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ABSTRACT In this paper, we proposed to investigate unsupervised anomaly detection in Synthetic Aperture
Radar (SAR) images. Our approach considers anomalies as abnormal patterns that deviate from their
surroundings without prior knowledge of their characteristics. This method deals with the crucial prob-
lems related to the presence of speckle, the spatial correlation structures in SAR images, and the lack of
annotated data to train a detection algorithm. Our proposed method aims to address these issues through a
self-supervised learning algorithm. First, we propose to mitigate the SAR speckle through the deep learning
SAR2SAR algorithm. We then develop an Adversarial Autoencoder (AAE) to reconstruct anomaly-free SAR
images from despeckled data taking into account potential spatial correlation structures. Finally, a change
detection processing step is applied between the input and the output to detect anomalies. Experiments
are performed to show the advantages of our method compared to the conventional Reed-Xiaoli algorithm,
highlighting the importance of an efficient despeckling pre-processing step.

INDEX TERMS Adversarial autoencoder, anomaly detection, deep-learning, despeckling, SAR, self-
supervised.

I. INTRODUCTION
Anomaly detection is one of the most critical issues in mul-
tidimensional imaging, mainly in hyperspectral [1], [2] and
medical imaging. Even if we have no prior information about
a target or background signature, anomalies generally differ
from surrounding pixels due to their dissimilar signatures.
Anomaly detection for radar and SAR imaging aims to dis-
cover abnormal patterns hidden in multidimensional radar
signals and images. Such anomalies could be man-made
changes in a specific location or natural processes affecting
a particular area. These anomalies can characterize, for ex-
ample, several potential applications: Oil slick detection [3],
turbulent ship wake [4], levee anomaly [5] or archaeology [6].
They can also be related to any change detection in time-series
SAR images. This research field is essential in data mining
for quickly isolating irregular or suspicious segments in large
amounts of the database. Many anomaly detection schemes
have been proposed in the literature [7], [8], [9], [10], [11],

[12], [13], [14], [15], [16], [17]. Among them, the unsuper-
vised methods are the most interesting since they are widely
applicable and do not require labeling the data.

Deep learning techniques for anomaly detection are often
based on an encoding-decoding network architecture to learn
healthy data or images that do not contain anomalies, such
as references [14], [15]. Another approach is based on the
one-class SVM method in the latent space [17]. Anomaly
detection in SAR using the difference between the input and
the reconstructed image obtained through the autoencoder
scheme is also proposed in [16]. Still, it could suffer from the
SAR speckle noise.

In the literature, most model-based algorithms face three
main issues. First, the speckle noise corrupts the image and
potentially leads to numerous false detections. Second, statis-
tical approaches may exhibit deficiencies in modeling spatial
correlation in SAR images. Finally, neural networks based on
supervised learning approaches are not recommended due to
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the lack of annotated SAR data, notably for the class of ab-
normal patterns. Our proposed method aims to address these
issues through a self-supervised algorithm. Our approach
consists in mitigating this annoying speckle with [22]. The
algorithm is adapted to our dataset and trained so that every
polarization can be despeckled with the same weights. Af-
ter, an Adversarial Autoencoder (AAE) is trained from these
despeckled data. It does not need to separate abnormal SAR
images from the training dataset.

Our method’s last step is a change detection between the
pairwise original and reconstructed images. This comparison
is performed through a distance metric based on covariance
matrices estimated locally. We finally compare our method
with the conventional RX anomaly detector [7] by analyzing
their global performance, and we highlight the importance of
the despeckling process.

This paper is organized as follows. After the introduction
in Section I, Section II presents the context of SAR imaging.
The proposed methodology being based on despeckling of
SAR images, Section III describes the filtering process. Sec-
tion IV presents the self-supervised neural architecture that
aims to reconstruct the final SAR image without anomalies.
Section V defines the last phase of the processing based on the
change detection step and discusses the quality of the anomaly
detection procedure. The proposed method is then applied
to experimental polarimetric SAR images. Final Section VI
gives some conclusions and perspectives.

