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A B S T R A C T

This article describes a new approach to simultaneous optimization of design and maintenance of large-scale 
multi-component industrial systems. This approach, in a form of an algorithm, aims to help designers in the 
search for solutions by characterizing the components and their architecture including maintenance issues. The 
aim is to improve the performance of the industrial systems by maximizing the Total Operational Reliability 
(TOR) at the lowest Life Cycle Cost (LCC). In the case of this research, the term "design" refers to the reliability 
properties of the components, possible redundancies, faulty component accessibility, and the ability to improve 
the component real-time monitoring architecture. The term “maintenance” refers to maintenance plan adapted to 
the opportunistic dynamic maintenance plan. Simultaneous optimization of design and maintenance is achieved 
by a two-level hybrid algorithm using evolutionary (genetic) algorithms. The first level identifies the optimal 
design solutions calculated relative to the TOR and the LCC. The second proposes a dynamic maintenance plan 
that maximizes the reliability of the system throughout its operating life.   

1. Introduction

Today, new large-scale industrial systems, such as industrial vehi-
cles, aircraft, etc., are becoming increasingly complex. This complexity 
originates from the diversity of technologies used in the components 
(electronics, mechanics, sensors, etc.), which once assembled constitute 
the final product [1]. To control this complexity and win more market 
share, many manufacturers have evolved into a new economic strategy. 
They go from selling products to selling services that include the prod-
uct. In this context, they offer their customers a provisioning package 
and a billing indexed to its use. It’s a matter of the company that man-
ufactures this system to ensure the availability of the service and the 
product reliability during the contract period. 

This evolution introduces the concept of Life Cycle Cost (LCC) 
covering, the overall operating costs including maintenance. For many 
complex systems, the maintenance cost is an important component of 
the LCC [2]. It is worth mentioning that maintenance costs can exceed 
65% of the LCC, especially for nuclear power generation plants [3]. 

Recently, Kusiak and Li., [4] conducted a study saying that the 
failure of a $ 5000 wind level can result in a $ 250,000 maintenance 
operation. In fact, the replacement of the bearing requires special repair 

equipment and a specialized maintenance team, in addition to the loss of 
electricity production [4]. This work shows the importance of taking 
maintenance into account in the design stage. 

Maintenance is traditionally linked to two factors, the internal one, 
corresponding to the characteristics of intrinsic reliability and main-
tainability of the chosen components, and the architecture of the prod-
uct. The other factor is external, which corresponds to the context of use 
and the technical and the organizational skills of the end user [1,2]. 

Generally, decision making for reliability and maintainability design 
and maintenance planning is handled sequentially or independently. We 
start by freezing the detailed design and then define the maintenance 
plan [5]. However, this can be detrimental because these two sets in-
fluence each other [6]. Indeed, the product features during design, 
including reliability and maintainability, strongly influence how the 
products can be manufactured, used, maintained or disposed [1]. 

In this perspective, our paper focuses on joint decision making for the 
design in terms of reliability and maintainability and maintenance in 
terms of dynamic plan of maintenance operations. The overall goal of 
this research is to develop a decision support tool that offers solutions to 
the designer in the form of a Pareto graph. This graph facilitates the 
convergence towards the best compromise solution according to LCC 
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and Total Operational Reliability1 (TOR). A compromise Pareto solution 
means, first of all identify an architecture, then allocate reliability and 
maintainability to each component of the system, and finally define a 
maintenance plan in recommendations form to be deployed during the 
operation phase. 

The rest of the article is organized in 7 sections. Section 2 reviews the 
design for maintenance literature. Section 3 describes the mathematical 
models used to support the proposed approach. Section 4 presents the 
method of combinatorial resolution based on genetic algorithms. An 
example from the literature and a discussion of the results are presented 
in sections 5 and 6. Section 7 concludes the paper and suggests possible 
directions for future researches. 

2. State of the art: Design For Maintenance DFM

The literature proposes a design approach for integrating mainte-
nance into the DFX tools "Design For X" [7]. This concept of the DFX 
"design for business X" is nothing more than a generalization of the 
"Design For Assembly" (DFA) tools [8] and "Design For Manufacturing" 
(DFMf) [9–11]. Business expertise is formalized into design rules to 
participate in decision-making. These rules are carried by the actors of 
the design. 

Maintenance integration is driven by Design for Sustainability 
(DFMt), Design For Reliability (DFR), Design For Diagnosability (DFD), 
or Design for Maintenance (DFM) [2, 7, [12]. The design for reliability 
strategy is to achieve a highly reliable system that requires little main-
tenance over its entire lifetime. Design strategies for maintainability and 
diagnostics both aim to improve the ease and speed which can bring a 
system back into service after a failure. The concept of "design for 
maintenance" takes into account the close links between maintenance 
and design to improve the availability of the system with the most 
cost-effective over its lifecycle [13]. In what follows, our discussion 
focuses on these three strategies as well as the analysis of their relevance 
to improve the reliability, availability and the LCC of the system from a 
maintenance point of view. 

2.1. Design for reliability 

The optimization of reliability in the design phase has several ob-
jectives. It is generally intended to improve the life of an entity, and to 
reduce the operating costs [2]. According to Zoulfaghari et al [14]., 
there are two general followed approaches to optimize the reliability of 
the multi-component industrial system. The first, called reliability 
optimization which considers the reliability of the components as a 
decision variable. The goal is to find the values that best meet the ob-
jectives and constraints required [15]. The second approach, redun-
dancy allocation, tries to find the number of components to apply in 
each subsystem [16]. This assumes the characteristics of each compo-
nent such as reliability, weight, cost, etc. are predetermined. The goal is 
to find the number of components to apply in each subsystem. In most 
cases, the goal of optimizing redundancy is to maximize reliability 
[17–19]. These two approaches can be grouped into the category of 
design for maintenance in favor of reliability [20]. 

Several recent works [17, 21–23] examine the reliability optimiza-
tion by combining the two approaches mentioned above or by treating 
one of them. Most of this works considers maintenance and operating 
costs in the optimization process as an objective function, sometimes 
"extra" alongside other more important functions such as reliability, 
availability. In other cases, it is considered as a decisive fundamental 
function. 

