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Maximum likelihood estimator
for skew Brownian motion:

the convergence rate

Antoine Lejay∗ Sara Mazzonetto†

February 6, 2023

Abstract

We give a thorough description of the asymptotic property of the maximum
likelihood estimator (MLE) of the skewness parameter of a Skew Brownian
Motion (SBM). Thanks to recent results on the Central Limit Theorem of
the rate of convergence of estimators for the SBM, we prove a conjecture
left open that the MLE has asymptotically a mixed normal distribution
involving the local time with a rate of convergence of order 1/4. We also
give a series expansion of the MLE and study the asymptotic behavior of
the score and its derivatives, as well as their variation with the skewness
parameter. In particular, we exhibit a specific behavior when the SBM is
actually a Brownian motion, and quantify the explosion of the coefficients of
the expansion when the skewness parameter is close to −1 or 1.

MSC(2020) Classification: Primary 62F12; Secondary 62F03.

Keywords: Skew Brownian motion; maximum likelihood estimator (MLE);
statistical estimation; null recurrent process.

Skew and other singular diffusions attract more and more interest in modeling
diffusive stochastic behavior in presence of semi-permeable barriers, discontinuities,
and thresholds. Beyond theoretical studies, simulation and inference are also
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necessary tools for practical purposes. For some example of applications in various
fields, see e.g. [28, 9, 31, 36, 30, 8, 10, 7, 13] among others.

The inference of skew diffusion cannot follow from a simple adaptation of known
techniques for Stochastic Differential Equations (SDE) as the ones presented
in [12, 15]. In fact their distributions are singular with the ones of classical SDE.
The limits are usually mixed normal ones and the rate is not necessarily 1/2. The
work dealing with the inference of skew diffusion is rather limited. Let us cite
however [6, 21, 22, 27, 17, 26, 25, 24, 33, 34] for frequentist inference and [5, 3, 4]
for Bayesian inference.

The Skew Brownian motion (SBM) is a basic brick for constructing Skew diffusion,
as several transformations reduces Skew diffusions to SBM [16]. This latter process
depends on a single parameter 𝜃 ∈ [−1, 1] — the skewness parameter — which
rules out its behavior when it crosses zero. For 𝜃 = 0, the SBM is a Brownian
motion. For 𝜃 = ±1, it is a Reflected Brownian motion.

A series of works considers the inference of the skewness parameter from high-
frequency observations. In [21], the authors have given an asymptotic expansion of
the Maximum Likelihood Estimator (MLE) 𝜃𝑛 of 𝜃 around 𝜃 = 0 in power of 𝑛−1/4,
where 𝑛 is the number of observations. A heuristic explanation of the power 1/4 is
given by analogy with the Skew Random Walk [18], where the MLE depends on
the local time at zero of the discrete walk, which a random quantity of order

√
𝑛.

Indeed in [22], where the consistency of the MLE and another estimator is proved,
it was empirically observed that the rate of convergence should be 1/4, meaning
that the observed points that “carry the information” are those close to 0, and are of
order

√
𝑛. This also explains why the asymptotic limit of the MLE involves the local

time at 0. The limit is of type s(𝜃)𝐺/
√
𝐿1 (when the process is observed on [0, 1]),

where (𝐿𝑡)𝑡≥0 is the symmetric local time at 0 of the SBM and 𝐺 is a centered unit,
Gaussian independent from the SBM. The value of s(𝜃) was empirically observed
as closed to 𝜅

√
1− 𝜃2. It was conjectured in [22] that s(𝜃) = 𝜅

√
1− 𝜃2 as for the

Skew Random Walk.

The article [27] brought the missing result required to establish a Central Limit
Theorem on the MLE and other estimators. A related result may also be found
in [32]. As for the results in [22], this is based on an extension of the work of
J. Jacod [14] that cannot be applied directly as the SBM has a singular distribution
with respect to the one of the BM.

In this article, we first prove the asymptotic normality of the MLE of the skewness
parameter 𝜃 of the SBM. More precisely, we establish that

𝑛1/4(𝜃𝑛 − 𝜃)
stably−−−→
𝑛→∞

s(𝜃)𝑊 (𝐿𝑇 )
law
= s(𝜃)

𝑊 (1)√
𝐿𝑇
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for a Brownian motion 𝑊 independent from the SBM. In particular, we show
that s(𝜃) = 𝜅(𝜃)

√
1− 𝜃2 with a pre-factor 𝜅(𝜃) that varies slowly.

Second, using a recent asymptotic inversion formula [20], we establish a series
expansion of 𝜃𝑛 as

𝜃𝑛 = 𝜃 +
+∞∑︁
𝑘=1

D𝑘,𝑛(𝜃)

(︂
s(𝜃)P𝑛(𝜃)

𝑇 1/4𝑛1/4

)︂𝑘

, (1)

for some random quantities D𝑘,𝑛(𝜃) whose asymptotic behavior is also studied,
and P𝑛(𝜃) is asymptotically pivotal (i.e., the asymptotic law does not depend on
the parameter). All these results are based on the asymptotic behavior of the score
and their derivatives at any orders. Expansion (1) provides some insight on the
behavior of the MLE in function of the number of samples 𝑛 and the true value
of 𝜃. In particular, the closer 𝜃 is to ±1, the more skewness is observed.

Furthermore, we show that D2𝑘+1,𝑛(𝜃 = 0) converges to 0 so that a more precise
expression of the involving a multivariate mixed Gaussian distribution could be
given for the MLE of 𝜃 = 0. This expression is an alternative to the one already
given in [21].

Moreover, we give some numerical experiments on the rate of convergence of the
distribution functions of the MLE and the score and its derivatives towards their
limiting distributions. The rate of convergence of this Berry-Esseen type analysis
seems to depend on 𝜃. This will be subject to further study.

Finally, we study the behavior of the limiting coefficients in function of 𝜃. In
particular, the expansion in (1) exhibits a boundary layer estimate for 𝜃 close to ±1
as the coefficients explode in powers of (1− 𝜃2)−1/2.

Outline. We present our main results in Section 1. They are built on the
asymptotic behavior of the score and its derivative which we give in Section 2. We
also study numerically the rate of convergence of the scores and their derivatives
towards their limits in Section 2.1. The properties of the limiting coefficients are
studied in Section 3. And the proofs of our main theorems are given in Section 4.

1 Main results

The SBM 𝑋 of parameter 𝜃 ∈ [−1, 1] solves the SDE

𝑋𝑡 = 𝐵𝑡 + 𝜃𝐿𝑡, 𝑡 ≥ 0 (2)

for 𝐵 a Brownian motion and {𝐿𝑡}𝑡≥0 its symmetric local time of 𝑋 at point 0.
Actually, the SDE (2) has a unique strong solution [16, 11]. No solution exists
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when |𝜃| > 1. For 𝜃 = ±1, the SBM is a (positively if 𝜃 = 1 or negatively if 𝜃 = −1)
Reflected Brownian motion.
We denote by (Ω,F,P𝜃) the underlying probability space and by {F𝑡}𝑡≥0 the
filtration with respect to which 𝑋 is adapted. This filtration may be taken as the
one generated by the driving Brownian motion and may be assumed to satisfy the
usual conditions (i.e. it is complete and right continuous).
We are concerned with the estimation of the parameter of the SBM observed at
discrete times over a finite time window. We will establish limits in high-frequency.

Data 1. We observed the SBM {𝑋𝑡}𝑡∈[0,𝑇 ] of parameter 𝜃0 ∈ (−1, 1) at times
{𝑡𝑖}𝑖=0,...,⌊𝑛𝑇 ⌋ on a time window [0, 𝑇 ] with 𝑡𝑖 := 𝑖/𝑛. The starting point is 𝑋0 = 0.
Note that 𝑛 is the number of sample per unit of time.

Remark 1. We impose 𝑋0 = 0 to ensure that 𝐿𝑇 ̸= 0. When 𝑋0 ̸= 0, we could still
apply our methodology on a random window [𝜏0 ∧ 𝑇, 𝑇 ] where 𝜏0 is the first hitting
time from 0. If 𝜏0 > 𝑇 , then no observation can be used to estimate 𝜃.

The density transition function of the SBM of parameter 𝜃 is [35, 16]

𝑝𝜃(𝑡, 𝑥, 𝑦) :=
1√
2𝜋𝑡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

exp
(︁
− (𝑥−𝑦)2

2𝑡

)︁
+ 𝜃 exp

(︁
− (𝑥+𝑦)2

2𝑡

)︁
if 𝑥 ≥ 0, 𝑦 ≥ 0,

exp
(︁
− (𝑥−𝑦)2

2𝑡

)︁
− 𝜃 exp

(︁
− (𝑥+𝑦)2

2𝑡

)︁
if 𝑥 ≤ 0, 𝑦 ≤ 0,

(1− 𝜃) exp
(︁
− (𝑥−𝑦)2

2𝑡

)︁
if 𝑥 ≥ 0, 𝑦 ≤ 0,

(1 + 𝜃) exp
(︁
− (𝑥−𝑦)2

2𝑡

)︁
if 𝑥 ≤ 0, 𝑦 ≥ 0.

The SBM is null recurrent process with invariant measure 𝜇𝜃( d𝑥) := 𝜇𝜃(𝑥) d𝑥 with

𝜇𝜃(𝑥) :=

{︃
1 + 𝜃 if 𝑥 ≥ 0,

1− 𝜃 if 𝑥 < 0.

When observed at regular times as in Data 1, we call likelihood the random function:

Λ𝑛(𝜃) =

⌊𝑛𝑇 ⌋−1∏︁
𝑖=0

𝑝𝜃(∆𝑡,𝑋𝑡𝑖 , 𝑋𝑡𝑖+1
), 𝜃 ∈ [−1, 1] with ∆𝑡 =

1

𝑛
.

Since [−1, 1] ∋ 𝜃 ↦→ 𝑝𝜃(∆𝑡, 𝑥, 𝑦) is analytic, 𝜃 ↦→ Λ𝑛(𝜃) is also analytic. The score
is 𝜕𝜃 log Λ𝑛(𝜃).
Let us define 1

𝑘𝜃(𝑥, 𝑦) := 𝜕𝜃 log 𝑝𝜃(1, 𝑥, 𝑦) =
𝜕𝜃𝑝𝜃(1, 𝑥, 𝑦)

𝑝𝜃(1, 𝑥, 𝑦)
=

sgn(𝑦)

sgn(𝑦)𝜃 + exp(2(𝑥𝑦)+)
,

1In the definition of 𝑘𝜃(𝑥, 𝑦), there is a mistake in [22]: Δ𝑡 has to be replaced by 𝑇 . Note that
in [22], 𝑛 is the number of samples while here, 𝑛 is the number of samples per unit. Therefore,
the limit distribution in [22] is the local time at time 1 of

√
𝑇𝑋, while here it is the one of 𝑋.
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Figure 1: Density of the MLE for various values of 𝜃 using 10 000 samples of the
SBM using ∆𝑡 = 10−4 for 𝑇 = 1.

where (𝑥𝑦)+ stands for max(0, 𝑥𝑦). For any 𝑛 > 0, the following scaling holds true:

𝑘𝜃(𝑥
√
𝑛, 𝑦

√
𝑛) = 𝜕𝜃 log 𝑝𝜃(∆𝑡, 𝑥, 𝑦) with ∆𝑡 =

1

𝑛
.

Remark 2. The score rewrites 𝜕𝜃 log Λ𝑛(𝜃) =
∑︀⌊𝑛𝑇 ⌋−1

𝑖=0 𝑘𝜃(𝑋𝑡𝑖

√
𝑛,𝑋𝑡𝑖+1

√
𝑛).

Proposition 1 ([22]). The maximum likelihood estimator (MLE)

𝜃𝑛 := argmax
𝜃∈[−1,1]

Λ𝑛(𝜃)

is the unique solution to 𝜕𝜃 log Λ𝑛(𝜃𝑛) = 0 and is a consistent estimator of the
parameter 𝜃0 of the SBM under P𝜃0.

The goal of this paper is to refine the latter result providing asymptotic information.