Notations: italic indicates a scalar quantity, lower (resp. up-
per) case boldface indicates a vector (resp. matrix) quantity. .T

and .H represent respectively the transpose and the transpose
conjugate operators. Finally, |.| represents the cardinal oper-
ator,

∥∥.
∥∥

p the Lp norm while
∥∥.

∥∥
F represents the Frobenius

norm.

II. SYNTHETIC APERTURE RADAR
Airborne and spaceborne SAR aims to provide images of
Earth’s surface at radar frequency bands. Contrary to optical
imaging, they can work day and night using an active radar
that transmits and receive pulses in the scanning area. They
offer an opportunity to monitor changes and anomalies on
the Earth’s surface. Their principle is to combine multiple re-
ceived signals coherently to simulate an antenna with a larger
aperture. This procedure allows building a complex-valued
image of the terrain with very high range and azimuth resolu-
tions, independently of the distance between the radar and the
imaged area. Electromagnetic waves can also be polarized at
emission and reception. Horizontal and vertical polarizations
are generally used, resulting in four coherent SAR channels
HH , HV , V H , and VV where the first and second letters cor-
respond respectively to the emission reception polarization.
The information provided by polarimetry is crucial for most
geoscience applications from SAR remote sensing data [25].

A. SPECKLE
The main issue in SAR imaging concerns the corruption
of the backscattered signal within a resolution cell by a

multiplicative noise called speckle. This is due to the coherent
summation of multiple scatterers in one resolution cell, which
may cause destructive or constructive inferences. This phe-
nomenon disturbs the exploitation of radar data for detection
and geoscience applications. Much work in the literature has
proposed reducing its effect (e.g. [18], [19], [20], [21], [22],
[23], [24]) while preserving the resolution as much as possi-
ble.

A model of the speckle has been defined by Goodman [26].
In the case of a single look complex (SLC) image, each pixel
power or intensity I may be distributed according to an expo-
nential distribution:

p(I|R) = R−1 exp (−I/R) , (1)

where R denotes the mean reflectivity level. A useful general
statistical model representation is the so-called multiplicative
noise model I = R S, where S characterizes the exponentially
distributed speckle and R is a scalar positive random variable
characterizing the texture.

To change the multiplicative noise model into an additive
one, a log transformation is often used, which leads to a new
distribution:

p(y|x) = exp (y − x) exp(− exp (y − x)) , (2)

where y = log(I ) and x = log(R). One crucial detail is the
spatial correlation between the pixels which is not always
taken into account in the above model. This can be mainly
explained by a possible apodization of the images or some
oversampling lower than the spatial resolution during the im-
age synthesis. We can directly work on full-resolution data
thanks to recent developments in deep learning despeckling
algorithms that know how to keep the spatial resolutions and
preserve details such as lines and small bright targets (boats or
vehicles, for example). They, therefore, render detection tasks
and false alarm regulation easier on speckle-free data.

B. DATASET
In this paper, the analyzed dataset is composed of a time se-
ries of X-band SAR images (each of size 4800 × 30000 × 4)
acquired by SETHI, the airborne instrument developed by
ONERA [27], [28]. The resolutions of these images are about
20 cm in both azimuth and range domains for the four polar-
ization channels.

In the monostatic case, the channels V H and HV are of-
ten averaged because they contain the same information. The
averaging decreases the speckle impact without degrading the
resolution (so-called reciprocity principle [29]). The resulting

three channels HH,
1

2
(HV + V H ),VV are then thresholded

separately using a value λ(I ) chosen as:

λ(I ) = μI + 3 σI , (3)

where μI and σI are respectively the estimated mean and the
standard deviation of the intensity image I . The threshold
λ(I ) is the same for all SAR images to have a consistent
visualization, as shown in Fig. 1.
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FIGURE 1. First, a polarimetric SAR image (a) is decomposed into four different images (b), discarding the phase. Each image is then denoised separately
(c) with the network described in [22]. The four denoised images (d) are finally combined into a fully denoised polarimetric SAR image (e).

III. DESPECKLING
To reduce the speckle impact, the deep-learning despeckling
algorithm SAR2SAR [22] has been used. As discussed previ-
ously, this method can estimate the spatial correlation between
pixels and thus works with full-resolution images.