We refer to the paper of Yao et al., [24] who proposed a joint opti-
mization model of redundancy and maintenance based on inspection. 
The main objective of this model is to define an optimal system structure 

and inspection policy for each component, which maximize the perfor-
mance of the series-parallels system while taking into account the con-
straints of reliability and costs. Atashgar and Abdollahzadeh., [25] 
developed a method for jointly optimizing the redundancy and oppor-
tunistic maintenance of a wind farm. Goel et al. [5] have developed a 
reliability allocation model. This model attempts to combine the opti-
mization of maintenance with production and design. Valdebenito and 
Schuëller., [26] presented a reliability allocation model that minimizes 
the total cost of maintenance under reliability constraints. Rawat and 
Lad., [6, 27, 28] presented a method that considers two approaches to 
optimize reliability : allocating reliability and allocating redundancy for 
multi-component systems. This work attempts to combine the optimi-
zation of maintenance with production and design. 

2.2. Design for maintainability 

Several recent works [12, 29] deal with improving system main-
tainability characteristics in the design phase, including detailed design, 
logistical support and ergonomics. The objective of this work is to 
evaluate and optimize the maintainability via the MTTR2 rate. Opti-
mizing the MTTR is to take into account some criteria, such as accessi-
bility or demonstrability, individually or combined during the product 
design [12]. Improving the maintainability of a component, for example 
its accessibility, requires design changes which increase the cost of the 
system [30]. 

2.3. Design for diagnosability 

As the products become more and more complex, the detection of 
failures becomes more difficult and takes more time. To minimize the 
time for detecting failures, numerous studies have used self-diagnostic 
systems (sensors) [29, 31–33]. Systems that continuously measure per-
formance gaps by monitoring the deterioration of these components 
make it easier to predict failures and determine the right time to perform 
maintenance [34]. As a result, condition-based maintenance (dynamic 
maintenance) has been widely used as an effective maintenance strategy 
[35]. 

In the literature, numerous works developed this dynamic mainte-
nance plan. Castanier et al., [36] proposed a conditional based main-
tenance plan for a system containing two components. OldeKeizer et al., 
[37] proposes a dynamic maintenance model for multi-component sys-
tems which present both redundancies and economic dependencies. 
Wildeman et al., [38] proposes a dynamic maintenance model over a 
rolling horizon. To set up this model, it is first necessary to define the 
optimal maintenance date for each component taken individually. Then, 
for each component, a penalty function is constructed. 

Based on the rolling horizon approach, Bouvard et al., [39] suggests 
using this method for multi-component systems with gradual degrada-
tion. The idea is to use the information related to the current state of the 
components to update the maintenance schedule. In other works, the 
rolling horizon approach has been completed to take into account time 
constraints [40] but also constraints related to the number of repairers 
available [41]. However, these contributions are related only to 
multi-component systems with series structures. Recently, work has 
made it possible to adapt this dynamic grouping plan in order to take 
into account systems with a more elaborate structure that can mix series 
/ parallels connections [42, 43]. 

Still in the context of dynamic maintenance, Lesobre et al., [34, 44] 
have developed a dynamic maintenance plan for multi-component sys-
tems based on the concept of Maintenance Free Operating Period 
(MFOP) in order to group maintenance operations, that is used in this 
article. Unlike the majority of dynamic grouping policies from the 
literature, maintenance opportunities are not decided by the 

1 The product reliability in the operation phase 2 MTTR: Mean Time To Repair 
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components but rather by the state of the system. This form of dynamic 
grouping is based on a decision-making process which is based both on 
the stochastic models of the components, on the structure of the system, 
on the economic dependencies, and on the degradation information of 
the components available online. 

The implementation of a dynamic maintenance plan requires addi-
tional resources dedicated to the development of a surveillance archi-
tecture. It often requires a significant investment. In addition, there are 
cases where the installation of monitoring systems is difficult to imple-
ment or does not provide additional information on the system state (for 
example the case of microelectronic systems). Therefore, the technical 
and economic feasibility of implementing monitoring systems must be 
assessed from the design of the entity. 

2.4. Resolution method 

In terms of numerical optimization methods, we have found that 
heuristic and meta-heuristic methods such as Genetic Algorithm (GA), 
Simulated Annealing (SA) and Particle Swarm Optimization (PSO), have 
been widely applied in this area [45, 46]. The goal is to maximize or 
minimize certain parameters such as, cost, reliability, availability, 
maintenance time, weight, etc. According to Almeida et al., [47] 68.3% 
of works under this theme aim to minimize cost, 37.6% to maximize 
reliability, 17.2% to maximize availability, 11.8% to minimize mainte-
nance time and 15.7% for the remaining (weight, volume, etc.). 

Monga and Zuo., [48] have considered the design problem for reli-
ability. They proposed an optimization model to minimize the cost of the 
system life cycle, depending on reliability requirements. Their model 
uses genetic algorithms to solve the optimization problem. 

2.5. Observations from the literature 

From the state of the art on design methods for maintenance, four 
observations are pointed:  

1 There are no available methods for concurrent characterization of 
the four design approaches for maintenance (allocation of reliability, 
redundancy, maintainability and diagnostics). 

2 All design approaches for maintenance must be validated by reli-
ability analysis and cost over the entire life cycle of the system. The 
challenge is to find the best compromise between improving the 
reliability and maintainability characteristics of the system and the 
gains achieved on operating costs.  

3 Issues related to the design and maintenance of industrial systems are 
usually dealt with sequentially or independently.  

4 It is interesting to know whether the investments made for the 
monitoring architecture are compensated by benefits obtained in 
terms of maintenance. It is therefore necessary to base the imple-
mentation choice of monitoring systems on an LCC analysis, right 
from the design stage. 

From this analysis, we developed a new approach for simultaneous 
optimization of design and maintenance. To optimize the design of 
multi-component industrial systems, the designer can choose the reli-
ability level of its components, the architecture of the system, in 
particular the redundancy. He can work on maintainability to make 
some components more accessible for example, or install monitoring 
systems to detect and anticipate failures. The maintenance optimization 
focuses on the development of a dynamic maintenance plan. 

