
if it possesses a transverse frame Y7, ..., Y, such that each Y; can be represented by a
complete vector field X; € X(X )E Note that this automatically holds whenever X is
compact.

Remark 5.3. The lift of a TC foliation to any cover is still TC.

Definition 5.4 (¢f. [Mol88| §4.2]). Let F be a TC foliation and (Y73, ...,Y,,) be an asso-
ciated transverse frame. We will say in addition that F is a Lie foliation (TL for short) if
the R-vector space generated by {Y7,...,Y,} is closed under Lie braket, hence defines a
n-dimensional Lie subalgebra g of ¢(X, F). The structure of Lie foliations is described by
the following proposition due to Fedida [Fed71].

Proposition 5.5. Let F be a TL foliation. Then the lift F of F on the universal cover X
is defined by the levels of a surjective submersive map with connected fibers (called the
developing map):

p: X —aG
where G is the simply connected Lie group integrating g. The map p is in addition equi-
variant with respect to some representation

p:m(X) — G,

8The definition is a little bit more restrictive than the one given in [Mol88| §4.5] but sufficient for our purposes.
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that is _
Vz e X,Vyem(X), p(y())=p()p(z).

Finally, the left invariant vector fields on G, regarded as F basic vector fields on X,
descend to X as elements of g.

Let us briefly explain the proof of the previous statement. The developing map is actu-

ally associated to the choice of an abstract isomorphism
v : L = Vect(Y1,...,Y,) — g:= Lie(G).

Let w be the g-valued one form on X such that forY € .Z, w(Y) = ¢(Y) and w(v) = 0
whenever v € X(F). Letr : X — X be the universal covering map. Then p is the
map such that 7*w = p*wyc where wyyc is the left invariant Maurer—Cartan form on G.
Actually, p is unique up to left composition by left translation L,. Moreover, the choice of
¢ is unique modulo left composition by an element of Aut(g) = Aut(G). Finally, given

Z, the choice of the associate developing map is unique modulo left composition by the
subgroup G x Aut(G) < Diff (G).

Remark 5.6. A TC minimal foliation is automatically and canonically TL. Actually in that
case we have g = ¢(X, F) and the representation p has dense image.

Remark 5.7. Let F a TL foliation defined by its developing map. The Lie algebra of right
invariant vector fields on GG, viewed as basic vector fields on X , descends to X as a locally
constant sheaf that we will denote by Lie, (F). Note that, by construction, the monodromy
of this local system is given by the adjoint action of G on its Lie algebra g:

v e g Ad(p(7))v.

5.2. The structure of complete transversely parallelizable foliations. Let (X, F) be a
foliated manifold such that F is TC. From Molino’s theory (see [Mol88, Chapter 4]) the
topological closure of the leaves of F are the fibers of a locally trivial fibration 77 : X —
W, the so-called basic fibration. In particular, the closedness of a single leaf implies the
closedness of the others and in that case the foliation is simple (cf. Definition 3.1). The
basis W of the fibration 7 is called the basic manifold.

We first have at our disposal the following theorem for transversely parallelizable com-
plete foliations.

Theorem 5.8 (Molino [Mol88| Theorem 4.2]). The restriction of F to any fiber of mx is a
minimal Lie foliation with typical Lie algebra g.

5.3. The commuting sheaf. We refer to [Mol88| §4.4 and 4.5] for details about this para-
graph. Let F be a TC foliation on X. Let U be an open set of M and denote by C(U, F)
the Lie algebra formed by the basic vector fields of F|; that commute with each element
of (X, F). The collection of C(U, F) defines a presheaf. We will denote by Cr the corre-
sponding sheaf. The main properties of Cx are summarized in the following proposition.

Proposition 5.9 (c¢f. [Mol88| Proposition 4.4]). The sheaf Cr is a locally constant sheaf of
Lie algebra with typical fiber g. Moreover, any local section v of Cr is tangent to the basic
fibration and the restriction of Cr to a fiber I coincides with (Cf)lF = (Lie]r (f)‘F).

The following definition appeared in [Mol88, Theorem 4.2].
Definition 5.10. We will say that g is the structural Lie algebra of F.

Definition 5.11. Let p : 71 (X) — Aut(g) the monodromy representation attached to the
locally constant sheaf Cx. The covering space X, corresponding to Ker(p) is called the
central cover of X.
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5.4. Homogeneous fibration associated to a reduction of the structure group. Let G
be a Lie group. Let a : P — W be a G-principal bundle over a manifold W. Here, P is
supposed to be connected but G is likely to have several connected components.

Let H < G be a closed Lie subgroup. Let us consider Ey = P x G/ H the associated
homogeneous G/ H bundle over W. Assume that there exists a reduction of the structure
groupG'to H, i.e. asectiono : W — E. This is equivalent to the datum of a submanifold
H, C P such that

Vz:€Hy,,VgeG, z-ge H, <= ge H

5.1

«|,, 1s a surjective submersion onto W.

We then build by saturation of H, under the G-action a locally trivial fibration
o,:P—G/H

with typical fiber H, by declaring that ®, maps H, -gong 'H € G/H.
Note that @, satisfies the equivariance property

(5.2) O, (x-g) =g '@, (x).
We easily check that the converse holds true.

Lemma 5.12. Let & € C*°(P,G/H) such that ® satifies the equivariance property (3.2).
Then ® has the form @, for some section o of Exg — W.

Proof. Set o := H € G/H and define H = ®*(0). The previous equivariance property
(5.2)) forces @ to be a surjective submersion in restriction to the fibers of «, so that H = H,
for some smooth section o : W — Eg according to the characterization of H, given
above. (|

Remark 5.13. By construction, the Lie algebra of fundamental vector fields, i.e. the infini-
tesimal generators of the right action of GG projects via ® to the Lie algebra of vector fields
on G/ H generated by the infinitesimal action of G on the homogeneous space G/ H.

5.5. The semi-simple case. Note in particular that such a ® has connected fiber as soon
as the homogeneous space G/ H is simply connected (write the long exact sequence of ho-
motopy groups for the locally trivial fibration ®). It happens for instance when g = Lie(G)
is semi-simple without compact factors. Indeed, let S the associate Riemannian symmet-
ric space (c¢f. for instance [HelO1, Chapter VI] and [Bor98, Chapter IV] ). This latter is
homeomorphic to an Euclidean space and in particular contractible. Consider the canoni-
cal projection 7 : G — G’ := G/Ker(Ad). Note that G’ is an open subgroup of the real
algebraic group Aut(g). Let K be a maximal compact subgroup in G’ = G /Ker(Ad) and
set H = 7~1(K). The homogeneous space G/H and G’/K are thus diffeomorphic and
according to [Bor98| Chapter IV, Proposition 4.10, Chapter VII, Theorem 3.7], the latter is
diffeomorphic to S (and G’ acts faithfully by isometries on S) , whence the existence of a
section s of By — W.

5.6. Developability and Almeida-Molino theorem.

Definition 5.14. A foliation  on X is said to be developable if its lift F to the universal
cover X is simple.

We use freely notation from and[3.2] Let F be a TC foliation on X and denote
by E the locally free sheaf generated over Cy (the sheaf of germs of smooth functions on
W) by ¢(X,F) that we can alternatively regard as a rank n = codim(F) vector bundle
over WW. Note that E can be endowed with the structure of a transitive Lie algebroid over
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W (see [Mol88| §4.6]). The Lie bracket is the ordinary Lie bracket on ¢(X, F) and the
anchor map is given by the projection ang : £ — T'W.

Theorem 5.15 (¢f [Mol88, Theorem 4.4] and [MMO03, Theorem 6.10]). Let F a TC
foliation on X. Then F is developable if and only if the Lie algebroid Elis integrable,
i.e. if and only if there exists a principal bundle P — W whose structure group G satisfies
Lie(G) = g and such that there exists an isomorphisnt] of algebroids E ~ TP/G where
TP/G is the Lie algebroid (over W) defined by the G-invariant vector fields on P.

Lemma 5.16. Let F a TC foliation with centerless structural Lie algebra. Then, F lifts to a
simple foliation on the central cover (as in Definition[3.T1). In particular, F is developable.

Proof. This is [Mol88, Proposition 4.6]. O

5.7. Description of P. Let us explain briefly how to construct the desired principal bundle
P over W in the case where F is developable.

Let F be the pull-back of F on the universal cover r : X — X. This is a TC foliation
which is by assumption simple and the basic fibration/manifold is thus defined by the
projection 7% : X — X /F. Consider the Lie subalgebra r* (£(X, F)) of £ (X, F). Denote

by P the space of leaves X / F. This is a simply connected manifold. In what follows, we
will identify r*(¢(X, F)) to a Lie subalgebra of X(P).