The training phase is based on a method called Noise2Noise
first developed in [30]. It shows that there is no need for a
ground truth to train a denoising deep neural network, but
only for multiple images of the same area with different noise
realizations. A common strategy for estimating the true un-
known image is to find, for the quadratic L2 loss function,
an image z that has the smallest average deviation from the
measurements:

argmin
z

Ey
[‖z − y‖2

2

] = Ey[y] , (4)

where y represents a set of observations. If the sample noise
is additive, centered, and independent in all the observations,
estimating Ey[y] is the same as predicting noise-free observa-
tions.

The same principle has been applied and refined for SAR
images in the algorithm [22]: let y1 and y2 be two independent
realizations of identically distributed random variables and let
a denoising network fθ (.) be parameterized by θ. A loss Lspeck

based on the negative log-likelihood of log-intensity images
can be used according to the distribution defined in (2) and
leads to:

Lspeck =
∑

k

fθ ([y1]k ) − [y2]k + exp ([y2]k − fθ ([y1]k ) (5)

The loss is a sum of all partial loss for each pixel repre-
sented with the index k. The use of (5), instead of a mean
square error, allows a faster convergence.

The other difference between SAR2SAR and Noise2Noise
is the training phase which is decomposed into three steps:
� Phase A: The training step is done with a speckle-

free image y. Two fake noisy image are created such
that y1 = y + s1 and y2 = y + s2 where s1 and s2 are
both distributed according the distribution from (2). The
network is learning how to denoise data without any
knowledge of spatial correlation.

� Phase B: The training step is performed with ex-
perimental SAR images and a change compensation
pre-processing: two same areas acquired at a different
time ytn and ytm are used. To compensate for changes
that could have occurred between the acquisition at

two dates, an estimation of the reflectivity is done
beforehand (on sub-sampled images to remove spa-
tial correlation). This leads to y1 = ytn and y2 = ytm −
fθ (ysub

tm ) + fθ (ysub
tn ) where the sub exponent characterizes

sub-sampled data. This finally allows y2 to have the
speckle of ytm and the reflectivity of ytn .

� Phase C: The same operation is done, but this time,
the network has learned how to model spatial correla-
tion, so the images are not sub-sampled to estimate a
reflectivity beforehand. This leads to y1 = ytn and y2 =
ytm − fθ (ytm ) + fθ (ytn ).

IV. IMAGE RECONSTRUCTION
Once the pre-processing step has been performed, the goal
is to highlight anomalies. This is obtained in an unsuper-
vised manner, and the network has no information about what
should be an anomaly and what shouldn’t. This makes the
task harder than, for example, with a supervised convolution
network. But, if we can reach the state-of-the-art with an un-
supervised algorithm, one of the most significant drawbacks
of artificial intelligence, corresponding to the need for a high-
quality labeled dataset will be overcome.

A. PROPOSED ARCHITECTURE
We use an AAE [31] with convolution layers to deal with
this problem. To understand the architecture, it is first nec-
essary to introduce what is a Generative Adversarial Network
(GAN) [32]. We will use the notations E(.), D(.) and Dc(.) to
define the encoder, the decoder, and the discriminator respec-
tively. A description of the network is illustrated in Fig. 2.

1) GENERATIVE ADVERSARIAL NETWORKS
A GAN is a self-supervised deep learning algorithm that was
originally used to generate synthesized images based on what
it saw. A generator and a discriminator are trained jointly
against each other. The generator’s goal is to create the most
realistic image possible, based on a source vector of low
dimension. Usually, this vector is distributed according to a
multivariate Normal distribution. The generated image should
fool the discriminator into thinking there is no difference
between real and fake images. In opposition, the discrimi-
nator’s goal is to be able to distinguish fake generated data
from real ones. In our architecture, the role of the GAN is
to generate a latent vector that is distributed according to a
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FIGURE 2. Architecture of the Adversarial Autoencoder. The numbers above blocks represent the number of input channels for the encoder and the
number of output channels for the decoder and the discriminator (disc). The description of each block is done with Pytorch notations. The input X is a
denoised patch of a SAR image, Z is the latent vector, and the output X̂ is the reconstructed patch. Lrec and Llat are respectively (6) and (7).

