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This article describes a new approach to simultaneous optimization of design and maintenance of large-scale multi-component industrial systems. This approach, in a form of an algorithm, aims to help designers in the search for solutions by characterizing the components and their architecture including maintenance issues. The aim is to improve the performance of the industrial systems by maximizing the Total Operational Reliability (TOR) at the lowest Life Cycle Cost (LCC). In the case of this research, the term "design" refers to the reliability properties of the components, possible redundancies, faulty component accessibility, and the ability to improve the component real-time monitoring architecture. The term "maintenance" refers to maintenance plan adapted to the opportunistic dynamic maintenance plan. Simultaneous optimization of design and maintenance is achieved by a two-level hybrid algorithm using evolutionary (genetic) algorithms. The first level identifies the optimal design solutions calculated relative to the TOR and the LCC. The second proposes a dynamic maintenance plan that maximizes the reliability of the system throughout its operating life.

Introduction

Today, new large-scale industrial systems, such as industrial vehicles, aircraft, etc., are becoming increasingly complex. This complexity originates from the diversity of technologies used in the components (electronics, mechanics, sensors, etc.), which once assembled constitute the final product [START_REF] Markeset | Design and development of product support and maintenance concepts for industrial systems[END_REF]. To control this complexity and win more market share, many manufacturers have evolved into a new economic strategy. They go from selling products to selling services that include the product. In this context, they offer their customers a provisioning package and a billing indexed to its use. It's a matter of the company that manufactures this system to ensure the availability of the service and the product reliability during the contract period.

This evolution introduces the concept of Life Cycle Cost (LCC) covering, the overall operating costs including maintenance. For many complex systems, the maintenance cost is an important component of the LCC [START_REF] Markeset | R&M and risk-analysis tools in product design, to reduce life-cycle cost and improve attractiveness[END_REF]. It is worth mentioning that maintenance costs can exceed 65% of the LCC, especially for nuclear power generation plants [START_REF] Dhillon | Maintainability, Maintenance, and Reliability for Engineers[END_REF].

Recently, Kusiak and Li., [START_REF] Kusiak | The prediction and diagnosis of wind turbine faults[END_REF] conducted a study saying that the failure of a $ 5000 wind level can result in a $ 250,000 maintenance operation. In fact, the replacement of the bearing requires special repair equipment and a specialized maintenance team, in addition to the loss of electricity production [START_REF] Kusiak | The prediction and diagnosis of wind turbine faults[END_REF]. This work shows the importance of taking maintenance into account in the design stage.

Maintenance is traditionally linked to two factors, the internal one, corresponding to the characteristics of intrinsic reliability and maintainability of the chosen components, and the architecture of the product. The other factor is external, which corresponds to the context of use and the technical and the organizational skills of the end user [START_REF] Markeset | Design and development of product support and maintenance concepts for industrial systems[END_REF][START_REF] Markeset | R&M and risk-analysis tools in product design, to reduce life-cycle cost and improve attractiveness[END_REF].

Generally, decision making for reliability and maintainability design and maintenance planning is handled sequentially or independently. We start by freezing the detailed design and then define the maintenance plan [START_REF] Goel | Integrated optimal reliable design, production, and maintenance planning for multipurpose process plants[END_REF]. However, this can be detrimental because these two sets influence each other [START_REF] Rawat | Simultaneous selection of reliability design and level of repair for fleet systems[END_REF]. Indeed, the product features during design, including reliability and maintainability, strongly influence how the products can be manufactured, used, maintained or disposed [START_REF] Markeset | Design and development of product support and maintenance concepts for industrial systems[END_REF].

In this perspective, our paper focuses on joint decision making for the design in terms of reliability and maintainability and maintenance in terms of dynamic plan of maintenance operations. The overall goal of this research is to develop a decision support tool that offers solutions to the designer in the form of a Pareto graph. This graph facilitates the convergence towards the best compromise solution according to LCC and Total Operational Reliability1 (TOR). A compromise Pareto solution means, first of all identify an architecture, then allocate reliability and maintainability to each component of the system, and finally define a maintenance plan in recommendations form to be deployed during the operation phase.