Let us consider the natural projection o« : P — W. Note that for any v € ¢(X,F),
TF,0 = i (r*v), where mx : X — W is the original basic fibration. Let G be the group
of a-vertical diffeomorphisms of P that fix each element of »*£(X, F). It turns out that
G acts simply transitively on each fiber, thus endowing P with a structure of G-principal
bundle for which r*¢(X, F) is the space of sections of T'P/G. The right action of G on P
is given by p - g := g~ 1(p). We refer to [Mol88, MMO3| supra] for the details.

5.8. Additional observations. Under the same assumptions as above, we list some useful
observations.

(1) The group 71 (X) of deck transformations of X acts vertically on P with respect
to « and preserves r*£( X, F) pointwise, thus defining a morphism

pr:m(X) = G.

This morphism maps 71 (X ) onto a dense subgroup of the Lie group G. To see this,
pick a point w € W and let F be a connected component of the fiber a1 (w).
Let G° be the component of the identity in Gi. As 7 (X) acts transitively on the
set of connected component of a~!(w), it is sufficient to prove that 71 (X) N G°
acts densely on F0. But this last point immediately results from the fact that F is
dense in restriction to the fibersof 77 : X — W.

(2) The sections of the pull-back r*Cx of the commuting sheaf (which becomes a
constant sheaf of basic vector fields of }') projects isomorphically via the dif-
ferential of 7z : XsP=X / F to the fundamental vector fields associated
to the right G-action on P. Indeed, by construction, these sections are verti-
cal vector fields on P commuting with every every element of r*¢(X,F) =
{sections of T'P/G} and they form a R-vector space of the same dimension as g.

9See the paragraph after Theorem[5.8]
10wWe refer to [Mol88l §4.6] or [IMMO3] §6.2] for the precise definition of morphisms of Lie algebroids.
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(3) Assume moreover the following: let H be a closed Lie subgroup of G such that
the associate bundle Ey = P X G/H (over W) admits a section . Let @, :
P — G/H be the associated fibration considered in §5.41 Let us consider ¥, =
®, o m=. By construction, ¥, : X > G /H is an equivariant locally trivial
fibration where equivariant means

(5.3) Vyem(X), Vo e X, Uo(v(2)) = pr(7) - Uolz).

(4) Conversely any ¥ € C*™ ()~( ,G/H) constant on the leaves of Fand satisfying the
equivariance property (3.3) has the form ¥,,. Indeed, let ® € C*>°(P, G/H) be the
map factorizing U. Then @ satisfies the equivariance property (3.2) for a dense
subgroup of G (namely 71 (X)), hence for all g € G. We can then conclude using
Lemmal5.12]

5.9. The case of a structural Lie algebra without compact factors. We keep notation
used in §5.6 Combining the series of results/observations exposed in the preceding para-
graphs together with §5.3we get the following existence theorem.

Theorem 5.17. Let (X, F) be a foliated manifold such that F is TC. Let us denote by F
the lift of F to the universal cover X. Suppose in addition that the structural Lie algebra
g is semi-simple without compact factors. Let S = G/H be the associate Riemannian
symmetric space. Denote by Iso(S) the Lie group of isometries of S, by Iso°(S) its neutral
component, by iso(S) the corresponding Lie algebra of infinitesimal isometries and by
7 : G — 180(S) the morphism corresponding to the action of G on S (and whose image is
a union of finitely many connected component of Iso(S)). The following holds true.

(1) The foliation F is developable.
(2) The closure of the image of p == 7 o pF contains Iso”(S).
(3) There exists on X a basic (with respect to F ) smoothmap V : X — S such that

(5.4) Vo€ X, Vyem(z), U(v(x)) = p(y)(T()).

(4) Any smooth basic map V : XS satisfying the equivariance condition (3.4) is a
locally trivial fibration with connected fibers. Moreover we have for every g € G
andforallx € X

(g -mx(r) =g-V(z):=7n(g) (¥(z)).

(5) Let U : X — Sasin the previous item. Consider the lift r*Cx of the commuting
sheaf ~C £ on the universal cover X (this is a Lie subalgebra of basic sections
of NF). Then, for every v € r*Cx, d¥(v) is constant along the fibers of V.

Moreover, the differential AV induces a Lie algebra isomorphism between r*Cr
and is0(S).

Remark 5.18. Under the assumptions/notation of the previous theorem, the foliation de-
fined by the submersion ¥ descends to X as a minimal foliation (all leaves are dense) G
whose codimension is the dimension of S; this foliation G is an extension of F (in the
sense of §3.3) and is transversely Riemannian homogeneousE Note also that the exis-
tence of ¥, hence G is directly related to that of a section of Ey — W as specified in §3.8]
This implies that the morphism G — T'W induced by the differential of the basic fibration
mr : X — W is everywhere surjective (compare with (3.1)).

e refer to [God91l Chapter III, §3] for the general definition of a transversely homogeneous foliation.
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Remark 5.19. From the description of 7*C £ as the Lie algebra of fundamental vector fields
defined by the right G-action and according to Remark we can observe that r*Cr
descends via W to the Lie algebra of infinitesimal symmetries of the symmetric space S
and that the representation p is nothing but the monodromy representation of the local
system Cr.

When the base manifold X is compact, we can try to construct a harmonic representative
of the map ¥ alluded to in Theorem

Theorem 5.20. Let (X, F) be a foliated manifold with F being TC and let us assume in
addition that X is compact. Let us consider g a metric on X which is bundle-like with
respect to F and such that the mean curvature vector of the leaves is foliated, i.e. (F,g)
is tense (see Theorem[3.4). Then there exists a unique U that is harmonic with respect to
the lift g of the metric on X and to the Killing metric on S.

Proof. Thanks to the item [2] of Theorem there exists a basic (in other words F-
invariant) p-equivariant map fj : X — 8. We can now apply the existence criterion of
twisted harmonic map given in [Lab91] or [Cor88|]. As the image of p does not fix any
point on the boundary of S, we can apply [Lab91, Théoremes 0.1 et 0.2] to infer the ex-
istence of a p-equivariant harmonic map fo, : X — S which is obtained as the limit of a
subsequence of (f,), ¢, — 400 where f; is a solution of the evolution equation
at time ¢ with initial datum f;, = fo. Moreover, fo, remains F-invarinant according to
Corollary 43l Concerning the uniqueness, we can first assume, up to passing to a finite
étale cover of X that the representation takes values in Iso’(S), the neutral component of
Iso(S). Let S = S; x - -+ x S, the decomposition of S as a Riemannian product of irre-
ducible symmetric spaces. The image of p acts diagonally and isometrically with respect
to this decomposition. By projection to each factor, we inherit a p;-equivariant harmonic
map ¥, : X — S; where p; : 71(X) — Iso’(S;) is the corresponding representation. By
density, the image of p; does not preserve any non-trivial subspace of g; := Lie(Iso"(S;)).
By virtue of Corlette’s uniqueness Theorem [Cor88, Theorem 3.4], the W;’s are the only
ones p;-equivariant harmonic maps. In particular W is the unique p-equivariant harmonic
map, as desired. O

6. APPLICATIONS TO THE EXISTENCE OF FOLIATED HARMONIC MAPS FOR SOME
RIEMANNIAN FOLIATIONS

6.1. The associated transverse frame bundle. We first give a brief account on Molino’s
theory, which allows to study Riemannian foliations from the (simpler) viewpoint of par-
allelizable ones.

Let (X, F, g) be a compact Riemannian foliated manifold (see §3.2]for the definition).
As usual, we set m = rk(F) and m+n = dim(X). Denote by F* the foliation constructed
as the lift of F on the direct orthonormal transverse frame bundle X* (see [Mol88| §2.5]).
Both foliations have the same rank, F* projects onto F via the natural projection map

p: X — X
so that the differential p, induces a surjective morphism p, between the normal bundles
NF*and p*NF.
The space X * is naturally endowed with a structure of SO(n)-principal bundle. As in
the classical setting, the transverse Levi-Civita connection associated to F is defined on X

by a horizontal distribution H on X ¥, By construction, the foliation F* is tangent to 7, so
that H := H/F* is a subbundle of NF*, and both 7 and F* are invariant under the right
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action of SO(n). Moreover, the foliated manifold (X*, F*) is equipped with a canonical
transverse paralellism. More precisely let us first fix a basis (A1,...,A;) of so(n) (with
k= @) identified with the Lie algebra of fundamental vector fields (with respect to
the action of SO(n)). On the other hand, pick a basis (e, ..., e,) of R™ and denote by
W; € T'(H) the horizontal transverse vector field on X* such that for every z € X*, the
projection P (%;(2)) has coordinate vector e; in the transverse frame z. Let \; be the pro-
jection of \; on N F*. It turns out that the transverse vector fields Ay, ..., A\, 71, . . ., Un
are basic and thus define a transverse parallelism for the lifted foliation F 4 (cf. IMolS88,

§3.31).