Normal distribution representative of a patch of polarimetric
SAR speckle-free image.

2) ADVERSARIAL AUTOENCODER
An AAE is composed of two things: (i) a generator, which
is an encoder and a decoder, one after another, and (ii) a dis-
criminator that is placed between the encoder and the decoder.
His goal is to ensure that the latent space follows a normal
distribution.

Our input is the logarithm of a denoised polarimetric SAR
patch X ∈ Rh×w×c of size h × w and depth c, where h and w

are respectively the numbers of pixels in azimuth and range,
and where c is the polarization channel. The logarithm oper-
ation is used to reduce the dynamic of the data (for example,
there can be a difference of 103 between the amplitude of a
strong scatterer and the amplitude of a pixel located in a vege-
tation area). After passing through the encoder, we get a latent
vector z = E(X) with z ∼ p(z) and where p(.) is the a priori
distribution of our encoder. Based on this vector, the decoder
will then make an estimation of our input patch X̂ = D(z).
In our architecture, we can observe a GAN present with the
generator E(.) and the discriminator Dc(.) whose purpose is
to differentiate zreal ∼ N(0, I) from z f ake ∼ p(z). Here, the
latent space is distributed according to a reduced and centered
Normal distribution, but the Uniform distribution on [0,1]
could also have given similar results. One restriction is that
it could not have been a long tail distribution because the in-
formation would not have been compacted in a small enough
space. We then train the AAE in two successive phases:

1) Reconstruction error: this characterizes a loss that en-
sures to have a low pixel-per-pixel error. We minimize
Lrec through L1 norm:

Lrec = 1

h w c

∑
i, j,k

∥∥Xi, j,k − X̂i, j,k
∥∥

1 . (6)

2) Regularization error: such a loss allows us to control
the distribution p(z). It also gives a better reconstruc-
tion according to [17], [31]. To do so, the weights of
the encoder E and the discriminator Dc are estimated
according to:

min
E

max
Dc

Llat =̂ Ezreal∼N(0,I)
[
log(Dc(zreal )

]
+ EE(X)∼p(z)

[
log (1 − Dc(E(X))

]
.

(7)

3) LINK BETWEEN ANOMALY DETECTION AND AAE
It is not apparent to see the link between this architecture and
anomaly detection. The goal of an AAE for this application
will be to make an accurate estimation for Normal distributed
data and a bad estimation for abnormal data. This will be
based on the assumption that the network is not powerful
enough to reconstruct every aspect of the image. Only the
recurrent patterns will be remembered. By definition, a spatial
anomaly occurs rarely compared to the rest of the data. If all
these assumptions are valid, only rare patterns will be seen as
anomalies, which is exactly what we want.

V. CHANGE DETECTION METHOD
Once the network has delivered an estimation of the in-
put image, the goal is to detect changes between X and X̂.
This detection will be represented in an anomaly map AX ∈
[0, 1]h×w. The closer the value is to one, the more the pixel
is likely to be an anomaly. The global flow of the detection
procedure is shown in Fig. 3.

A. PROBLEM FORMULATION
There are multiple approaches to detect changes between two
or more images [33]. As described in [33], pixel-level com-
parisons are widely used in SAR imaging community. The
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FIGURE 3. Overview of our proposed architecture for SAR anomaly
detection. Xnoisy corresponds to the amplitude of SAR image, X is the
speckle-free version, and X̂ is its reconstruction using an adversarial
autoencoder. Finally, the anomaly map AX is obtained through a change
detection algorithm between X and X̂ .

problem is formulated within the set of the following two
hypotheses: {

H0 : θ1 = θ2 (no anomaly),
H1 : θ1 �= θ2 (anomaly),

(8)

where θ1 and θ2 are vectors of the estimated parameters of the
distribution used to model pixel values. Methods relying on
the hypothesis test on the statistics of the image are difficult
to exploit. The non-Gaussianity, the heterogeneity of the SAR
images, or their complex-valued nature make this derivation
very difficult.

