Augmented quantization: a general approach to mixture models

Charlie SIRE ${ }^{1,2,3}$

Supervisors: R. LE RICHE ${ }^{3}$, D. RULLIERE ${ }^{3}$, J. ROHMER ${ }^{2}$, L. PHEULPIN ${ }^{1}$, Y. RICHET 1

${ }^{1}$ IRSN
${ }^{2}$ BRGM
${ }^{3}$ Mines Saint-Etienne and CNRS,LIMOS

April 4th, 2023

Content

(1) Motivation

(2) New representation

(3) Algorithm steps

- Find clusters
- Perturb clusters
- Find representative

4. Toy problems

Quantizing rare random maps

Details in [5]

Schematic method

Work with the input space

Sub-quantization

Perform a sub-quantization in every Voronoi cell to represent the inputs related to every prototype flooding

Mixture models

Work with uniform distribution instead of diracs on the marginals

Content

(1) Motivation

(2) New representation
(3) Algorithm steps

- Find clusters
- Perturb clusters
- Find representative

4. Toy problems

Augmented representation: mixture models

The classical clustering approach provides ℓ diracs with associated weights

Objective: Provide more complex representation with prototypes being continuous distributions

Idea: We investigate an approximation \tilde{X}_{ℓ} of a sample $\left(x_{i}\right)_{i=1}^{n}$

- $\tilde{X}_{\ell}=R^{(J)}$
- J a discrete random variable $\in\{1, \ldots, \ell\}$ with weights denoted $\left(\omega_{j}\right)_{j=1}^{\ell}$
- $\forall j \in\{1, \ldots, \ell\}, R^{(j)} \in \mathcal{R}$ a given family of distributions

Classical approach I

We have a sample $\left(x_{i}\right)_{i=1}^{n} \in \mathcal{X}^{n}$
Principle: Find $\Gamma_{\ell}=\left(\gamma_{1}, \ldots, \gamma_{\ell}\right) \in \mathcal{X}^{\ell}$ minimizing [3]

$$
\epsilon_{p}\left(\Gamma_{\ell}\right)=\left(\frac{1}{n} \sum_{i=1}^{n}\left\|x^{(i)}-\underset{\gamma \in \Gamma_{\ell}}{\arg \min }\right\| x^{(i)}-\gamma\| \|^{p}\right)^{\frac{1}{p}}
$$

We have

$$
\begin{aligned}
\epsilon_{p} & =\left(\sum_{j=1}^{\ell} \frac{\operatorname{card}\left(C_{\Gamma_{\ell}}^{(j)}\right)}{n} \frac{1}{\operatorname{card}\left(C_{\Gamma_{\ell}}^{(j)}\right)} \sum_{x \in C_{\Gamma_{\ell}}^{(j)}}\left\|x-\gamma_{j}\right\|^{p}\right)^{\frac{1}{p}} \\
& =\left(\sum_{j=1}^{\ell} \frac{\operatorname{card}\left(C_{\Gamma_{\ell}}^{(j)}\right)}{n} \mathcal{W}_{p}\left(C_{\Gamma_{\ell}}^{(j)}, \delta_{\gamma_{j}}\right)^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

Classical approach II

Algorithm Lloyd's algorithm
$\Gamma_{\ell}=\left\{\gamma^{(1)}, \ldots, \gamma^{(\ell)}\right\} \in \mathcal{X}^{\ell}$, sample $\left(x^{i}\right)_{i=1}^{n}$ and X the associated r.v. while stopping criterion not met do

Update clusters: $C_{\Gamma_{\ell}}^{(j)}=\left\{x^{i}, j=\underset{j^{\prime} \in\{1, \ldots, \ell\}}{\arg \min }\left\|x^{i}-\gamma^{\left(j^{\prime}\right)}\right\|\right\}, j=1, \ldots, \ell$ $j^{\prime} \in\{1, \ldots, \ell\}$
Update centroids: $\gamma^{(j)} \leftarrow \mathbb{E}\left[X \mid X \in C_{\Gamma_{\ell}}^{(j)}\right], j=1, \ldots, \ell$ end while

