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Abstract—Common subspace matched filter in around-the-
corner radar exhibits very strong sidelobes that can lead to
large localization errors, called here “ambiguities”. In this paper,
by considering a generalized subspace model which includes
the incidental direction measurement, we show that localization
performance can be improved significantly. To better observe
this improvement, the false localization rate and estimation root-
mean-square error performance indices are considered. Local-
ization results highlight the influence of the number of paths
to be considered to achieve maximum reduction of localization
ambiguities.

Index Terms—around-the-corner radar, multipath exploitation,
NLOS, hidden target, ambiguities, urban radar

I. INTRODUCTION

Urban radar applications remains a challenging area of
research due to the complexity of the propagation environment
induced by the buildings present in the scene. Contrary to
conventional radar applications where the target is in radar
light-of-sight (LOS), the presence of these buildings generates
shadow zones within which a target is not in line of sight
and numerous multipaths produced by possible reflections and
diffractions on the surrounding surfaces which are often seen
as nuisances. Fortunately, these multipaths can be advanta-
geously exploited to detect and locate targets in the shadow
zones (or NLOS for Non-Line of Sight). It may then be
possible to look behind the corners of walls with a simple
hand-held radar: this is called “around-the-corner” radar [1]
[2].

There have been several works on this quite recent topic in
the past decade. First noticeable works have been conducted in
[1] [2] that have shown the feasibility of exploiting multipaths
to detect/locate target in NLOS context. More recently, [3]
proposed a localization algorithm of NLOS targets by ex-
ploiting multipaths time delays and angular measurements. [7]
[8] share similar localization approach of NLOS target since
they are based on association methods of time of arrivals. [9]
[10] proposed a method to locate multiple NLOS targets. The
performance of these methods have been proven, but it cannot
be achieved without a good knowledge of the scene geometry.
Authors of [6] established a propagation model and developed
a neural network for NLOS detection and tracking. [11] also
used deep neural network in order to classify ghost targets
located in LOS.
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Fig. 1: Illustration of possible localization ambiguities.

Contrary to studies [7] [8] [9] where the target position
is deducted from estimated parameters like range or angle
of arrival (2-steps localization), we focus here on a 1-step
localization approach that directly estimates the target position
from the raw signal [14]. The latter approach is often optimal
but working in the space of target can induce strong sidelobes,
then generates ambiguities and makes difficult to accurately
locate the target. It is highlighted in [5] that applying subspace
matched filter enables to detect and locate a single target
behind a corner in 1 step, but the localization results exhibit
a large number of ghost positions, as illustrated in Fig. 1.
The first reason is that the propagation model, that only takes
the round-trip delay measurement into account, assumes that
multipath amplitudes are unknown (see III-A). Therefore, any
location having at least one multipath delay in common with
the true location will have a high detection test level, and then
may bias the estimation. In [5], the authors also proposed
an algorithm for selecting the optimal number of paths in
order to maximize the detection probability, but the impact of
the number of paths on the localization ambiguities was not
considered. A potential solution was proposed in [4] based on
a particle filter in order to benefit from the target dynamic
so as to progressively reject ambiguities and improve the



location estimation. The results showed a clear reduction of
ambiguities, but this method necessitates several dwell times
during the experiment. To our knowledge, the problem of
localization ambiguities has not yet been thoroughly studied
by the literature.

In this paper, we focus on the mitigation of localization
ambiguities of a single target in NLOS by showing that adding
incidental direction measurement to the subspace model leads
to a clear improvement of localization performance. This
improvement is reflected on two metrics: the false localization
rate and the root-mean-square error. We also point out that
contrary to the [9] [10] the number of multipaths selected in
the model may also impact the localization performance, as it
does for the detection probability.

The paper is organized as follows. In Section II, the model
of radar signal presented in [5] is extended to an array of
receiving antennas to enable incidental direction measurement.
The origin of localization ambiguities is explained in Section
IIT where we also propose two metrics to evaluate localization
performance. Simulation configuration and results are covered
in IV. Section V is dedicated to the conclusion.

