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In this paper, we proposed to investigate unsupervised anomaly detection in Synthetic Aperture Radar (SAR) images. Our approach considers anomalies as abnormal patterns that deviate from their surroundings without prior knowledge of their characteristics. This method deals with the crucial problems related to the presence of speckle, the spatial correlation structures in SAR images, and the lack of annotated data to train a detection algorithm. Our proposed method aims to address these issues through a self-supervised learning algorithm. First, we propose to mitigate the SAR speckle through the deep learning SAR2SAR algorithm. We then develop an Adversarial Autoencoder (AAE) to reconstruct anomaly-free SAR images from despeckled data taking into account potential spatial correlation structures. Finally, a change detection processing step is applied between the input and the output to detect anomalies. Experiments are performed to show the advantages of our method compared to the conventional Reed-Xiaoli algorithm, highlighting the importance of an efficient despeckling pre-processing step.

I. INTRODUCTION

Anomaly detection is one of the most critical issues in multidimensional imaging, mainly in hyperspectral [START_REF] Stein | Anomaly detection from hyperspectral imagery[END_REF], [START_REF] Matteoli | A tutorial overview of anomaly detection in hyperspectral images[END_REF] and medical imaging. Even if we have no prior information about a target or background signature, anomalies generally differ from surrounding pixels due to their dissimilar signatures. Anomaly detection for radar and SAR imaging aims to discover abnormal patterns hidden in multidimensional radar signals and images. Such anomalies could be man-made changes in a specific location or natural processes affecting a particular area. These anomalies can characterize, for example, several potential applications: Oil slick detection [START_REF] Alpers | Oil spill detection by imaging radars: Challenges and pitfalls[END_REF], turbulent ship wake [START_REF] Graziano | Performance analysis of ship wake detection on Sentinel-1 SAR images[END_REF], levee anomaly [START_REF] Fisher | Anomaly detection in Earth dam and levee passive seismic data using support vector machines and automatic feature selection[END_REF] or archaeology [START_REF] Scollar | Archaeological Prospecting and Remote Sensing[END_REF]. They can also be related to any change detection in time-series SAR images. This research field is essential in data mining for quickly isolating irregular or suspicious segments in large amounts of the database. Many anomaly detection schemes have been proposed in the literature [START_REF] Reed | Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[END_REF], [START_REF] Frontera-Pons | Robust anomaly detection in hyperspectral imaging[END_REF], [START_REF] Veganzones | Binary partition trees-based robust adaptive hyperspectral RX anomaly detection[END_REF], [START_REF] Terreaux | Anomaly detection and estimation in hyperspectral imaging using RMT tools[END_REF], [START_REF] Frontera-Pons | Hyperspectral anomaly detectors using robust estimators[END_REF], [START_REF] Bitar | Sparse and low-rank matrix decomposition for automatic target detection in hyperspectral imagery[END_REF], [START_REF] Haitman | Machine learning for detecting anomalies in SAR data[END_REF], [START_REF] Akçay | Skip-GANomaly: Skip connected and adversarially trained encoder-decoder anomaly detection[END_REF], [START_REF] Schlegl | f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks[END_REF], [START_REF] Sinha | Variational autoencoder anomaly detection of avalanche deposits in satellite SAR imagery[END_REF], [START_REF] Mabu | Anomaly detection using convolutional adversarial autoencoder and one-class SVM for landslide area detection from synthetic aperture radar images[END_REF]. Among them, the unsupervised methods are the most interesting since they are widely applicable and do not require labeling the data.

