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Abstract—Several systems and application domains are under-
going disruptive transformations due to the recent breakthroughs
in computing paradigms such us Machine Learning and commu-
nication technologies such as 5G and beyond. Intelligent trans-
portation systems is one of the flagship domains that witnessed
drastic transformations through the development of ML-based
environment perception along with Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) communication protocols. Such
connected, intelligent and collaborative transportation systems
represent a promising trend towards smart roads and cities.
However, the safety-critical aspect of these cyber-physical systems
requires a systematic study of their security and privacy. In
fact, security-sensitive information could be transmitted between
vehicles, or between vehicles and the infrastructure such as
security alerts, payment, etc. Since asymmetric cryptography
is heavy to implement on embedded time-critical devices, in
addition to the complexity of PKI-based solutions, symmetric
cryptography offers confidentiality along with high performance.
However, cryptographic key generation and establishment in
symmetric cryptosystems is a great challenge. Recent work
proposed a key generation and establishment protocol for ve-
hicular communication that is based on the reciprocity and
high spatial and temporal variation properties of the vehicular
communication channel.

This paper investigates the limitations of such channel-based
key generation protocols. Based on a channel model with a
machine learning approach, we show the possibility for a passive
eavesdropper to compromise the secret key in a practical manner,
thereby undermining the security of such key establishment
technique. Moreover, we propose a defense based on adversarial
machine learning to overcome this limit.

Index Terms—Security, IoT, Machine Learning, Cyber-
Physical Systems, Cryptography

I. INTRODUCTION

Due to the breakthroughs in machine learning (ML) and
communication technologies, the technological landscape of
modern systems is continuously moving towards more ubiq-
uitous, connected and intelligent devices and systems. This
development trend offers considerable opportunities towards
a fundamental paradigm shift in several application domains
such as transportation, energy, health, etc. However, several
security and privacy challenges have to be considered for the
quest of trustworthiness given the race between attack and
defense mechanisms and approaches in this topic [1]–[4].

Intelligent transportation systems are among the most
rapidly evolving Cyber-Physical Systems (CPS). With various

technologies that are revolutionizing the sector (electric
vehicles, autonomous driving, connected cars, artificial
intelligence), the automotive ecosystem is shifting toward the
Internet of Vehicles (IoV). With communication technologies
such as Vehicle to Vehicle (V2V) or Vehicle to Infrastructure
(V2I), vehicles would be able to interact actively and in a
collaborative manner for a safer and more secure traffic.
In the IoV paradigm, vehicles are no longer considered as
isolated systems controlled only by human drivers, but rather
nodes within an interconnected complex system. The latter
should allow secure and high performance communication
for a safer driving, optimized traffic and ergonomic services.
While the vast majority of vehicular collisions is mainly
caused by drivers distraction or insufficient environment
perception, wireless communication can considerably reduce
the risk of driver-caused collisions and improve traffic safety
[5]. In fact, V2V and V2I communication enables vehicles
to have a better perception and a more precise understanding
of their environment. For this reason, governmental agencies,
as well as original equipment manufacturers and research
organizations are working towards the definition of wireless
vehicular communication protocols (V2X) [6]. The European
Commission proposed a legal framework on Cooperative
Intelligent Transport Systems (C-ITS). In the EU, the only
commercially available short-range V2X technology is
called ITS-G5 [7], which is based on the IEEE 802.11
communication standard and standardized in Europe as
ETSI EN 302 663 [8]. In the US, the ITS-G5 technology
is also referred to as WAVE (wireless access in vehicular
environments) technology or DSRC - Dedicated Short-Range
Communication [9].