The rest of the article is organized in 7 sections. Section 2 reviews the design for maintenance literature. Section 3 describes the mathematical models used to support the proposed approach. Section 4 presents the method of combinatorial resolution based on genetic algorithms. An example from the literature and a discussion of the results are presented in sections 5 and 6. Section 7 concludes the paper and suggests possible directions for future researches.

State of the art: Design For Maintenance DFM

The literature proposes a design approach for integrating maintenance into the DFX tools "Design For X" [START_REF] Kuo | Design for manufacture and design for 'X': concepts, applications, and perspectives[END_REF]. This concept of the DFX "design for business X" is nothing more than a generalization of the "Design For Assembly" (DFA) tools [START_REF] Boothroyd | Product Design for Manufacture and Assembly, Revised and Expanded[END_REF] and "Design For Manufacturing" (DFMf) [START_REF] Stoll | Design for manufacture[END_REF][START_REF] Corbett | Design for manufacture: strategies, principles, and techniques[END_REF][START_REF] Adjoul | Algorithmic strategy for optimizing product design considering the production costs[END_REF]. Business expertise is formalized into design rules to participate in decision-making. These rules are carried by the actors of the design.

Maintenance integration is driven by Design for Sustainability (DFMt), Design For Reliability (DFR), Design For Diagnosability (DFD), or Design for Maintenance (DFM) [2, 7, [12]. The design for reliability strategy is to achieve a highly reliable system that requires little maintenance over its entire lifetime. Design strategies for maintainability and diagnostics both aim to improve the ease and speed which can bring a system back into service after a failure. The concept of "design for maintenance" takes into account the close links between maintenance and design to improve the availability of the system with the most cost-effective over its lifecycle [START_REF] Markeset | Dimensioning of product support: Issues, challenges, and opportunities[END_REF]. In what follows, our discussion focuses on these three strategies as well as the analysis of their relevance to improve the reliability, availability and the LCC of the system from a maintenance point of view.

Design for reliability

The optimization of reliability in the design phase has several objectives. It is generally intended to improve the life of an entity, and to reduce the operating costs [START_REF] Markeset | R&M and risk-analysis tools in product design, to reduce life-cycle cost and improve attractiveness[END_REF]. According to Zoulfaghari et al [START_REF] Zoulfaghari | Bi-objective redundancy allocation problem for a system with mixed repairable and nonrepairable components[END_REF]., there are two general followed approaches to optimize the reliability of the multi-component industrial system. The first, called reliability optimization which considers the reliability of the components as a decision variable. The goal is to find the values that best meet the objectives and constraints required [START_REF] Beaurepaire | Reliability-based optimization of maintenance scheduling of mechanical components under fatigue[END_REF]. The second approach, redundancy allocation, tries to find the number of components to apply in each subsystem [START_REF] Ebrahimipour | Application of multi-objective particle swarm optimization to solve a fuzzy multi-objective reliability redundancy allocation problem[END_REF]. This assumes the characteristics of each component such as reliability, weight, cost, etc. are predetermined. The goal is to find the number of components to apply in each subsystem. In most cases, the goal of optimizing redundancy is to maximize reliability [START_REF] Nourelfath | Optimization of series-parallel multi-state systems under maintenance policies[END_REF][START_REF] Okasha | Lifetime-oriented multi-objective optimization of structural maintenance considering system reliability, redundancy and life-cycle cost using GA[END_REF][START_REF] Torres-Echeverría | Multi-objective optimization of design and testing of safety instrumented systems with MooN voting architectures using a genetic algorithm[END_REF]. These two approaches can be grouped into the category of design for maintenance in favor of reliability [START_REF] Amari | A Novel Approach for Optimal Cost-Effective Design of Complex Repairable Systems[END_REF].

Several recent works [START_REF] Nourelfath | Optimization of series-parallel multi-state systems under maintenance policies[END_REF][START_REF] Chang | Optimal replacement model with age-dependent failure type based on a cumulative repair-cost limit policy[END_REF][START_REF] Sriramdas | Fuzzy arithmetic based reliability allocation approach during early design and development[END_REF][START_REF] Tsai | A study of availability-centered preventive maintenance for multi-component systems[END_REF] examine the reliability optimization by combining the two approaches mentioned above or by treating one of them. Most of this works considers maintenance and operating costs in the optimization process as an objective function, sometimes "extra" alongside other more important functions such as reliability, availability. In other cases, it is considered as a decisive fundamental function.