Classical approach III

Algorithm Rewritten Lloyd's algorithm

$$
R=\left\{R^{(1)}, \ldots, R^{(\ell)}\right\} \in \mathcal{X}^{\ell}, \quad \text { sample }\left(x^{i}\right)_{i=1}^{n}
$$

while stopping criterion not met do
Update clusters: $\left(C^{(1)}, \ldots, C^{(\ell)}\right) \leftarrow$ FindClusters (R)
Update representatives: $R^{(j)} \leftarrow$ FindRepresentative $\left(C^{(j)}\right), j=1, \ldots, \ell$ end while

Adaptation

Objective: Adapt the method and find $R=\left(R^{(1)}, \ldots, R^{(\ell)}\right) \in \mathcal{R}$ and $C=\left(C^{(1)}, \ldots, C^{(\ell)}\right)$ minimizing
$\epsilon_{p}(R, C)=\left(\sum_{j=1}^{\ell} \frac{\operatorname{card}\left(C^{(j)}\right)}{n} \mathcal{W}_{p}\left(C^{(j)}, R^{(j)}\right)^{p}\right)^{\frac{1}{p}}$ with \mathcal{R} a given family of distribution

What we need:

- FindClusters providing clusters from representatives
- FindRepresentative providing representatives from clusters

Problem: Only FindClusters and FindRepresentative are not sufficient to be exploratory enough in the case of continuous distribution

Illustrative sample $\left(x_{i}\right)_{i=1}^{n}$

$R_{\text {true }}^{(1)} \sim \mathcal{U}_{[0,1]}$ and $R_{\text {true }}^{(2)} \sim \mathcal{U}_{[0.3,0.6]}$
$P(J=1)=\frac{1}{3}$ and $P(J=2)=\frac{2}{3}$

Try to identify these two representatives, starting from $R^{(1)} \sim \mathcal{U}_{[0,0.5]}$ and $R^{(2)} \sim \mathcal{U}_{[0.5,1]}$

Exploration problem

Augmented quantization algorithm

To converge to the best R and C, a perturbation of the clusters must be added

Algorithm Augmented quantization algorithm

Input: $R=\left\{R^{(1)}, \ldots, R^{(\ell)}\right\} \in \mathcal{R}^{\ell}$, sample $\left(x_{i}\right)_{i=1}^{n}$
Output: \tilde{X}_{ℓ}
$\left.\left(R_{\star}, C_{\star}, \epsilon_{\star}\right)\right) \leftarrow(\emptyset, \emptyset,+\infty)$
1: while stopping criterion not met do
Update clusters: $\left(C^{(1)}, \ldots, C^{(\ell)}\right) \leftarrow$ FindClusters (R)
Perturb clusters: $\left(C^{(1)}, \ldots, C^{(\ell)}\right) \leftarrow \operatorname{perturb}\left(C^{(1)}, \ldots, C^{(\ell)}\right)$
Update representatives: $\forall j \in\{1, \ldots, \ell\}, R^{(j)} \leftarrow$ FindRepresentative $\left(C^{(j)}\right)$
Update best configuration: $\left(R_{\star}, C_{\star}, \epsilon_{\star}\right)=\operatorname{UpdateBest}\left(R, C, R_{\star}, C_{\star}, \epsilon_{\star}\right)$
2: end while
3: $\left(\omega_{1}, \ldots, \omega_{\ell}\right)=\left(\frac{\operatorname{card}\left(C_{*}^{(1)}\right)}{n}, \ldots, \frac{\operatorname{card}\left(C_{*}^{(\ell)}\right)}{n}\right)$
4: J r.v. $\in\{1, \ldots, \ell\}$ with $\forall j \in\{1, \ldots, \ell\}, \mathbb{P}(J=j)=\omega_{j}$
5: $\tilde{X}=R_{\star}^{(J)}$

Content

(1) Motivation
(2) New representation
(3) Algorithm steps

- Find clusters
- Perturb clusters
- Find representative

4 Toy problems

FindClusters

Objective: Associates a partition of ℓ clusters to the ℓ representatives Inputs: $\left(x_{i}\right)_{i=1}^{n}$ and ℓ representatives $\left(R^{(1)}, \ldots, R^{(\ell)}\right)$
Outputs: Partition $C^{(1)}, \ldots, C^{(\ell)}$

General idea: Greedily build the clusters $C^{(1)}, \ldots, C^{(\ell)}$.