Deep learning techniques for anomaly detection are often based on an encoding-decoding network architecture to learn healthy data or images that do not contain anomalies, such as references [START_REF] Akçay | Skip-GANomaly: Skip connected and adversarially trained encoder-decoder anomaly detection[END_REF], [START_REF] Schlegl | f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks[END_REF]. Another approach is based on the one-class SVM method in the latent space [START_REF] Mabu | Anomaly detection using convolutional adversarial autoencoder and one-class SVM for landslide area detection from synthetic aperture radar images[END_REF]. Anomaly detection in SAR using the difference between the input and the reconstructed image obtained through the autoencoder scheme is also proposed in [START_REF] Sinha | Variational autoencoder anomaly detection of avalanche deposits in satellite SAR imagery[END_REF]. Still, it could suffer from the SAR speckle noise.

In the literature, most model-based algorithms face three main issues. First, the speckle noise corrupts the image and potentially leads to numerous false detections. Second, statistical approaches may exhibit deficiencies in modeling spatial correlation in SAR images. Finally, neural networks based on supervised learning approaches are not recommended due to the lack of annotated SAR data, notably for the class of abnormal patterns. Our proposed method aims to address these issues through a self-supervised algorithm. Our approach consists in mitigating this annoying speckle with [START_REF] Dalsasso | SAR2SAR: A semi-supervised despeckling algorithm for SAR images[END_REF]. The algorithm is adapted to our dataset and trained so that every polarization can be despeckled with the same weights. After, an Adversarial Autoencoder (AAE) is trained from these despeckled data. It does not need to separate abnormal SAR images from the training dataset.

Our method's last step is a change detection between the pairwise original and reconstructed images. This comparison is performed through a distance metric based on covariance matrices estimated locally. We finally compare our method with the conventional RX anomaly detector [START_REF] Reed | Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[END_REF] by analyzing their global performance, and we highlight the importance of the despeckling process.

This paper is organized as follows. After the introduction in Section I, Section II presents the context of SAR imaging. The proposed methodology being based on despeckling of SAR images, Section III describes the filtering process. Section IV presents the self-supervised neural architecture that aims to reconstruct the final SAR image without anomalies. Section V defines the last phase of the processing based on the change detection step and discusses the quality of the anomaly detection procedure. The proposed method is then applied to experimental polarimetric SAR images. Final Section VI gives some conclusions and perspectives.

Notations: italic indicates a scalar quantity, lower (resp. upper) case boldface indicates a vector (resp. matrix) quantity. . T and . H represent respectively the transpose and the transpose conjugate operators. Finally, |.| represents the cardinal operator, . p the L p norm while . F represents the Frobenius norm.

II. SYNTHETIC APERTURE RADAR

Airborne and spaceborne SAR aims to provide images of Earth's surface at radar frequency bands. Contrary to optical imaging, they can work day and night using an active radar that transmits and receive pulses in the scanning area. They offer an opportunity to monitor changes and anomalies on the Earth's surface. Their principle is to combine multiple received signals coherently to simulate an antenna with a larger aperture. This procedure allows building a complex-valued image of the terrain with very high range and azimuth resolutions, independently of the distance between the radar and the imaged area. Electromagnetic waves can also be polarized at emission and reception. Horizontal and vertical polarizations are generally used, resulting in four coherent SAR channels HH, HV , V H, and VV where the first and second letters correspond respectively to the emission reception polarization. The information provided by polarimetry is crucial for most geoscience applications from SAR remote sensing data [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF].

A. SPECKLE

The main issue in SAR imaging concerns the corruption of the backscattered signal within a resolution cell by a multiplicative noise called speckle. This is due to the coherent summation of multiple scatterers in one resolution cell, which may cause destructive or constructive inferences. This phenomenon disturbs the exploitation of radar data for detection and geoscience applications. Much work in the literature has proposed reducing its effect (e.g. [START_REF] Deledalle | Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[END_REF], [START_REF] Deledalle | NL-InSAR: Nonlocal interferogram estimation[END_REF], [START_REF] Deledalle | NL-SAR: A unified nonlocal framework for resolution-preserving (Pol)(In)SAR denoising[END_REF], [START_REF] Deledalle | MuLoG, or how to apply Gaussian denoisers to multi-channel SAR speckle reduction?[END_REF], [START_REF] Dalsasso | SAR2SAR: A semi-supervised despeckling algorithm for SAR images[END_REF], [START_REF] Dalsasso | Self-supervised training strategies for SAR image despeckling with deep neural networks[END_REF], [START_REF] Dalsasso | As if by magic: Self-supervised training of deep despeckling networks with MERLIN[END_REF]) while preserving the resolution as much as possible.