3. Simultaneous optimization of design and maintenance
approach 

The design and maintenance optimization approach of systems 
consisting of n independent components is organized in three steps. The 
first step is to model the different possible design solutions by defining 

their design parameters, structures and characteristics. The second step 
defines all possible maintenance plans for each design solution. Each 
maintenance plan organizes and sets the maintenance operations ac-
cording to the desired objectives and the existing constraints. The last 
step is to assess the different design solutions and possible maintenance 
plans generated in the two previous steps according to their objectives. 

In this article two objectives are considered, the minimization of the 
LCC and the maximization of the TOR. The evaluation models for these 
two objectives are detailed in sections 3.3.1 and 3.3.2. Finally, the 
approach selects design solutions that maximize the TOR and in the 
same time generates the lowest LCC. Besides, it adds the maintenance 
plan to be deployed during the operating phase. 

3.1. Design modelling 

In this work, the design modelling is based on four design parameters 
for maintenance. For each component i (i=1,…,n) of a multi-component 
system, we can mention the choice of its level of reliability (Ri), the 
choice to invest in a more powerful monitoring instruments by the 
implementation of a sensor (Si), the choice to consider a redundant 
component (Pi) and the choice of its accessibility level (MTTRi). 

Determining the number of design parameters available to the 
designer and their range of values for each component is potentially the 
most complex part. So, the designer must first assess the technical 
viability of these four parameters for each component. For example, it 
may be impossible to install a sensor on a given component or to make it 
more accessible in the system. Then, based on the results of this tech-
nical analysis, the number of design parameters of each component and 
their range of values are defined. In the end, several solutions of the 
system, referred to as Slp (p=1, …,N) with N is the number of possible 
solutions are obtained, which vary according to their design parameter 
(Ri, Pi,MTTRi and Si). We define a design solution as a particular choice 
of design parameters. 

3.2. Maintenance modelling 

In this work, we rely on the MFOP concept, proposed by the Royal 
Air Force in 1996. 

3.2.1. MFOP concept 
Hockley defines the MFOP as an operation period when the equip-

ment must be able to carry out its tasks without maintenance action and 
without restricting the operator for failures reasons [49]. Each MFOP is 
usually followed by a Maintenance Recovery Period (MRP). MRP is 
defined as the period while the appropriate maintenance is performed 
on the system enabling it to successfully complete the next MFOP [50, 
51]. The shutdown period will depend on the maintenance work to be 
performed [52]. In practice, it is obviously impossible to guarantee 
100% that no failure will occur on the next MFOP, we must therefore 
assess this risk with the Maintenance Free Operating Period Surviv-
ability (MFOPS). MFOPS is defined as the probability that the system 
will survive on the duration of the MFOP (tMFOP) knowing that it was in 
an operational state at the beginning of the period [51]. Its mathemat-
ical formula is given by: 

MFOPSsys(t) =
Rsys(t + tMFOP)

Rsys(t)
(1)  

where Rsys(t) is the system reliability after t life units. The reliability 
model is detailed in section 3.3.2. 

3.2.2. Dynamic maintenance plan 
The term dynamic means that the maintenance decision is adapted 

through the monitoring information available online on the component 
status Hi,t (i=1,…, n). As a result, the mathematical formula of the 
MFOPSsys(t) becomes: 
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MFOPSsys(t)
Rsys
(
t + tMFOP

/
Hi,t(i=1 à n)

)

Rsys
(
t
/

Hi,t(i=1 à n)

) (2) 

This information can be quantitative (degradation measurement) or 
qualitative ("Working mode" / "Failure mode"). This means Si=1 at the 
design parameter level. For this purpose, Lesobre et al., [34] propose 
three levels of information that we will use in our approach. Level 1: No 
information; Level 2: Operating Status Information On / Off; Level 3: 
Degradation Measure. 

The different values taken by Ri(t /Hi,t) and Ri(t + tMFOP /Hi,t), 
namely the reliability of component i at the beginning and the end of 
each MFOP depending on its level information availability Hi,t, are: 

Level 1 when Hi,t = Φ, in this case we have:  

• Ri(t /Hi,t)= Ri(t)
• Ri(t + tMFOP /Hi,t)= Ri(t + tMFOP)

Level 2 with Hi,t = "Failed", in this case we have:

• Ri(t /Hi,t)= 0
• Ri(t + tMFOP /Hi,t)= 0

Level 2 when Hi,t = "Working", and so:

• Ri(t /Hi,t)= 1
• Ri(t + tMFOP /Hi,t)=

Ri(t+tMFOP)
Ri(t)

Level 3 when Hi,t = Zi(t) > L, in which case the component is failed,
and we have:  

• Ri(t /Hi,t)= 0
• Ri(t + tMFOP /Hi,t)= 0

Level 3 when Hi,t = Zi(t) < L, in which case the component is
working, and we have:  

• Ri(t /Hi,t)= 1
• Ri(t + tMFOP /Hi,t)= Ri(t + tMFOP/Zi(t))

where Zi(t) is the degradation function of component i and L is the 
degradation limit. 

Figure 1 illustrates for a possible design solution Slp, the decision 
process for developing dynamic maintenance plan, referred to as MPpy 

(y=1,…,M) with M as the number of possible maintenance plan, for the 

solution Slp. This plan, based on the MFOP concept, is organized into 
two steps: 

The first step consists of defining the dates of the maintenance stops 
tj, the duration tMFOPj of each period MFOPj and the total number of 

maintenance stops NMS over the entire operating life T. It should be 
noted that the date tj of a maintenance stop represents the end of an 
MFOP period (preventive stop) or the occurrence of a failure (corrective 
stop) in the system. 

The second step consists in selecting the maintenance actions Xij to 
be performed at each maintenance stop event j on each component i. 
Noting that Xij can take two values:   

In this article, a dynamic maintenance plan is considered possible, 
only if the maintenance recovery period at each stop j does not exceed a 
threshold MRPmax given by: 

MRPj =
∑n

i=1
MTTRi Xij (3) 

In this context, a constraint optimization problem can be formulated 
mathematically as follows: 

max
{Xij}

MFOPSsysj , j = 1,…, nMFOP (4)  

s.t. MRPj ≤ MRPmax 

Where nMFOP is the number of MFOP performed by the system on [0, 
T], MRPmax the maximum maintenance recovery period authorized to 
perform a set of operations {Xij} during a maintenance time. 