Security Concerns in vehicular Communication Since the
vehicular network is based on wireless communication chan-
nels, the information is transmitted using broadcasted signals.
This makes the vehicular network vulnerable to eavesdrop-
ping, message modification, and impersonation attacks. Since
sensitive data such as personal information for entertainment
applications, financial transactions, security alerts, etc. could
be transmitted using V2X communication, the communication
confidentiality represents a serious concern. In a project with
support from the Defense Advanced Research Projects Agency



(DARPA), researchers have designed and implemented an
attack on vehicular infotainment applications and systems like
UConnect that results in recalling several vehicles concerned
with this vulnerability such as Chrysler [10]. Moreover, the
vehicular network is open by construction to ensure access to
all users. This sharpens the concerns about future connected
and autonomous vehicles that may represent a serious safety
threat if the security is not taken seriously from an early
stage of the design process. In fact, malicious users could
undertake multiple passive or active eavesdropping, or even
total hijacking if commands are sent through the wireless
channel.

For this reason, a secure channel establishment needs to
be set before communication. A secure channel is established
through cryptographic systems that provide confidentiality
and integrity into communication. Cryptosystems fall under
two main categories: Symmetric and Asymmetric. One of
the differences between those two categories is the com-
putation load and by consequence energy consumption. In
fact, symmetric algorithms, such as the Advanced Encryption
Standard (AES), have very high performance and lower energy
overhead [11] compared to asymmetric algorithms. On the
other hand, asymmetric algorithms such as RSA and Elliptic
Curve Cryptography (ECC) are computation intensive and
challenging to implement on resource-limited and time-critical
devices. Nevertheless, the advantage of asymmetric cryptog-
raphy is the unnecessary key agreement since the encryption
happens using public keys. In symmetric algorithms, the
communicating nodes are supposed to share a secret key,
which makes secure secret key generation and distribution a
serious challenge. Recent work has proposed channel-based
key generation mechanisms that leverage two fundamental
properties of communication channels to establish random
keys for two users: (i) channel reciprocity, and (ii) channel
uniqueness [3], [4].

In this paper, we investigate the security of physical
layer based key generation and establishment protocols.
Specifically, we propose a ML-based approach to estimate
the generated key from an eavesdropper. We propose a
convolution neural network (CNN) architecture that is trained
on an eavesdropper dataset to estimate the generated key
at thee victim side with a sliding window manner. Our
results and estimation of the key retrieval complexity show
a high capacity of reducing the search space to retrieve the
key from a simple passive eavesdropper. We also propose
adversarial machine learning approach to enhance the security
of channel-based key generation.

Contributions. The contributions of this paper can be sum-
marized as follows:

• We investigate the limits of channel-based key generation
and establishment in the case of vehicular communication
by comprehensively taking into account different propa-
gation scenarios and channel models.

• We propose a ML-based approach that drastically reduces
the search space to practically retrieve the key in a short
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Fig. 1. V2V communication between two legitimate users (Alice and Bob)
and a passive eavesdropper (Eve).

amount of time by a simple passive eavesdropper.
• We propose a countermeasure to the proposed attack

by leveraging adversarial attacks to fool the attacker
model and deceive the adversary. We believe this is the
first defense that uses adversarial attacks as an active
countermeasure against another attack.

II. BACKGROUND

A. Overview on crypto-systems

A secure channel establishment needs to be set through
cryptographic systems before communication. Table I shows
a comparative overview on the cryptographic systems and
their corresponding characteristics. Cryptosystems fall under
two main categories: Symmetric and Asymmetric, and could
be hybrid between those two. Symmetric algorithms, such as
AES have very high performance and lower energy overhead
compared to asymmetric algorithms. However, asymmetric
cryptography has an interesting advantage which is the un-
necessary key agreement since the encryption and decryption
require two different keys, public and private, respectively.
On the other hand, symmetric algorithms use the same secret
key for encryption and decryption, thereby requiring a secure
secret key generation and distribution, which is a serious
challenge. Key establishment techniques based on Public Key
Infrastructure (PKI) represent the mainstream adopted solu-
tion. However, PKI requires a trusted third party which is
the certificate authority (CA) that grants digital certificates
and revokes compromised ones. In addition to the delay and
complexity, especially for the vehicular network application,
the centralized aspect of this solution concentrates the risk on
the CA. If it is compromised, the whole network becomes
vulnerable.