We refer to the paper of Yao et al., [START_REF] Yao | Joint Redundancy and Inspection-Based Maintenance Optimization for Series-Parallel System[END_REF] who proposed a joint optimization model of redundancy and maintenance based on inspection. The main objective of this model is to define an optimal system structure and inspection policy for each component, which maximize the performance of the series-parallels system while taking into account the constraints of reliability and costs. Atashgar and Abdollahzadeh., [START_REF] Atashgar | Reliability optimization of wind farms considering redundancy and opportunistic maintenance strategy[END_REF] developed a method for jointly optimizing the redundancy and opportunistic maintenance of a wind farm. Goel et al. [START_REF] Goel | Integrated optimal reliable design, production, and maintenance planning for multipurpose process plants[END_REF] have developed a reliability allocation model. This model attempts to combine the optimization of maintenance with production and design. Valdebenito and Schuëller., [START_REF] Valdebenito | Design of maintenance schedules for fatigue-prone metallic components using reliability-based optimization[END_REF] presented a reliability allocation model that minimizes the total cost of maintenance under reliability constraints. Rawat and Lad., [START_REF] Rawat | Simultaneous selection of reliability design and level of repair for fleet systems[END_REF][START_REF] Rawat | Novel approach for machine tool maintenance modelling and optimization using fleet system architecture[END_REF][START_REF] Rawat | An integrated strategy for fleet maintenance planning[END_REF] presented a method that considers two approaches to optimize reliability : allocating reliability and allocating redundancy for multi-component systems. This work attempts to combine the optimization of maintenance with production and design.

Design for maintainability

Several recent works [START_REF] Chen | Using Vector Projection Method to evaluate maintainability of mechanical system in design review[END_REF][START_REF] Mulder | Work in Progress: Developing Tools that Support the Design of Easily Maintainable Rolling Stock[END_REF] deal with improving system maintainability characteristics in the design phase, including detailed design, logistical support and ergonomics. The objective of this work is to evaluate and optimize the maintainability via the MTTR2 rate. Optimizing the MTTR is to take into account some criteria, such as accessibility or demonstrability, individually or combined during the product design [START_REF] Chen | Using Vector Projection Method to evaluate maintainability of mechanical system in design review[END_REF]. Improving the maintainability of a component, for example its accessibility, requires design changes which increase the cost of the system [START_REF] Pistikopoulos | Process design for maintainability: an optimization approach[END_REF].

Design for diagnosability

As the products become more and more complex, the detection of failures becomes more difficult and takes more time. To minimize the time for detecting failures, numerous studies have used self-diagnostic systems (sensors) [START_REF] Mulder | Work in Progress: Developing Tools that Support the Design of Easily Maintainable Rolling Stock[END_REF][START_REF] Alaswad | A review on condition-based maintenance optimization models for stochastically deteriorating system[END_REF][START_REF] Keizer | Clustering condition-based maintenance for systems with redundancy and economic dependencies[END_REF][START_REF] Tian | Condition based maintenance optimization for wind power generation systems under continuous monitoring[END_REF]. Systems that continuously measure performance gaps by monitoring the deterioration of these components make it easier to predict failures and determine the right time to perform maintenance [START_REF] Lesobre | A maintenance free operating period policy for a multi-component system with different information levels on the components state[END_REF]. As a result, condition-based maintenance (dynamic maintenance) has been widely used as an effective maintenance strategy [START_REF] Cheng | Integrated production, quality control and conditionbased maintenance for imperfect production systems[END_REF].