II. SIGNAL MODELLING

Let us assume that a narrow-band signal s(t) is transmitted
in the urban scene by a single omni-directionnal antenna.
At the reception, we consider a horizontal linear array of
Q@ receiving antennas. Under the far field assumption, the
baseband signal received by the ¢-th elementary antenna is
given by

M (2,y) .
Z Ams(t — Ty )eTXom>a 4, (2) (1)

m=1

rq(t) =

where a.,, 7., and 6,, correspond to the deterministic un-
known amplitude, the round-trip time delay and the incidental
direction of the m-th path that returns from the single target
located at (x,y), respectively. M (x, yT) is the number of paths
returned by the latter. The term e’om*« denotes the spatial
phase shift induced by multipath m on antenna g, where
ko, = @ug is the wave vector of m-th path return,
fo is the carrier frequency, ¢ is the speed of light in the
air, ug,, is the unit vector with direction 6,,, and x, is the
position vector of the g-th antenna. n,(t) is the additive white
noise contribution for the g¢-th measurement vector, which
is assumed to follow a Gaussian circular distribution with
known variance o2. Note that in Eq. (1) we omit all echoes
caused by any fixed obstacles present in the scene such as
buildings and trees: we indeed assume that a zero-Doppler
rejection processing step has been performed prior to the
detection/localization algorithm, by applying for example the
method presented in [12], so that all the fixed echoes have been
eliminated. After that, the signal in Eq. (1) is sampled with
period Ts < 1/B, where B is the signal bandwidth. Hence
we get the following sampled observation vector:

vy = [rg(t1) rolta). rq(tn)], @)

m

where t,, = nTs. Similarly, we define
ng = [ng(t) ng(ta).. ng(tn)]” 3)
s(1) = [s(ti —7) s(ta—7) sty =] . @

By stacking all received signals r, in a single vector r, we
define the model of the total received array signal as follows

r=S(z,y)a+mn, 5)

where
o= [al Qs... aM(Ly)]T, (6)
r:[r?,rg,...,rg]T, @)
n:[nf,ng,...,ng]T, 8)

S = [Si(z, )", Sa(a,9)T, ... So(z, )] . ©

Sg is the N x M (z,y) matrix whose columns are formed by
the vectors {s,(71,01),84(72,02), ..., 8¢(Tas(z,y)s Ori(z,y)) }
and

84(7,0) = s(7)el*0*a, (10)

where 7 and 6 depend on (z,y). Note that in the case of
a single receiving antenna, Eq. (5) boils down to the model
introduced in [5].

A. Subspace Matched Filter (SMF)

The generalized likelihood ratio test (GLRT) and the maxi-
mum likelihood estimator for the detection and localization
radar problem in Eq. (5) can be derived from using the
subspace matched filter [5] [13]. Although the raw signal r,
contains M (z,y) multipaths, it may be relevant to apply the
SMF by considering only a subset of the K strongest paths
since it was shown in [5] that there exists an optimal number of
paths to select in order to maximize the detection probability.
Assuming amplitudes in « are in decreasing order, the SMF is
then performed by only taking the first KX columns of S(z,y)
in order to form Si.x(z,y). According to [5], the GLRT is
written as

H
Ti(w,y) = [Pr@y)rl; 2Xe,  aD
0
where H and H; correspond classically to the hypothesis of
absence and presence of target at location (x, y), respectively.
Ak is the detection threshold set according to the desired false
alarm probability (Pr4) and P is the orthogonal projector on
the subspace spanned by the columns of Sy.x(z,y):

Py =Sk (2,y)(Stx(@,9)"Stx(2,y) " Sur (2, 9) ™.
(12)
The T-level Tk (x,y) also corresponds to the energy of
the received signal projected onto the subspace defined by
S1.x(z,y). In case of a single target, the maximum likelihood
estimation of the target position is given by

(jcagc) = argma'XTK<may)a (13)

(z,y)€G

where G is the search zone where the target is located.



III. LOCALIZATION AMBIGUITIES

A. Origin of ambiguities

Ambiguities, as the name suggests, refer to the difficulty
in distinguishing the true target position from other positions
when applying the SMF algorithm. For instance, in the case of
delay-only measurements (Q = 1), the SMF provides a high
T-level to any position which shares at least a common delay
parameter with the true location.

This is mainly due to the SMF statistics in Eq. (12).
In this setting, the amplitudes « of the returned multipaths
are assumed unknown and are estimated according to the
maximum likelihood (ML) criteria. This ML estimator tends
to set negligible values to any amplitude «,, that does not
correspond to a delay presenting a sufficiently strong energy
in the measurement vector. However, several locations share
some (at least one) common delays with the target position.
When projecting the received signal onto the subspace of
such an ambiguous location, common paths are estimated
with high amplitudes whereas different ones are omitted. Then
false positions have relatively high T-level even if they do not
share all common measurements with the true position. This
phenomenon is very similar to the presence of sidelobes in
classical radar leading to poor parameter estimation, although
ambiguities are much stronger in the around-the-corner radar.