Definition 6.1. The structural Lie algebra of F is by definition the structural Lie algebra
of the transversely parallelizable foliation F*.

The transverse invariant metric g on /N F induces a canonical transverse invariant metric
7 = p'g @z ¥ on NF . The latter is obtained as the orthogonal sum (with respect
to the splitting NF* = H @ Ker(dp)) of the lifting of g on H/F* and the metric ¥ on
vertical fibers induced by the unique bi-invariant metric of volume 1 on SO(n). Over the
local Riemannian leaf space, (U/F,3), (p~*(U)/F*,g*) is nothing but the orthonormal
frame bundle equipped with its canonical metric. In particular the vertical fibers are totally
geodesic (see for instance [O’N66, §5, p. 466]).

The bundle-like metric g induces a canonical SO(n)-invariant bundle-like metric g* =
p*g ®y ¥ for F* on X*. Indeed, ¢g* is constructed as the orthogonal sum of the lifting
of g on the horizontal distribution T% and ¢J. In particular p : (X% ¢g%) — (X, g) is
a Riemannian submersion with totally geodesic fibers. According to [Noz10, Proof of
Lemma 7], the mean curvature forms (see of (X, F,g) and (X*¥, F¥, g*) are simply
related by

(6.1) Kgt = P*(Kg).

In particular, if (F, g) is tense (resp. taut), then (F*, g*)is tense (resp. taut).

Let g and Cr: be respectively the structural Lie algebra and the commuting sheaf at-
tached to F*. Note that C'z+ is invariant under the right action of SO(n), so that we can
define C'r := p.Cr:, the commuting sheaf associated to F. According to [Mol88|, §5.3],
Cr is a locally constant sheaf of Lie algebras with typical fiber g formed by local ba-
sic Killing vector fields whose local flows describe the leaves closure . This commuting
sheaf can be also alternatively defined as the Lie algebra of the closure of the holonomy
pseudo-group which turns out to be a Lie pseudo-group [Mol88, E. Salem’s Appendix D].

The locally constant sheaf C'r gives rise to a representation of the fundamental group

p:m(X) — Aut(g)
such that pf = p o p, where p : X* — X is the natural projection and where the represen-
tation

Pt (XF) — Aut(g)
is the one associated to C'z;.

Consider the universal cover map r¥ : X* — X! and the SO(n)-principal bundle

Y :=r~1(X*¥) over X. This is actually the Galois cover of X* associated to the kernel of
the natural projection morphism 71 (X*) — 71 (X). It also coincides with the transverse
orthonormal frame bundle associated to ()? , F ) and we have a natural projection map
q: X* =Y — X which factors through 7~1(p) : ¥ — X. The space X* inherits from
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Y a structure of S,,-principal bundle over X where S, is some connected covering group
of SO(n).

In view of the forthcoming Theorem [6.4] we complete the picture with the following
result.

Theorem 6.2 (cf. [Noz10, Theorem 2]). Let (X, F) a compact Riemannian foliated man-
ifold and let us assume in addition that the structural Lie algebra of F is semi-simple.
Then F is minimizable, i.e. there exists a bundle-like metric g such that (F, g) is taut.

We will also make use of the following observation, which is a consequence of the
definition of C'z in term of C'%., the identification specified in Remark[5.I9between Aut (9)
and Iso(S), and the fact that p* factors through p.

Lemma 6.3. Suppose that the structural Lie algebra g is semi-simple without compact
factors and let S be the associated symmetric space. Assume that there exists a F-invariant
smooth p-equivariant map U : X — 8. Then the composed map V¥ := W o q : Xt S
satisfies the equivariance property of Theorem[5. 17

Va e XE Yy e m(XF), Ui(y(2) = pf () (¥ ().

Using the results from Section [3 in the setting of the transverse frame bundle, we can
prove the following result.

Theorem 6.4. Let F be a transversely orientable Riemannian foliation on a compact
manifold X. Let g be a bundle-like metric with vanishing mean curvature vector field
(it exists by virtue of Theorem[6.2)). Denote by F the lifted foliation on the universal cover
X. Assume that the structural Lie algebra of F is semi-simple without compact factors
and let S be the associated symmetric space.

Let p : m(X) — Aut(g) ~ Iso(S) be the monodromy representation attached to
the commuting sheaf C'r. Then there exists a surjective and submersive p-equivariant
harmonic map W : X — S with connected fibers which is constant on the leaves of]?.

Proof. Consider the lift 7% of F on the orthonormal frame bundle X* together with its
bundle like metric g*. Following (6.1), (F*, g*) is also taut, so that the conclusion of Theo-
rem[S.2(lis valid (taking also into account Remark[5.19): there exists a unique Fl-invariant
and p*-equivariant harmonic map \I/g : X — 8. A priori, it is not completely obvious
that ¥o* factors through a a p-equivariant map defined on X. Actually, this holds true ac-
cording to the following trick which is inspired from [EIKGG96]. The connected structure
group S,, acts by isometries on X (with respect to the induced bundle-like metric). Con-
sequently, if 7 is the isometric transformation associated to an element of S,,, the mapping
\Ilg o T is also pf-equivariant and harmonic. By the uniqueness part of Theorem [5.20, \I/g
is Sy,- invariant, hence factors through a p-equivariant and F-invariant map ¥ : X > S
We can now apply the same deformation process as in the proof of Theorem[3.20 and thus
obtain the expected (and necessarily unique) p-equivariant and F-invariant harmonic map
¥[d By Lemmal63l ¥f = W o g satisfies property (5.4) of Theorem[5.17 so that ¥# is
a surjective submersion with connected fibers by the item (4)) of the same theorem. This
immediately implies that U is so. (]

As a direct consequence of the above construction of ¥ and the item (3)) of Theorem[4.1]
we have established the following statement.

12y, fact, it is not difficult to observe, using that the fibers of X# — X are totally geodesic combined with
Proposition 3.13] that we can directly take ¥ = ¥g.
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Corollary 6.5. Keeping notation as above, let us consider the lift r*Cx of the commuting
sheaf Cr on the universal cover X (this is a Lie subalgebra of basic sections of N]T').
Then, for every v € r*Cx, d¥(v) is constant along the fibers of V. Moreover, d¥ induced
a Lie algebra isomorphism between r*Cr and iso(S).

6.2. The case of a transversely Kihler foliation. In the Kéahler setting, rigidity of har-
monic maps can be used to strengthen the conclusion of Theorem[6.4l Let us start with a
Riemannian compact foliated manifold (X, F, g) where (F, g) is transversely Kihler with
semi-simple structural Lie algebra without compact factors. As before (with a small shift),
m and 2n denote respectively the real dimension and codimension of F 1§ The following
two theorems, as well as their proofs, are strongly related to [Fra93, Proposition 4.3 and
Corollary 4.4]

Theorem 6.6. Let (X, F,g) be a Riemannian compact foliated manifold where (F, g)
is transversely Kdhler, its structural Lie algebra g being semi-simple without compact
factors. Assume moreover that (F,g) is taut (as in Theorem[6.2). Let ¥ : X — Sbe
the (unique) p-equivariant harmonic map provided by Theorem Then S is Hermitian
symmetric (of the non-compact type).

Proof. We follow closely Toledo’s survey [1ol99]. Here, we have to think that the relevant
substitute for the complexification of the tangent bundle of the source manifold is the
complexified normal bundle together with its splitting into (1,0) and (0, 1) parts provided
by the transverse complex structure J := Jr:

NeF =NYF@oNO'F

and similarly for the lifted foliation F.

Let us pick a bundle-like metric g such that (F, g) is taut. We begin with some useful
observations. Recall that the tension field 7(¥) of ¥ coincides with the basic one 73,(V).
Consequently the harmonic equation 7(¥) = 7,(¥) = 0 reads

O A dgdiU =0
where w is the lift of the transverse Kéhler metric, dvy is the differentiation operator
AR(X | f*TS) — AFU(X, f*TS)

which extends the Levi-Civita connection on f*7T'S and which also acts (by restriction)
on the complex of twisted basic forms Ap. The term d°V¥ is a basic twisted one form and
stands for JdW. Consider the basic scalar-valued 3-form

ne = ||d°U A dyd®|?

where the norm is taken with respect to the scalar product f*T'S ® f*T'S — R induced by
the Killing metric on S. Note also that ng = n,.w for any isometry ¢ of S; in particular,
n = ny is actually well defined on X.