In the literature, numerous works developed this dynamic maintenance plan. Castanier et al., [START_REF] Castanier | A condition-based maintenance policy with non-periodic inspections for a two-unit series system[END_REF] proposed a conditional based maintenance plan for a system containing two components. OldeKeizer et al., [START_REF] Keizer | Joint condition-based maintenance and inventory optimization for systems with multiple components[END_REF] proposes a dynamic maintenance model for multi-component systems which present both redundancies and economic dependencies. Wildeman et al., [START_REF] Wildeman | A dynamic policy for grouping maintenance activities[END_REF] proposes a dynamic maintenance model over a rolling horizon. To set up this model, it is first necessary to define the optimal maintenance date for each component taken individually. Then, for each component, a penalty function is constructed.

Based on the rolling horizon approach, Bouvard et al., [START_REF] Bouvard | Condition-based dynamic maintenance operations planning & grouping. Application to commercial heavy vehicles[END_REF] suggests using this method for multi-component systems with gradual degradation. The idea is to use the information related to the current state of the components to update the maintenance schedule. In other works, the rolling horizon approach has been completed to take into account time constraints [START_REF] Van | Dynamic grouping maintenance with time limited opportunities[END_REF] but also constraints related to the number of repairers available [START_REF] Van | Grouping maintenance strategy with availability constraint under limited repairmen[END_REF]. However, these contributions are related only to multi-component systems with series structures. Recently, work has made it possible to adapt this dynamic grouping plan in order to take into account systems with a more elaborate structure that can mix series / parallels connections [START_REF] Vu | Maintenance planning and dynamic grouping for multi-component systems with positive and negative economic dependencies[END_REF][START_REF] Vu | Maintenance activities planning and grouping for complex structure systems[END_REF].

Still in the context of dynamic maintenance, Lesobre et al., [START_REF] Lesobre | A maintenance free operating period policy for a multi-component system with different information levels on the components state[END_REF][START_REF] Lesobre | Evaluation of decision criteria to optimize a dynamic maintenance policy based on Maintenance Free Operating Period concept[END_REF] have developed a dynamic maintenance plan for multi-component systems based on the concept of Maintenance Free Operating Period (MFOP) in order to group maintenance operations, that is used in this article. Unlike the majority of dynamic grouping policies from the literature, maintenance opportunities are not decided by the components but rather by the state of the system. This form of dynamic grouping is based on a decision-making process which is based both on the stochastic models of the components, on the structure of the system, on the economic dependencies, and on the degradation information of the components available online.

The implementation of a dynamic maintenance plan requires additional resources dedicated to the development of a surveillance architecture. It often requires a significant investment. In addition, there are cases where the installation of monitoring systems is difficult to implement or does not provide additional information on the system state (for example the case of microelectronic systems). Therefore, the technical and economic feasibility of implementing monitoring systems must be assessed from the design of the entity.

Resolution method

In terms of numerical optimization methods, we have found that heuristic and meta-heuristic methods such as Genetic Algorithm (GA), Simulated Annealing (SA) and Particle Swarm Optimization (PSO), have been widely applied in this area [START_REF] Chambari | A bi-objective model to optimize reliability and cost of system with a choice of redundancy strategies[END_REF][START_REF] Khalili-Damghani | A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems[END_REF]. The goal is to maximize or minimize certain parameters such as, cost, reliability, availability, maintenance time, weight, etc. According to Almeida et al., [START_REF] De Almeida | A review of the use of multicriteria and multi-objective models in maintenance and reliability[END_REF] 68.3% of works under this theme aim to minimize cost, 37.6% to maximize reliability, 17.2% to maximize availability, 11.8% to minimize maintenance time and 15.7% for the remaining (weight, volume, etc.).

Monga and Zuo., [START_REF] Monga | Optimal system design considering maintenance and warranty[END_REF] have considered the design problem for reliability. They proposed an optimization model to minimize the cost of the system life cycle, depending on reliability requirements. Their model uses genetic algorithms to solve the optimization problem.

Observations from the literature

From the state of the art on design methods for maintenance, four observations are pointed:

1 There are no available methods for concurrent characterization of the four design approaches for maintenance (allocation of reliability, redundancy, maintainability and diagnostics). 2 All design approaches for maintenance must be validated by reliability analysis and cost over the entire life cycle of the system. The challenge is to find the best compromise between improving the reliability and maintainability characteristics of the system and the gains achieved on operating costs. 3 Issues related to the design and maintenance of industrial systems are usually dealt with sequentially or independently. 4 It is interesting to know whether the investments made for the monitoring architecture are compensated by benefits obtained in terms of maintenance. It is therefore necessary to base the implementation choice of monitoring systems on an LCC analysis, right from the design stage.