Consering S_{j} a large sample with distribution $R^{(j)}$

Add every x_{i} to cluster $j\left(x_{i}\right)$ that minimizes

$$
\delta\left(x_{i}, j\right)=\mathcal{W}_{p}\left(S_{j} \cup x_{i}, R^{(j)}\right)^{p}-\mathcal{W}_{p}\left(S_{j}, R^{(j)}\right)^{p}
$$

$\delta\left(x_{i}, j\right)$ measures how x_{i} makes S_{j} different to $R^{(j)}$

Remark: At each iteration, $S_{j\left(x_{i}\right)}=S_{j\left(x_{i}\right)} \cup x_{i}$

FindClusters illustration

Start with $R^{(1)} \sim \mathcal{U}_{[0,0.5]}$ and $R^{(2)} \sim \mathcal{U}_{[0.5,1]}$

Content

(1) Motivation

(2) New representation
(3) Algorithm steps

- Find clusters
- Perturb clusters
- Find representative

4. Toy problems

Perturb part 1: Split

Objective: Split some of the clusters by identifying their worst elements to place in
"bin" clusters
Inputs: $\left(x_{i}\right)_{i=1}^{n}$, a partition, $\left(C^{(1)}, \ldots, C^{(\ell)}\right)$, proportion of elements to remove $p_{\text {bin }}$, clusters to split indexes ${ }_{b i n}$

Outputs: Partition $\hat{C}=\left(C^{(1)}, \ldots, C^{(\ell)}, C_{\text {bin }}^{(1)}, \ldots, C_{\text {bin }}^{\left(\ell_{\text {bin }}\right)}\right)$

General idea: To split a cluster $C^{(j)}$, greedily fill $C_{\text {bin }}^{(j)}$ and empty $C^{(j)}$ by selecting

$$
x^{\star}=\underset{x \in C(j)}{\arg \min } \mathcal{W}_{p}\left(C^{(j)} \backslash x, \text { FindRepresentative }\left(C^{(j)} \backslash x\right)\right)
$$

x^{\star} makes the cluster $C^{(j)}$ the closest to its representative once removed

Split illustration

Perturb part 2: Merge

Objective: Go back to ℓ clusters by merging some of the $\ell+\ell_{\text {bin }}$ clusters together
Inputs: $\left(x_{i}\right)_{i=1}^{n}$, a partition
$\hat{C}=\left(C^{(1)}, \ldots, C^{(\ell)}, C_{\text {bin }}^{(1)}, \ldots, C_{\text {bin }}^{\left(\ell_{\text {bin }}\right)}\right)=\left(\hat{C}_{1}, \ldots, \hat{C}_{\ell+\ell_{\text {bin }}}\right)$
Outputs: A partition $C_{\star}=\left(C^{(1)}, \ldots, C^{(\ell)}\right)$

General idea: Testing all the possible merging to go from $\ell+\ell_{\text {bin }}$ groups to ℓ groups [1], keep the one with the lowest quantization error

$$
\sum_{j=1}^{\ell} \omega_{j} \mathcal{W}_{p}\left(C^{(j)}, \text { FindRepresentative }\left(C^{(j)}\right)\right)^{p}
$$

Merge illustration

Content

(1) Motivation

(2) New representation
(3) Algorithm steps

- Find clusters
- Perturb clusters
- Find representative

4 Toy problems

FindRepresentative

Objective: Associate to a cluster a representative belonging to the parametric family $\mathcal{R}=\left\{r(\underline{\eta}), \underline{\eta} \in \mathbb{R}^{d}\right\}$
Input: A cluster $C^{(j)}$
Output: A representative distribution $r(\underline{\eta})$

General idea: Minimise the Wasserstein distance between $r(\underline{\eta})$ and the cluster $C: \mathcal{W}_{p}(r(\underline{\eta}), C)$

Practically: find the best parameters for each marginal. By denoting $C^{k}=\left\{x_{k},\left(x_{1}, \ldots, x_{m}\right) \in C\right\}$, we can optimize

$$
\forall k \in\{1, \ldots, m\}, \mathcal{W}_{p}\left(r\left(\underline{\eta_{k}}\right), C^{k}\right)
$$