Finally, note that more accurate the information is, the better is the 
maintenance prediction. 

Thus, over the entire operating life T, the end of period MFOPj and 
the beginning of period MFOPj+1 can be confused. This is because 
MRPmax is so small compared to all periods MFOPj that we have not 
added it in the T That is to say, calculate in relation to T instead of T+
∑nMFOP

j=1 MRPj. 

3.3. Simultaneous evaluation and selection 

After generating possible design solutions, as well as their possible 
maintenance plans, we must now define the evaluation objective in 
order to select a compromised solution (design solution and the asso-
ciated maintenance plan). In this article two goals are considered, LCC 

Figure 1. Dynamic Maintenance plan based on the MFOP concept.  

{
1 if the component i is replaced at the beginning of the MFOPj period (maintenance stop j);

0 otherwise.
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and TOR to select an optimal design. However, to select a dynamic 
maintenance plan, we consider one goal, TOR. The evaluation of these 
objectives usually requires numerical evaluation methods, such as 
Monte Carlo method. 

3.3.1. LCC assessment model 
The LCC of multi-component industrial systems typically includes 

two types of costs; deterministic costs (such as capital costs, disposal 
costs, etc.) and probabilistic costs (such as maintenance costs, spare 
parts, gross margin loss, etc.) [53]. However, in this manuscript as in the 
work of Hwang [54] and Okasha et al., [18], the life-cycle cost of 
multi-component industrial systems is limited to initial costs (initial 
investments) IC and total maintenance costs TMC. Its mathematical 
formula is: 

LCC(T)sys = IC + TMC(T) (5) 

The initial costs of the system, corresponding to: 

IC
∑n

i=1

(
Ci + Cs,i

)
(6) 

Where Ci is the cost of the component i and Cs,i represents the cost 
related to the information available on component i (example: cost of a 
sensor). 

The total updated maintenance cost TMC(T) is given by: 

TMC(T) =
∑nps

k=1

Cprevk

(1 + ν)tpk
+
∑ncs

q=1

Ccorq + Cdiaq

(1 + ν)tcq
(7) 

Where Cprevk represents the cost of preventive maintenance stop k, nps 

is the number of preventive maintenance stops of the system on [0, T], 
tpk is the date of preventive maintenance stop k, ν is the discount rate, 
Ccorq is the cost of corrective maintenance stop q, ncs is the number of 
corrective maintenance stops of the system on [0, T], tcq is the date of 
corrective maintenance stop q, and finally Cdiaq is the additional cost 
related to the diagnosis when the system is in the corrective 
maintenance. 

The undiscounted cost of preventive maintenance stop Cprevk cor-
responds to: 

Cprevk =
∑n

i=1
(Ci +MTTRi ∗ τO) ∗ δi, k + Cplog (8) 

Where δi, k is a boolean equal to 1 if the component i is replaced 
during the preventive maintenance stop k, 0 otherwise, τO is the hourly 
rate of labor, Cplog is the logistics cost linked to preventive maintenance 
stops. 

The undiscounted cost of corrective maintenance stop Ccorq is given 
by: 

Ccorq =
∑n

i=1
((Ci +MTTRi ∗ τ0)+ (MTTRi ∗ τimmob)) ∗ δi, q

+
(
Cclog +

(
Dclog ∗ τimmob

))
(9) 

Where δi, q represents a boolean equal to 1 if the component i is 
replaced during the corrective maintenance stop q, 0 otherwise, τimmob is 
the loss per system downtime, Dclog is the logistic duration related to the 
corrective maintenance stop, Cclog is the logistic cost related to the 
corrective maintenance stop. 

Note that the δi,k and the δi,q can be linked with Xij as follows:  

• Xij=δi,k if the maintenance action is preventive;
• Xij=δi,q if the maintenance action is corrective.

During a corrective shutdown, the diagnostic system identifies the
component(s) responsible for the failure in order to guide the mainte-
nance actions. For some components, the available monitoring infor-

mation provides information about how they work. In this case, no 
additional cost of diagnosis will be counted. Conversely, for components 
whose operating status is unknown, a test must be carried out generating 
additional costs. These costs will be taken into account in the expression 
Cdiaq given by: 

Cdiaq = (CUD+(DUD ∗ τimmob))∗nSIS (10) 

Where CUD is the unit diagnostic cost for a component, DUD is the unit 
diagnostic time for a component, and finally nSIS is the number of 
components in the system whose monitoring information is not avail-
able. We therefore choose to count the diagnosis only during the system 
failure on unmonitored components. In other situations, we assume that 
the costs related to the diagnosis are taken into account in the cost of the 
monitoring architecture, not in the TMC(T). 

3.3.2. TOR assessment model 
In this article, we define the TOR of the system, referred to as 

TORsys(T), as the mean of all MFOPSsysj because, the system performs a 
succession of periods of duration tMFOPj . Equation (11) gives the TORsys 

as a function of MFOPSsysj : 

TORsys(T) =
∑nMFOP

j=1 MFOPSsysj

nMFOP
(11) 

However, the process of maximizing the MFOPSsysj is to maximize the 
TORsys(T) and to ensure that each MFOPSsysj is infinitely close to the 
TORsys(T), i.e. minimize the variance, which is given by the following 
formula: 

Var
(

MFOPSsysj

)
=

1
nMFOP

∑nMFOP

i=1

(
MFOPSsysj − TORsys(T)

)2

=

(
1

nMFOP

∑nMFOP

i=1
(MFOPSsysj

2

)

) − TORsys(T) (12) 

This process will allow us to have a single maximum value for the 
reliability of the system over its entire lifetime. 