A model of the speckle has been defined by Goodman [START_REF] Goodman | Some fundamental properties of speckle[END_REF]. In the case of a single look complex (SLC) image, each pixel power or intensity I may be distributed according to an exponential distribution:

p(I|R) = R -1 exp (-I/R) , ( 1 
)
where R denotes the mean reflectivity level. A useful general statistical model representation is the so-called multiplicative noise model I = R S, where S characterizes the exponentially distributed speckle and R is a scalar positive random variable characterizing the texture.

To change the multiplicative noise model into an additive one, a log transformation is often used, which leads to a new distribution:

p(y|x) = exp (y -x) exp(-exp (y -x)) , (2) 
where y = log(I ) and x = log(R). One crucial detail is the spatial correlation between the pixels which is not always taken into account in the above model. This can be mainly explained by a possible apodization of the images or some oversampling lower than the spatial resolution during the image synthesis. We can directly work on full-resolution data thanks to recent developments in deep learning despeckling algorithms that know how to keep the spatial resolutions and preserve details such as lines and small bright targets (boats or vehicles, for example). They, therefore, render detection tasks and false alarm regulation easier on speckle-free data.

B. DATASET

In this paper, the analyzed dataset is composed of a time series of X-band SAR images (each of size 4800 × 30000 × 4) acquired by SETHI, the airborne instrument developed by ONERA [START_REF] Baqué | SETHI: Review of 10 years of development and experimentation of the remote sensing platform[END_REF], [START_REF] Angelliaume | Hyperspectral and radar airborne imagery over controlled release of oil at sea[END_REF]. The resolutions of these images are about 20 cm in both azimuth and range domains for the four polarization channels.

In the monostatic case, the channels V H and HV are often averaged because they contain the same information. The averaging decreases the speckle impact without degrading the resolution (so-called reciprocity principle [START_REF] Pallotta | Reciprocity evaluation in heterogeneous polarimetric SAR images[END_REF]). The resulting three channels HH, 1 2 (HV + V H ), VV are then thresholded separately using a value λ(I ) chosen as:

λ(I ) = μ I + 3 σ I , (3) 
where μ I and σ I are respectively the estimated mean and the standard deviation of the intensity image I. The threshold λ(I ) is the same for all SAR images to have a consistent visualization, as shown in Fig. 1. 

III. DESPECKLING

To reduce the speckle impact, the deep-learning despeckling algorithm SAR2SAR [START_REF] Dalsasso | SAR2SAR: A semi-supervised despeckling algorithm for SAR images[END_REF] has been used. As discussed previously, this method can estimate the spatial correlation between pixels and thus works with full-resolution images.

The training phase is based on a method called Noise2Noise first developed in [START_REF] Lehtinen | Noise2Noise: Learning image restoration without clean data[END_REF]. It shows that there is no need for a ground truth to train a denoising deep neural network, but only for multiple images of the same area with different noise realizations. A common strategy for estimating the true unknown image is to find, for the quadratic L 2 loss function, an image z that has the smallest average deviation from the measurements:

argmin z E y z -y 2 2 = E y [y] , (4) 
where y represents a set of observations. If the sample noise is additive, centered, and independent in all the observations, estimating E y [y] is the same as predicting noise-free observations.