Up to passing to a double cover, we can assume that F is oriented. The volume form
defined by g is thus v = w™ A x where x := X r is the characteristic form associated to the
bundle-like metric g (cf. §3.4). By Stokes’ Theorem , we have

/ din Aw" 2 Ax) =0.
b's

Bpor transversely Kihler foliation, the SO(2n)-principal bundle X # admits a reduction to a U (n)-principal
bundle, but we will not use this property in the sequel.
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On the other hand, we know that d(n A w™~?) is basic and that the mean curvature &
vanishes identically. From Lemma[3.8 we obtain that

dn AW 2AX) =dnAw" %) A Y.

We can then apply the punctual Hodge index theorem combined with the harmonic equa-
tion to deduce that Siu’s vanishing theorem is still valid in our setting (see the proof of
Theorem 3.1 in [Tol99] and Generalization 1 in loc. cit.), namely

(6.2) dyd¥U =0 and R(d¥(V),d¥(W),d¥(V),d¥(W)) =0
for any (local) basic vector field V and W of type (1,0). Here R = —d%, denotes the
complexification of the curvature tensor on 7S ® C.

Let g = £ @ p be a Cartan decomposition of the Lie algebra g. The following reasoning
is again borrowed from [Tol99, §4]. Pick a point x € X. From the previous vanishing
properties and the fact that ¥ is submersive, we deduce that d\I/(Nj'fof' ) is an abelian
subalgebra of Ty (,)S @ C ~ p @ C. With this at hands and recalling that ¥ is submersive
and S is a symmetric space of the non-compact type, we can conclude as in the discussion
at the beginning of §4 in [Tol99] that S is actually Hermitian symmetric. ]

The fact that ¥ has maximum rank also implies the following statement (cf. [Tol99,
Theorem 4.2]).

Theorem 6.7. Up to replacing the complex structure by its conjugate on each irreducible
Jactor of S, the map VU is (transversely) holomorphic.

Proof. Up to replacing X by a finite étale cover, we can suppose that the image of the
representation p lies in the identity component Iso” (S) of the isometry group of S. We
have an isometric splitting S = S X - - - X &, into irreducible Hermitian symmetric spaces
ordered in such a way that for some p’, S,y x --- x S, is the polydisk factor (maybe
empty). The fundamental group 71 (X)) (viewed as the group of deck transformations) acts
via the representation p diagonally and isometrically on S. In particular, it inherits for
every i = 1,...,p a representation p; : 71 (X) — Iso”(S;) with dense image together
with the foliated p;-equivariant harmonic map ¥, : X — S, induced by VU by projection.
We need exactly to prove that for every factor S;, ¥, o Jz = J; o U,, where J; is one of
the two IsoO(Sz-)-invariant complex structures on S;. Because W; has maximal rank, this
automatically holds in the case i < p’ according to Siu—Carlson-Toledo’s rigidity results
[ToI99, Theorem 4.2] which can be derived from (6.2).

In the case where ¢ > p’ and S; = D is the Poincaré disk, we resort to the analysis
developed in [TY83]. Because of the maximal rank condition and the property (6.2) are
fulfilled, the local levels of ® are given by {z; = const} where z; is a suitable holomorphic
transverse coordinate (with respect to F ). Then, by connectedness of the fibers of @, there
exists on S; a well defined and necessarily unique complex structure .J such that ® become
(transversely) holomorphic with respect to J. Moreover, J is invariant under the action of
the image of p; by equivariance, hence by the whole action of Iso” (S;) by density of the
representation. The proof of Theorem[6.7]is thus complete. (|

7. DE RHAM DECOMPOSITION FOR TRANSVERSELY KAHLER FOLIATION OF
QUASI-NEGATIVE TRANSVERSE RICCI CURVATURE

Let (X, F, g) be a compact Riemannian foliated manifold satisfying the assumptions of
Section[I] that is
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e F is transversely Kéhler and from now on the integer n will

denote its complex codimension
e The transverse Ricci form v = Ric(g) is quasi-negative. (7.1)
e F is homologically orientable: the basic de Rham cohomology

class of the basic volume form induced by g is non-trivial.

We will denote by w the fundamental form of the transverse Kéhler metric g. This is a
basic (1,1) form which is positive in the transverse direction. As in the classical setting
of complex manifolds, the restriction of the differential d to complex valued basic forms
decomposes as the sum of two operators d and O of respective bi-degrees (1, 0) and (0, 1).

Also, as orbifolds enter into the picture at the end this section, we refer to [MMO3|] or
[Car19]] (and references therein) for the related basic definitions/properties.

7.1. Preparatory material. The following result was proven in [ToulO].
Theorem 7.1. The structural Lie algebra g of F is semi-simple without compact factors.

In particular we can (and we will) assume that (F, g) is taut by Nosawa’s Theorem[6.2)
Actually, tautness can be directly derived from the homological orientability assumption
according to Masa’s criterion recalled in Theorem According to Theorem F
admits an extension G (a priori not Riemannian) which is defined on the universal cover
X of X by the levels of a Jr-holomorphic map VU : X — & to a bounded symmetric
domain and whose additional properties are listed in Theorem[6.4] Let hs be the Killing
metric on S. This is a Kidhler—Einstein metric whith negative Ricci form Ric(hs). After
normalization, we can suppose that Ric(hs) = —ws where ws is the fundamental form
of hs. The pull-back of ws by ¥ is 71 (X )-invariant and then descends to X as a basic
(with respect to both F and G) (1, 1)-forms that we will denote by Q[

Set p = rke G/ F. The short exact sequence of complex vector bundlesH

0—-G/F—>NF—-NG—=0
implies that the corresponding Chern classes are related by
ci(NF) =c1(G/F)+c1(NG) € H(X, 7).

Consequently, ¢;(G/F) is represented by the basic closed (1,1)-form o = 5= (v + €2).
Note that « coincides with #7 in restriction to the leaves of G and in particular is quasi-
negative on G/ F.

On the other hand, ¢; (G/F) is also represented by the Chern curvature of the metric w?
induced by w on G/ F, that is ¢1(G/F) = [5=a’] with

_ P A QPP
o = —/—100log < Wi )

dzy A+ Adzy|* A Qrep

and where the local tranverse holomorphic coordinates (z1, .. ., z,,) are chosen in such a

way that |[dzg A -+ A d,zp|2 does not vanish in restriction to the leaves of G. Actually, both
a and o are closed basic (1, 1)-forms and they are related by

(7.2) a=a +/—-100f

4ynless otherwise specified,“basic” means basic with respect to the original foliation 7 of course, any
covariant tensor which is basic with respect to G is automatically basic with respect to F
15 After complexification and identification with their (1, 0) parts.
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where f( is the basic function such that

WP AQPTP = efom,

7.2. Existence of a special F-basic G-leafwise Kéhler metric. The following definition
concerns (holomorphic) extensions of foliations (cf. §3.3) and makes precise the notion of
“invariant Kdhler metric along the leaves of G”.

Definition 7.2. A basic (with respect to F) and closed (1, 1)-form w’ is said to be a G-
leafwise Kdhler metric whenever is positive in restriction to G/ F.

Actually, the restriction F ‘ g O any leaf L£g of G is transversely holomorphic on the
(non compact) manifold L, so that an w’ satisfying the property above induces an invariant
transverse Kéhler metric with respect to F ‘ Lo’ whence the termininology used.

The following result guarantees the existence of a special F-basic G-leafwise Kihler
metric and can be thought as a variant of the famous Yau’s existence Theorem of solutions

to the complex Monge—Ampere equation. It is motivated by the relationship between «
and o/ given in (Z.2).

Lemma E. Let F be a foliation satisfying the assumptions listed in (I1). Assume in
addition that F is orientable. Let x be the characteristic form associated to the bundle-
like metric g. Let f be a real basic smooth function such that

/epr/\Q"_p/\x:/wp/\Q"_p/\X,
X X

Then there exists a basic real smooth function @ which solves
(7.3) (w4 V=10dp)" AQ" P = el wP A QP

and such that w +/—190¢ is a F-basic G-leafwise Kdihler metric. Moreover, such a ¢ is
unique up to an additive constant.