When pixels have been transformed into log intensity for
better contrast and when the speckle effect has been reduced
beforehand, the final distributions of the proposed anomaly
detection tests are generally unknown. Hence, to be able to
compare all the proposed strategies, a visualization process
is used to threshold each map according to the following
clipping operation:

x̃ = min(x, t ) . (9)

For a given percentage p, the threshold t is fixed such that
p% of the pixels are above it. This ensures to have the same
number of pixels of value t for each result. The dynamic is
compressed in a way that allows us to see at the same time
the anomalies and the background. The Probability of False
Alarm (PFA) is here, for convenience, characterized by this
value p in the sense that p and PFA are equal if all the pixels
in the map correspond to H0 hypothesis. They will have the
same significance in the sequel.

One way to detect changes between two SAR images
consists of testing the equality between the two estimated
covariance matrices of the corresponding pixel under test for
each pixel. This can be made statistically if the knowledge
of the data statistic is known [34] or through matrix dis-
tances [35].

B. COVARIANCE ESTIMATION
Covariance matrices are estimated locally around the pixel
under test. This is useful to strongly reduce the noise in the
anomaly map compared to a standard L1 loss, as it is shown
in Fig. 4. Indeed, to estimate a covariance matrix, we use a
sliding window represented by a boxcar Bk,l where k, l is the
coordinate of its center. For multivariate Gaussian distribution
N(μ,�), the Maximum Likelihood Estimators of the mean

FIGURE 4. Comparison of anomaly maps clipped at the highest 2% values:
(left) Input image, (middle) L1 loss between X and X̂ and (right) AX

E .

FIGURE 5. Comparison between (top left): HH SAR image, (top-right): its
speckle-free version. (bottom-left): the intensity ratio of these images.
(bottom-right): superposition of the histogram of the ratio image and the
theoretical Exponential distribution with parameter λ = 1.

vector μ and the covariance matrix � lead to the well known
Sample Mean Vector (SMV) and the Sample Covariance Ma-
trix (SCM) which are defined as:

μ̂X
k,l = 1

|Bk,l |
∑

i, j∈Bk,l

Xi, j , (10)

�̂
X
k,l = 1∣∣Bk,l

∣∣ ∑
i, j∈Bk,l

(
Xi, j − μ̂X

k,l

) (
Xi, j − μ̂X

k,l

)T
, (11)

where μ̂Xk,l is the estimate of the mean vector μ, where �̂
X
k,l

is the estimate of the covariance matrix � associated to the
boxcar Bk,l in the image X.

C. DISTANCE METRIC
There are multiple possibilities to compute a distance between
two matrices [35], [36]. A common way to do this consists in
computing the square of the Frobenius norm of the difference
between the two matrices.

AX
E (k, l ) =

∥∥∥∥�̂
X
k,l − �̂

X̂
k,l

∥∥∥∥2

F
. (12)

Other methods, based on the Frobenius norm, could also
be applied on log-matrices or root matrices. In our detection
case, a lot of importance is given to the intensity difference
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FIGURE 6. Evolution of the different steps of the process for three
different areas of the SAR image. (left): (a) SAR image containing a fence
and vehicles. (b) SAR image containing vehicles and trihedral sidelobes
corresponding to purple lines. (c) SAR image containing three vehicles.

FIGURE 7. Comparisons of horizontal profiles on a strong scatterer of the
image (a) in Fig. 6 in HH and HV polarization.

Algorithm 1: Anomaly Detection Pseudocode in Python
Style.