The same principle has been applied and refined for SAR images in the algorithm [START_REF] Dalsasso | SAR2SAR: A semi-supervised despeckling algorithm for SAR images[END_REF]: let y 1 and y 2 be two independent realizations of identically distributed random variables and let a denoising network f θ (.) be parameterized by θ. A loss L speck based on the negative log-likelihood of log-intensity images can be used according to the distribution defined in (2) and leads to:

L speck = k f θ ([y 1 ] k ) -[y 2 ] k + exp ([y 2 ] k -f θ ([y 1 ] k ) (5)
The loss is a sum of all partial loss for each pixel represented with the index k. The use of ( 5), instead of a mean square error, allows a faster convergence.

The other difference between SAR2SAR and Noise2Noise is the training phase which is decomposed into three steps:

r Phase A: The training step is done with a speckle- free image y. Two fake noisy image are created such that y 1 = y + s 1 and y 2 = y + s 2 where s 1 and s 2 are both distributed according the distribution from (2). The network is learning how to denoise data without any knowledge of spatial correlation.

r Phase B: The training step is performed with ex- perimental SAR images and a change compensation pre-processing: two same areas acquired at a different time y t n and y t m are used. To compensate for changes that could have occurred between the acquisition at two dates, an estimation of the reflectivity is done beforehand (on sub-sampled images to remove spatial correlation). This leads to y 1 = y t n and y 2 = y t mf θ (y sub t m ) + f θ (y sub t n ) where the sub exponent characterizes sub-sampled data. This finally allows y 2 to have the speckle of y t m and the reflectivity of y t n .

r Phase C: The same operation is done, but this time, the network has learned how to model spatial correlation, so the images are not sub-sampled to estimate a reflectivity beforehand. This leads to y 1 = y t n and y 2 = y t mf θ (y t m ) + f θ (y t n ).

IV. IMAGE RECONSTRUCTION

Once the pre-processing step has been performed, the goal is to highlight anomalies. This is obtained in an unsupervised manner, and the network has no information about what should be an anomaly and what shouldn't. This makes the task harder than, for example, with a supervised convolution network. But, if we can reach the state-of-the-art with an unsupervised algorithm, one of the most significant drawbacks of artificial intelligence, corresponding to the need for a highquality labeled dataset will be overcome.

A. PROPOSED ARCHITECTURE

We use an AAE [START_REF] Makhzani | Adversarial autoencoders[END_REF] with convolution layers to deal with this problem. To understand the architecture, it is first necessary to introduce what is a Generative Adversarial Network (GAN) [START_REF] Goodfellow | Generative adversarial networks[END_REF]. We will use the notations E(.), D(.) and D c (.) to define the encoder, the decoder, and the discriminator respectively. A description of the network is illustrated in Fig. 2.

1) GENERATIVE ADVERSARIAL NETWORKS

A GAN is a self-supervised deep learning algorithm that was originally used to generate synthesized images based on what it saw. A generator and a discriminator are trained jointly against each other. The generator's goal is to create the most realistic image possible, based on a source vector of low dimension. Usually, this vector is distributed according to a multivariate Normal distribution. The generated image should fool the discriminator into thinking there is no difference between real and fake images. In opposition, the discriminator's goal is to be able to distinguish fake generated data from real ones. In our architecture, the role of the GAN is to generate a latent vector that is distributed according to a Normal distribution representative of a patch of polarimetric SAR speckle-free image.

2) ADVERSARIAL AUTOENCODER

An AAE is composed of two things: (i) a generator, which is an encoder and a decoder, one after another, and (ii) a discriminator that is placed between the encoder and the decoder. His goal is to ensure that the latent space follows a normal distribution.

Our input is the logarithm of a denoised polarimetric SAR patch X ∈ R h×w×c of size h × w and depth c, where h and w are respectively the numbers of pixels in azimuth and range, and where c is the polarization channel. The logarithm operation is used to reduce the dynamic of the data (for example, there can be a difference of 10 3 between the amplitude of a strong scatterer and the amplitude of a pixel located in a vegetation area). After passing through the encoder, we get a latent vector z = E(X) with z ∼ p(z) and where p(.) is the a priori distribution of our encoder. Based on this vector, the decoder will then make an estimation of our input patch X = D(z).