In Figure 1, we plot the empirical density of the MLE for various values of 𝜃. We
use the method in [23] for the simulation of the SBM, while the MLE associated
to each trajectory is obtained maximizing numerically the log-likelihood. We see
that the MLE is concentrated around the true value. The more 𝜃 is closer to 1,
the more the density is skewed to the left. In the next section we examine this
behavior. For reasons related to symmetry, for the remainder of the document, we
restrict to consider the case 𝜃 ≥ 0.

1.1 Asymptotic mixed normality of the MLE estimator

We establish, in the forthcoming Theorem 1, the asymptotic mixed normality of
the MLE, with the non standard rate of 𝑛1/4. This result has already been proven,
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when 𝜃 = 0, in [21]. Before to state the result, let us first introduce a definition
specifying the nature of the asymptotic normality.

Definition 1 (Class of L-mixed normal distribution). Let 𝐿1 be the local time
at point 0 and time 1 of the SBM 𝑋 and 𝐺 ∼ N(0, 1) be independent from F1

(hence from 𝐿1). Note that the distribution of 𝐿1 does not depend on 𝜃. A random
variable 𝑀 is said to be L-mixed normal distributed if

𝑀
law
=

𝐺√
𝐿1

.

Note that a L-mixed normal distribution has an infinite second moment. It is a
symmetric, unimodal distribution with heavy tails.
Remark 3 (Simulation of the local time). The local time of the SBM is equal in
distribution to the one of the Brownian motion, hence 𝐿1

law
= |𝐻| for 𝐻 ∼ N(0, 1).

Therefore, the local time and L-mixed normal distributions are easily simulated.
Remark 4 (Scaling). Let 𝐿 be the symmetric local time of a SBM 𝑋 at the point 0
and 𝑊 be a Brownian motion 𝑊 independent from 𝑋. They both satisfy a scaling
property, in particular for the local time it holds 𝐿𝑇

law
=

√
𝑇𝐿1. Hence,

𝑊 (𝐿𝑇 )

𝐿𝑇

law
=

𝑊 (1)√
𝐿𝑇

law
=

𝑊 (1)

𝑇 1/4
√
𝐿1

.

In other words, 𝑇 1/4𝑊 (𝐿𝑇 )/𝐿𝑇 and 𝑇 1/4𝐺/
√
𝐿1 (for 𝐺 ∼ N(0, 1) independent

from 𝑋) are L-mixed normal distributed.

We also introduce a quantity related to the asymptotic variance of the estimator
and to the Fisher information:

s(𝜃) :=

(︂
−
∫︁∫︁

R2

𝜇𝜃(𝑥)𝑝𝜃(1, 𝑥, 𝑦)𝜕𝜃𝑘(𝑥, 𝑦) d𝑥 d𝑦

)︂−1/2

∈ R. (3)

The quantity s(𝜃) will be studied in more details in Proposition 2, Remark 5, and
in Section 3, in particular in Section 3.3.

We are now ready to state the main result which says that (𝑛𝑇 )1/4s(𝜃)−1(𝜃𝑛 − 𝜃) is
asymptotically a L-mixed normal distribution under P𝜃.

Theorem 1 (Asymptotic L-mixed normality of the MLE for the SBM). Let
𝜃 ∈ (−1, 1). The MLE estimator 𝜃𝑛 is asymptotically mixed normal with

𝑛1/4(𝜃𝑛 − 𝜃)
stably−−−→
𝑛→∞

s(𝜃)
𝐻√
𝐿𝑇

, under P𝜃,

where 𝐻 ∼ N(0, 1) independent from F𝑇 (hence of 𝐿𝑇 ).

6



The proof of Theorem 1 follows from the results of the next section, Section 1.2,
which rely on the study of the score and its derivatives that we propose in Section 2.

Heuristically, the non standard rate of 𝑛1/4, can be explained by the fact that the
quality of the estimation depends mainly on the time spent by the SBM around 0,
and that the fraction of observations when {𝑋𝑡𝑖}𝑖=0,...,𝑛 is of order

√
𝑛. This fact is

rigorously established for the Skew Random Walk where the local time is really
the occupation time at the point where the bias-dynamic is perturbed [19].

Although it was conjectured in [22] from the results on the Skew Random Walk
that the coefficient s(𝜃) in front of the mixed Gaussian should be proportional
to

√
1− 𝜃2, we find a slowly varying pre-factor.

Proposition 2. For all 𝜃 ∈ (−1, 1), the function (𝑥, 𝑦) ↦→ 𝜇𝜃(𝑥)𝑝𝜃(1, 𝑥, 𝑦)𝜕𝜃𝑘(𝑥, 𝑦)
is integrable and its integral is negative, so s(𝜃) ∈ (0,∞) is well defined. Besides
there exist two real constants 0 < 𝑐1 ≤ 𝑐2 < ∞ such that for all 𝜃 ∈ (−1, 1)

𝑐−
√
1− 𝜃2 ≤ s(𝜃) ≤ 𝑐+

√
1− 𝜃2.

We find that 0.79 ≤ 𝑐− < 𝑐+ ≤ 0.88, which is consistent with the numerical
observations of [22].

The proof of Proposition 2 is provided in Section 3.3 where a more precise statement
is formulated. Actually we show in Remark 14 that an accurate approximation
of s(𝜃) is given by

s(𝜃) ≈
√
1− 𝜃2√

1.292 + 0.232 𝜃2 + 0.071 𝜃4
.

1.2 Asymptotic expansion for the MLE estimator

Let us first consider the following family of statistics of interest:

S𝑚(𝑛, 𝜃) :=
1

𝑛1/2

⌊𝑛𝑇 ⌋−1∑︁
𝑖=0

𝜕𝑚
𝜃 𝑘𝜃(𝑋𝑡𝑖

√
𝑛,𝑋𝑡𝑖+1

√
𝑛) for 𝑚 ≥ 0. (4)

Remark 2 shows that S𝑚(𝑛, 𝜃) = 𝜕𝑚
𝜃 (𝜕𝜃 log Λ𝑛(𝜃))/𝑛

1/2 so that S𝑚(𝑛, /𝜃) is the
renormalized 𝑚-th order derivative of the score.

Let us also consider the statistics, on {S1(𝑛, 𝜃) ̸= 0},

d𝑘,𝑛(𝜃) :=
−1

𝑘!

S𝑘(𝑛, 𝜃)

S1(𝑛, 𝜃)
for 𝑘 ≥ 0 and P𝑛(𝜃) := 𝑛1/4𝑇

1/4

s(𝜃)
d0,𝑛(𝜃),

7



as well as the constants

𝜉𝑚(𝜃) :=

∫︁∫︁
R2

𝜇𝜃(𝑥)𝑝𝜃(1, 𝑥, 𝑦)𝜕
𝑚
𝜃 𝑘(𝑥, 𝑦) d𝑥 d𝑦, for 𝑚 ∈ N. (5)

The integrability of (𝑥, 𝑦) ↦→ 𝜇𝜃(𝑥)𝑝𝜃(1, 𝑥, 𝑦)𝜕
𝑚
𝜃 𝑘(𝑥, 𝑦) is shown in Section 3, to-

gether with other properties of 𝜉𝑚(𝜃).

Remark 5. The quantity s(𝜃) given by (3) is related to 𝜉1(𝜃): s(𝜃)−2 = −𝜉1(𝜃).

Proposition 3. Under P𝜃,
(i) the statistics P𝑛(𝜃) = 𝑛1/4𝑇 1/4d0,𝑛(𝜃)/s(𝜃) is asymptotically L-mixed normal

distributed;
(ii) for every 𝑘 ≥ 1,

d𝑘,𝑛(𝜃)
prob.−−−→
𝑛→∞

d𝑘(𝜃) :=
−𝜉𝑘(𝜃)

𝑘!𝜉1(𝜃)
=

s(𝜃)2

𝑘!
𝜉𝑘(𝜃). (6)

Moreover, under P0, for every 𝑘 ≥ 1, d2𝑘,𝑛(0)
prob.−−−→
𝑛→∞

0 and d2𝑘(0) is, up to a multi-

plicative constant, L-mixed normal distributed. Furthermore {𝑛1/4d2𝑘,𝑛(0)}𝑘=0,...,𝑚

converges stably for any 𝑚 ≥ 1. The limit is identified in Proposition 4 in Section 2.

Proof. This is an immediate consequence of Proposition 4 in Section 2 on the
asymptotic behavior of the score combined with Remark 5.

In Theorem 2, we give an expansion of the MLE in term of d0,𝑛(𝜃) (and so of
s(𝜃)P𝑛(𝜃)

𝑇 1/4𝑛1/4 ). It follows from applying Theorem 3 in [20]. For 𝜃 = 0, such a type of
expansion was already given in [21] in the form provided in equation (8) below. We
also provide an alternative expansion based on a finer analysis of the coefficients’
asymptotic behavior.

Let us introduce some notation: for any 𝑚 ∈ N ∪ {∞}, let

Φ[𝑚](𝛿, 𝑥) :=
𝑚∑︁
𝑘=1

𝛿𝑘𝑥
𝑘 (7)

be the formal power series in 𝑥 of coefficients 𝛿 = {𝛿𝑘}𝑘≥1.

Theorem 2 (Asymptotic expansion, cf. [20, Theorem 3]). For any integer 𝑛 ≥ 1,
any 𝑁 ≥ 1, and any 𝜃 ∈ (−1, 1), the MLE satisfies under P𝜃,

𝜃𝑛 = 𝜃 + Φ[∞](D·,𝑛(𝜃), d0,𝑛(𝜃)) = 𝜃 +
+∞∑︁
𝑘=1

D𝑘,𝑛(𝜃)d0,𝑛(𝜃)
𝑘, (8)

8



where D1,𝑛(𝜃) := 1 and D𝑞,𝑛(𝜃), 𝑞 = 2, . . . , 𝑁 , are given by the following recursive
formula:

D𝑞,𝑛(𝜃) :=

𝑞∑︁
𝑚=2

d𝑚,𝑛(𝜃)
∑︁

𝑘1+···+𝑘𝑚=𝑞

D𝑘1,𝑛(𝜃) · · ·D𝑘𝑚,𝑛(𝜃). (9)

If 𝜃 = 0, another expansion holds

𝜃𝑛 = Φ[∞](a·,𝑛, 𝑛
−1/4) = d0,𝑛(0) +

∑︁
𝑘≥3
𝑘 odd

a𝑘,𝑛
𝑛𝑘/4

, (10)

where a𝑘,𝑛 for 𝑘 = 0, . . . , 𝑁 is a2𝑞,𝑛 := 0 if 𝑞 ≥ 0, and

a1,𝑛 := 𝑛1/4d0,𝑛(0) = s(0)P𝑛(0)/𝑇
1/4,

a2𝑞+1,𝑛 :=

2𝑞∑︁
𝑚=2

𝑚 even

𝑛1/4d𝑚,𝑛(0)
∑︁

𝑘1+···+𝑘𝑚=2𝑞

a𝑘1,𝑛 · · · a𝑘𝑚,𝑛

+

2𝑞+1∑︁
𝑚=3

𝑚 odd

d𝑚,𝑛(0)
∑︁

𝑘1+···+𝑘𝑚=2𝑞+1

a𝑘1,𝑛 · · · a𝑘𝑚,𝑛.

Remark 6. From [20], it can be seen that Φ(d·,𝑛(𝜃),Φ(D·,𝑛(𝜃), 𝑥)) = −𝑥. For the
first coefficients, it holds

D2,𝑛 = d2,𝑛, D3,𝑛 = d3,𝑛 + 2d22,𝑛,

D4,𝑛 = d4,𝑛 + 5d2,𝑛d3,𝑛 + 5d32,𝑛

and D5,𝑛 = d5,𝑛 + 6d2,𝑛d4,𝑛 + 21d22,𝑛d3,𝑛 + 14d42,𝑛 + 3d23,𝑛.