B. Key generation from the communication channel

In a vehicular network, Rayleigh model represents the
propagation and the Doppler shift effect in a fast fading
channel [12]. In this model, the channel gain H should abide
by the following Probability Distribution Function (PDF):

PDFH(H,σ) =
H

σ2
e−H2/(2σ2) (1)

In [3], a channel entropy based key generation technique for
V2V communication is proposed. As shown in Figure 1, both
legitimate users Alice and Bob are driving, where Alice’s



TABLE I
COMPARISON OF EXISTING CRYPTOGRAPHIC ALGORITHMS.

Symmetric Asymmetric Hybrid
Authentication Message Authenication Code (MAC) Digital signature Digital signature on keys, MAC on data

Confidentiality Data Encryption Data Encryption Key encryption with asymmetric,
data encryption by symmetric

Key size 32-256 bits ECC: 256-384 bits RSA: 1024-3072 bits 512-3072 bits for Asym. 32-256 bits for Sym.
Performance Fast Slow Medium

vehicle (A) is communicating with Bob’s vehicle (B). Assume
the driving velocities for A and B is VA and VB , respectively
and the velocity difference between these two moving vehicles
is △V . The coherence time Tc of the communication channel
between A and B may be estimated using Equation 2 [12].

Tc ≈
0.423

fd
(2)

If A and B want to generate a key with size of Ksize, they
need to exchange a set of predefined probe signals (can be any
kind) to evaluate the randomness of the wireless channel gain
H using Equation 1. To have a low mismatch rate, they must
exchange each probe signal within the Coherence Time (Tc)
interval. Meanwhile, in order to keep bits of the generated
key uncorrelated to each other, the time interval defined as
τstep between exchanging each probe signal should be no less
than Tc. Notice that, as long as the sender A and receiver B
share the same τstep, the process of exchanging pre-defined
signals is naturally synchronized. In [3], the authors assume
there exists a pre-defined τstep for both A and B.

Figure 2 gives a brief overview on the physical layer
channel based key generation protocol. After the probe signals
are exchanged, a set of measured Received Signal Strength
(RSS) values is used to generate secret key bits on each side.
The authors then implement a mismatch checking step to
remove mismatching bits. During this step, both the sender
and receiver will publicly exchange the indexes of the probe
signals which are used for generating secret bits, in Kidx and
remove the mismatched indexes. In this phase,the exchange
is publicly broadcasted and a potential attacker might get
Kidx. Nevertheless, the attacker will not have access to the
generated key bits because only the sender and receiver
share the bilaterally received RSS values of the probe signals
propagated through the channel AB. Based on the reciprocity
hypothesis [13] of the wireless channel, if A and B broadcast
the probe signals to each other within the coherence time
of the wireless channel, the channel gain is symmetric, i.e.,
HA→B(t) ≈ HB→A(t). However, from an eavesdropper’s
perspective, the estimated channel gain HA→E(t) will be dif-
ferent from HA→B(t). Therefore, the key generated between
A and B is assumed to be totally independent from the key
estimated by the eavesdropper E. Once KAB = KBA is
generated securely, the secure channel between A and B is
established and the communication can be protected by a
symmetric crypto-system using the generated key.
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Fig. 2. Channel-based physical layer key generation protocol.

C. Channel models

In this section, we give an overview on the existing propaga-
tion models for the received signal strength during a wireless
transmission. The wireless communication in different vehicu-
lar environments is subject fading and path loss. The path loss
is due to the propagation of the electromagnetic wave in the
free space. It reflects the attenuation of the signal strength
as a function of the distance between the transmitter and
the receiver. On the other hand, small-scale power variations
are caused by the presence of objects in the environment. In
the following, we examine the different fading patterns: path
fading, shadowing, multipath fading, and Doppler spreading.