In our architecture, we can observe a GAN present with the generator E(.) and the discriminator D c (.) whose purpose is to differentiate z real ∼ N(0, I) from z f ake ∼ p(z). Here, the latent space is distributed according to a reduced and centered Normal distribution, but the Uniform distribution on [0,1] could also have given similar results. One restriction is that it could not have been a long tail distribution because the information would not have been compacted in a small enough space. We then train the AAE in two successive phases:

1) Reconstruction error: this characterizes a loss that ensures to have a low pixel-per-pixel error. We minimize L rec through L 1 norm:

L rec = 1 h w c i, j,k X i, j,k -Xi, j,k 1 . ( 6 
)
2) Regularization error: such a loss allows us to control the distribution p(z). It also gives a better reconstruction according to [START_REF] Mabu | Anomaly detection using convolutional adversarial autoencoder and one-class SVM for landslide area detection from synthetic aperture radar images[END_REF], [START_REF] Makhzani | Adversarial autoencoders[END_REF]. To do so, the weights of the encoder E and the discriminator D c are estimated according to:

min E max D c L lat = E z real ∼N(0,I) log(D c (z real ) + E E(X)∼p(z) log (1 -D c (E(X)) . ( 7 
)
3

) LINK BETWEEN ANOMALY DETECTION AND AAE

It is not apparent to see the link between this architecture and anomaly detection. The goal of an AAE for this application will be to make an accurate estimation for Normal distributed data and a bad estimation for abnormal data. This will be based on the assumption that the network is not powerful enough to reconstruct every aspect of the image. Only the recurrent patterns will be remembered. By definition, a spatial anomaly occurs rarely compared to the rest of the data. If all these assumptions are valid, only rare patterns will be seen as anomalies, which is exactly what we want.

V. CHANGE DETECTION METHOD

Once the network has delivered an estimation of the input image, the goal is to detect changes between X and X. This detection will be represented in an anomaly map A X ∈ [0, 1] h×w . The closer the value is to one, the more the pixel is likely to be an anomaly. The global flow of the detection procedure is shown in Fig. 3.

A. PROBLEM FORMULATION

There are multiple approaches to detect changes between two or more images [START_REF] Mian | An overview of covariance-based change detection methodologies in multivariate SAR image time series[END_REF]. As described in [START_REF] Mian | An overview of covariance-based change detection methodologies in multivariate SAR image time series[END_REF], pixel-level comparisons are widely used in SAR imaging community. The problem is formulated within the set of the following two hypotheses:

H 0 : θ 1 = θ 2 (no anomaly), H 1 : θ 1 = θ 2 (anomaly), (8) 
where θ 1 and θ 2 are vectors of the estimated parameters of the distribution used to model pixel values. Methods relying on the hypothesis test on the statistics of the image are difficult to exploit. The non-Gaussianity, the heterogeneity of the SAR images, or their complex-valued nature make this derivation very difficult. When pixels have been transformed into log intensity for better contrast and when the speckle effect has been reduced beforehand, the final distributions of the proposed anomaly detection tests are generally unknown. Hence, to be able to compare all the proposed strategies, a visualization process is used to threshold each map according to the following clipping operation:

x = min(x, t ) . ( 9 
)
For a given percentage p, the threshold t is fixed such that p% of the pixels are above it. This ensures to have the same number of pixels of value t for each result. The dynamic is compressed in a way that allows us to see at the same time the anomalies and the background. The Probability of False Alarm (PFA) is here, for convenience, characterized by this value p in the sense that p and PFA are equal if all the pixels in the map correspond to H 0 hypothesis. They will have the same significance in the sequel.

One way to detect changes between two SAR images consists of testing the equality between the two estimated covariance matrices of the corresponding pixel under test for each pixel. This can be made statistically if the knowledge of the data statistic is known [START_REF] Novak | Coherent change detection for multi-polarization SAR[END_REF] or through matrix distances [START_REF] Förstner | Geodesy-The Challenge of the 3rd Millennium (A Metric for Covariance Matrices[END_REF].