In the case of the sequence in (10),

a3,𝑛 = d3,𝑛(0)P𝑛(0)
3s(0)3/𝑇 3/4 + 𝑛1/4d2,𝑛(0)P𝑛(0)

2s(0)2/𝑇 1/2

and a5,𝑛 = (d5,𝑛(0) + 3(d3,𝑛(0))
2)P𝑛(0)

5s(0)5/𝑇 5/4

+(5𝑛1/4d2,𝑛(0)d3,𝑛(0) + 𝑛1/4d4,𝑛(0))P𝑛(0)
4s(0)4/𝑇

+2𝑛1/2(d2,𝑛(0))
2P𝑛(0)

3s(0)3/𝑇 3/4.

Remark 7. As d𝑘,𝑛 and P𝑛 depend on 𝜃, they cannot be computed under the true
parameter in the context of estimation (actually, P𝑛(𝜃𝑛) = 0 = d0,𝑛(𝜃𝑛) for the
MLE 𝜃𝑛) but can be used for statistical hypothesis testing.

The result shows a sort of “phase transition” between 𝜃 = 0 and 𝜃 ̸= 0. This is clearly
related to the dichotomy in the convergence of d2𝑚,𝑛(0) (vanishing) and 𝑛1/4d2𝑚,𝑛(0)
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for 𝑚 ≥ 1: Observe, for instance, that the second term in equation (10) is of
order 1/𝑛3/4 and in equation (8) is of order 1/𝑛1/2. This latter term, in the
case 𝜃 = 0 goes to 0 as 𝑛 increases.

Theorem 2 and Proposition 3 prove Theorem 1. Moreover they imply, for all 𝑚 ∈ N,
approximations of the MLE given by the formal power series

𝜃[𝑚]
𝑛 := 𝜃 + Φ[𝑚](D·,𝑛(𝜃), d0,𝑛(𝜃)) and 𝜃[𝑚]

𝑛 := 𝜃 + Φ[𝑚](D·(𝜃), d0,𝑛(𝜃)), (11)

where D𝑘(𝜃) is defined similarly to D𝑘,𝑛(𝜃) in (9) with d𝑘,𝑛 replaced by d𝑛 in (6).
More precisely, D1(𝜃) := 1 and for 𝑞 = 2, . . . , 𝑁 , D𝑞 is given by the recursive
formula:

D𝑞(𝜃) :=

𝑞∑︁
𝑚=2

d𝑚(𝜃)
∑︁

𝑘1+···+𝑘𝑚=𝑞

D𝑘1(𝜃) · · ·D𝑘𝑚(𝜃). (12)

Then, for instance,

𝜃[3]𝑛 = 𝜃 + d0,𝑛 −
1

2

𝜉2(𝜃)

𝜉1(𝜃)
(d0,𝑛)

2 +
1

2

(︃(︂
𝜉2(𝜃)

𝜉1(𝜃)

)︂2

− 𝜉3(𝜃)

3𝜉1(𝜃)

)︃
(d0,𝑛)

3.

The power series 𝜃
[𝑚]
𝑛 is the 𝑚-th order truncation of (8). It has random coeffi-

cients D·,𝑛(𝜃) and random argument d0,𝑛(𝜃) involving the score and its derivatives.
The proxy 𝜃

[𝑚]
𝑛 is a power series with deterministic coefficients D·(𝜃) (limit of D·,𝑛(𝜃))

and the same random argument d0,𝑛(𝜃) related to the score and its first derivative.
Both 𝜃

[𝑚]
𝑛 and 𝜃

[𝑚]
𝑛 are non-linear expressions of d0,𝑛(𝜃).

The following result enlightens the coefficients’ behavior as 𝜃 varies in (−1, 1). It is
proved in Section 3.

Lemma 1. Let {𝜉𝑚}𝑚∈N defined in (5). Then for all 𝑚 ∈ N:
(i) 𝜉0 ≡ 0;
(ii) 𝜃 ↦→ 𝜉2𝑚+1(𝜃) is even;
(iii) There exists −∞ < 𝑐𝑚,1 < 𝑐𝑚,2 < 0 such that −𝑐𝑚,1 ≤ (1−𝜃2)2𝑚+1𝜉2𝑚+1(𝜃) ≤

𝑐𝑚,2 for all 𝜃 ∈ (−1, 1);
(iv) 𝜉2𝑚(𝜃) is odd, in particular 𝜉2𝑚(0) = 0;
(v) There exists 𝑐2𝑚 ∈ (0,∞) such that −𝑐2𝑚 ≤ (1 − 𝜃2)2𝑚𝜉2𝑚(𝜃) < 0 for

all 𝜃 ∈ (0, 1).

The following result is proved by induction on the recursive formula (9).

Corollary 1 (of Proposition 3 and Lemma 1). It holds that

D𝑘,𝑛(𝜃)
prob.−−−→
𝑛→∞

D𝑘(𝜃).

10
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Figure 2: Functions 𝜃 ↦→ D𝑘(𝜃)s(𝜃)
𝑘(1 − 𝜃2)𝑘/2−1 with D𝑘 defined by (12) for 𝜃

restricted to [0, 1] and 𝑚 = 1, . . . , 5.

Besides, for any 𝑘 ≥ 1,

|D𝑘(𝜃)s(𝜃)
𝑘| ≤ 𝐶𝑘

(1− 𝜃2)𝑘/2−1

for a constant 𝐶𝑘 ≥ 0.

We plot the coefficients 𝜃 ↦→ D𝑘(𝜃)s(𝜃)
𝑘 in Figure 2, up to this scaling factor

𝜃 ↦→ (1− 𝜃2)1−𝑘/2.

Remark 8. The coefficients D𝑘,𝑛(𝜃) converge towards their limits at rate of 𝑛1/4.
This is a consequence of definition (9) and Proposition 3.

In Figure 3 we show the empirical densities of the MLE 𝜃𝑛, 𝜃
[1]
𝑛 = 𝜃 + d0,𝑛(𝜃),

𝜃
[5]
𝑛 , and of the proxy 𝜃

[5]
𝑛 (see (11) for the definitions of 𝜃[5]𝑛 and 𝜃

[5]
𝑛 ). For 𝜃 = 0,

d0,𝑛(0) replicates already very well the MLE behavior, therefore there 𝜃
[5]
𝑛 and 𝜃

[5]
𝑛

are not plotted. For 𝜃 ̸= 0, we observe that, while the lower order expansions
replicate worse the MLE behavior, 𝜃[5]𝑛 and 𝜃

[5]
𝑛 do it quite well, and so do the

higher order expansions. The expansions 𝜃
[5]
𝑛 and 𝜃

[5]
𝑛 are close one to another.

Indeed they are respectively random and deterministic polynomials of d0,𝑛(𝜃) such
that, by Corollary 1, the random coefficients converge to the deterministic ones.
To introduce the next paragraph, observe that the density of 𝜃[1]𝑛 = 𝜃 + d0,𝑛(𝜃) is
skewed to the left when 𝜃 is close to 1. Of course, since their density is close to the
one of the MLE’s, 𝜃[5]𝑛 and 𝜃

[5]
𝑛 exhibit a skewed empirical distribution.

Remark 9. Let us remind that as for 𝜃𝑛 − 𝜃, 𝑛1/4d0,𝑛(𝜃) has asymptotic sym-
metric distribution: Proposition 3 ensures that 𝑛1/4d0,𝑛(𝜃) = P𝑛(𝜃)s(𝜃)𝑇

−1/4 is
asymptotically L-mixed normal distributed. Therefore the alternative proxys

11
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Figure 3: Density of MLE, 𝜃[1]𝑛 = 𝜃 + d0,𝑛(𝜃), and the fifth order expansions 𝜃
[5]
𝑛

and 𝜃
[5]
𝑛 (11), for several values of 𝜃 using 10 000 samples of the SBM using ∆𝑡 = 10−3

for 𝑇 = 1 (thus, 𝑛 = 1000).
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Figure 4: Functions 𝜃 ↦→ 𝑓𝑚(𝜃) defined by (13) for 𝜃 restricted to [0, 1] and
𝑚 = 1, . . . , 5.

Φ[𝑚](D·(𝜃),P∞(𝜃)s(𝜃)(𝑛𝑇 )−1/4) where P∞ follows a L-mixed normal distribution,
would not replicate skewness and they would need higher order expansions than the
proxys 𝜃

[𝑚]
𝑛 in order to have empirical distribution which gets close to the MLE’s

one.

Skewness. We have observed skewness for the empirical distribution d0,𝑛(𝜃) and of
the MLE. This is due to the fact that the empirical density of the score shows that the
more 𝜃 is close to 1 the more the score is skewed to the left. However, the correlation
between MLE and score is non-trivial : non-linear dependence. The approximations
of the MLE in (11) are non-linear functions of the score and its derivative, actually
of d0,𝑛 which is basically their ratio. Since D2(𝜃) = d2(𝜃) = −1

2
𝜉2(𝜃)
𝜉1(𝜃)

, Lemma 1
establishes that sgn(D2(𝜃)) = − sgn(𝜃). This favors a skewness to the left (resp.
right) when 𝜃 > 0 (resp. 𝜃 < 0) of the distribution of the proxys (11). In other
words, the approximations of the MLE proposed above capture the skewness of
the MLE.

Boundary layer effect. Let us set

𝑓𝑚(𝜃) :=
(−1)𝑚(1− 𝜃2)𝑚

𝑚!
𝜉𝑚(𝜃). (13)

Then 𝑓2𝑘+1 is positive and bounded (from above and below by a positive constant),

13



𝑓2𝑘(0) = 0 and 𝑓2𝑘(𝜃) is bounded. Then, (11) rewrites:

𝜃[3]𝑛 = 𝜃 +

√
1− 𝜃2√︀
𝑓1(𝜃)

P𝑛(𝜃)

(𝑇𝑛)1/4
+

𝑓2(𝜃)

𝑓1(𝜃)2

(︂
P𝑛(𝜃)

(𝑇𝑛)1/4

)︂2

+
1√

1− 𝜃2
2(𝑓2(𝜃))

2 − 𝑓3(𝜃)𝑓1(𝜃)

𝑓1(𝜃)7/2

(︂
P𝑛(𝜃)

(𝑇𝑛)1/4

)︂3

,

that is

D1(𝜃)s(𝜃) =

√
1− 𝜃2√︀
𝑓1(𝜃)

, D2(𝜃)s(𝜃)
2 =

𝑓2(𝜃)

𝑓1(𝜃)2

and D3(𝜃)s(𝜃)
3 =

1√
1− 𝜃2

2𝑓2(𝜃)
2 − 𝑓3(𝜃)𝑓1(𝜃)

𝑓1(𝜃)7/2
.

The term of order 2 vanishes for 𝜃 = 0 as 𝑓2(0) = 0. With this expansion, one sees a
“boundary layer” effect for |𝜃| close to 1 in the explosion of the third order coefficient.
Indeed if we push the expansion up to order 𝑘 (here we stopped at 𝑘 = 3), the
corresponding coefficient explodes as (1− 𝜃2)(𝑘−2)/2 when |𝜃| is close to 1. We have
performed numerical simulations that suggest that no cancellation effect occurs so
that the approximation by a polynomial expansion is no longer suitable.

In [20] we discussed a similar boundary layer phenomenon in the case of the Binomial
family. One could expect the same to happen for the skewness parameter 𝜃 because
of the pathwise construction of SBM done associating independent Bernoulli random
variables with parameter (1+ 𝜃)/2 to the excursions from 0 of a reflected Brownian
motion and flipping each excursion based on the result of the Bernoulli random
variable.

Change of variable and change of coordinates. Combining the Faà di
Bruno formula with (8), one may given some explicit expansion of 𝜙(𝜃𝑛) for any
analytic function 𝜙. Similarly, one may also consider 𝜃𝑛 in another system of
coordinates, as discussed in [20]. On that point, two changes of variables appear to
be natural: 𝜙1(𝜃) =

√
1− 𝜃2 and 𝜙1(𝜃) = 1/

√
1− 𝜃2. The latter one stabilizes the

variance. However, no change of coordinate impacts the asymptotic behavior of
the score. Besides, we found through numerical experiments that using 𝜙1 or 𝜙2

does not improve Wald confidence intervals.
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2 Asymptotic behavior of the score and its deriva-
tives

In this section, we provide results which are necessary to prove Proposition 3.
These results are an application of the results in [14] for the Brownian motion,
and on the ones from [22] (convergence) and [27] (Central Limit Theorem) for the
(true) SBM.