Looking now at the evaluation of the MFOPSsysj (j = 1, ..,nMFOP). We 
defined it previously as the ratio of the system reliability at the end of 
the period j (Rsys(tj +tMFOPj)) over the reliability of the system at the 
beginning of this period j (Rsys(tj)), considering the available informa-
tion Hi,tj at tj. Thus, its mathematical formula is given by: 

MFOPSsysj

Rsys

(
tj + tMFOPj

/
Hi,tj (i=1 à n)

)

Rsys

(
tj

/
Hi,tj (i=1 à n)

) (13) 

To evaluate the reliability of a multi-component system over the 
interval [0, t], the first step is to evaluate the reliability of each 
component over this interval. Then, depending on the relationships 
between the components (parallel or serial) of the system, the evaluation 
of the reliability of the system Rsys(t) can be established. The application 
of the reliability calculation expressions at these two basic subsystems 
makes it possible to evaluate the reliability of the complete system Rsys(t)
over the interval [0, t]. The following expressions provide the reliability 
of serial and parallel structure [55]. 

Parallel structure system Rsys(t) = 1 −
∏m

i=1
(1 − RAi (t)) (14)  

Serial structure system Rsys(t) =
∏m

i=1
RAi (t) (15) 

Where m is the number of components of the structure and RAi (t) is 
the reliability of each component i. 

In the case of having two-component parallel system, the 
MFOPSsysj(t) over the period MFOPj becomes: 
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MFOPSsysj

(
tj
)
=

1 −
( (

1 − R1
(
tj + tMFOPj

/
H1,tj

))
.
(
1 − R2

(
tj + tMFOPj

/
H2,tj

)))

1 −
( (

1 − R1
(
tj
/

H1,tj
))
.
(
1 − R2

(
tj
/

H2,tj
))) (16) 

Where R1(t) and R2(t) are the reliability at time t of components 1 
and 2 respectively. H1,tj and H2,tj are the information available at time 
tj of component 1 and 2 respectively. 

3.3.3. Mathematical formulation 
Finally, note that this simultaneous design and maintenance 

modeling, discussed above, can be formulated as a problem of multi- 
objective optimizations under the constraints given in equation 16. 
The mathematical formulation of this problem can be given as follows: 

Minimize
{

LCCsys , − MFOPSsysj

}

under constraints

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rimin ≤ Ri ≤ Rimax

MTTRimin ≤ MTTRi ≤ MTTRimax

Cimin ≤ Ci ≤ Cimax

0 ≤ ti ≤ tm
Pi ϵ{0, 1, 2, ..}

Si ϵ{0, 1}
Xij ϵ{0, 1}

MRPj ≤ MRPmax
i = 1, 2, …, n

j = 1, 2, …, nMFOP

(17) 

Where Cimin and Cimax are the minimum and maximum investment 
costs of the component i. The purpose of these constraints is to limit the 
number of possible solutions. 

To solve this multi-objective optimization problem, we use genetic 

algorithms because, they are adapted for optimization problems with 
several objectives and / or constraints, and to effectively handle 
different variables [56]. For this reason, a hybrid algorithm, based on 
genetic algorithms, at two levels, is developed in the following section. 

4. Resolution method: Hybrid Algorithmic Tool (HAT)

We are proposing, here, a hybrid optimization tool for design and
maintenance based on genetic algorithms. This hybrid algorithmic tool 
(HAT) combines two dependent algorithms, a main algorithm and a 
secondary one. The main algorithm, based on the Non-Dominated 
Sorting Genetic Algorithm II (NSGA-II) method, ensures design optimi-
zation in terms of reliability (Ri), redundancy (Pi), monitoring archi-
tecture (Si) and accessibility characterized by the MTTRi (solving the 
problem described by equation (17)). The output of this algorithm 
represents all the optimal solutions that maximize the Mean Total 
Operational Reliability, noted TORmean

sys (T), and minimize the Mean Life 
Cycle Cost, noted LCCmean

sys (T), of a given system. These design solutions 
constitute a Pareto frontier. The secondary algorithm determines an 
optimal dynamic maintenance plan, based on the MFOP, by maximizing 
the TORmean

sys (T) of each solution (problem described by equation (4)). 
The operating process of the Hybrid Algorithmic Design and Main-

tenance Optimization tool has been implemented as shown in Figure 2: 
Step 1. Generation of design solutions 
This step consists of generating the possible design solutions Slp 

(p=1,…, N) by adjusting the four design parameters for each component 
i under the resource constraints. 

Step 2. Evaluation of possible design solutions Slp 
This step aims to evaluate the LCCmean

sys (T) and the TORmean
sys (T) of each 

possible solution Slp equations (5) and ((11)). For this purpose, the 

Figure 2. Operating process of the HAT.  
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secondary algorithm is executed nI iterations of Monte Carlo. 
Step 2.1. Generating failures 
The objective of this step is to simulate the dynamic behavior of each 

Slp solution in the operating phase in terms of failures. This is done by a 
Monte Carlo simulation that generates random failures. To guarantee 
the convergence of the results, it is recommended to use a large number 
of iterations (nI). The accuracy of the simulations is strictly proportional 
to the number nI considered. 

The process for generating failure times is as follows: 
The first step consists of randomly obtaining a rand value between 

0 and 1, for each component, according to a uniform law. This step is 
provided by the Rand function of Matlab. 

The second step aims to calculate the failure time of each component 
from this random value and according to the inverse of the law of sta-
tistical distribution of reliability. For example, for a component whose 
reliability model follows a Weibull law with a shape parameter η and a 
scale parameter λ, the failure times are generated by the following 
formulation: 

tfault = − λ (logrand)
1
η (18) 

These two steps are finally applied iteratively until the sum of the 
failure times for each component is reached or exceeds the simulation 
time T. 

The last step, depending on the structure of the multi-component 
system and the failure times generated previously, we consider that 
the system is down or not. 

Step 2.2. Generation of dynamic maintenance plans MPpy 
The secondary algorithm consists, first, at defining the dates of the 

maintenance stops tj, the duration tMFOPj of each period MFOPj and the 
number of maintenance stops. Then generate possible maintenance 
plans MPpy (y=1,…,M) for each possible solution Slp (section 3.2) and 
adjusting the Xij maintenance actions to be performed on each compo-
nent i. 