B. COVARIANCE ESTIMATION

Covariance matrices are estimated locally around the pixel under test. This is useful to strongly reduce the noise in the anomaly map compared to a standard L 1 loss, as it is shown in Fig. 4. Indeed, to estimate a covariance matrix, we use a sliding window represented by a boxcar B k,l where k, l is the coordinate of its center. For multivariate Gaussian distribution N(μ, ), the Maximum Likelihood Estimators of the mean vector μ and the covariance matrix lead to the well known Sample Mean Vector (SMV) and the Sample Covariance Matrix (SCM) which are defined as:

μX k,l = 1 |B k,l | i, j∈B k,l X i, j , (10) 
ˆ X k,l = 1 B k,l i, j∈B k,l X i, j -μX k,l X i, j -μX k,l T , (11) 
where μX k,l is the estimate of the mean vector μ, where ˆ X k,l is the estimate of the covariance matrix associated to the boxcar B k,l in the image X.

C. DISTANCE METRIC

There are multiple possibilities to compute a distance between two matrices [START_REF] Förstner | Geodesy-The Challenge of the 3rd Millennium (A Metric for Covariance Matrices[END_REF], [START_REF] Dryden | Non-euclidean statistics for covariance matrices, with applications to diffusion tensor imaging[END_REF]. A common way to do this consists in computing the square of the Frobenius norm of the difference between the two matrices.

A X E (k, l ) = ˆ X k,l -ˆ X k,l 2 F . ( 12 
)
Other methods, based on the Frobenius norm, could also be applied on log-matrices or root matrices. In our detection case, a lot of importance is given to the intensity difference between ˆ X and ˆ X. The Euclidean metric [START_REF] Bitar | Sparse and low-rank matrix decomposition for automatic target detection in hyperspectral imagery[END_REF] highlights the difference in intensity between the two covariance matrices characterizing each pixel and its reconstructed value while preserving a low PFA. The pseudo-code for the proposed anomaly detection method is detailed in Algorithm 1.

VI. EXPERIENCES AND ANALYSIS

In this section, we experiment with the proposed algorithm on the ONERA SETHI SAR dataset. First, the analysis of the despeckling network is presented. We then evaluate the change detection method and compare it with a standard approach.

A. DESPECKLING QUALITY

The proposed algorithm is applied to images that are decomposed into patches of size 256 × 256.

For phase A, we first need to compute a speckle-free image by averaging co-registered images acquired at different dates. Every polarization has been averaged, and we then used the algorithm MuLoG [START_REF] Deledalle | MuLoG, or how to apply Gaussian denoisers to multi-channel SAR speckle reduction?[END_REF] to remove the remaining speckle. It gives us training data of 3052 patches grouped in batches of size 32, which leads to a total of 955 batches. The network is then trained for 20 epochs.

Phases B and C use images from the dataset previously described, and the pre-processing step is the one described in Phase B and C, Section III. There are four piles of two images, one for each polarization, and each image is decomposed into 33047 patches with a batch size of 32, which leads to a total of 1032 batches. The network is trained for 10 epochs in phases B and C. Fig. 5 presents the result of the despeckling process for HH polarization, and the corresponding ratio:

r(k, l ) = I s (k, l )/I ds (k, l ), ( 13 
)
where I s (k, l ) and I ds (k, l ) represent the intensity of the original image and the speckle-free image respectively for the pixel at position (k, l ). This test image, relatively heterogeneous, comprises vegetation, roads, thin lines, and a strong scatterer annotated as a vehicle. The image dynamic has not been altered, and because there is no structure in the ratio image, we may confidently affirm that our despeckling network has succeeded in only removing the speckle.

The speckle on its own should follow an exponential distribution with its parameter equal to one. In the histogram in Fig. 5, we found that, as expected, the actual distribution follows an exponential probability density function.