# SAR2SAR: despeckling network
# AAE: reconstruction network
# k: semi-kernel size
# scm: compute the sample covariance
matrix
# norm: Frobenius norm
for x_noisy in eval_data:
x = SAR2SAR(x_noisy)
x_rec = AAE(x)
(_,m,n) = x.shape #
channels,height,width
ano_map = zeros(m,n)
# Compute anomaly score for each
pixel
for i in range(m):
for j in range(n):
# Crop to compute scm
x_c = x[:,i-k:i+k+1,j-k:j+k+1]
x_r_c =
x_rec[:,i-k:i+k+1,j-k:j+k+1]
c, c_r = scm(x_c),scm(x_r_c)
ano_map[i,j] = norm(c -
c_r).pow(2)

m,M = min(ano_map), max(ano_map)
ano_map = (ano_map - m) / (M - m)
save(ano_map)

between �̂
X

and �̂
X̂

. The Euclidean metric (12) highlights the
difference in intensity between the two covariance matrices
characterizing each pixel and its reconstructed value while
preserving a low PFA. The pseudo-code for the proposed
anomaly detection method is detailed in Algorithm 1.

VI. EXPERIENCES AND ANALYSIS
In this section, we experiment with the proposed algorithm on
the ONERA SETHI SAR dataset. First, the analysis of the de-
speckling network is presented. We then evaluate the change
detection method and compare it with a standard approach.

A. DESPECKLING QUALITY
The proposed algorithm is applied to images that are decom-
posed into patches of size 256 × 256.

For phase A, we first need to compute a speckle-free image
by averaging co-registered images acquired at different dates.
Every polarization has been averaged, and we then used the
algorithm MuLoG [21] to remove the remaining speckle. It
gives us training data of 3052 patches grouped in batches of
size 32, which leads to a total of 955 batches. The network is
then trained for 20 epochs.

Phases B and C use images from the dataset previously
described, and the pre-processing step is the one described in
Phase B and C, Section III. There are four piles of two images,
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FIGURE 8. Comparison between different anomaly maps on a real SAR image with fake anomalies and its corresponding label.

one for each polarization, and each image is decomposed into
33047 patches with a batch size of 32, which leads to a total of
1032 batches. The network is trained for 10 epochs in phases
B and C.

Fig. 5 presents the result of the despeckling process for HH
polarization, and the corresponding ratio:

r(k, l ) = Is(k, l )/Ids(k, l ), (13)

where Is(k, l ) and Ids(k, l ) represent the intensity of the origi-
nal image and the speckle-free image respectively for the pixel
at position (k, l ).

This test image, relatively heterogeneous, comprises vege-
tation, roads, thin lines, and a strong scatterer annotated as a
vehicle. The image dynamic has not been altered, and because
there is no structure in the ratio image, we may confidently
affirm that our despeckling network has succeeded in only
removing the speckle.

The speckle on its own should follow an exponential dis-
tribution with its parameter equal to one. In the histogram
in Fig. 5, we found that, as expected, the actual distribution
follows an exponential probability density function.

B. ANOMALY DETECTION
To assess the quality of our results, they are compared with the
so-called Reed-Xiaoli detector [7] on complex-valued SAR
images. The algorithm consists in estimating locally, around
a pixel characterized by its polarimetric response x, the as-
sociated mean vector μ̂ and the covariance matrix �̂ of its
surrounding background and then to test if this pixel under test
is belonging, or not, to this background. The anomaly score is
computed through the well-known Mahalanobis distance:

RX (x) = (x − μ̂)H �̂
−1

(x − μ̂) , (14)

The parameters are locally estimated through the Gaussian
SMV and SCM estimates. An exclusion window prevents the
use of anomalous data in parameter estimation (guard cells).
The semi-kernel size is 12 for the estimation window and 8
for the exclusion window. We define the semi-kernel size as
the value k for a kernel of size 2k + 1.

Additional comparisons will be made using our proposed
AAE algorithm without the despeckling pre-processing and
the L1 norm between X and X̂.

To run the proposed algorithm, we first need to train the
AAE on the dataset described in Section II.II-B

FIGURE 9. Comparison between different anomaly maps obtained from
the images described in Fig. 6.

FIGURE 10. ROC curve and value of the AUC for the anomaly detection
algorithms displayed Fig. 8.
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1) AAE TRAINING AND ARCHITECTURE
The training process is self-supervised. The training dataset
has no labels and potentially can contain anomalies. In this
case, the evaluation and training datasets can be mixed be-
cause the training process requires only unlabeled data. In the
same way, as for the despeckling algorithm, a log transforma-
tion is used, and the input data are normalized between 0 and
1. These images are decomposed into patches of size 64 × 64.
The sliding window has a stride of 16. This leads to a total
of 163785 patches grouped in batches of size 128, so we get
1279 batches for one training epoch with a total of 20 epochs.