Let us recall that S𝑚 in (4) is nothing else that a rescaled derivative of the score
and 𝜉𝑚(𝜃) is a constant defined in (5). By Lemma 1, it holds that for all 𝜃 ∈ (−1, 1),
𝜉0(𝜃) = 0 and 𝜉1(𝜃) is negative, and that for all integer 𝑚, 𝜉2𝑚(0) = 0.

Proposition 4. For any 𝜃 ∈ (−1, 1), the family {𝜉𝑘(𝜃)}𝑘≥0 defined by (5) is such
that:

(i) Under P𝜃, there exists a standard (with mean 0 and variance 1) Gaussian
random variable 𝐻 independent from F𝑇 (the probability space (Ω,F,P0) has
been extended to carry 𝐻) such that for any 𝑚 ≥ 0,

𝑛1/4S0(𝑛, 𝜃)
stably−−−→
𝑛→∞

√︀
−𝜉1(𝜃)

√︀
𝐿𝑇𝐻,

(S1(𝑛, 𝜃), . . . , S𝑚(𝑛, 𝜃))
prob.−−−→
𝑛→∞

(𝜉1(𝜃)𝐿𝑇 , . . . , 𝜉𝑚(𝜃)𝐿𝑇 ).

Thanks to the property of the stable convergence, we have joint stable conver-
gence of (𝑛1/4S0(𝑛, 𝜃), S1(𝑛, 𝜃), . . . , S𝑚(𝑛, 𝜃)).

(ii) For 𝜃 = 0 (the SBM is actually a Brownian motion), under P0, there exists
a Gaussian family 𝐻 = {𝐻𝑘}𝑘=0,...,𝑚 independent from F𝑇 with mean 0 and
covariance Cov(𝐻𝑗, 𝐻ℓ) = Ψ2𝑗,2ℓ for 0 ≤ 𝑗, ℓ ≤ 𝑚 described in Section 3.5
(the probability space (Ω,F,P0) has been extended to carry 𝐻) such that for
any 𝑚 ≥ 0,

{𝑛1/4S2𝑘(𝑛, 0)}𝑘=0,...,𝑚
stably−−−→
𝑛→∞

{
√︀

𝐿𝑇𝐻𝑘}𝑘=0,...,𝑚,

{S2𝑘+1(𝑛, 0)}𝑘=0,...,𝑚
prob.−−−→
𝑛→∞

{𝜉2𝑘+1(0)𝐿𝑇}𝑘=0,...,𝑚.

Thanks to the property of the stable convergence, we have joint stable conver-
gence of (𝑛1/4S0(𝑛, 𝜃), S1(𝑛, 𝜃), 𝑛

1/4S2(𝑛, 𝜃), . . . ).

Remark 10. Following [14, 27], a stronger result holds: on an extended probability
space, there exist a 𝑚-dimensional Brownian motion {𝑊𝑘}𝑘≥0 independent from 𝐿
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and a 𝑚×𝑚-matrix Ξ(𝜃) such that⎧⎨⎩ 1

𝑛1/4

⎛⎝ 1√
𝑛

⌊𝑛𝑡⌋∑︁
𝑖=1

𝜕ℓ𝑘𝜃(𝑋𝑖−1

√
𝑛,𝑋𝑖

√
𝑛)− 𝜉ℓ(𝜃)𝐿𝑡

⎞⎠⎫⎬⎭
ℓ=0,...,𝑚, 𝑡∈[0,𝑇 ]

stably−−−→
𝑛→∞

{Ξ(𝜃)𝑊 (𝐿𝑡)}𝑡∈[0,𝑇 ]. (14)

A closed-form — yet cumbersome — expression exists for the matrix Ξ(𝜃) =
(Ξ𝑖,𝑗(𝜃))𝑖,𝑗=0,...,𝑚. Here, we focus on the particular cases 𝑚 = 0 and 𝜃 = 0 and we
study {𝜉𝑘(𝜃)}𝑘=1,...,max(𝑚,1) and Ξ for these cases.
Remark 11. When 𝜉𝑚(𝜃) = 0, (14) rewrites

𝑛1/4S𝑚(𝑛, 𝜃)
stably−−−→
𝑛→∞

Ξ𝑚,𝑚(𝜃)
√︀

𝐿𝑇𝐺

for some constant Ξ𝑚,𝑚(𝜃), and 𝐺 ∼ N(0, 1) independent of 𝐿𝑇 . In particular,
(i) For any 𝜃 ∈ (−1, 1) and 𝑚 = 0,

Ξ0,0(𝜃) =
√︀

−𝜉1(𝜃) =
1

s(𝜃)
.

This follows from [27] and Lemma 4.
(ii) For 𝜃 = 0, Ξ(0)Ξ(0)T = Ψ for Ψ appearing in Proposition 4.(ii) and discussed

in Section 3.5.

Statistical implications. The convergence results of Proposition 4 are the key
for the convergence of the MLE in Theorem 1. Besides, we could also use these
results to construct

• estimators of the local time using S1(𝑛, 𝜃𝑛)/𝜉1(𝜃𝑛);
• Wald confidence interval using s(𝜃𝑛) as a substitute for s(𝜃);
• hypothesis testing on the true value of 𝜃 using either a confidence inter-

val around 𝜃, or S0(𝑛, 𝜃)
2/S1(𝑛, 𝜃) which behaves asymptotically as a 𝜒2

1

distribution.

2.1 Rate of convergence

In this section, we estimate numerically the rate of convergence towards the the
limit distribution of the score. More precisely, we study empirically the rate
convergence of S𝑘(𝑛, 𝜃) in (4) towards its limit. In particular, we show that the
speeds deteriorates as |𝜃| becomes close to 1.

We plot in Figure 5 the Kolmogorov-Smirnov distance ∆KS(𝑛) between the empirical
distributions
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Figure 5: Behavior of 𝑛 ↦→ ∆KS(𝑛) using 10 000 samples of the SBM with 𝑇 = 1,
and comparison with 𝐶/

√
𝑛 (dashed line), in log-log scale, for statistics (a) (MLE),

(b) (0 for any 𝜃 and 2, 4 if 𝜃 = 0) and (c) in the other cases.

(a) of s(𝜃)−1𝑛1/4(𝜃𝑛 − 𝜃) and 𝐻/
√
𝐿𝑇 with 𝐻 ∼ N(0, 1), independent from the

local time.
(b) of S𝑘(𝑛, 𝜃)/Ξ𝑘,𝑘(𝜃) and

√
𝐿𝑇𝐻 with 𝐻 ∼ N(0, 1), independent from the local

time, for 𝑘 = 0 or for 𝜃 = 0 and 𝑘 even.
(c) of S𝑘(𝑛, 𝜃)/𝜉𝑘(𝜃) and 𝐿𝑇 in other cases.

Even for small moderate values of the sample size 𝑛, the asymptotic regime is
reached most of the case. The 5%-quantile of the Kolmogorov-Smirnov statistics
is 0.52 while the 1%-quantile is 0.44.

In each case, the statistics ∆KS(𝑛) behaves like 𝐶/𝑛𝜂, with 𝜂 close to 1/2.

For the score of order 0 or when 𝜃 is close to 1, the rate 𝜂 is lower than 1/2.
The constant 𝐶 is greater for the MLE than for the other Kolmogorov-Smirnov
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statistics. In each case, the constant increases with 𝜃, as well as the ratio between
the constant 𝐶 for the MLE and the one for the score of order 0.

Note that we are close to the Berry-Esseen rate even though our sample is not
composed of independent identically distributed random variables.

In Figure 5, when the Kolmogorov-Smirnov distances are small and 𝑛 is big, the
plotted distance is affected by the Monte-Carlo error. For 𝜃 = 0, the terms of
order 2 and 4 in the expansion of the MLE (8) vanish. The asymptotic law of these
coefficients is the one given in (b). Note that, in the alternative expansion of the
MLE (10), the terms of odd order of the latter expansion involve the statistics in (b)
and (c). For 𝜃 ̸= 0, the effect of the terms of orders 𝑘 ≥ 2 in the expansion (8), which
behave asymptotically as (1− 𝜃2)1−𝑘/2, have some increasing effect on the MLE.

3 The limiting coefficients

Our aim is to study the limiting coefficients s(𝜃) in (3), 𝜉𝑚(𝜃) in (5) and Ψ appearing
in Proposition 4. We also prove Proposition 2 and Lemma 1. We actually establish
additional properties useful in numerical studies and applications. For instance, in
Section 3.4, we provide an expansion of 𝜃 ↦→ 𝜉𝑚(𝜃) around 0. In Section 3.5, we
study the matrix Ψ in Proposition 4.(ii).

3.1 The coefficients 𝜉𝑘

We study up to Section 3.4 the limiting coefficients 𝜉𝑘.

We take profit from the explicit expression of the density, hence of 𝑘𝜃. We conve-
niently rewrite

𝑘𝜃(𝑥, 𝑦) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

𝜃 + exp(2𝑥𝑦)
if 𝑥 ≥ 0, 𝑦 ≥ 0,

1

exp(2𝑥𝑦)− 𝜃
if 𝑥 ≤ 0, 𝑦 ≤ 0,

1

𝜃 − 1
if 𝑥 ≥ 0, 𝑦 ≤ 0,

1

1 + 𝜃
if 𝑥 ≤ 0, 𝑦 ≥ 0.

Lemma 2. For any 𝑚 ≥ 0,

𝜕𝑚
𝜃 𝑘𝜃(𝑥, 𝑦) = 𝑚!(−1)𝑚𝑘𝑚+1

𝜃 (𝑥, 𝑦) (15)

for any 𝑥, 𝑦 ∈ R.
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Proof. Let us note first that

𝜕𝜃𝑘𝜃(𝑥, 𝑦) =
− sgn(𝑦)2

(sgn(𝑦)𝜃 + exp(2(𝑥𝑦)+))2
=

−1

(sgn(𝑦)𝜃 + exp(2(𝑥𝑦)+))2

= −𝑘𝜃(𝑥, 𝑦)
2. (16)

Thus, (15) is true for 𝑚 = 0, 1. Let us assume that (15) is true for some 𝑚 ≥ 1.
With (16),

𝜕𝑚+1
𝜃 𝑘𝜃(𝑥, 𝑦) = (−1)𝑚𝑚!𝜕𝜃(𝑘𝜃(𝑥, 𝑦)

𝑚+1)

= (−1)𝑚(𝑚+ 1)!𝜕𝜃𝑘𝜃(𝑥, 𝑦) · 𝑘𝜃(𝑥, 𝑦)𝑚 = (−1)𝑚+1(𝑚+ 1)!𝑘𝜃(𝑥, 𝑦)
𝑚+2.

This proves that (15) is true for 𝑚+ 1, and thus for any 𝑚.

Notation 1. We define for some integer 𝑚 ≥ 1,

𝜒±±
𝑚 (𝜃) :=

∫︁∫︁
R2

1±𝑥≥0,±𝑦≥0𝑘𝜃(𝑥, 𝑦)
𝑚𝑝𝜃(1, 𝑥, 𝑦)𝜇𝜃(𝑥) d𝑥 d𝑦, (17)

and 𝜒𝑚(𝜃) := 𝜒++
𝑚 (𝜃) + 𝜒−−

𝑚 (𝜃) + 𝜒+−
𝑚 (𝜃) + 𝜒−+

𝑚 (𝜃). (18)

With Lemma 2, the coefficients 𝜉𝑚’s given by (5) are related to the 𝜒𝑚’s by

𝜉𝑚(𝜃) = 𝑚!(−1)𝑚𝜒𝑚+1(𝜃). (19)

We now study 𝜒𝑚(𝜃) for 𝜃 ∈ (−1, 1) and various values of 𝑚.