B. ANOMALY DETECTION

To assess the quality of our results, they are compared with the so-called Reed-Xiaoli detector [START_REF] Reed | Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[END_REF] on complex-valued SAR images. The algorithm consists in estimating locally, around a pixel characterized by its polarimetric response x, the associated mean vector μ and the covariance matrix ˆ of its surrounding background and then to test if this pixel under test is belonging, or not, to this background. The anomaly score is computed through the well-known Mahalanobis distance:

RX (x) = (x -μ) H ˆ -1 (x -μ) , ( 14 
)
The parameters are locally estimated through the Gaussian SMV and SCM estimates. An exclusion window prevents the use of anomalous data in parameter estimation (guard cells). The semi-kernel size is 12 for the estimation window and 8 for the exclusion window. We define the semi-kernel size as the value k for a kernel of size 2k + 1. Additional comparisons will be made using our proposed AAE algorithm without the despeckling pre-processing and the L 1 norm between X and X.

To run the proposed algorithm, we first need to train the AAE on the dataset described in Section II.II-B The training process is self-supervised. The training dataset has no labels and potentially can contain anomalies. In this case, the evaluation and training datasets can be mixed because the training process requires only unlabeled data. In the same way, as for the despeckling algorithm, a log transformation is used, and the input data are normalized between 0 and 1. These images are decomposed into patches of size 64 × 64.

The sliding window has a stride of 16. This leads to a total of 163785 patches grouped in batches of size 128, so we get 1279 batches for one training epoch with a total of 20 epochs. The architecture of the network is illustrated in Fig. 2. It has been designed according to [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF]. To update the weights, we use the optimizer Adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with a cyclical learning rate [START_REF] Smith | Cyclical learning rates for training neural networks[END_REF] that goes linearly from 10 -3 to 10 -2 . It takes 2558 batches to go from one value to another. A complete cycle will take four epochs. This method helps to have a robust training phase that will converge even if we do not know the perfect learning rate for the network. For the change detection method, a semikernel of size 5 is used for the SCM estimation (detailed in Algorithm 1).

2) EVALUATION DATASET

The proposed method has been qualitatively evaluated on a known area of the dataset described in Section II.II-B. Since there is no ground truth available, the boundary between the anomaly and the background is not apparent, which makes annotation almost impossible in many cases. The area is composed of known anomalies (vehicles) intentionally placed by the ONERA during a measurement campaign.

3) QUALITATIVE RESULTS

The evaluation of noisy images is displayed in Fig. 6 with their denoised and reconstructed versions. The map named Difference represents the absolute value between Denoised and Reconstruction maps. We remark that the reconstructed images are blurry, but all the essential structures are kept.

The despeckling pre-processing is not removing any structure, even the smallest one, like the green line in the bottom right of the image (b). In all the reconstructed images, the intensity of each point-like anomaly is greatly reduced. Fig. 7 illustrates this fact and shows a comparison of horizontal profiles at the location characterizing a strong scatterer of image (a). Red dotted lines correspond to the visualization threshold defined in (3). This intensity attenuation is fundamental to the algorithm because the change detection is only applied between the denoised and the reconstructed image in order to highlight potential anomalies.

Fig. 9 presents a comparison of anomaly detection results obtained with different methods. All the results are here clipped at the highest 1% values, see [START_REF] Veganzones | Binary partition trees-based robust adaptive hyperspectral RX anomaly detection[END_REF].

The anomaly maps obtained with the methods A X noisy E , the Reed-Xiaoli RX detector and L 1 (X, X) have a similar drawback characterizing the presence of a large number of false detections. The proposed method A X E is shown to have better performance for the same PFA.

4) QUANTITATIVE RESULTS

For quantitative evaluation, we have embedded synthetic test patterns with different intensity levels in a true anomaly-free crop SAR image.