1) Path Loss: Path loss describes the loss of received signal
power due to the propagation of the electromagnetic wave.
Two path loss models are commonly used in the literature:

• Free-Space Model: it represents the ideal propagation
conditions where a single line-of-sight (LOS) path exists
between the transmitter and the receiver . The Friis
formula [14] describes the power received by the receiver
antenna at a distance d from the transmitter antenna:

Pr(d) =
Pt ×Gt ×Gr × λ2

(4π × d)2 × L
(3)

where Pt is the power of the transmitted signal, Gt and
Gr are, respectively, the gains of the transmitter and
receiver antennas, λ is the wavelength and L (L ≥ 1)



is the loss factor of the system. Free-space path loss is
given by:

PLFree−Space = 10× log10
Pt

Pr
(4)

• Two-ray-ground model: This model assumes that the
received signal is composed of the propagation of the
signal emitted in the LOS free space and its reflection on
the ground. Unlike the Friis formula, it takes into account
the heights of the transmitting antenna ht and receiver
hr. The received power is predicted by the following
equation:

Pr(d) = 10× log
Pt ×Gt ×Gr × h2

t × h2
r

d4 × L
(5)

Two-ray-ground path loss is then expressed in dB by:

PL2−ray−ground = −10× log
Gt ×Gr × h2

t × h2
r

d4 × L
(6)

2) Rician model:

fX(x) =

{
x
σ2 exp

(
−x2+A2

2σ2

)
I0
(
Ax
σ2

)
, x > 0

0, x ≤ 0
(7)

Where: I0(.) is defined as the modified zero-order Bessel
function of the first kind and A is the dominant signal
amplitude.

The Rician distribution is generally described by the factor
k which corresponds to the ratio between the power of the LoS
path and the average power of multipaths obeying a Rayleigh
distribution. k is given by Equation 8.

k =
A2

2σ2
(8)

III. PROPOSED ATTACK

In this section, we present our system model, the considered
threat model and the proposed attack.

A. System Model

Let Alice and Bob start a key generation protocol from the
wireless channel using the Received Signal Strength (RSS)
following the methodology explained in Section II-B. As
represented in Figure 1, when Alice broadcasts the raw signal
Xi(t), Bob receives Y B

i (t) which is the output of the channel
AB.

1) Ideal Environment: Free Space: Bob and Eve receive
signals that result respectively from the channels AB and AE.
In a free space environment, these signals have one component
which ius the Line of Sight (LoS). The LoS component is ruled
by the Path Loss model presented in Section II-B. Therefore,
Eve can fully estimate the signal strength in Bob (and vice
versa in Alice) using Equation 9 below:

Pr(B)dBm = 10 log10

(
Pr(E)

10−3

)
+ 20 log10

(
AE

AB

)
(9)

Where:
• Pr(B) is the RSS in Bob

• Pr(E) is the RSS in Eve
• AE and AB are respectively the distance between Alice

and Eve and between Alice and Bob
Notice that there is no unknown element in Equation 9 from

Eve’s perspective to find the RSS in Bob. This is theoretically
a proof that Eve can totally retrieve the generated key be-
tween Alice and Bob given that he knows the key generation
protocol. However, this model is unrealistic and not useful in
vehicular communication environments. In the next subsection,
we consider more realistic environments and propose our
method to generate the key from a passive eavesdropper.

2) Urban Environment: In urban vehicular communication
channels, the transmitter and receiver are moving in a density
that can vary from low to high density. This aspect results
in different fading statistics depending on the existence of
a LOS, shadowing (obstructed LoS) and the proportion of
LoS/NoLoS.

An empirical study of the V2V channel in urban, suburban
and rural environments [15] where measurements were taken
in real driving conditions, shows that the fading envelop
is accurately modeled by a Rician distribution [16]. This
distribution is expressed in Equation 7 in Section II-B. The K
parameter would be changing in inverse proportion with traffic
density since the chance of having LOS decreases as traffic
density increases on the road. The highest density case tends to
result in a Rayleigh fading model. At low traffic conditions, it
is very likely to have a LOS since there would be no obstacles
in the road between the vehicles.

B. Threat Model

In our scenario two legitimate vehicles, Alice and Bob,
are establishing a secure communication channel through a
shared secure key agreement based on their wireless fading
channel. We consider the presence of another vehicle, Eve,
as a passive eavesdropper. The eavesdropper is a regular user
of the vehicular network that has access to public parameters
of the network such as the key generation protocol. We also
assume that Eve has the ability to estimate the distance that
separates him from Alice, and from Bob. This is possible using
narrow-band radars such as Bosch MRR [17] used in Tesla
cars. Since the variability of the environment has a direct
impact on the entropy of the generated keys, we consider
different propagation environments covering several density
levels in urban environments as well as rural environment.
We also assume that the key generation protocol is not secret.