The architecture of the network is illustrated in Fig. 2. It has
been designed according to [37]. To update the weights, we
use the optimizer Adam [38] with a cyclical learning rate [39]
that goes linearly from 10−3 to 10−2. It takes 2558 batches
to go from one value to another. A complete cycle will take
four epochs. This method helps to have a robust training phase
that will converge even if we do not know the perfect learning
rate for the network. For the change detection method, a semi-
kernel of size 5 is used for the SCM estimation (detailed in
Algorithm 1).

2) EVALUATION DATASET
The proposed method has been qualitatively evaluated on a
known area of the dataset described in Section II.II-B. Since
there is no ground truth available, the boundary between the
anomaly and the background is not apparent, which makes
annotation almost impossible in many cases. The area is com-
posed of known anomalies (vehicles) intentionally placed by
the ONERA during a measurement campaign.

3) QUALITATIVE RESULTS
The evaluation of noisy images is displayed in Fig. 6 with
their denoised and reconstructed versions. The map named
Difference represents the absolute value between Denoised
and Reconstruction maps. We remark that the reconstructed
images are blurry, but all the essential structures are kept.

The despeckling pre-processing is not removing any struc-
ture, even the smallest one, like the green line in the bottom
right of the image (b). In all the reconstructed images, the
intensity of each point-like anomaly is greatly reduced. Fig. 7
illustrates this fact and shows a comparison of horizontal pro-
files at the location characterizing a strong scatterer of image
(a). Red dotted lines correspond to the visualization threshold
defined in (3). This intensity attenuation is fundamental to
the algorithm because the change detection is only applied
between the denoised and the reconstructed image in order
to highlight potential anomalies.

Fig. 9 presents a comparison of anomaly detection re-
sults obtained with different methods. All the results are here
clipped at the highest 1% values, see (9).

The anomaly maps obtained with the methods A
Xnoisy
E ,

the Reed-Xiaoli RX detector and L1(X, X̂) have a similar
drawback characterizing the presence of a large number of

false detections. The proposed method AX
E is shown to have

better performance for the same PFA.

4) QUANTITATIVE RESULTS
For quantitative evaluation, we have embedded synthetic test
patterns with different intensity levels in a true anomaly-free
crop SAR image.

The fake anomaly map results are represented in Fig. 8. The
values are based on true intensities characterizing the dataset
with a decreasing significance from top to bottom. In this fig-
ure, anomaly detection maps are clipped at 10% of the higher
value because some anomalies have a value close to the back-
ground. This makes the detection harder; thus, we reduce the
dynamic range to have a better representation. One advantage
of autoencoder-based detection is detecting abnormal areas of
low intensities (left cross), contrary to the RX detector. The
proposed AX

E method outperforms all the other ones and even
for the detection of low-intensity patterns. This is illustrated
in Fig. 10, which shows the overall performance obtained in
terms of Area Under the Curve (AUC). The proposed AX

E still
has the better performance.

VII. CONCLUSION
In this article, we propose a novel anomaly detection al-
gorithm. It is mainly based on the use of adversarial au-
toencoders. They have not been widely used in the SAR
community because of the speckle noise, which dramatically
degrades algorithm performance. Thanks to the recent ad-
vances in deep learning despeckling algorithms specifically
developed for SAR images, we can now efficiently develop
new algorithms based on these methods to enhance anomaly
detection performance.

Our proposed algorithm outperforms the conventional
Reed-Xiaoli method since it can detect abnormal areas with
low-intensity values. Because this self-supervised strategy
does not require labeled data, it can easily be extended to
another type of data as long as the anomaly quantity remains
negligible.

The envisaged perspectives concern the improvement of
change detection techniques that can help in giving better
detection performance as well as in regulating the False Alarm
Rate.
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