We note the relations

𝑝𝜃(1,−𝑥,−𝑦) = 𝑝−𝜃(1, 𝑥, 𝑦), (20)
𝑘𝜃(−𝑥,−𝑦) = −𝑘−𝜃(𝑥, 𝑦) (21)
and 𝜇𝜃(−𝑥) = 𝜇−𝜃(𝑥). (22)

A direct consequence of the symmetry relations (20)-(22) is the following lemma

Lemma 3 (Symmetry relation). For any 𝑚 ≥ 1 and any 𝜃 ∈ (−1, 1),

𝜒−−
𝑚 (𝜃) = (−1)𝑚𝜒++

𝑚 (−𝜃) and 𝜒−+
𝑚 (𝜃) = (−1)𝑚𝜒+−

𝑚 (−𝜃). (23)

Corollary 2. For any 𝜃 ∈ (−1, 1) and any 𝑚 ≥ 1,
(i) 𝜃 ↦→ 𝜒2𝑚(𝜃) is even and 𝜒2𝑚(𝜃) > 0.
(ii) 𝜃 ↦→ 𝜒2𝑚+1(𝜃) is odd; in particular 𝜒2𝑚+1(0) = 0 (we will see below in

Lemma 7 that 𝜒2𝑚+1(𝜃) < 0 for any 𝜃 ∈ (0, 1)).
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Proof. Consequence of Lemma 3 and for proving 𝜒2𝑚(𝜃) > 0 one just observes the
positivity of the integrands of equation (17).

Lemma 4 (Values for 𝑚 = 1). For any 𝜃 ∈ (−1, 1), 𝜒1(𝜃) = 0.

Proof. This stems from the very definition of 𝑘𝜃 and the fact that
∫︀ +∞
−∞ 𝑝𝜃(1, 𝑥, 𝑦) d𝑦 =

1 so that 𝜕𝜃
∫︀ +∞
−∞ 𝑝𝜃(1, 𝑥, 𝑦) d𝑦 = 0. In fact,

𝜒1(𝜃) =

∫︁
R
E𝜃[𝑘𝜃(𝑋0, 𝑋1) |𝑋0 = 𝑥]𝜇𝜃(𝑥) d𝑥

and for all 𝑥 ∈ R

E𝜃[𝑘𝜃(𝑋0, 𝑋1) |𝑋0 = 𝑥] =

∫︁
R

𝜕𝜕𝑝𝜃(1, 𝑥, 𝑦)

𝑝𝜃(1, 𝑥, 𝑦)
𝑝𝜃(1, 𝑥, 𝑦) d𝑦 = 0. (24)

Hence 𝜒1(𝜃) = 0.

Computation for 𝑚 ≥ 2. The case 𝑚 ≥ 2 and 𝜃 > 0 is a bit more cumbersome.

Lemma 5. For 𝑚 ≥ 2, 𝜃 ∈ (−1, 1),

𝜒+−
𝑚 (𝜃) =

(−1)𝑚√
2𝜋

1 + 𝜃

(1− 𝜃)𝑚−1
and 𝜒−+

𝑚 (𝜃) =
1√
2𝜋

1− 𝜃

(1 + 𝜃)𝑚−1
. (25)

Proof. First,

1√
2𝜋

∫︁∫︁
R2

1𝑥≥0,𝑦≥0 exp

(︂
−(𝑥+ 𝑦)2

2

)︂
d𝑥 d𝑦 =

∫︁ +∞

0

Φ(𝑧) d𝑧 =
1√
2𝜋

with Φ(𝑥) := 1√
2𝜋

∫︀ +∞
𝑥

𝑒−𝑦2/2 d𝑦, the complementary distribution function of the
unit, centered Gaussian random variable.

Hence,

𝜒+−
𝑚 (𝜃) =

∫︁∫︁
R2

1𝑥≥0,𝑦≤0𝑘𝜃(𝑥, 𝑦)
𝑚𝑝𝜃(1, 𝑥, 𝑦)𝜇𝜃(𝑥) d𝑥 d𝑦 =

−(1 + 𝜃)

(1− 𝜃)𝑚−1

∫︁ +∞

0

Φ(𝑥) d𝑥.

The value of 𝜒−+
𝑚 follows from (23).
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We express

𝜒++
𝑚 (𝜃) =

∫︁∫︁
R2

1𝑥≥0,𝑦≥0𝑘𝜃(𝑥, 𝑦)
𝑚𝑝𝜃(1, 𝑥, 𝑦)𝜇𝜃(𝑥) d𝑥 d𝑦

=

∫︁∫︁
R2

1𝑥≥0,𝑦≥0
1√
2𝜋

(1 + 𝜃)
exp
(︁

−(𝑥−𝑦)2

2

)︁
(𝜃 + exp(2𝑥𝑦))𝑚

d𝑥 d𝑦

+

∫︁∫︁
R2

1𝑥≥0,𝑦≥0
1√
2𝜋

𝜃(1 + 𝜃)
exp
(︁

−(𝑥+𝑦)2

2

)︁
(𝜃 + exp(2𝑥𝑦))𝑚

d𝑥 d𝑦

=

∫︁∫︁
R2

1𝑥≥0,𝑦≥0
1 + 𝜃√
2𝜋

exp

(︂
−(𝑥+ 𝑦)2

2

)︂
1

(𝜃 + exp(2𝑥𝑦))𝑚−1
d𝑥 d𝑦. (26)

We could also use the following form

𝜒++
𝑚 (𝜃) =

∫︁∫︁
R2

1𝑥≥0,𝑦≥0
1 + 𝜃√
2𝜋

exp

(︂
−𝑥2 − 𝑦2

2

)︂
exp(𝑥𝑦) + 𝜃 exp(−𝑥𝑦)

(𝜃 + exp(2𝑥𝑦))𝑚
d𝑥 d𝑦 (27)

which is suitable for Monte Carlo simulation as

𝜒++
𝑚 (𝜃) =

√
2𝜋

4
(1 + 𝜃)E

[︂
exp(|𝐺 ·𝐺′|) + 𝜃 exp(−|𝐺 ·𝐺′|)

(𝜃 + exp(2|𝐺 ·𝐺′|))𝑚

]︂
(28)

for two independent Gaussian, unit, centered random variables 𝐺 and 𝐺′.

Remark 12. The considerations in the remainder of this section or in Lemma 1
(which we are proving in this section), suggest to consider the equivalent expression

𝜒++
𝑚 (𝜃) =

√
2𝜋

4(1− 𝜃)𝑚
(1 + 𝜃)E

[︂
(1− 𝜃)𝑚

exp(|𝐺 ·𝐺′|) + 𝜃 exp(−|𝐺 ·𝐺′|)
(𝜃 + exp(2|𝐺 ·𝐺′|))𝑚

]︂
which reduces the variance of the empirical mean without burdening the computa-
tional cost.

We consider first a close-form formula for the integral involved in 𝜒++
𝑚 (0).

Lemma 6 (Some values at 𝜃 = 0). Let 𝑚 ≥ 2, then

√
2𝜋𝜒++

𝑚 (0) =
1

2
√︀

𝑚(𝑚− 1)
log
(︁
2𝑚− 1 + 2

√︀
𝑚(𝑚− 1)

)︁
∈ (0, 1).

In particular, when 𝑚 is large,
√
2𝜋𝜒++

𝑚 (0) ∼ log(4𝑚)/2𝑚.

Remark 13. We could also write 𝜒++
𝑚 (0) = 1

2
√

𝑚(𝑚−1)
atanh

2
√

𝑚(𝑚−1)

2𝑚−1
.
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Proof of Lemma 6. From (26) we see that
√
2𝜋𝜒++

𝑚 (0) = 𝛼2𝑚−1 where

𝛼𝑛 :=

∫︁ +∞

0

∫︁ +∞

0

exp

(︂
−𝑥2 − 𝑦2

2
− 𝑛𝑥𝑦

)︂
d𝑥 d𝑦

for 𝑛 ≥ 1. Let 𝑛 ≥ 2 be fixed. Using the change of variable (𝑥, 𝑦) = (
√︀

𝑣 log(𝑢),
√︀

log(𝑢)/𝑣)
for 𝑢 ≥ 1, 𝑣 ≥ 0, we obtain that

𝛼𝑛 =

∫︁ +∞

0

∫︁ +∞

1

1

2𝑣𝑢

1

𝑢𝑛+𝑣/2+1/2𝑣
d𝑢 d𝑣 =

∫︁ +∞

0

1

𝑣2 + 2𝑛𝑣 + 1
d𝑣.

Since 𝑛 ≥ 2, from (3.3.17) in [1], this leads

𝛼𝑛 =
1

2
√
𝑛2 − 1

log
𝑛+

√
𝑛2 − 1

𝑛−
√
𝑛2 − 1

=
1√

𝑛2 − 1
log(𝑛+

√
𝑛2 − 1) ∈ (0, 1)

which can be also written as 1√
𝑛2−1

atanh
√
𝑛2−1
𝑛

.

The following inequalities are consequences of (26). For all 𝜃 ∈ [0, 1), 𝑚 ≥ 2:

± 1√
2𝜋

1

(1± 𝜃)𝑚−2

√
2𝜋𝜒++

𝑚 (0) ≤ ±𝜒++
𝑚 (±𝜃) ≤ ±1± 𝜃√

2𝜋

√
2𝜋𝜒++

𝑚 (0). (29)

Lemma 7. For any 𝑚 ≥ 1 and 𝜃 ∈ (−1, 1) with 𝜃 ̸= 0, then 𝜉𝑚(𝜃) ̸= 0.

Proof. Equality (19) and Corollary 2 ensure that it suffices to prove that (0, 1) ∋
𝜃 ↦→ 𝜒2𝑚+1(𝜃) < 0. Let 𝑚 ≥ 1 and 𝜃 ∈ (0, 1) be fixed.

Equations (23), the explicit expression for 𝜒−+
2𝑚+1(𝜃) in (25), the upper inequality

in (29) and the fact that
√
2𝜋𝜒++

2𝑚+1(0) < 1 (see Lemma 6) yield

𝜒2𝑚+1(𝜃) = 𝜒++
2𝑚+1(𝜃)− 𝜒++

2𝑚+1(−𝜃) + 𝜒+−
2𝑚+1(𝜃)− 𝜒+−

2𝑚+1(−𝜃)

≤ 1√
2𝜋

(︂
2𝜃
√
2𝜋𝜒++

2𝑚+1(0)−
1 + 𝜃

(1− 𝜃)2𝑚
+

1− 𝜃

(1 + 𝜃)2𝑚

)︂
<

1√
2𝜋

(︂
2𝜃 − 1 + 𝜃

(1− 𝜃)2𝑚
+

1− 𝜃

(1− 𝜃)2𝑚

)︂
=

2𝜃√
2𝜋

(︂
1− 1

(1− 𝜃)2𝑚

)︂
< 0.

This proves that 𝜉𝑚(𝜃) does not vanish for 𝜃 ̸= 0.

We are now ready to provide the proof of Lemma 1. The proof of Proposition 2 is
also provided and requires studying 𝜒2(𝜃) = −𝜉1(𝜃) = s(𝜃)−2.
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3.2 Proof of Lemma 1

As (19) relates 𝜉 and 𝜒, Item (i) in Lemma 1 follows from Lemma 4. Item (ii)
and (iv) are Corollary 2. We now prove Items (iii) and (v). Actually we provide a
finer result.
For every 𝜃 ∈ (−1, 1) and 𝑘 ≥ 1, by (23) and (25), it holds

𝜉2𝑚(𝜃)

(2𝑚)!
= 𝜒2𝑚+1(𝜃) = 𝜒++

2𝑚+1(𝜃)− 𝜒++
2𝑚+1(−𝜃) + 𝜒+−

2𝑚+1(𝜃)− 𝜒+−
2𝑚+1(−𝜃)

= 𝜒++
2𝑚+1(𝜃)− 𝜒++

2𝑚+1(−𝜃) +
1√
2𝜋

(1 + 𝜃)2𝑚+1 − (1− 𝜃)2𝑚+1

(1− 𝜃2)2𝑚

and

− 𝜉2𝑚−1(𝜃)

(2𝑚− 1)!
= 𝜒2𝑚(𝜃) = 𝜒++

2𝑚 (𝜃) + 𝜒++
2𝑚 (−𝜃) + 𝜒+−

2𝑚 (𝜃) + 𝜒+−
2𝑚 (−𝜃)

= 𝜒++
2𝑚 (𝜃) + 𝜒++

2𝑚 (−𝜃) +
1√
2𝜋

1 + 𝜃

(1− 𝜃)2𝑚
+

1√
2𝜋

1− 𝜃

(1 + 𝜃)2𝑚
.