The assumption made by authors in [3] that there is no
correlation between the received signal in Bob and the one
received in Eve is questionable. In fact, while the channel
Alice-Eve is different from the channel Alice-Bob under
realistic distance assumptions, it is not totally de-correlated
from one another [18]. Practically, the work in [3] assumes
that the eavesdropper has no possible way of modeling the
channel between Alice and Bob, based on what he is receiving
from the broadcasted S(t) from Alice. We demonstrate in
this paper that a careful modeling of the channel can lead
a passive eavesdropper to recover a significant part of the
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Fig. 3. ML model architecture to estimate the generated key.

signal power variations, and consequently generate a highly
correlated key to the one exchanged by Alice and Bob. Eve
could then retrieve the same Alice-Bob key through a simple
and easy brute forcing.

C. ML-based attack

In this approach, we exploit the correlation between the
receiver and the eavesdropper signals to train a ML model to
estimate for a given setting the corresponding secret key based
on the signal received in the eavesdropper side. We formulate
the problem as a classification problem, and we assume the
independence between the bits. Therefore, for a given signal,
we slice the window of n sub-samples and estimate the class
which corresponds to a p-length word. An illustration of the
model is show in Figure 3 and the detailed hyperparameters
of the architecture are depicted in Table II.

TABLE II
ARCHITECTURE OF THE 1D-CNN.

Layer type Unit Output shape # of Parameters

Conv (ReLU) (16,3) (16, 658) 64
Maxpool (2) (16, 329) 0

Conv (ReLU) (32,3) (32, 327) 1,568
Maxpool (2) (32, 163) 0

Conv (ReLU) (64,3) (64, 161) 6,208
Maxpool (2) (64, 80) 0
Flatten - - 5,120

Linear (LReLU) 16 - 81,936
Linear 4 - 84

Total parameters - - 89,860

Dataset. We built a dataset of 120000 samples correspond-
ing to the different scenarios as follows:

• Free Space environment: in this case we generate signals
from an emitter and collect both signals at the legitimate
receiver and the eavesdropper. The propagation channel
for this case is a simple path loss for both receivers.

• Urban environment: in this case we model the channel
following the Rician model while varying the parameter
k ∈ [0, 10] for different situations.

As for training and validation, the dataset samples are split
in a 7 : 3 way. We use a learning rate of 1e−4 and a batch size
of 4 for the training. We use Adam optimizer (β1 = 0.9 and
β2 = 0.999) with the negative log likelihood loss function.
We train the model for 100 epochs.

The objective of the proposed approach is to generate a
bit stream from a received signal by slicing a window that
generates 2 bit at a time. While the ideal case is that the
generated bit stream is identical to the established key between
thee legitimate users, the practical aim is to have as high
correlation as possible that would reduce the exploration space
in a brute-force follow-up attack.

IV. EXPERIMENTS

In this section, we present the experimental study in differ-
ent scenarios and propagation environments.

A. Setup

In an urban environment, the propagation is faced by both
path loss and multipath fading. The higher traffic density is,
the higher the impact of multipath and the lower the impact
of line of sight propagation. Hence, to model the wireless
channel, we use the Rician model. Varying the K factor in
the Rician model translates the variation of the impact of the
LoS and by consequence models the traffic density.

B. Results

Figure 4 shows the correlation between the bit stream esti-
mated by the eavesdropper and the actually generated key by
the legitimate vehicles. The correlation translates the success
probability to unveil the generated key by the eavesdropper.
Using our attack model, it is clear from Figure 4 that the
lower traffic is around the legitimate vehicles, the higher the
probability of key unveiling from a passive eavesdropper.