The proof being quite involved (particularly the existence part), we postpone it to Sec-
tion[8] Here we simply formulate some useful remarks and conclude the proofs of the main
results of this article.

Remark 7.3. Observe that when F is minimal, i.e. has dense leaves, f is automatically
constant, hence identically zero by the normalization condition, so that existence part of
the lemma is obvious.

Remark 7.4. When F is still supposed minimal, 7}, := —Ric(g) is the fundamental form
of a transverse Kihler metric h. Now, Ric(h) represents the same cohomology class than
—5, (namely ¢; (N F)). By El-Kacimi’s basic 99-Lemma [EIK90, Proposition 3.5.1], we
can conclude that Ric(h) = —~;,. That is h is (transversely) Kihler—Einstein.

By adding the observations made at the end of §7.1]and more specially the equality (Z.2),
we can formulate the following corollary.

Corollary 7.5. Let o a solution of with f = fo + ¢ (c a suitable normalizing
constant) and set Wy, = w + V—100yy. Let L be a leaf of the holomorphic foliation G
induced by G on the local space of leaves U/ F. The the restriction of w, to L defines on
L a Kdhler metric whose Ricci form coincide with oz
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7.3. Vanishing loci of isotropy subalgebras of the commuting sheaf. Recall that the dif-
ferential d¥ provides a Lie algebra isomorphism between the lift r*Cx of the commuting
sheaf 7*C to the universal cover 7 : X — X and the Lie algebra iso(S) of infinitesimal
isometries of S. For any s € S, we will denote by iso,(S) C iso(S) the isotropy Lie
subalgebra:

i504(S) := {w € is0(S)|w(s) = 0}.

Theorem 7.6. Let s € S and w € is04(S). Let v be the unique element of r*Cr such that
dV (v) = w. Then v vanishes identically on the fiber Fy = U~1(s).

Proof. Letrt : X* — X* be the universal cover andq : X* — X be the natural projection.
Set ¥f = W o ¢. Let us also consider:

m*Cr D 1*(Cr, ) = dVU ™! (is04(S))
and similarly
(1) Crs D ()" (Crs,) = AP (i50,(S)) .

Let T : X! — P := X*/F* be the projection map onto the space of leaves. Recall that
P has the structure of a G-principal bundle (where Lie(G) = g) over the basic manifold
W and such that the Lie algebra of fundamental vector fields coincides with (r#)*Crs
(identified with its projection via 7 z: ). Recall also that G acts on the Hermitian symmetric
space S via ™ : G — Iso(S). Moreover, ¥# and its differential d¥* are “equivariant”
with respect to the representation p and the adjoint action respectively; it means that the

following identities hold for every x € X*#, v € 7 (X), h € G,and v € (r#)*(Cr¢):

Vi (y(2)) = p(v) (¥¥(2)) ,
d¥* (Ad(h)(v)) = Ad (n(h)) (d¥*(v)), and
dy(v) = Ad (pF: (7)) (v).

Let £ be a transverse symmetnc (0,2) tensor on X (e.g. 5 = g, the transverse invariant
metric of ), and 5 eh¢ ¢4 be their respective pull-backs on X, X" and X*. X#. Those are basic
transverse symmetric (0, 2) tensors (respectively with respect to F,Fland F ﬁ), ¢ and ¢ ct
being in addition SO(2n) and .#5,,-invariant respectively. Denote by B the Killing form on
g ~ (r!)*Cx: ~ r*Cr and by B, its restriction to the maximal compact subalgebra g, ~
(r*)*(Cxs,5) = r*(CF,s). In particular By is negative definite on g, and Ad(h ") provides
an isometry between (g, B,) and (gp(s), Bn(s)) (here, we identify g with (r)*Cr:). In
particular, if we fix s and an orthonormal basis (v;) of g, (with respect to the scalar product

— By), the function ||gs|| : X* — R defined by ||lgs]|(z) :== >, &8 (vi(x), vi(z)) does not
depend on the choice of (v;) and is a basic function which satisfies

(7.4) l9sll = 18, (v)(s)ll @7

for any v € 7 (X*). In addition ||g|| is -2n-invariant (because (r#)*Cz: is so).

Define 7 : X? — R by 2*(x) = ||gg# (x|l (). From the equation we can deduce
that 2! is a basic function, that is moreover invariant under the actions of 7, (X ti) and Sy, .
Actually, the Syp-invariance is inherited from that of ||gs[|, taking into account that the
San-action on X X* makes the map ¥ equivariant. Now, as the projection ¢ : X Xt X
induces a surjective morphism from 7y (X #) onto 7 (X ), we can conclude that there exists
a basic m; (X)-invariant function 2 : X — R such that 2% = Z o q.



KAHLER FOLIATIONS 35

Note also that 2 (and consequently ) is smooth. Indeed, pick a fiber F, = (¥#)~1(s)
and remark that the restriction of ||gs|| to F§ is obviously smooth. Let T C G be a small
transverse to the stabilizer of G at s € S passing through eg. By the implicit function
Theorem, we can fill out a small neighborhood U of s by {m(h)(s) | h € T} such that
the correspondence h — m(h)(s) induces a diffeomorphism between Y'; and U. To any
element v € g,, we can thus associate on the neighborhood (U#)~!(U) of F, a unique
smooth basic vector field 7(v) characterized by

o foreveryh € Y, 7(v) is tangent to Fy()(s) = (V¥) 7! ((R)(s))

| Fe () ()
=Ad(h71)(v)

Roughly speaking, 7(v) is the “transport” of vy, along Y,. With this in mind, we
thus observe that 2* coincides on (V#)~1(U) with Y, &#(7(v;), 7(v;)) where v; is any
orthonormal basis of (gs, — Bs), thus proving the smoothness of Z* and 2.

By construction, & only depends on the choice of the original tensor £. In the sequel,
we will focus on basic symmetric tensors of the forms { = g, = wy(-, J#(-)) where
¢ : X — Ris basic and w, = w + v/—100p. We will restrict our attention for those
 for which the restriction of £ to G/F is positive definite. Let s € S and denote by
Fs the restriction of F to F,. We obtain in this way a foliated Riemannian manifold
(Fs, Fs) where the transverse Riemmanian structure is defined by the transverse Kihler
metric &g, setting &5 = §~| r.. Let w a basic vector field on F, such that v is the real part
of a holomorphic basic vector field (equivalently the Lie derivative £, .Jx vanishes). The
transverse formulation of the classical Weitzenbock’s formula (see for instance [[Kob87,
Proposition 3.1.8]) reads as

1

2\ 2 p-
(7.5) = 58 (Iw]2) = I7swll? = Ric, (w,w)

hd T(’U)‘Fﬂ(h)(s) | Fr (s *

where A;, Vg, Rics, || || are respectively the (transverse) Laplacian, the (1,0) part of the
Levi-Civita connection, the Ricci form and the norm with respect to &,. In particular, this
formula holds whenever w is the restriction v of an element of 7*(Cx, 5) to F.

Now, Lemma [E] and Corollary provide the existence of g such that for every s
and every z € Fj, Ric, is negative semi-definite and is moreover negative somewhere.
Fix ¢ from now on. By semi-negativity of the Ricci form, i.e. the semi-negativity of
a on G/F, the right-hand side of (Z3) is non-negative. Moreover, as & descends to X,
it reaches its maximum at zo € X. Let 59 = U(zg). As the restriction of 2 to Fy, is
givenby Zs, = >, ||vis, Hio, (v;) an orthonormal basis of 7*(Cr s, ), we can derive from
(Z.3) and the Hopf’s maximum principle that &, is constant. As 2 descends to X and is
continuous, this implies that & is indeed constant on the whole of X by minimality of the
foliation G and is finally identically zero by quasi-negativity of & on G/F. This concludes
the proof of Theorem [Z.6l O

Remark 7.7. The use of the Weitzenbock formula above and the resulting vanishing prop-
erty given above is the substitute in our setting to [Fra95, Corollary 4.5(3)].

7.4. Two complementary parallel holomorphic foliations and proof of Theorem Al
By Theorem[Z.6] X is now endowed with a foliation F satisfying the following properties:

e F is an extension of F. _
e Fislocally generated by F and Cx. In particular, the leaves of F are the topolog-
ical closure of the leaves of F.
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e Let x € X. Locally, the vanishing locus of the set Cr , of local sections of Cr
vanishing at x coincides with the leaf of G through x. In particular, the rank of F
is equal to rk(F) + dim(S) and F intersects G transversely along F:

FNG=F.