In the proof of Lemma 7 we have already obtained a bound. We find finer ones.
Let us recall the bound here: for every 𝜃 ∈ (0, 1)

𝜉2𝑚(𝜃)

(2𝑚)!
= 𝜒2𝑚+1(𝜃) < − 2𝜃√

2𝜋

(︂
1

(1− 𝜃)2𝑚
− 1

)︂
.

Similarly as in the proof of Lemma 7 we can obtain the desired bounds, by combining
inequalities (29) and Lemma 6. For every 𝜃 ∈ (0, 1) we get

𝜉2𝑚(𝜃)

(2𝑚)!
≥ −

1 +
√
2𝜋𝜒++

2𝑚+1(0)√
2𝜋

(︂
1

(1− 𝜃)2𝑚
− 1

(1 + 𝜃)2𝑚

)︂
− 𝜃

1−
√
2𝜋𝜒++

2𝑚+1(0)√
2𝜋

(︂
1

(1− 𝜃)2𝑚
+

1

(1 + 𝜃)2𝑚

)︂
≥ − 2√

2𝜋

(︂
1

(1− 𝜃)2𝑚
+

1

(1 + 𝜃)2𝑚

)︂
> − 4√

2𝜋

1

(1− 𝜃)2𝑚
;

(30)

− 𝜉2𝑚−1(𝜃)

(2𝑚− 1)!
= 𝜒2𝑚(𝜃) ≤ 𝜒++

2𝑚 (0)

(︂
1 + 𝜃 +

1

(1− 𝜃)2(𝑚−1)

)︂
+

1√
2𝜋

1 + 𝜃

(1− 𝜃)2𝑚−1
+

1√
2𝜋

1− 𝜃

(1 + 𝜃)2𝑚−1
,

(31)

and

− 𝜉2𝑚−1(𝜃)

(2𝑚− 1)!
≥ 𝜒++

2𝑚 (0)

(︂
1− 𝜃 +

1

(1 + 𝜃)2(𝑚−1)

)︂
+

1√
2𝜋

1 + 𝜃

(1− 𝜃)2𝑚−1
+

1√
2𝜋

1− 𝜃

(1 + 𝜃)2𝑚−1
.

(32)
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We conclude that for all 𝜃 ∈ (−1, 1),

− 4√
2𝜋

1

(1− |𝜃|)2𝑚−1
<

𝜉2𝑚−1(𝜃)

(2𝑚− 1)!
< −1 + |𝜃|√

2𝜋

1

(1− |𝜃|)2𝑚−1

as well as

− 4√
2𝜋

1

(1− |𝜃|)2𝑚
<

𝜉2𝑚(|𝜃|)
(2𝑚)!

< − 2|𝜃|√
2𝜋

(︂
1

(1− |𝜃|)2𝑚
− 1

)︂
≤ 0,

0 ≤ 2|𝜃|√
2𝜋

(︂
1

(1− |𝜃|)2𝑚
− 1

)︂
<

𝜉2𝑚(−|𝜃|)
(2𝑚)!

<
4√
2𝜋

1

(1− |𝜃|)2𝑚
.

These inequalities imply Items (iii) and (v) of Lemma 1 and complete its proof.

3.3 Proof of Proposition 2

We prove Proposition 2 which completes the analysis of the asymptotic mixed
normality in Theorem 1.

The proof of Lemma 1, in particular (31)-(32), show that for all 𝜃,

− 2√
2𝜋

1 + 𝜃2

1− 𝜃2
− 𝜒++

2 (0)(2 + |𝜃|) < 𝜉1(𝜃) < − 2√
2𝜋

1 + 𝜃2

1− 𝜃2
− 𝜒++

2 (0)(2− |𝜃|),

where 𝜒++
2 (0) ≈ 0.62 by Lemma 6. This would already prove Proposition 2, but

the next lemma allow us to establish better bounds.

Lemma 8. Let

I(𝜃) :=

∫︁ ∞

0

∫︁ ∞

0

(1− 𝑒−2𝑥𝑦)

(1− 𝜃2𝑒−4𝑥𝑦)
𝑒−4𝑥𝑦− (𝑥+𝑦)2

2 d𝑥 d𝑦.

Then I is increasing on [0, 1] and I(𝜃) ∈ [I(0),I(1)] where

I(0) =
√
2𝜋(𝜒++

3 (0)− 𝜒++
4 (0)) ≈ 0.088,

I(1) =

∫︁ ∞

0

∫︁ ∞

0

1

(1 + 𝑒−2𝑥𝑦)
𝑒−4𝑥𝑦− (𝑥+𝑦)2

2 d𝑥 d𝑦 ∈ [
√
2𝜋𝜒++

3 (0)/2,
√
2𝜋𝜒++

4 (0)],

and

s(𝜃)−2 = −𝜉1(𝜃) = 𝜒2(𝜃) =
2√
2𝜋

(︂
1 + 𝜃2

1− 𝜃2
+
√
2𝜋𝜒++

2 (0)− 𝜃2I(𝜃)

)︂
. (33)

Recall that Lemma 6 shows that
√
2𝜋𝜒++

2 (0) ≈ 0.62,
√
2𝜋𝜒++

3 (0)/2 ≈ 0.24, and√
2𝜋𝜒++

4 (0) ≈ 0.38.
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Proof. First note that [−1, 1] ∋ 𝜃 ↦→ I(𝜃) is an even function and increasing
on [0, 1], therefore the first part of the statement follows from (26) and Lemma 6.
We have already obtained the expressions (25) and (27) hence

𝜒2(𝜃) =
1√
2𝜋

1 + 𝜃2

1− 𝜃2

+

∫︁ ∞

0

∫︁ ∞

0

(1 + 𝜃)(1− 𝜃𝑒−2𝑥𝑦) + (1− 𝜃)(1 + 𝜃𝑒−2𝑥𝑦)

(1− 𝜃2𝑒−4𝑥𝑦)
𝑒−2𝑥𝑦𝑒−

(𝑥+𝑦)2

2 d𝑦 d𝑥.

We rewrite the integrand in a suitable way

𝜒2(𝜃) =
1√
2𝜋

1 + 𝜃2

1− 𝜃2
+

2√
2𝜋

∫︁ ∞

0

∫︁ ∞

0

(1− 𝜃2𝑒−2𝑥𝑦)

(1− 𝜃2𝑒−4𝑥𝑦)
𝑒−2𝑥𝑦𝑒−

(𝑥+𝑦)2

2 d𝑦 d𝑥

=
1√
2𝜋

1 + 𝜃2

1− 𝜃2
+

2√
2𝜋

∫︁ ∞

0

∫︁ ∞

0

(︂
1− 𝜃2𝑒−2𝑥𝑦(1− 𝑒−2𝑥𝑦)

(1− 𝜃2𝑒−4𝑥𝑦)

)︂
𝑒−2𝑥𝑦𝑒−

(𝑥+𝑦)2

2 d𝑦 d𝑥,

where we recognize the right-hand-side of (33).

Remark 14. We have obtained the following bounds for 𝜒2(𝜃) = −𝜉1(𝜃) = s(𝜃)−2:
By (33),

2√
2𝜋

1 + 𝜃2

1− 𝜃2
+2𝜒++

2 (0)− 2√
2𝜋

𝜃2I(0) ≤ 𝜒2(𝜃) ≤
2√
2𝜋

1 + 𝜃2

1− 𝜃2
+2𝜒++

2 (0)− 2√
2𝜋

𝜃2I(1).

Since I(0) =
√
2𝜋(𝜒++

3 (0)−𝜒++
4 (0)) ≈ 0.088 and I(1) ≤

√
2𝜋𝜒++

4 (0), by studying
the bounds above which are functions of 𝜃, we can show that

s(𝜃)√
1− 𝜃2

∈ [0.79, 0.88].

Numerically, we found that s(𝜃) is pretty close to its upper bound.

3.4 Expansion around 0

We provide a polynomial expansion around 0 of 𝜃 ↦→ 𝜉𝑚(𝜃). By (19), it suffices
to provide it for 𝜃 ↦→ 𝜒𝑚(𝜃). Since we could not compute explicitly 𝜉𝑚(𝜃), this
expansion allows us to compute it using their value at 𝜃 = 0 given in Lemma 6.
Let us also recall that we could rewrite 𝜒𝑚(𝜃) in a form suitable for Monte Carlo
simulation, see (28).

Let us define
𝜁𝑚(𝜃) := 𝜒++

𝑚 (𝜃) + 𝜒+−
𝑚 (𝜃)− 𝜒−−

𝑚 (𝜃)− 𝜒−+
𝑚 (𝜃).
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Using the symmetry relations (20)-(22), 𝜃 ↦→ 𝜁2𝑚(𝜃) is odd, while 𝜃 ↦→ 𝜁2𝑚+1(𝜃) is
even. In particular, 𝜁2𝑚(0) = 0.

Besides,
𝜒2𝑚(0) = 𝛽2𝑚 and 𝜁2𝑚+1(0) = 𝛽2𝑚+1

with

𝛽𝑚 :=

√︂
2

𝜋

(︁√
2𝜋𝜒++

𝑚 (0) + (−1)𝑚
)︁

and 𝜒++
𝑚 (0) provided in Lemma 6.

Lemma 9. For any 𝑚 ≥ 1,

𝜕𝜃𝜒𝑚(𝜃) = −(𝑚− 1)𝜒𝑚+1(𝜃) + 𝜁𝑚(𝜃), (34)
𝜕𝜃𝜁𝑚(𝜃) = −(𝑚− 1)𝜁𝑚+1(𝜃) + 𝜒𝑚(𝜃). (35)

Proof. Differentiating with respect to 𝜃,

𝜕𝜃𝜒
±±
𝑚 (𝜃) = 𝑚

∫︁∫︁
R2

1±𝑥≥0,±𝑦≥0𝜕𝜃𝑘𝜃(𝑥, 𝑦)𝑘𝜃(𝑥, 𝑦)
𝑚−1𝑝𝜃(1, 𝑥, 𝑦)𝜇𝜃(𝑥) d𝑥 d𝑦

+

∫︁∫︁
R2

1±𝑥≥0,±𝑦≥0𝑘𝜃(𝑥, 𝑦)
𝑚𝜕𝜃𝑝𝜃(1, 𝑥, 𝑦)

𝑝𝜃(1, 𝑥, 𝑦)
𝑝𝜃(1, 𝑥, 𝑦)𝜇𝜃(𝑥) d𝑥 d𝑦

+

∫︁∫︁
R2

1±𝑥≥0,±𝑦≥0 sgn(𝑥)𝑘𝜃(𝑥, 𝑦)
𝑚𝑝𝜃(1, 𝑥, 𝑦) d𝑥 d𝑦.

With (15) and since 𝑘𝜃(𝑥, 𝑦) = 𝜕𝜃𝑝𝜃(1, 𝑥, 𝑦)/𝑝𝜃(1, 𝑥, 𝑦),

𝜕𝜃𝜒
±±
𝑚 (𝜃) = −𝑚

∫︁∫︁
R2

1±𝑥≥0,±𝑦≥0𝜇𝜃(𝑥)𝑘𝜃(𝑥, 𝑦)
𝑚+1𝑝𝜃(1, 𝑥, 𝑦) d𝑥 d𝑦

+

∫︁∫︁
R2

1±𝑥≥0,±𝑦≥0𝜇𝜃(𝑥)𝑘𝜃(𝑥, 𝑦)
𝑚+1𝑝𝜃(1, 𝑥, 𝑦) d𝑥 d𝑦

+

∫︁∫︁
R2

1±𝑥≥0,±𝑦≥0 sgn(𝑥)𝑘𝜃(𝑥, 𝑦)
𝑚𝑝𝜃(1, 𝑥, 𝑦) d𝑥 d𝑦.