-2000 -1500 -1000 -500 0 500 1000 1500 2000

Lags

-0.2

0

0.2

0.4

0.6

0.8

1
N

or
m

al
iz

ed
 c

ro
ss

-c
or

re
la

tio
n

Correlation of Estimated Signal vs. Real Signal

K=0(Rayleigh)
K=2
K=4
K=8
K=10

Fig. 4. Correlation between the RSS received by Bob and the RSS estimated
at Bob by Eve.

5 10 15 20 25 30 35 40
SNR

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
rr

el
at

io
n

K=10
K=8
K=6
K=4
K=2
K=0

Fig. 5. Correlation between the RSS received by Bob and the RSS estimated
at Bob by Eve for different SNR values.

To further evaluate the effectiveness of the attack, we
implemented the whole key generation protocol from the
eavesdropper perspective.

V. KEY RETRIEVING DIFFICULTY

The environment modeling technique allows the generation
of estimated received signal strength whose correlation to the
actual received signal strength depends on the environment
itself. While this is an interesting finding, a full key generation
process is needed as a proof of concept of this attack.
In this section, we present an optimized space exploration
attack to estimate the difficulty of brute forcing the key
and consequently compromising the key agreement. Based
on the correlation shown in Figure 4,we build a customized

exploration technique that takes into account the specificity of
the channel model. In fact, instead of launching a brute force
exploration on the whole space, we proceed to a local search.
This is explained by the signal correlation we obtain from
the estimated RSS. The higher the correlation, the less bits to
flip in the exploration. The exploration method is described
in Algorithm 1. In this algorithm, we define a local space
represented by a window of N−bits where N represents the
size of the local space to explore. The exploration consists of
flipping P bits within the local space, where P < N . After
scanning a given combination (N,P ), we gradually increase
the local space as well as the number of bits to flip (P ). In
the case of low correlation, the size of the local space is
high, thereby increasing the possibilities to explore and the
exploration time consequently. The initialization is a purely
empirical choice and could be adapted to the key size.

Algorithm 1: Difficulty of key brute forcing.
Result: Number of iterations to retrieve the key: iter
//Initialize the exploration parameters
if COR > 0.85 then

P = 1;
N = Sizeof(Ke);

else
if COR ∈ [0.75, 0.85] then

P = 2;
N = 4;

else
if COR ∈ [0.65, 0.75] then

P = 4;
N = 8;

else
P = 6;
N = 12;

end
end

end
//Start the exploration
while True do

//Explore combinations by flipping P bits out of
//N-bit windows
Explore(Ke, N, P );
if (Key Retrieved) then

return(iter) ;
else

if (N ¡ Sizeof(Ke) ) then
N++ ;

else
P++ ;
N = P+1 ;

end
end

end

Figure 6 shows the result of key retrieving difficulty in
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terms of number of iterations for a key agreement scenario
of 128 bits. In the case of dense traffic, the impact of
vehicles shadowing lead to eliminate the LOS component of
the received signal. Hence, the only component that shapes
the signal power in the receiving part is the multipath NoLOS
component. While the key generation process is not compro-
mised in this case, all remaining scenarios are breakable in a
very short time.

VI. DEFENDING THROUGH ADVERSARIAL ATTACKS

In this section, we provide a defense against our ML-
based attack that leverages the inherent vulnerability of ML.
More specifically, we exploit adversarial machine learning
approaches to generate an adversarial noise that is able to
fool the attacker. IN fact, despite their effectiveness and
popularity, ML-powered applications suffer from a critical
challenge, i.e., adversarial attacks. In fact, by injecting specific
perturbation patterns into input data, adversarial attacks can
fool the victim model and mislead its cognitive process. With
thorough methods proposed, carefully designed adversarial
perturbations can be implemented in the real world.