Using in addition that the local sections v of Cx are real part of holomorphic basic
vector fields v1:?, we can apply the statement of [Fra89, Lemma 12.1] to conclude that we
have a g-orthogonal decomposition

(7.6) NF=G/FoF/F
whence the following result.

Lemma 7.8. The foliation F is Jz-holomorphic and the aforementioned orthogonal split-
ting is parallel with respect to the transverse Levi-Civita connection of the transverse Kdh-
ler metric g.

Proof. Observe first that 7/ F is Jr-invariant as G /F is so. Now, F /.F is locally spanned
by sections v of Cx. Hence (F/F )1’0 is locally spanned by the holomorphic vector fields
v1% = v — \/=1Jx(v). This proves the first claim. Concerning the second point, this
amounts to showing that on the local space of leaves U/ F, the orthogonal and holomorphic
distributions induced by F and G are parallel. This last property is a general fact in Kihler
geometry (see for instance [Joh80, Theorem 2.1]). (I

As F is a Riemannian foliation with closed leaves and the transverse metric is Kihler
with quasi-negative Ricci curvature, we conclude that the leaf space X /F is a Kihler orb-
ifold with quasi-negative canonical bundle, hence of the general type according to [Puc18].
The statement of Theorem[Al follows directly. ]

The decomposition into parallell subbundles given in (Z.6) provides the existence of
two transverse invariant Kihler metrics with quasi-negative Ricci curvature g, g, for the
foliations G and F and such thatg = g; @ 7».

7.5. Proof of Lemma Consider the universal cover map rf : X? — X and the
SO(n)-principal bundle Y := (rf)~1(X*) over X. The latter coincides with the trans-
verse orthonormal frame bundle associated to the complete Riemannian foliated manifold
(X, F,3). By virtue of Lemma[5.16, the lift F* of F to Y is simple. According to Molino’s
theory, this implies that the space of leaves ()N( / F ,g) has a (unique) orbifold structure such
that the projection map X - X /}~' is a smooth orbifold map. Indeed, X /}~' is canoni-
cally identified with the space of orbits of the locally free action of the compact Lie group
SO(n) on the manifold Y/ F* and the points of X /F with non-trivial isotropy correspond
to leaves with non-trivial holonomy. In our setting, the leaf space X / F inherits a Kihler
metric from the transverse structure of 7. O

7.6. Proof of Theorem [C] Let QN and .% be the respective pull-backs of G and Fon X.
Denote by (G1,74), (G2,7») the respective foliations induced on X /F together with their
transverse Kéhler metric g; coming from the orthogonal and parallel splitting

(NF.5) = (G/F,52) © (F/F.5))
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where — stands for the pull-back of the transverse metrics under consideration on the
universal cover. Equivalently

(T(X/F),9) = (91,92) @ (92, 71)
in the orbifold setting. o
Note that the orbifold fundamental group 79 (X /F) is nothing but the fundamental
group of the holonomy pseudogroup of F (cf. [Mol88, Appendix D]). Because we have a
natural surjective morphism 71 (X ) = {1} — 7 (X /F) (loc.cit) , we conlude that X /F

is a simply connected orbifold. The orbifold version of de Rham decomposition Theorem
[KL14, Lemma 2.19] then yields:

(7.7) (X/7.9) = (£1/F.3) x (£2/F.31)

where £, L are (arbitrary) leaves of G and F. Of course, the (local) isotropy groups acts
diagonally with respect to this splitting. Note also that the map ¥ descends on X / Fasan
orbifold holomorphic map ¥ : X /F — 8. Set # = £, /F and 7 = L,/ F. The levels
of U are precisely the leaves of the horizontal foliation in the Kihlerian product (Z.7). As
¥ is submersive, the restriction W‘ 7€ — S is alocal diffeomorphism. In particular
¢ is smooth (the isotropy groups acts trivially on the second factor). Moreover @| o 18
a local isometry between complete Riemannian manifolds (for a suitable invariant Kéhler
metric on S). The target S being simply connected, we can conclude that W|  induces
an isometric biholomorphism between 7# and S . This proves the three first items of
Theorem [Cl The item (4) follows from the fact that F has compact leaves and that the
action of 71 (X') on S is dense. O

7.7. Remark on the case where J is minimal. We can give a simple proof (without
resorting to the technical material developed in this article) of Theorem[din the situation
where F is minimal, i.e. in the situation where every leaf is dense["d In this case X / F
should be reduced to 7Z. Actually, according to [Toul0], the structural Lie algebra g (cf.
§5.3) of F is semi-simple without compact factors. We can then derive from the works
of Haefliger [Hae88, Theorem 6.4.1] that F is transversely homogeneous. It precisely
means that F is given by the fibers of a submersion @ : X — Hontoa homogeneous
Kihler manifold (H, h) such that the Ricci curvature of h is negative and such that ® is
p-equivariant with respect to a representation

p:m(X)— Iso(H)

whose image consists in a subgroup of holomorphic isometries acting densely on . By a
result of Borel [Bor54, Theorem 4], H admits a structure of a homogeneous holomorphic
fibre bundle whose base is a homogeneous bounded domain (i.e. a Hermitian symmetric
space) ¢ and whose fiber is a flag manifold F'. As F' is rational algebraic, it is reduced
to a point, due to the negativity of the Ricci curvature. Finally we get that H = JZ as
desired.

8. PROOF OF LEMMA [E]

Let us recall that we aim at proving that the equation (Z.3) has a unique solution ¢ (up
to adding a constant). The proof of existence is a non-trivial adaptation of the continuity

1611 the case of Riemannian foliation, this is equivalent to saying that at least one leaf is dense.



38 B. CLAUDON AND F. TOUZET

method in the foliated setting and relies on subtle estimates. The uniqueness of the solution
is easier to establish and we first explain this part of the proof.

Proof of the uniqueness in LemmalEl Let ¢1, p2 two solutions of such that w-+i0dyp;
is positive in restriction to G/ F (fori = 1, 2). Setw; = w++/—190¢;. Let p = @1 — ps.
Because forms of even degree commute, we obtain

p—1
(8.1) 09p A Wi AWl AQrTP =0,

k=0
On the other hand, and thanks to Rummler’s formula (3.1), we have 8 A dy = 0 for every
basic (n — 1)-form 8. Combined with the closedness of w; and €2, Stokes’ Theorem yields

/ (pd°p) (Zwl/\wQ k= 1)/\9”7”/\)(_0
X

When expanding the integrand and according to (8.1)), we get

p—1

(8.2) / ng@/\dcgo/\w’f NS FEA QPP A =0

X k=0
Letz € X. On some distinguished neighborhood of =, we can find holomorphic transverse
coordinates (z1, . . . , z,) such the foliation G is defined by {dz, = 0, a > p}. Because w;
(i = 1, 2) are positive in restriction to G/ F, we can moreover choose the p first coordinates
21, ..., 2p such that

wi(z) =v~1 <Z dza N dzZg + §1> (x) and

wa(z) = v/—1 <Z tadze Ndzg + 52) (x)

where the &;(x)’s vanish identically in restriction to G/ and the j,,’s are positive real

numbers. Thanks to this writing, we infer that there exist p positive numbers v, ..., v,
such that
p—1 P
<Z do N dp Awh Awh k! /\Q"_p> Z |dzl A Adzg|? ().
k=0

Together with (8.2), this implies that the real function ¢ = ¢; — 2 is constant on the
leaves of G, hence constant on the whole of X as G is minimal. O

Remark 8.1. Actually, by the same proof, the uniqueness holds as soon as ¢ € C?(X).

8.1. Preliminaries. We now turn to the proof of the existence part in LemmalEl It strongly
relies on El-Kacimi’s work [EIK90], even if the context and presentation differ at multiple
places.

The original foliation is equipped with the transverse volume form £ = w? A Q" ~P and
X is itself equipped with the volume form dV' = & A x where Y is the characteristic form
of F. We can use them to endow the space C°(X/F) of continuous basic functions with a
scalar product (-, -) x, namely

<f1=f2>X:/Xf1f2dV
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We can of course assume that Vol(X) := f + AV =1 (up to multiplying w by a suitable
constant).

The transverse invariant metric g induces by restriction a metric on G/F C NF that we
denote by the same symbol. One can then consider the corresponding F-basic G-leafwise
Laplacian Ag as defined in §3.3] Thanks to the choice of dV, we can derive, as in the
classical setting, the following statement.