We then obtain

𝜕𝜃𝜒
++
𝑚 (𝜃) = −(𝑚− 1)𝜒++

𝑚+1(𝜃) + 𝜒++
𝑚 (𝜃),

𝜕𝜃𝜒
+−
𝑚 (𝜃) = −(𝑚− 1)𝜒+−

𝑚+1(𝜃) + 𝜒+−
𝑚 (𝜃),

𝜕𝜃𝜒
−+
𝑚 (𝜃) = −(𝑚− 1)𝜒−+

𝑚+1(𝜃)− 𝜒−+
𝑚 (𝜃),

𝜕𝜃𝜒
−−
𝑚 (𝜃) = −(𝑚− 1)𝜒−−

𝑚+1(𝜃)− 𝜒−−
𝑚 (𝜃).

With these four expressions, we obtain easily (34) and (35).
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Corollary 3. For 𝑘 ≥ 1 and 𝑚 ≥ 1,

𝜕𝑘
𝜃𝜒𝑚(𝜃) =

𝑘∑︁
ℓ=0

(−1)ℓ𝑏ℓ

(︂
𝑘

ℓ

)︂(︁
𝜒𝑚+ℓ(𝜃)𝑎ℓ + 𝜁𝑚+ℓ(𝜃)(1− 𝑎ℓ)

)︁
(36)

with

𝑎ℓ =

{︃
1 if 𝑘 − ℓ is even,
0 if 𝑘 − ℓ is odd

and 𝑏ℓ =

{︃
1 if ℓ = 0,

(𝑚− 1) · · · (𝑚− ℓ− 2) if ℓ ≥ 1.
.

Proof. We form the formal power series in R[[𝜆, 𝜇]] for unknown 𝜆 and 𝜇 by

𝑋(𝜃) =
∑︁
𝑚≥1

𝜆𝑚𝜒𝑚(𝜃) +
∑︁
𝑚≥1

𝜇𝑚𝜁𝑚(𝜃).

We then define two linear operators 𝑆 and 𝐽 on R[[𝜆, 𝜇]] defined by 𝑆(𝜈𝑚+1) =
−(𝑚 − 1)𝜈𝑚 for 𝜈 = 𝜆, 𝜈 and 𝐽(𝜆𝑚) = 𝜇𝑚, 𝐽(𝜇𝑚) = 𝜆𝑚 so that 𝐽 exchanges 𝜇
and 𝜆 and 𝐽2 is idempotent. The operators 𝑆 and 𝐽 commute. With our choice
of 𝑆,

𝑆(𝑋(𝜃)) = −
∑︁
𝑚≥1

(𝑚− 1)𝜆𝑚𝜒𝑚+1(𝜃)−
∑︁
𝑚≥1

𝜇𝑚𝜁𝑚+1(𝜃),

so that we write (34)-(35) as

𝜕𝜃𝑋(𝜃) = (𝑆 + 𝐽)𝑋(𝜃).

Therefore,

𝜕𝑘
𝜃𝑋(𝜃) =

𝑘∑︁
ℓ=0

(︂
𝑘

ℓ

)︂
𝑆ℓ𝐽𝑘−ℓ𝑋(𝜃).

We then deduce (36).

From (36),

𝜕2
𝜃𝜒𝑚(𝜃) = (𝑚− 1)𝑚𝜒𝑚+2(𝜃)− 2(𝑚− 1)𝜁𝑚+1(𝜃) + 𝜒𝑚(𝜃),

𝜕3
𝜃𝜒𝑚(𝜃) = −(𝑚− 1)𝑚(𝑚+ 1)𝜒𝑚+3(𝜃) + 3(𝑚− 1)𝑚𝜁𝑚+2(𝜃)− 3(𝑚− 1)𝜒𝑚+1 + 𝜁𝑚(𝜃).

The Taylor expansion around 0 leads to the following result.

Corollary 4. For any 𝜃 with |𝜃| < 1, 𝜒𝑚(𝜃) = 𝜒𝑚(0)+
∑︀

𝑘≥1 𝑐𝑚,𝑘𝜃
𝑘 where 𝑐2𝑚,1 = 0,

𝑐2𝑚+1,1 = −2𝑚𝜒2𝑚+2(0) and each of the 𝑐𝑚,𝑘 is a linear superposition of values of
𝛽ℓ for ℓ = 𝑚, . . . , ℓ+ 𝑘.

In particular,

𝜒2(𝜃) ≈ 1.29 + 2.17 · 𝜃2 + · · · and 𝜒3(𝜃) ≈ −0.42 · 𝜃 − 2.93 · 𝜃2 + · · · .
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3.5 The limiting covariance

We now show how to compute, at least numerically, the covariance matrix Ψ
appearing in Proposition 4.(ii). Recall that 𝜉2𝑖(0) = 0 for any 𝑖 ≥ 0.

According to [14, Theorem 1.2, p. 511] or [27],

Ψ2𝑖,2𝑗 :=

∫︁
R
E
[︀(︀
𝜕2𝑖
𝜃 𝑘0(𝐵0, 𝐵1)𝜕

2𝑗
𝜃 𝑘0(𝐵0, 𝐵1)

)︀ ⃒⃒
𝐵0 = 𝑥

]︀
d𝑥

+ 2

∫︁
R
E

[︃∑︁
ℓ≥1

𝜕2𝑖
𝜃 𝑘0(𝐵0, 𝐵1)𝜕

2𝑗
𝜃 𝑘0(𝐵ℓ, 𝐵ℓ+1)

⃒⃒⃒⃒
⃒𝐵0 = 𝑥

]︃
d𝑥,

for a Brownian motion 𝐵. Owing to (15) in Lemma 2,

Ψ2𝑖,2𝑗 = (2𝑖)!(2𝑗)!

∫︁
R
E

[︃∑︁
ℓ≤0

𝑘2𝑖+1
0 (𝐵0, 𝐵1)𝑘

2𝑗+1
0 (𝐵ℓ, 𝐵ℓ+1)

⃒⃒⃒⃒
⃒𝐵0 = 𝑥

]︃
d𝑥.

We decompose this expression as

Ψ2𝑖,2𝑗 = (2𝑖)!(2𝑗)!
(︀
Ψ𝐼

2𝑖,2𝑗 +Ψ𝐼𝐼
2𝑖,2𝑗 +Ψ𝐼𝐼𝐼

2𝑖,2𝑗

)︀
with

Ψ𝐼
2𝑖,2𝑗 =

∫︁
R
E
[︀
𝑘2𝑖+1
0 (𝐵0, 𝐵1)𝑘

2𝑗+1
0 (𝐵0, 𝐵1)

⃒⃒
𝐵0 = 𝑥

]︀
d𝑥,

Ψ𝐼𝐼
2𝑖,2𝑗 =

∫︁
R
E
[︀
𝑘2𝑖+1
0 (𝐵0, 𝐵1)𝑘

2𝑗+1
0 (𝐵1, 𝐵2)

⃒⃒
𝐵0 = 𝑥

]︀
d𝑥

+

∫︁
R
E
[︀
𝑘2𝑗+1
0 (𝐵0, 𝐵1)𝑘

2𝑖+1
0 (𝐵1, 𝐵2)

⃒⃒
𝐵0 = 𝑥

]︀
d𝑥,

Ψ𝐼𝐼𝐼
2𝑖,2𝑗 =

∫︁
R
E

[︃∑︁
ℓ≥2

𝑘2𝑖+1
0 (𝐵0, 𝐵1)𝑘

2𝑗+1
0 (𝐵ℓ, 𝐵ℓ+1)

⃒⃒⃒⃒
⃒𝐵0 = 𝑥

]︃
d𝑥

+

∫︁
R
E

[︃∑︁
ℓ≥2

𝑘2𝑗+1
0 (𝐵0, 𝐵1)𝑘

2𝑖+1
0 (𝐵ℓ, 𝐵ℓ+1)

⃒⃒⃒⃒
⃒𝐵0 = 𝑥

]︃
d𝑥.

Lemma 10. It holds that

Ψ𝐼
2𝑖,2𝑗 = 𝜒2(𝑖+𝑗)+2(0) =

2√
2𝜋

(︁
1 +

√
2𝜋𝜒++

2(𝑖+𝑗+1)(0)
)︁
=

−𝜉2(𝑖+𝑗)+1(0)

(2(𝑖+ 𝑗) + 1)!
. (37)

In particular, Ξ0,0(0) =
√︁

Ψ𝐼
0,0 =

√︀
−𝜉1(0).
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Proof. Eq. (37) follows from the definition of 𝜉𝑚 in (5) and (19). When 𝑖 = 𝑗 = 0,
by the Markov property and (24), we have Ψ𝐼𝐼

0,0 = Ψ𝐼𝐼𝐼
0,0 = 0.

By (18) and Lemma 5, 𝜒2(𝑖+𝑗)+2(0) =
2√
2𝜋
(1 +

√
2𝜋𝜒++

2(𝑖+𝑗)+2(0)), and an approxi-
mation of 𝜒++(0) is given in Lemma 6.

For 𝑚 ≥ 1, 𝑚 odd, we set

𝜅𝑚(𝑥, 𝑦) := exp(−2𝑚(𝑥𝑦)+) sgn(𝑦) = 𝑘0(𝑥, 𝑦)
𝑚

and ̂︀𝜅𝑚(𝑥, 𝑦) := exp(−2𝑚(𝑥𝑦)+) sgn(𝑥) = 𝜅𝑚(𝑦, 𝑥).

We also define

𝐾𝑚(𝑥) :=

∫︁
𝜅𝑚(𝑥) exp

(︂
−(𝑥− 𝑦)2

2

)︂
d𝑦√
2𝜋

= E[𝜅𝑚(𝑥,𝐵1) |𝐵0 = 𝑥]

and ̂︀𝐾𝑚(𝑥) :=

∫︁ ̂︀𝜅𝑚(𝑥) exp

(︂
−(𝑥− 𝑦)2

2

)︂
d𝑦√
2𝜋

= E[̂︀𝜅𝑚(𝑥,𝐵1) |𝐵0 = 𝑥]

for a Brownian motion 𝐵. With some straightforward computations,

𝐾𝑚(𝑥) = sgn(𝑥) exp(2𝑥2𝑚(𝑚− 1))Φ(−(2𝑚− 1)|𝑥|)− sgn(𝑥)Φ(−|𝑥|)
and ̂︀𝐾𝑚(𝑥) = sgn(𝑥) exp(2𝑥2𝑚(𝑚− 1))Φ(−(2𝑚− 1)|𝑥|) + sgn(𝑥)Φ(−|𝑥|).

Notation 2 ((Scaled) complementary error function). The complementary error
function and the scaled complementary error function are

erfc(𝑥) :=
2√
𝜋

∫︁ +∞

𝑥

𝑒−𝑦2 d𝑦 = 2Φ(𝑥
√
2) and erfcx(𝑥) := exp

(︀
𝑥2
)︀
erfc(𝑥)

for 𝑥 ≥ 0.

The functions 𝑥 ∈ [0, 1] ↦→ erfc(𝑥) and 𝑥 ∈ [0, 1] ↦→ erfcx(𝑥) take their values
in [0, 1]. Thanks to the Mill’s ratio, for 𝑥 large, erfcx(𝑥) ∼ 1/𝑥

√
𝜋.

We also introduce

𝑏𝑚 :=
2𝑚− 1√

2
so that 2𝑚(𝑚− 1) = 𝑏2𝑚 − 1

2
.