Such ambiguities arise in various situations. The first sim-
pler one is illustrated geometrically in Fig. 1, where ghost
positions are distributed on equirange circle arcs from the
radar for a given multipath distance corresponding to the target
position. These ambiguities are provided by paths that share
similar reflections with the true position. Their inherently high
T-level may surpass that of the true position (in presence of
noise) with a non negligible probability, then resulting in false
localization.

More generally, ambiguities can arise with positions whose
paths do not share the same reflection surface as the true posi-
tion, but still present a similar time delay. Thus it is generally
difficult to determine the form of the localization ambiguities,
especially in a complex scene geometry. Therefore, in the
next section we introduce two metrics in order to quantify
the ambiguity problem.

B. Ambiguity metrics

In order to measure the impact of ambiguities on the
localization performance of the SMF with or without the
additional angular measurement, we define the neighbourhood
of the true target position (x.,y.) as the set of unresolved
locations around the true position. Since the SMF algorithm
is classically applied on a grid of positions, then an appropriate
grid step has to be found. Its choice is more involved than for
the classical radar in LOS problem because the radar resolution
(—3 dB main lobe width) and depends on the true target
position. We choose a simple grid step which is proportional

to the radar range resolution.
Concretely, for a given grid G, we define the target vicinity as

Clresye) = {(@,9) € G,V =2+ y—u < 55|
(14
Therefore localization of the target at position (z., y.) is said
ambiguous if

max

(z,y)¢C (e ye)
We define then the false localization rate (FLR) at (z.,y.),
noted FLR(z., y.) as the rate to which condition (15) occurs.
In other words, it explains how frequently a position beyond
the target vicinity is detected and maximizes the T-level in
presence of noise. Furthermore, we also consider the RMSE
metric for position estimation

RMSE(zc, ye) = VE[(#e — 7c)2 + (Je — ye )2

RMSE(z., y.) denotes the root-mean-square error in local-
ization at (z.,y.). Finding the analytic expressions of both
preceding metrics is not obvious, but their value can be
estimated numerically via Monte Carlo simulation.

TK(%ZJ) > TK(xcvyc) > )‘K (15)

(16)

C. Influence of the number of selected paths

According to [5], the analytical expression of the detection
probability (Pp) depends both on the signal-to-noise ratio
(SNR) and A . More specifically, Pp increases with the SNR,
defined as
[Su:xe (. y)exll3

SNR = 02

; a7

(i.e Pp increases when K grows), but decreases with respect
to Ax which is a decreasing function of K.

Consequently, adding more paths to the model may help

to improve the detection probability, but the energy of each
added path has to be sufficiently strong to compensate the
corresponding increase of the detection threshold. Therefore,
an optimal value of K can be found in terms of maximizing
Pp [5].
A natural question arises then: do we observe a similar
phenomenon for the localization ambiguities? Indeed, since
the FLR and RMSE criteria depend on the SMF output
Tk (z,y) whose statistical distribution depends on Sy.x (2, ),
the number of paths may be chosen in order to minimize
both metrics. Hence, in the following sections, we show by
simulations that the number of considered paths indeed has
an impact on the localization performance, and a trade-off
between detection and localization criteria should be found.

IV. NUMERICAL RESULTS
A. Configuration

The localization performance is evaluated by simulations.
To do this, a 10 GHz FMCW radar system is considered, that
consists of a linear array with () receiving antennas with half
wavelength spacing. The transmitted waveform bandwidth is
B = 300 MHz, and thus the range resolution is 0.5 m. Simula-
tions are performed for two configurations: a single receiving



antenna ((Q = 1) and 10 receiving antennas () = 10). The
first configuration corresponds to the case where only the time
delay measurements are used (as in [S]) whereas the second
contains both delay and incidental direction information.