An adversary, using information learned about the structure
of the classifier, tries to craft perturbations added to the input
to cause incorrect classification. For illustration purposes, con-
sider a CNN used for a classification task. Given an original
input x and a target classification model f(), the problem of
generating an adversarial example x̃ can be formulated as a
constrained optimization [19]:

x̃ = argmin
x̃

D(x, x̃), s.t. f(x) = l, f(x̃) = l̃, l ̸= l̃ (10)

Where D is a distance metric used to quantify the similarity
between two samples and the goal of the optimization is to
minimize the added noise, typically to avoid detection of the
adversarial perturbations. l and l̃ are the two labels of x and x̃,
respectively: x̃ is considered as an adversarial example if and
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Algorithm 2: attack function.
Input: a classifier: C with loss J , noise budget: ε,

step size: α,input signal: x, label: l, number of
iterations: m ;

Output: xadv Initialize xadv ← 0 ;
for i= 0 to m-1 do

xi+1
adv = Clip{xi+αsign(∇adv

xi
Jθ(C(xi

adv), l))}
;

end

only if the label of the two samples are different (f(x) ̸= f(x̃))
and the added noise is bounded (D(x, x̃) < ϵ where ϵ ⩾ 0).
Distance metrics. The adversarial examples and the added
perturbations are designed by the attacker to be visually
imperceptible by humans. To model this imperceptability, three
main metrics to approximate human’s perception of visual
difference, namely L0, L2, and L∞ [2]. These metrics are
special cases of the Lp norm:

∥x∥p =

(
n∑

i=1

|xi|p
) 1

p

(11)

These three metrics focus on different aspects of visual
significance. L0 counts the number of pixels with different
values at corresponding positions in the two images. L2

measures the Euclidean distance between the two images x
and x̃. L∞ measures the maximum difference for all pixels at
corresponding positions in the two images.

In our case, we try too generate an adversarial patch that
is case-agnostic, i.e., it fools the adversary’s model regardless
of the case or the setting. Practically, the defender will be
broadcasting the adversarial patch in parallel with the key
generation and establishment protocol. Therefore, we try to
generate Input-Agnostic adversarial noise inspired from the
universal adversarial perturbations (UAP) [20], which gener-
ates an input-agnostic adversarial patch after optimizing over
a given dataset. Let y ∈ Rd be an input of dimension d that



follows a distribution µ (y ∼ µ). The main objective of a UAP
is to fool a target model C(.) on almost all inputs sampled
from µ. This problem can be formulated as finding a vector δ
such that:

C(x+ δ) ̸= C(x), for ”most” x ∼ µ (12)

Where δ represents the adversarial patch and must satisfy
the following two constrains:

• ∥δ∥p ≤ ξ
• Px∼µ (C(x+ δ) ̸= C(x)) ≥ 1− ρ

The parameter ξ controls the magnitude of the perturbation
vector δ, and ρ quantifies the desired fooling rate for all signals
sampled from the distribution µ.

The noise generation mechanism is detailed in Algorithm 2,
where the noise is updated based on the gradient ascent, i.e.,
to maximize the error on the ML model (which is in this case
the eavesdropper model). The output of this algorithm is an
adversarial noise that, when broadcasted reduces the efficiency
of the key retrieval attack and hence protects the privacy
of the defender. Figure 7 shows the adversarial noise-based
defense efficiency in terms of eavesdropper’s attack success.
Specifically, we explore the correlation between the estimated
key by the attacker and the actual key established between the
legitimate users vs. the noise magnitude that is broadcasted.
The figure depicts that for a noise budget ε = 0.004, the
correlation is low enough to make the key retrieval time very
costly from the eavesdropper perspective.

VII. CONCLUDING REMARKS

The interaction with the physical world in applications
such as e-Health, intelligent transportation systems, and access
control further sharpens the critical aspect of any eventual
compromise of such communicating systems. On the other
hand, the limited power and resource budget is a constraints
that motivates the development of lightweight cryptography
for IoT and Edge devices. However, this might come at a
high cost in terms of security and privacy.

This paper investigates the limits of channel based key
generation in the context of vehicular communication. We
show that these systems vulnerable to attacks from different
vectors and layers, and can be compromised by. a ML-based
approach with a passive eavesdropper threat model. We also
exploit the vulnerability of ML models to design a defense
based on adversarial noise. The adversarial noise generated by
the defender operates as a defensive smart jamming approach
that actively deceives that attacker.
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