Lemma 8.2. For f, f1, fo € C°(X/F)NC%(X), we have:

(1) fX Ag(f)dV = 0. In particular, | is constant if and only if Ag(f) > 0.
(2) (f1,A¢(f2)) = (Ag(f1), f2)

Proof. Let v be a basic section of class C! of G/F . The usual calculation yields
divg(v)€ = d(i,wP) A Q" 7P = d(i,,€). According to Lemma[3.§] this implies that

(8.3) / divg (v)dV = 0.
X

The item (1) is then obtained by choosing v = Ag(f). The item (2) is a consequence of
the standard identities

dng(fi'U) = <Vg(fi),’0>§ + fidng(’U)7 7 = 17 2

and the vanishing property (8.3)) where we take alternatively v = Vg(f2) andv = Vg(f1).
O

We now perform an analogous construction on the foliated transverse frame bundle
p: (X8 FH) — (X, F), mr: : X¥ — W together with its projection map p, its basic
fibration 77 and its bundle-like metric g* = p*g @4 1 as defined in §6.11from which we
maintain notation. Let x* := p*y be the induced characteristic form attached to F*. Let v
be the characteristic form of the vertical fibration +}. Note that, thanks to the transverse F!-
parallelism (see §6.1) i,dv = 0, v is basic with respect to F*. Let us consider w! = p*w
and Qf = p* Q. They can be used to endow F* with a transverse volume form &# = wt” A
v A Q" that can be completed to a volume form dV* on X* by setting dV# = & A x2.
As before we can consider the F*-basic G#-leafwise metric induced by the restriction to
G*/ F* of the orthogonal sum g := p*g @5 0 (see §6.1). Let Ag: be the corresponding
Fi-basic Gf-leafwise Laplacian. Every basic function of class C" (r € [0, oc]) defined
on X*¥ is of the form f o mx:, f € C"(W) and the SO(2n)-action on the principal bundle
X* projects to an SO(2n) action on W. We can identify the space of orbits W/ SO(2n)
with the space of leaves closure of F and the subspace Cgq,,,,) (W) C C"(W) of SO(2n)-

invariant functions to the space C°(X/F) N C"(X). We will denote by D%, the linear
differential operator induced on W by Ag: (as in [EIK90, Proposition 2.7.7]). It is given,
for every f € C2(W), by the formula:

Diy(f) = Ag: (f o m).

Arguing as above, we can prove that the equality

(8.4) /Agﬁ(floﬂ']-‘ﬁ)(onW}'ﬁ)qu:/ Agi(fromrs)(f1omp:)dV?
Xt Xt
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holds true for any fi, fo € C2(W). Let dw be the volume form'] on W such that we have

(8.5) /m(fl omzs)(foomps)dVE = /W frfadw =: (f1, f2)w.

forevery f1, fo € C°(W). In particular, since v assigns volume 1 to the fibers of X* — X,
we have

<.f15 f2>X = <f17 .f2>W
whenever f1 and fs are SO(2n)-invariant.
The following lemma establishes some “basic” properties of D3, .

Lemma 8.3.

(1) D, (1) =0.

(2) D3, is a strongly elliptic operator of order 2, in particular D%, satisfies the Hopf’s
maximum principle and then Ker(D%,) = R.

(3) Diy is SO(2n)-invariant and for every f € C3qy,,y (W)(= C(X/F) N C*(X)),
Diy (f) = Ag(f)-

(4) D3, is self-adjoint with respect to the scalar product (-, )y, i.e, for every f1, f2 €
C2(W), (f1, Dy (f2))w = (D (f1), f2)w -

Proof.

(1): Obvious.

(2): The differential operator D%, has obviously order < 2 (= order of the basic opera-
tor Ag).

Letw € Wand u € 75 (w). Let £ € T;W — {0} and f € C?*(W) such that
f(w) = 0 and df, = & Set f® = f o mrs. The differential drr: vanishes on F*
and induces a surjective morphism of vector bundles: G*/F* — TW (see Remark [5.18);
then the differential dff induces a non-trivial linear form on (G*/F*),. Consequently
D2, (fH)(w) = Ag:((f*)?)(u) < 0 by strong ellipticity of the Laplacian. The terms
involved in this equality are thus nothing but the principal symbol (D3, )(w, &) (up to a
factor %), showing that D3, is strongly elliptic of order 2.

(3): Recall firstly that the structural group SO(2n) acts on X* by basic transformation
with respect to both F* and G¥ (more precisely the action is tangent to the latter). Moreover
this action preserves the transverse metric g*. This implies the SO(2n)-invariance of Ag:
and consequently that of D

Concerning the last point, we maintain notation/observations from §6.11 Let us de-
note by py/ 7 : (p~'(U)/F*,g*) — (U/F,g) the Riemannian submersion induced by p
and which allows us to identify the source as the orthonormal frame bundle of the target.
Denote by G (resp. by G#) the foliation induced by G (resp. by G*) on U/F (resp. on
p~1(U)/F*). Both are related by G# = p’[}/fg Now the SO(2n)-action preserves the

horizontal distribution 7, so that the vertical fibers of p; /F are totally geodesic (with re-

spect to g*) and in particular minimal. From Remark [3.14] applied to the vertical foliation,
we can deduce that D, (f) = Ags (f o mri) = Ag(f), as desired.
(4): Straighforward consequence of the self-adjointness of and (8.3). O

In the sequel, we will also have to replace the transverse reference metric g by the
“metric” g, with fundamental form w, = w + /—190¢ where ¢ is a basic function of

17\We assume here that W is oriented; this can be achieved by replacing if necessary X by a double cover.
Note also that for any finite étale cover of r : Y — X, the commuting sheaves are simply related by C,.x r =
r*Cr.
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class C¥, k >> 0 such that w,, is positive in restriction to G/F, so that G, is a priori only a
genuine metric of class C*~2 in restriction to G/F '] This is however enough to construct
a SO(2n)-invariant F*-basic G*-leafwise metric on G¥/F* by taking the restriction of the
orthogonal sum p*g,, ©z; 98 As before, we can attach to it the F#-basic G¢-leafwise
(resp. F-basic G-leafwise ) Laplacian Agu (resp. Ag). In this setting, the relevant volume
form on X and X* are respectively dV,, := wh A QTP A x and dVJf = 557 A x*' where
553 = ngp Av A" and ng = p*w,. Let us denote by (-,-),,.w the corresponding
scalar product on C°(W). As before, Agn descends to W as a second order differential
Dy fulfilling all the items of Lemma 83 replacing Ag by Af, and (-, )w by (- )pw

A.

As in the classical context of complex Monge—Ampere equations, we want to apply the
continuity method in order to prove LemmalE] that is to solve for every ¢ € [0, 1] the family
of equations

(w+ V/=109p,)" AQ—P = efeyP A QPP
(MA); : _ ot waP/\Qn%D/\X

wP A QTP
Jx etfwP AQP—P A x

which consists in replacing f by

fi=1tf+log (/ wp/\Q"p/\x) — log </ etpr/\Q”p/\x>
b'e X

in the right-hand side of (Z.3).

Let k be a non-negative integer and o € (0, 1). Consider the Banach space C** (W)
of functions of class C* and Holder exponent a and the closed subspace ng(zn) (W) of
SO(2n)-invariant functions. The latter can be identified with the space of basic functions
on X of class C¥®. On the local leaf space U/F, observe that ¢, is a solution to (MA);
iff for every leaf £ of the foliation G induced by G on U/.F, the following equation holds:

(8.6) (w+ \/—_135%)”’2 = elrwr| .

Let W be a connected open subset of L relatively compact in U/F. The following
observation will turn out to be useful.

Lemma 8.4. Let ; be a solution of (MA);. Assume that ; belongs to the class C** in
restriction to W. Then @, € C*(V) where V is an open neighborhood of W in U/ F.

Proof. Consider the constant sheaf Cr |/, viewed as a Lie algebra g of Killing vector fields
on U/ F. These vector fields are also foliated with respect to G. Among those vector fields,
those that vanish along £ form a maximal compact subalgebra £ of g. Take a decomposition
of g as a direct sum of linear subspaces g = £ @ p (for instance a Cartan decomposition).
Note that the dimension of p is the real codimension d = 2(n — p) of G. Let # =

181y fact, ¢ is necessarily constant along the leaves of G (see the proof of Lemmal[84), so that g really is a
transverse invariant metric on N F.