As Φ(−|𝑥|) = Φ(|𝑥|), we rewrite 𝐾𝑚 and ̂︀𝐾𝑚 as

𝐾𝑚(𝑥) =
1

2
sgn(𝑥)𝑒−𝑥2/2

(︁
erfcx(𝑏𝑚|𝑥|)− erfcx(|𝑥|/

√
2)
)︁

and ̂︀𝐾𝑚(𝑥) =
1

2
sgn(𝑥)𝑒−𝑥2/2

(︁
erfcx(𝑏𝑚|𝑥|) + erfcx(|𝑥|/

√
2)
)︁
.
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Lemma 11. For 𝑖, 𝑗 ≥ 0,

Ψ𝐼𝐼𝐼
2𝑖,2𝑗 =

∑︁
ℓ≥2

1√
2𝜋

√
ℓ− 1

∫︁ +∞

−∞

∫︁ +∞

−∞
̂︀𝐾2𝑖(𝑦)𝐾2𝑗(𝑧) exp

(︂
−(𝑧 − 𝑦)2

2(ℓ− 1)

)︂
d𝑦 d𝑧

+
∑︁
ℓ≥2

1√
2𝜋

√
ℓ− 1

∫︁ +∞

−∞

∫︁ +∞

−∞
̂︀𝐾2𝑗(𝑦)𝐾2𝑖(𝑧) exp

(︂
−(𝑧 − 𝑦)2

2(ℓ− 1)

)︂
d𝑦 d𝑧.

Proof. We define for 𝑚,𝑛 ≥ 0,

𝐴(ℓ,𝑚, 𝑛) :=

∫︁ +∞

−∞
E[𝜅𝑚(𝐵0, 𝐵1)𝜅𝑛(𝐵ℓ, 𝐵ℓ+1) |𝐵0 = 𝑥] d𝑥 (38)

so that
Ψ𝐼𝐼𝐼

2𝑖,2𝑗 =
∑︁
ℓ≥2

2𝐴(ℓ, 2𝑖+ 1, 2𝑗 + 1).

We rewrite 𝐴(ℓ,𝑚, 𝑛) using its integral form:

𝐴(ℓ,𝑚, 𝑛) =
1

(2𝜋)3/2
√
ℓ− 1

∫︁ +∞

−∞

∫︁ +∞

−∞

∫︁ +∞

−∞

∫︁ +∞

−∞
𝜅𝑚(𝑥, 𝑦)𝜅𝑛(𝑧, 𝑢)

× exp

(︂
−(𝑥− 𝑦)2

2

)︂
exp

(︂
−(𝑧 − 𝑦)2

2(ℓ− 1)

)︂
exp

(︂
−(𝑧 − 𝑢)2

2

)︂
d𝑥 d𝑦 d𝑧 d𝑢. (39)

We compute first 𝐴(ℓ,𝑚, 𝑛) for ℓ ≥ 2. Since ̂︀𝜅𝑚(𝑦, 𝑥) = 𝜅𝑚(𝑥, 𝑦), inverting 𝑥 and 𝑦,
and using the definitions of 𝐾𝑚 and ̂︀𝐾𝑚 leads to

𝐴(ℓ,𝑚, 𝑛) =
1√

2𝜋
√
ℓ− 1

∫︁ +∞

−∞

∫︁ +∞

−∞
̂︀𝐾𝑚(𝑦)𝐾𝑛(𝑧) exp

(︂
−(𝑧 − 𝑦)2

2(ℓ− 1)

)︂
d𝑦 d𝑧.

This gives the result.

Remark 15. With a change of variable (𝑦, 𝑧) → (𝑦/
√
𝑗 − 1, 𝑧/

√
𝑗 − 1), for 𝐴

introduced in (38),

𝐴(ℓ,𝑚, 𝑛) =
√
2𝜋

√
ℓ− 1

∫︁ +∞

−∞

∫︁ +∞

−∞
̂︀𝐾𝑚(𝑦

√
ℓ− 1)𝐾𝑛(𝑧

√
ℓ− 1) exp(𝑦𝑧)

× exp

(︂
−𝑧2

2

)︂
exp

(︂
−𝑦2

2

)︂
d𝑦√
2𝜋

d𝑧√
2𝜋

.

For two independent Gaussian random variables 𝐺,𝐺′ ∼ N(0, 1), we may write

𝐴(ℓ,𝑚, 𝑛) =
√
2𝜋

√
ℓ− 1E[𝐾𝑚(𝐺

′√ℓ− 1) ̂︀𝐾𝑛(𝐺
√
ℓ− 1) exp(𝐺 ·𝐺′)],

where 𝐺,𝐺′ ∼ N(0, 1) are independent. However, the variance is high so that
Monte Carlo techniques are unstable here.
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Lemma 12. For 𝑖, 𝑗 ≥ 1,

Ψ𝐼𝐼
2𝑖,2𝑗 =

∫︁ +∞

0

𝑒−𝑥2

erfcx(𝑏2𝑖+1𝑥) erfc(𝑏2𝑗+1𝑥) d𝑥− 2√
𝜋

(︁√
2− 1

)︁
.

Proof. As above,

𝐴(1,𝑚, 𝑛) =

∫︁ +∞

−∞
̂︀𝐾𝑚(𝑥)𝐾𝑛(𝑥) d𝑥

=
1

2

∫︁ +∞

0

𝑒−𝑥2

erfcx(𝑏𝑚𝑥) erfc(𝑏𝑛𝑥) d𝑥− 1

2

∫︁ +∞

0

𝑒−𝑥2

erfcx(𝑥/
√
2)2 d𝑥.

The quantity Ψ𝐼𝐼𝐼
2𝑖,2𝑗 is then

Ψ𝐼𝐼
2𝑖,2𝑗 = 𝐴(1, 2𝑖+ 1, 2𝑗 + 1) + 𝐴(1, 2𝑗 + 1, 2𝑖+ 1).

According to [29, 4.7.2],∫︁ +∞

0

𝑒−𝑥2

erfcx

(︂
𝑥√
2

)︂2

d𝑥 =

∫︁ +∞

0

erfc

(︂
𝑥√
2

)︂2

d𝑥 =
2√
𝜋

(︁√
2− 1

)︁
≈ 0.467.

No closed-form expression for
∫︀ +∞
−∞ 𝑒−𝑥2

erfcx(𝑏𝑚𝑥) erfc(𝑏𝑛𝑥) d𝑥 seems to exists.
However, this integral is easy to compute numerically as there exists various
implementation of erfcx. This could be done through a quadrature method to
compute the integral or using a Monte Carlo method as∫︁ +∞

0

𝑒−𝑥2

erfcx(𝑏𝑚𝑥) erfc(𝑏𝑛𝑥) d𝑥

=

√
𝜋√

2𝑚− 1
E
[︂
erfcx

(︂√
2𝑚− 1√

2
|𝐺|
)︂
erfcx

(︂√
2𝑛− 1√

2
|𝐺|
)︂]︂

.

This concludes the proof.

Numerical computations. We give some the first values of Ψ obtained by
numerical computations:

{Ψ2𝑖,2𝑗}𝑖,𝑗=0,1,2 ≈

⎡⎣ 1.295 1.422 12.576
1.422 1.891 18.135
12.576 18.135 181.421

⎤⎦ .

Let us conclude by an observation: for 𝑚 ≥ 2, 𝑚 odd, we found the empirical rule
of thumbs that Ψ𝑚,𝑚/Ψ

𝐼
𝑚,𝑚 behaves, for moderate values of 𝑚, as 𝐶𝑚/

√
2𝑚 for a

pre-factor 𝐶𝑚 varying slowly. In addition, Ψ𝐼
𝑚,𝑚 converges to 2√

2𝜋
as 𝑚 → ∞ (see

Lemma 6 and Lemma 10) while Ψ𝐼𝐼
𝑚,𝑚 converges to −2(

√
2− 1)/

√
𝜋.
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4 Proofs of the asymptotic results

The goal of this section is to prove Proposition 4. Proposition 3 is proved in Section 2
as a corollary of Proposition 4. Theorem 2 is a direct application of [20, Theorem 3].
The convergence in Theorem 1 follows from combining the expansion in Theorem 2
with Proposition 3.

Proposition 4 is a consequence of the results stated in Remark 10, in particular of
the convergence (14) which is a simple application of [27]. The next Lemma 13 is an
integrability condition which ensures that the assumptions of the main result in [27]
are satisfied. Although (14) concerns derivatives of 𝑘𝜃, the lemma concerns its
powers. This is justified by Lemma 2 in Section 3 where it is shown that 𝜕𝑚

𝜃 𝑘𝜃(𝑥, 𝑦)
is proportional to 𝑘𝜃(𝑥, 𝑦)

𝑚 with a multiplicative factor depending only on 𝑚 ∈ N.

Lemma 13. For 𝑚 = 1, 2, 3, . . . , and any 𝛾 > 3, there exists 𝑎 > 0 such that for
every 𝜃 ∈ (−1, 1) there exists a measurable, bounded function ℎ𝜃 : R → R which
satisfies∫︁

R
ℎ𝜃(𝑥)|𝑥|𝛾 d𝑥 < +∞ and |𝑘𝑚

𝜃 (𝑥, 𝑦)| ≤ ℎ𝜃(𝑥)𝑒
𝑎|𝑦−𝑥|, for any 𝑥, 𝑦 ∈ R.

Proof. Fix 𝑎 > 0. Observe that

|𝑘𝜃(𝑥, 𝑦)| ≤
1

(1− |𝜃|)
1{𝑥𝑦≤0} +

1

(1− |𝜃|)
𝑒−2𝑥𝑦1{𝑥𝑦>0} =: ℎ𝜃(𝑥, 𝑦) ≤

1

(1− |𝜃|)
.

Now, 1{𝑥𝑦≤0} ≤ 𝑒−𝑎|𝑥|𝑒𝑎|𝑦−𝑥|. Let us find a bound for 𝑒−2𝑥𝑦𝑒−𝑎|𝑦−𝑥|1{𝑥𝑦>0}. Let us
first assume 𝑥𝑦 > 0 and |𝑦| ≥ |𝑥| then

𝑒−2𝑥𝑦𝑒−𝑎|𝑦−𝑥| = 𝑒−2|𝑥||𝑦|𝑒−𝑎|𝑦|+𝑎|𝑥| ≤ 𝑒−2𝑥2

and if 𝑥𝑦 > 0 and |𝑦| < |𝑥| then

𝑒−2𝑥𝑦𝑒−𝑎|𝑦−𝑥| = 𝑒−2|𝑥||𝑦|𝑒−𝑎|𝑥|+𝑎|𝑦| ≤ 𝑒−2𝑥2

1{|𝑥|≤𝑎/2} + 𝑒−𝑎|𝑥|1{|𝑥|>𝑎/2}.

We conclude that for any 𝑥, 𝑦 ∈ R,

|𝑘𝜃(𝑥, 𝑦)|𝑚 ≤ (1− |𝜃|)−(𝑚−1)ℎ𝜃(𝑥, 𝑦) ≤ (1− |𝜃|)−𝑚
(︁
𝑒−2𝑥2

+ 𝑒−𝑎|𝑥|
)︁
𝑒𝑎|𝑦−𝑥|

with
∫︀
R

(︀
𝑒−2𝑥2

+ 𝑒−𝑎|𝑥|)︀|𝑥|𝛾 d𝑥 < +∞.
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4.0.1 Item (i): Case 𝜃 ̸= 0

Item (i) of Proposition 4 is an immediate consequence of the result stated in
Remark 10, Remark 11, and Lemma 1 which ensures that when 𝜃 ∈ (−1, 1),
𝜉0(𝜃) = 0, and when in addition 𝜃 ̸= 0, 𝜉𝑚(𝜃) ̸= 0 as soon as 𝑚 ≥ 1 and 𝜉2𝑚(0) = 0.

Using the fact that given two sequences, one converging in probability and the
other converges stably, joint stable convergence holds (see [2, Theorem 1])), we get
the joint stable convergence of the vector (S𝑘(𝜃))𝑘=0,...,𝑚 for any 𝑚 ≥ 0.

4.0.2 Item (ii): Case 𝜃 = 0

From the above arguments we have only to focus on the convergence of

S (𝑛, 0) := (𝑛1/4S0(𝑛, 0), 𝑛
1/4S2(𝑛, 0), . . . , 𝑛

1/4S2𝑚(𝑛, 0))

since S2𝑚+1(𝑛, 0) converges in probability to 𝜉2𝑚+1(𝜃)𝐿𝑇 for each 𝑚 ≥ 0.

The result is a direct consequence of [14, Theorem 1.2, p. 511] (which can be applied
since Lemma 13 holds).
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