Step 2.3. Selecting optimal dynamic maintenance plans MPpo 
The third step aims, first, to evaluate and classify the generated 

maintenance plans using the decision criteria, the TORsys(T), the 
MFOPSsysj , the variance Var(MFOPSsysj ) and MRPj equations (3), ((7) and 
(11) - (13)). Then, for each possible solution ( Slp), it selects the MPpo 

maintenance plan that maximizes the TORsys(T). Furthermore, the reli-
ability MFOPSsysj over each period j is close to the calculated total reli-
ability TORsys(T). 

Steps 2.2 and 2.3 are finally applied in an iterative way until the 
iteration number (nI) of the Monte Carlo simulation is reached. 

Step 2.4. Evaluation of the TORmean
sys (T), the TMCmean

sys (T) and the 
LCCmean

sys (T)
The final step is to calculate the Mean Total Maintenance Cost, 

referred to as TMCmean
sys (T), and the TORmean

sys (T) of each possible solution 
( Slp). These values can be obtained by averaging the results of nI iter-
ations. These can be given mathematically as follow: 

TORmean
sys (T) =

∑nI
e=1TORsyse

nI
TMCmean

sys (T) =
∑nI

e=1TMCsyse

nI
(19) 

The LCCmean
sys (T) may be given by:

LCCmean
sys (T) = ICsys + TMCmean

sys (T) (20) 

Step 3. Selection of optimal solutions (Pareto set) 
The final step in the main algorithm is to classify the different so-

lutions based on their TORmean
sys (T) and their LCCmean

sys (T), in order to select 
the ones that have the best compromise. These selected solutions thus 
constitute a Pareto frontier that will allow the design team to choose a 
solution according to their objectives. 

Finally, note that these two algorithms, main and secondary, of the 
HAT were implemented using the MATLAB programming language 
toolbox. Therefore, convergence is ensured by a fixed number of 

iterations, used as a stopping criterion. All the necessary parameters, 
including the number of iterations, for the execution of the two algo-
rithms are defined in the section 6. 

In addition, both algorithms use a strategy that limits the search for 
solutions in the area of possible solutions, since there is not an exhaus-
tive enumeration of all possible solutions. 

5. Numerical Example

In this section, the goal is to test HAT tool and develop a support
mapping to select an optimal design solution. In this context, we present, 
initially, the reference system considered and the simulation hypothesis. 
Then we finish with the results and their interpretations. 

For this example, we will take a multi-component system consisting 
of five (05) serial components, whose data are a combination of those 
applied in [34, 44]. Figure 3 illustrates the structure of the system under 
study. 

For this reference system, we assume that the cost and the unit 
duration of diagnosis are respectively CUD = 20€ and DUD = 5 min. The 
hourly rate of labor is fixed at τO = 90€ and the operating loss per hour of 
immobilization at τimmob = 150€. The logistic costs related to preventive 
and corrective maintenance stops are respectively Cplog = 100€ and Cclog 

= 150€ for a fixed duration Dclog = 5h. 
Table 1 summarizes the design parameters (Ri,Pi,MTTRi, Si) of 

different components of the reference system considered in this 
example. 

We also introduce hypothesis about the reference system, to define 
the necessary parameters for the simulation:  

Ø The implementation and the adjustment of the four parameters 
(Ri, Pi,MTTRi, Si) is possible for each component i.  

Ø The parameters Ri and MTTRi are real and c with max and min values 
vary between -50% and + 50% of the reference system values.  

Ø The installation of sensor on the components i = 1, 2, 3 and 4 gives 
only information about operation or failure of the component (when 
Si = 1). Conversely, on component 5, the sensor provides information 
on its degradation (always Si = 1).  

Ø Parameters Pi and Si are discrete integers that can only take the value 
of 0 or 1.  

Ø The properties of Ai and A′

i (its component in parallel) are assumed to 
be identical.  

Ø The installation of a sensor will result in a cost Cs,i=50€.  
Ø The cost of each component i must not exceed 1000 €. 

Note finally that the information on the operation / failure state of 
the system is assumed to be known. This hypothesis is realistic if we 
consider that the failure of the system systematically causes a 
breakdown. 

In order to demonstrate the relevance of the proposed approach, the 
following section will present a full analysis of the results obtained on 
the example detailed here. 

6. RESULTS AND DISCUSSION

Based on the system properties and the hybrid design and mainte-
nance multi-objective optimization tool, Monte Carlo simulations are 
implemented to evaluate the TORmean

sys (T) and the LCCmean
sys (T). The 

simulation horizon is set at 5 years. We also consider that the annual 
mileage is set at 100,000 km. We assume that the MFOP is fixed at six 

Figure 3. Structure of the multi-component reference system [34, 44].  
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months, which corresponds to a mileage of 50,000 km. Finally, the 
maximum maintenance operations time MRPmax is fixed at 3h. 

The primary and secondary algorithms of the HAT tool have been 
implemented using the MATLAB programming language. Table 2 pre-
sents the parameters for NSGA II and GA. 

Figure 4 shows a Pareto curve where each point represents an 
optimal design solution, so-called compromise solution, in terms of 
mean lifecycle cost and TORmean

sys (T). 
In order to show the effectiveness of this method, we will compare 

the new solutions generated by our algorithm with the reference solu-
tion from published research work. Table 3 shows 3 optimal design 
solutions chosen arbitrary on the Pareto graph, noted respectively 
SlX1, SlX2 and, SlX3 as well as the reference solution noted Sl0. We note 
that with the same constraints, the solutions generated are more effi-
cient than the reference solution. This result gives us an idea of the 

effectiveness of these new solutions according to the right choices of 
design parameters for maintenance, such as the monitoring integration, 
redundancy, components choice, accessibility as shown in Figures 5. 
This shows the value of this tool allowing designers to visualize the 
consequences of their design decision on LCC and on TOR. Thus, will be 
able to guide the design according to the economic models in which the 
future product will be exploited. 