The simulation scenario is a typical urban T-junction as
shown in Fig. 2. In the region of interest, the radar and the
NLOS target local coordinates are (0,2) and (35.60, 14.87)
meters, respectively. As in [5], the search zone is divided into
cells of the same size of 0.25 x 0.25 m, that corresponds
roughly to half the radar range resolution. For each point (z, y)
on this grid, a ray tracing simulation is performed in order
to determine the multipaths associated to the corresponding
position with their respective time delays and incidental direc-
tion parameters, thus enables building of the matrix S(x,y).
The received signal r is generated by using the multipaths
generated for the target position, and adding propagation losses
proportional to 1/D?, where D is the propagation distance,
as well as reflection losses of —8 dB for each reflection.
For a fair comparison, the same received SNR is set in both
aforementioned configurations, which means that in the case
of Q = 10, the target radar cross section is set to be 10 times
smaller than that of Q = 1.

target
(35.60, 14.87)

0 5 10 15 20 25 30 35 40
x(m)

Fig. 2: T-junction urban scenario. The search zone is enclosed by the
dotted line. The target is located in a NLOS zone above the dashed
line

B. Localization results

Fig. 3 shows the localization map for the two configurations
in a noiseless case with ' = 5 paths used in the SMF
test. These maps correspond to the ambiguity figures for the
considered scenario. In both cases, the true position presents
the highest T-level (about 0 dB). For Q = 1 (Fig. 3a), the
ambiguity figure exhibits circle arcs of high T-level positions
whereas for @@ = 10 (Fig. 3b), these circle arcs are significantly
attenuated. This improvement is due to the contribution of the
incidental direction information that lowers the signal energy
contained in ghost positions subspace. Since this improvement
is equivalent to reducing the sidelobes in classical radar, it is
expected that in presence of noise, the probability that ghost
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Fig. 3: Localization maps for a target located in NLOS. The target
position (35.60, 14.87) is marked by the white cross. (a) one single
antenna (b) 10 receiving antennas.

positions are detected and surpass the true target position
T-level will be reduced in case of multi-receiving antennas
comparing to the single antenna configuration.

Fig. 4 shows the resulting estimated FLR and RMSE for
the considered scenario. At first glance, a significant gap can
be observed between the performance provided by the single
antenna and the array with 10 antennas. Fig. 4a shows that
when (Q = 10, the FLR value decreases more rapidly than
when Q = 1, and has a smaller RMSE which tends rapidly to-
wards O at high SNRs, as shown in Fig. 4b. Interestingly, FLR
curves tendency is related to the detection probability curve:
at low SNRs, the FLR is insignificant since the true target
position and the ghost ones are not detected. At medium SNRs,
although higher T-level at the true target position enables to
detect it more frequently, it is not strong enough to compete
with the raise of T-level at ghost positions, then results in
high FLR. At high SNRs, the maximal of T-level corresponds
to the target position and it is completely detected with high
probability, as seen in Fig. 3, then the FLR decreases.

Fig. 5 represents the FLR and RMSE with respect to the
number of paths K used for the SMF and for an SNR of
20 dB. It appears that the localization performance depends
upon the number of paths considered. For () = 1, FLR and
RMSE are highest when K = 1. By adding other paths, the
values of FLR and RMSE decrease until the optimal point
K = 3. Then, if K keeps growing, the curves of FLR and
RMSE rise again. It can be explained by the fact that the
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Fig. 4: Estimated FLR and RMSE for a target located at
(35.60,14.87) for different SNRs and numbers of considered paths
for the model K. Pra = 1076, 1000 Monte Carlo runs.
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Fig. 5: FLR and RMSE as a function of number of considered paths
K in the model. SNR = 20 dB, 1000 Monte Carlo runs.

information provided by additional paths contribute to mitigate
ambiguities, but the more we add new paths the more new
ghost positions appear, then the localization performance will
deteriorate. Thus, it seems that there is an optimal number of
paths to be considered in terms of localization performance.
This tendency is less sensitive for @) = 10 thanks to incidental

2

3 4 5 6 7 8
Number of considered paths(K)
(b) RMSE

direction information that strongly reduces ghost positions.

V. CONCLUSION

In this paper, we have studied the impact of angle of
arrival information conveyed by array antenna observation on
the reduction of localization ambiguities of a single NLOS
target in around-the-corner radar. Simulation results show
that the multi-receiving antenna configuration yields better
localization performance than the single receiving antenna case
as considered in [5], with lower rate of false localization (FLR)
and estimation bias (RMSE). Moreover, it seems that there can
be an optimal number of significant paths to be selected for
the model in order to minimize the false localization rate, that
may compromise the number of paths selection criterion in
terms of maximizing detection probability proposed in [5].
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