The fake anomaly map results are represented in Fig. 8. The values are based on true intensities characterizing the dataset with a decreasing significance from top to bottom. In this figure, anomaly detection maps are clipped at 10% of the higher value because some anomalies have a value close to the background. This makes the detection harder; thus, we reduce the dynamic range to have a better representation. One advantage of autoencoder-based detection is detecting abnormal areas of low intensities (left cross), contrary to the RX detector. The proposed A X E method outperforms all the other ones and even for the detection of low-intensity patterns. This is illustrated in Fig. 10, which shows the overall performance obtained in terms of Area Under the Curve (AUC). The proposed A X E still has the better performance.

VII. CONCLUSION

In this article, we propose a novel anomaly detection algorithm. It is mainly based on the use of adversarial autoencoders. They have not been widely used in the SAR community because of the speckle noise, which dramatically degrades algorithm performance. Thanks to the recent advances in deep learning despeckling algorithms specifically developed for SAR images, we can now efficiently develop new algorithms based on these methods to enhance anomaly detection performance.

Our proposed algorithm outperforms the conventional Reed-Xiaoli method since it can detect abnormal areas with low-intensity values. Because this self-supervised strategy does not require labeled data, it can easily be extended to another type of data as long as the anomaly quantity remains negligible.

The envisaged perspectives concern the improvement of change detection techniques that can help in giving better detection performance as well as in regulating the False Alarm Rate.
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 1 FIGURE 1. First, a polarimetric SAR image (a) is decomposed into four different images (b), discarding the phase. Each image is then denoised separately (c) with the network described in [22]. The four denoised images (d) are finally combined into a fully denoised polarimetric SAR image (e).

FIGURE 2 .

 2 FIGURE 2. Architecture of the Adversarial Autoencoder. The numbers above blocks represent the number of input channels for the encoder and the number of output channels for the decoder and the discriminator (disc). The description of each block is done with Pytorch notations. The input X is a denoised patch of a SAR image, Z is the latent vector, and the output X is the reconstructed patch. L rec and L lat are respectively (6) and (7).

FIGURE 3 .

 3 FIGURE 3. Overview of our proposed architecture for SAR anomaly detection. X noisy corresponds to the amplitude of SAR image, X is the speckle-free version, and X is its reconstruction using an adversarial autoencoder. Finally, the anomaly map A X is obtained through a change detection algorithm between X and X .
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 45 FIGURE 4. Comparison of anomaly maps clipped at the highest 2% values: (left) Input image, (middle) L 1 loss between X and X and (right) A X E .

FIGURE 6 .FIGURE 7 .

 67 FIGURE 6. Evolution of the different steps of the process for three different areas of the SAR image. (left): (a) SAR image containing a fence and vehicles. (b) SAR image containing vehicles and trihedral sidelobes corresponding to purple lines. (c) SAR image containing three vehicles.

Algorithm 1 :

 1 Anomaly Detection Pseudocode in Python Style. # SAR2SAR: despeckling network # AAE: reconstruction network # k: semi-kernel size # scm: compute the sample covariance matrix # norm: Frobenius norm for x_noisy in eval_data: x = SAR2SAR(x_noisy) x_rec = AAE(x) (_,m,n) = x.shape # channels,height,width ano_map = zeros(m,n) # Compute anomaly score for each pixel for i in range(m): for j in range(n): # Crop to compute scm x_c = x[:,i-k:i+k+1,j-k:j+k+1] x_r_c = x_rec[:,i-k:i+k+1,j-k:j+k+1] c, c_r = scm(x_c),scm(x_r_c) ano_map[i,j] = norm(c -c_r).pow(2) m,M = min(ano_map), max(ano_map) ano_map = (ano_map -m) / (M -m) save(ano_map)

FIGURE 8 .

 8 FIGURE 8. Comparison between different anomaly maps on a real SAR image with fake anomalies and its corresponding label.

9 .FIGURE 10 .

 910 FIGURE 10. ROC curve and value of the AUC for the anomaly detection algorithms displayed Fig. 8.
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