In this context of various optimal Pareto solutions, it will be difficult 
to choose the best solution. There are methods to determine the best 
solution in a set of Pareto solutions. The L2-norm method is proposed by 
[57, 58], is widely used. This technique calculates the standardized 
minimum distance of the whole set of Pareto solutions. Then it, selects 
the solution that has the most optimal value. The equation is given by 
[59] : 

Min

[
∑w

z=1

(
fz(x) − f min

z

f max
z − f min

z

)2]1
2

(21) 

Where w is the number of the objective function, fz(x) the optimal 
value of a Pareto frontier, and fmin

z and fmax
z are the minimum and 

maximum values of the z-th objective function of the optimal set of 
Pareto. In this formula, all objective functions must be minimized. 

In this illustration, we apply the L2-norm method to select the best 
design solution from the set of Pareto solutions in Figure 4. We choose 
here to take only 10 Pareto solutions (points marked in red in Figure 4) 
in order to easily illustrate and justify the results obtained by this 
technique. To use this technique, first, the objective function related to 
operational reliability (maximizing the operational reliability of the 
system) must be transformed into minimization. To do this, the system’s 
unreliability is calculated. Next, we evaluate the distance defined in 
equation (21) for each optimal solution. Table 4 shows the distance of 
the 10 optimal solutions with the best one marked in bold. The char-
acteristics of the most optimal solutions are presented in Table 5. Thus, 
Figure 6 illustrates the structure of this best non-dominated solution. 

Table 1 
Reference system design parameters (W= Weibull distribution, G=Gamma 
process and L=Degradation Limit) [34, 44].   

C1 C2 C3 C4 C5 

Reliability 
model Ri

W 
(2.8e5,10) 

W 
(3.5e5,8) 

W 
(5e5,11) 

W 
(4.5e5,9) 

G(8e- 
5,1.5) ;L 
= 20  

Di(h) MTTRi  1.2 1.4 1 1.5 1.7 
Si 0 0 0 0 0 
Pi 0 0 0 0 0 
Ci(€)  305 311 458 407 302  

Table 2 
execution parameters of the two algorithms.  

Parameters Crossover 
rate 

Mutation 
rate 

Population 
size 

Number of 
itérations 

Main algorithm 
(NSGA II) 

0.5 0.2 100 100 

Secondary 
algorithm (GA) 

0.5 0.2 100 200  

Figure 4. Set of Pareto Design Solutions.  
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7. Conclusions and Perspectives

This research has two major interests. The first is to find the design
that maximizes system performance in TOR at the lowest LCC. The 
second is to allow designers to experiment with several possible solu-
tions by adjusting design variables, objectives and maintenance 
constraints. 

Table 3 
The characteristics of Pareto’s solutions SlX1, SlX2 et SlX3.    

C1 & C1’ C2 & C2’ C3 & C3’ C4 & C4’ C5 LCCmean
sys x e4  TORmean

sys  

Sl0 Refer to Table 1 2.5208 0.812 
SlX1 Ri (KM)  W(3.8e5,10) W(4.5e5,5) W(5.5e5,10) W(5.5e5,6) G(15e-5,0.9) L = 20  1.0591 0.982 

MTTRi(h)  1.3 1.1 0.9 1.3 0.9 
Si 1 0 0 0 1 
Pi 1 1 0 0 0 

SlX2 Ri W(3.46e5, 3.2) W(3.93e5, 8.5) W(5.38e5, 12) W(4.9e5, 10) G(22e-5,0.5) L = 20  1.1145 0.989 
MTTRi 0.9 1.2 1.0 1.2 0.9 
Si 1 0 0 1 1 
Pi 1 1 1 0 0 

SlX3 Ri W(3.6e5, 8) W(4.23e5, 10) W(5.3e5, 9) W(5.3e5, 9) G(13e-5,0.3) L = 20  1.7525 0.997 
MTTRi 1.1 1.1 1.2 1.2 1 
Si 1 1 0 0 1  
Pi 1 1 1 1 0   

Figure 5. (a) SlX1 Structure; (b) SlX2 Structure; (c) SlX3 Structure.  

Table 4 
Characteristics of the 10 Pareto solutions marked in red.  

Optimal solutions marked in red LCCmean
sys x 104  1 − TORmean

sys  Distance L2

1 1.0591 0.0185 1 
2 1.0592 0.0152 0.754601 
3 1.0621 0.0122 0.570567 
4 1.0735 0.0094 0.399275 
5 1.0815 0.0073 0.271729 
6 1.1105 0.0053 0.163663 
7 1.4412 0.0041 0.536288 
8 1.2091 0.0032 0.209347 
9 1.3064 0.0031 0.344025 
10 1.7784 0.0029 1  

Table 5 
Design parameters for the maintenance of the best model of Pareto solutions.   

C1 & C1’ C2 & C2’ C3 & C3’ C4 & C4’ C5 

Ri (KM)  W(3.46e5, 
3.2) 

W(3.63e5, 
8.1) 

W(4.08e5, 
3.5) 

W(4.70e5, 
6.9) 

G(26e- 
5,0.5) L =
20  

MTTRi(h)  1.1 1.2 0.9 1.3 1.0 
Si 1 1 1 0 1 
Pi 1 1 1 1 0  

Figure 6. Structure of the best model of Pareto solutions.  
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In this paper, an approach to simultaneous design and maintenance 
optimization of large-scale multi-component industrial systems has been 
proposed and tested. This approach is intended to help designers to 
make compromise decisions for multi-objective design issues. Depend-
ing on the intended operating life, the MRP, the design parameters and 
the MFOP, the tool calculates the solutions set that maximizes TOR and 
minimizes LCC, it also identifies the compromise solution. 

Characterization of design and maintenance are performed by a two- 
level HAT using genetic algorithms. The first algorithm, considered as 
main, used Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to 
identify all design solutions that offers the best combination between 
TORmean

sys (T) and LCCmean
sys (T). The second algorithm used the GA to pro-

pose a dynamic maintenance plan that maximizes the TORmean
sys (T) of 

each solution of the main algorithm. 
The proposed tool HAT was confronted with an example from liter-

ature, composed of five components in series. The obtained results 
proves that this tool made it possible to obtain a set of Pareto solutions. 
These solutions, which add new components and sensors, have increased 
the TOR and minimized LCC compared to the initial version, under the 
same constraints. Indeed, the proposed modifications on the system 
structure have reduced the probability of occurrence of suspicious 
events, and increased the robustness of the system. This has resulted in 
lower total maintenance costs over its lifetime and improved system 
availability. The Pareto solution set can be a valuable tool for the design 
team, particularly in finding solutions based on the business model in 
which the product will operate. 