19Recall that the SO(2n)-action on X ¥ preserve both F# and G# (and is actually tangent to the latter) and
consequently induces an action on G* JF f,

201 view of one could also argue by considering the space of transverse orthonormal frames attached
to the new metric g,.
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{v1,...,v4} be a basis of p. In particular, Z provides along £ a trivialization of the
normal bundle N L. For (ty, ..., t4) € ] — &,¢[", the map

: WX]_Eu‘E[d — U/]:
(:Z?, (tl, . ,td)) — et1v1 Oetm}z 0--+0 etd”d(:zj)

is a smooth diffeomorphism onto an open subset V of U/F and W = ¥ (W x {0}).
The lemma is then a straightforward consequence of this trivialization and the fact ¢, is
constant along the orbit of any v € g. O

We will also make use of the spaces:
Bjo = {# € C850 (W) | (¢, 1)w =0} and
Hioo = {h € Colsm W) | (b, Dw = (1 1)w }

with £ > 0. They are respectively a closed linear subspace of ng‘(Qn)(W) and a closed
k—2,«

affine subspace of Cq (5, (W). Let us denote by Ay, ., the subset of ¢ € [0, 1] such that
(MA); admits a solution ¢; € Cgba(%) ‘g/f > 0. We must

prove that Ay, , contains 1 for every (k, «). To this end, let us consider the open set subset
of Ek,a .

Ui = {¢ € Epa} | wy, =w+V—199¢ > 0 in restriction to G/ F }
and the map € : %o — Hi, defined by

(w + vV/=10dp)" A QP
wP A Qrp '

(W) with the property that w,,

C(p) =

8.2. Openness of Ay, ,. A straightforward computation shows that ¢ is differentiable and
that the differential at  is given by:

d6, = —C(p)A§.
Now, recall that
k,« k—2,«

AV CSO(Qn)(W) — CSO(Qn)(W)
is the restriction of

Dy CH (W) — CF 2 (W),
By standard elliptic theory and Schauder estimates, the image of the latter coincides with

& = {h e CF2*W) | (h,1)}pw =0}

(see [[Con78| Exposé VI]). We can infer that the image of the former is exactly &5 N

655(22721) (W). Indeed, the image of Cgba(zn)(W) is contained in & N 658(22’3) (W) thanks

to the SO(2n)-invariance of D%,{;". Conversely and still by SO(2n)-invariance, we can

express every element of &y N Cgaé’z) (W) as D‘Q,[’,“’ (f) where f € C**(W) verifies

Dyf(v(f)) =0
for every fundamental vector field v of the SO(2n)-action. This shows that v(f) is con-
stant, hence identically zero by compactness of W, proving our assertion. We have thus es-
tablished that d%, is an isomorphism between the tangent spaces 7., %}; . and Tcg(w)H ka-

By the inverse function Theorem, we can conclude that Ay, ,, is an open (non-empty) subset
of [0, 1].
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It remains to show that Ay , is closed. We can mimick without fundamental changes
the classical proof given by Yau as explained below.

8.3. Closedness of Aj . Lett € Ay and ¢, € CS&%)(W) such that w,,, ‘g/f > 0 the
solution of (MA), together with the normalization (¢, 1)y = 0 = (¢, 1) x, so that ¢ is
necessarily unique. It is worth noticing that the properties of the operator D, are mainly
used in the item (2) of Step 1 below and that the remaining part only needs to work directly
on the original manifold X without any reference to the normal frame bundle and the basic
fibration on it.

8.3.1. Step 1: L' estimate. The solution ¢; satisfies the following estimates.

(1) Ag(pr) < p (=dime(G/F)): this is a straightforward adaptation of the proof of
[Con78| Exposé VII, Lemme 2.1(1)].

(2) the upper-bound supy, 4, ¢+ < C follows from the estimates for the Green
function of D%V (see [Con78l, Exposé VII] and for instance [AS13, Appendix A]).

(3) We get the L' uniform bound [ |¢¢|dV < 2C} as a trivial consequence.

8.3.2. Step 2: L1 estimate. This is [Con78| Exposé VII, Lemme 3.3] where the L? norm
under consideration is computed with respect to the volume form dV' = wP A Q"7P A x.
The proof is a direct adaptation of the strategy depicted in loc. cit. (repeated use of L'
estimates and Sobolev embeddings).

8.3.3. Step 3: uniform C° estimate. This is again obtained as a direct adaptation of the
classical situation [[Con78l Exposé VII]. Indeed it follows from L? estimates that we have:

Supy, Nl < Co.

8.3.4. Step 4: Laplacian C° estimate. We follow verbatim the strategy and computation
made in [Con78, Exposé VIII] and obtain

Sup 4, NAg(¢e)ll o < Cs.

8.3.5. Last step: higher order estimates. This part follows closely the strategy@ developed
in [GZ17, §14.3]. Unlike the preceding steps, this is a purely local result to which we can
reduce by considering the equation (8.6) and Lemma [8.4] (see the comments at the end of
[GZ17, §14.1.2]).

In the first place, we can derive from Evans—Krilov theory the upper bound:

FJ0< B < a, SupAk&H%HCz,B < (4.

As the injection C>%(X) < C%P(X) is compact, we can find for any cluster point
to € [0,1] a sequence (t,,) € Aga, tn — to and p € C*P(X) such that ¢, tends to ¢
with respect to the C%” norm. In particular we get that tq € Az 5. We can then deduce by
applying inductively Schauder’s estimates that ¢ € C KB (X)) for every positive integer k’.
In particular ¢y belongs to Ay, . Eventually Ay, o, = [0, 1] and, as k is arbitrarily large, this
provides the sough solution. This concludes the proof of Lemma[El (]

2lwe could alternatively use [Con78| Exposé XI].
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9. AUTOMORPHISM GROUP OF THE FOLIATION IN THE KAHLER CASE: PROOF OF
THEOREM D]

In this section, (X, F) is a foliated compact Kdhler manifold (F holomorphic) which
satisfies the hypothesis of Theorem [Dl stated in the Introduction. Recall that Aut(X, F)
denote the group of analytic diffeomorphisms of X preserving the foliation F. Let g be
the invariant transverse Kéhler metric.

The following preliminary and simple observations will be proved to be useful.

Lemma 9.1. Let V be an irreducible analytic complex space. Let G a countable group
of biholomorphisms of V. Let f be a biholomorphism of V' such that for every x € V,
f(z) € G-z, the G-orbit of x. Then f is an element of G.

Proof. Forevery g € G,set Z, := {z € V | g(z) = f(x)}. We have U, Z, =V by
assumptions. According, to Baire’s lemma, there exists & € G such that Z;, has non-empty
interior. We then conclude by analytic continuation that f = h, as wanted. O

Lemma 9.2. If f € Aut(X, F), then f.(Cr) =Cr.

Proof. Firstly, note that h = f.7 is also a transverse Kihler metric. On the other hand,
Cr is independant of the Riemannian transverse structure, as noticed in [Mol88| Proposi-
tion 5.1], whence the result. [l

Corollary 9.3. The following inclusion holds true:
Aut(X, F) C Aut(X, F) N Aut(X, G).

Proof. The first inclusion Aut(X, F) C Aut(X,F) is a consequence of the topological
characterization of F. The second one Aut(X, F) C Aut(X,G) is due to the fact that G
is defined by the vanishing locus of the isotropy Lie subalgebra of Cx (cf. §7.3) combined
with Lemmal[9.2] O

During the proof of Theorem [D] we will be led to replace the initial manifold X with
finite étale covers. They can be chosen in such a way that the action of the group G lifts,
as shown in the next result.

Lemma 9.4. Let X1 be a compact complex manifold and X9 be a finite étale cover of X.
Let G = Aut(Xy) be the group of biholomorphisms of X1. Then, there exists a finite étale
cover X3 of Xo such that every g € G lifts to a biholomorphism of Xs. In particular,
Theorem[Dl holds on X iff it holds on a finite étale cover.

Proof. 1t is clearly sufficient to find a finite index characteristic subgroup H of 1 (X7)
contained in 7 (X32). Because 71(X71) is finitely generated, we can take H to be the
(finite) intersection of all subgroups of 71 (X1 ) of the given index |71 (X1) : m1(X32)]. O

Proof of Theorem[Dl Let G = Aut(X,F). Denote by G the group of biholomorphisms
of X which descend to X as an element of Aut(X,F). Remark that g acts by biholomor-
phism on the complex orbifold X / F =0 xH. According to Corollary G both
preserves F and G, so that G acts diagonally on X / F with respect to the above decom-
position. We can also suppose, up to taking a finite index subgroup that G acts trivially
on the general type orbifold X/F. Let us first show that the transverse action of G' on
X/G is finite. For this, recall that up to replacing X by a finite étale cover and accord-
ing to Lemma[9.4] we can assume that the projection of the diagonal action of 71 (X) o