Why ? In 1D, $\mathcal{W}_{p}\left(\mu_{1}, \mu_{2}\right)=\left(\int_{0}^{1}\left|F_{1}^{-1}(q)-F_{2}^{-1}(q)\right|^{p} d q\right)^{\frac{1}{p}}[4]$

New FindClusters

Back to the dirac case

FindRepresentative: Optimising $\mathcal{W}_{p}\left(C, \delta_{\left(x_{1}, \ldots, x_{m}\right)}\right)$
Provides $\left(x_{1}^{\star}, \ldots, x_{m}^{\star}\right)$ the centroid of C
FindClusters: Build $\left(C^{(1)}, \ldots, C^{(\ell)}\right)$ from $\gamma_{1}, \ldots, \gamma_{\ell}$
One can show that $x \in C^{(j)} \Longleftrightarrow j \in \arg \min \left\|x-\gamma_{j^{\prime}}\right\|$

$$
j^{\prime} \in\{1, \ldots, \ell\}^{\prime}
$$

Conclusion These steps are the same as K-means

Content

(1) Motivation

2) New representation

(3) Algorithm steps

- Find clusters
- Perturb clusters
- Find representative

4 Toy problems

Dirac

Without the clusters perturbation, our algorithm do the same as K-means
The perturbation can reduce the quantization error

Lloyd's algorithm $\left(\epsilon_{2}\left(\Gamma_{2}\right)=0.28\right) \quad$ Augmented quantization $\left(\epsilon_{2}\left(\Gamma_{2}\right)=0.25\right)$

Dirac: statistical tests

Comparison on 500 different samples of 20 points in $[0,1]^{2}$, with 20 starts tested for each one. Relative difference between the quantization errors (in \%):

Lower quantization error for 43% of the tests
Same quantization error for 53% of the tests

Uniform mixtures

$$
\begin{aligned}
& \left(\sum_{j=1}^{\ell} \omega_{j} \mathcal{W}_{2}\left(C^{(j)}, R^{(j)}\right)^{2}\right)^{\frac{1}{2}}=3.5 \times 10^{-3} \\
& \mathcal{W}_{2}\left(\left(x_{i}\right)_{i=1}^{n}, \tilde{X}\right)=2.3 \times 10^{-3}
\end{aligned}
$$

Gaussian mixtures

$$
f_{X}=\frac{1}{3} f_{\mathcal{N}}\left(\frac{x-0.3}{0.1}\right)+\frac{2}{3} f_{\mathcal{N}}\left(\frac{x-0.6}{0.2}\right)
$$

Gaussian mixtures II

Density of the 2 obtained clusters and the associated representatives

$\left(\sum_{j=1}^{\ell} \omega_{j} \mathcal{W}_{2}\left(C^{(j)}, R^{(j)}\right)^{2}\right)^{\frac{1}{2}}=1 \times 10^{-2}$
$\mathcal{W}_{2}\left(\left(x_{i}\right)_{i=1}^{n}, \tilde{X}\right)=8.5 \times 10^{-3}$
$\mathcal{W}_{2}\left(\left(x_{i}\right)_{i=1}^{n}, \tilde{X}_{\mathrm{GMM}}\right)=7.5 \times 10^{-3}$ [2]

Hybrid mixture

Summary and future work

Summary:

- Very general method to investigate mixture models
- Possibility to include different types of distributions
- Innovative approach but time consuming

Further developments:

- Investigate the optimization of $p_{\text {bin }}$ in the perturb step
- Active learning of the number of representatives

Bibliography

[1] O-Yeat Chan and Dante V. Manna. "Congruences for Stirling Numbers of the Second Kind". In: 2009.
[2] Frank Dellaert. "The Expectation Maximization Algorithm". In: (July 2003).
[3] Gilles Pagès and Jun Yu. "Pointwise convergence of the Lloyd algorithm in higher dimension". working paper or preprint. Dec. 2013. URL:
https://hal.archives-ouvertes.fr/hal-00922957.
[4] Victor M. Panaretos and Yoav Zemel. "Statistical Aspects of Wasserstein Distances". In: Annual Review of Statistics and Its Application 6.1 (2019), pp. 405-431. DOI: 10.1146/annurev-statistics-030718-104938.
[5] Charlie Sire et al. "Quantizing rare random maps: application to flooding visualization". In: July 2022.