In perspective, several research projects can be investigated, in 
particular: (a) Adapting the proposed model and procedure to multi- 
state systems; (b) use other meta-heuristic methods such as PSO and 
compare them with those of GAs; (c) experiment with the proposed 
approach for the K-out-of-N subsystems and (d) test the robustness of 
this model on new examples from industrial world with a sensitivity 
analysis, in particular the four parameters considered ( Ri, Pi, MTTRi and 
Si). 
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[26] Valdebenito MA, Schuëller GI. « Design of maintenance schedules for fatigue-prone 
metallic components using reliability-based optimization. Comput. Methods Appl. 
Mech. Eng. 2010;199(33):2305–18. https://doi.org/10.1016/j.cma.2010.03.028. 
nojuill. 

[27] Rawat M, Lad BK. Novel approach for machine tool maintenance modelling and 
optimization using fleet system architecture. Comput. Ind. Eng. 2018;126:47–62. 
https://doi.org/10.1016/j.cie.2018.09.006. déc. 

https://doi.org/10.1108/13552510310503231
https://doi.org/10.1109/RAMS.2001.902452
http://refhub.elsevier.com/S0951-8320(20)30853-X/sbref0003
http://refhub.elsevier.com/S0951-8320(20)30853-X/sbref0003
https://doi.org/10.1016/j.renene.2010.05.014
https://doi.org/10.1016/S0098-1354(03)00090-5
https://doi.org/10.1007/s13198-016-0429-z
https://doi.org/10.1007/s13198-016-0429-z
https://doi.org/10.1016/S0360-8352(01)00045-6
http://refhub.elsevier.com/S0951-8320(20)30853-X/sbref0008
http://refhub.elsevier.com/S0951-8320(20)30853-X/sbref0008
http://refhub.elsevier.com/S0951-8320(20)30853-X/sbref0009
http://refhub.elsevier.com/S0951-8320(20)30853-X/sbref0010
http://refhub.elsevier.com/S0951-8320(20)30853-X/sbref0010
https://doi.org/10.1007/s12008-019-00571-w
https://doi.org/10.1016/S0951-8320(03)00075-9
http://refhub.elsevier.com/S0951-8320(20)30853-X/sbref0013
http://refhub.elsevier.com/S0951-8320(20)30853-X/sbref0013
https://doi.org/10.1016/j.cma.2012.01.015
https://doi.org/10.1016/j.cma.2012.01.015
https://doi.org/10.1109/SYSCON.2011.5929085
https://doi.org/10.1016/j.ress.2006.09.016
https://doi.org/10.1016/j.ress.2006.09.016
https://doi.org/10.1016/j.strusafe.2009.06.005
https://doi.org/10.1016/j.strusafe.2009.06.005
https://doi.org/10.1016/j.ress.2012.03.010
https://doi.org/10.1109/TSMCA.2007.893454
https://doi.org/10.1016/j.apm.2012.02.031
https://doi.org/10.1016/j.eswa.2013.10.048
https://doi.org/10.1016/j.ress.2003.11.011
http://refhub.elsevier.com/S0951-8320(20)30853-X/sbref0024
http://refhub.elsevier.com/S0951-8320(20)30853-X/sbref0024
http://refhub.elsevier.com/S0951-8320(20)30853-X/sbref0024
http://refhub.elsevier.com/S0951-8320(20)30853-X/sbref0024
https://doi.org/10.1016/j.enconman.2016.01.027
https://doi.org/10.1016/j.cma.2010.03.028
https://doi.org/10.1016/j.cie.2018.09.006


11

[28] Rawat M, Lad BK. An integrated strategy for fleet maintenance planning. J. Qual. 
Maint. Eng. 2017;23(4):457–78. https://doi.org/10.1108/JQME-03-2016-0013. 
nojanv. 

[29] Mulder W, Basten RJI, Becker JMJ, Van Dongen LAM. Work in Progress: 
Developing Tools that Support the Design of Easily Maintainable Rolling Stock », 
Procedia CIRP, 11; 2013. p. 204–6. https://doi.org/10.1016/j.procir.2013.07.034. 
janv. 

[30] Pistikopoulos EN, Vassiliadis CG, Papageorgiou LG. « Process design for 
maintainability: an optimization approach. Comput. Chem. Eng. 2000;24(2): 
203–8. https://doi.org/10.1016/S0098-1354(00)00514-7. nojuill. 

[31] Alaswad S, Xiang Y. A review on condition-based maintenance optimization 
models for stochastically deteriorating system. Reliab. Eng. Syst. Saf. 2017;157: 
54–63. https://doi.org/10.1016/j.ress.2016.08.009. janv. 

[32] Olde Keizer MCA, Teunter RH, Veldman J. « Clustering condition-based 
maintenance for systems with redundancy and economic dependencies ». Eur. J. 
Oper. Res. 2016;251(2):531–40. https://doi.org/10.1016/j.ejor.2015.11.008. 
nojuin. 

[33] Tian Z, Jin T, Wu B, Ding F. « Condition based maintenance optimization for wind 
power generation systems under continuous monitoring. Renew. Energy 2011;36 
(5):1502–9. https://doi.org/10.1016/j.renene.2010.10.028. mai. 

[34] Lesobre R, Bouvard K, Berenguer C, Barros A, Cocquempot V. « A maintenance free 
operating period policy for a multi-component system with different information 
levels on the components state. Chem. Eng. Trans. 2013:1051–6. https://doi.org/ 
10.3303/CET1333176. juill. 

[35] Cheng GQ, Zhou BH, Li L. « Integrated production, quality control and condition- 
based maintenance for imperfect production systems. Reliab. Eng. Syst. Saf. 2018; 
175:251–64. https://doi.org/10.1016/j.ress.2018.03.025. juill. 
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