From this analysis, we developed a new approach for simultaneous optimization of design and maintenance. To optimize the design of multi-component industrial systems, the designer can choose the reliability level of its components, the architecture of the system, in particular the redundancy. He can work on maintainability to make some components more accessible for example, or install monitoring systems to detect and anticipate failures. The maintenance optimization focuses on the development of a dynamic maintenance plan.

Simultaneous optimization of design and maintenance approach

The design and maintenance optimization approach of systems consisting of n independent components is organized in three steps. The first step is to model the different possible design solutions by defining their design parameters, structures and characteristics. The second step defines all possible maintenance plans for each design solution. Each maintenance plan organizes and sets the maintenance operations according to the desired objectives and the existing constraints. The last step is to assess the different design solutions and possible maintenance plans generated in the two previous steps according to their objectives.

In this article two objectives are considered, the minimization of the LCC and the maximization of the TOR. The evaluation models for these two objectives are detailed in sections 3.3.1 and 3.3.2. Finally, the approach selects design solutions that maximize the TOR and in the same time generates the lowest LCC. Besides, it adds the maintenance plan to be deployed during the operating phase.

Design modelling

In this work, the design modelling is based on four design parameters for maintenance. For each component i (i=1,…,n) of a multi-component system, we can mention the choice of its level of reliability (R i ), the choice to invest in a more powerful monitoring instruments by the implementation of a sensor (S i ), the choice to consider a redundant component (P i ) and the choice of its accessibility level (MTTR i ).

Determining the number of design parameters available to the designer and their range of values for each component is potentially the most complex part. So, the designer must first assess the technical viability of these four parameters for each component. For example, it may be impossible to install a sensor on a given component or to make it more accessible in the system. Then, based on the results of this technical analysis, the number of design parameters of each component and their range of values are defined. In the end, several solutions of the system, referred to as Sl p (p=1, …,N) with N is the number of possible solutions are obtained, which vary according to their design parameter (R i , P i , MTTR i and S i ). We define a design solution as a particular choice of design parameters.

Maintenance modelling

In this work, we rely on the MFOP concept, proposed by the Royal Air Force in 1996.

MFOP concept

Hockley defines the MFOP as an operation period when the equipment must be able to carry out its tasks without maintenance action and without restricting the operator for failures reasons [START_REF] Hockley | Setting the requirements for the Royal Air Force's next generation aircraft[END_REF]. Each MFOP is usually followed by a Maintenance Recovery Period (MRP). MRP is defined as the period while the appropriate maintenance is performed on the system enabling it to successfully complete the next MFOP [START_REF] Cini | Designing for MFOP: towards the autonomous aircraft[END_REF][START_REF] Kumar | Maintenance free operating periodan alternative measure to MTBF and failure rate for specifying reliability?[END_REF]. The shutdown period will depend on the maintenance work to be performed [START_REF] Shaalane | Application of the aviation derived maintenance free operating period concept in the South African mining industry[END_REF]. In practice, it is obviously impossible to guarantee 100% that no failure will occur on the next MFOP, we must therefore assess this risk with the Maintenance Free Operating Period Survivability (MFOPS). MFOPS is defined as the probability that the system will survive on the duration of the MFOP (t MFOP ) knowing that it was in an operational state at the beginning of the period [START_REF] Kumar | Maintenance free operating periodan alternative measure to MTBF and failure rate for specifying reliability?[END_REF]. Its mathematical formula is given by:

MFOPS sys (t) = R sys (t + t MFOP ) R sys (t) (1) 
where R sys (t) is the system reliability after t life units. The reliability model is detailed in section 3.3.2.

Dynamic maintenance plan

The term dynamic means that the maintenance decision is adapted through the monitoring information available online on the component status H i,t (i=1,…, n). As a result, the mathematical formula of the MFOPS sys (t) becomes:

MFOPS sys (t) R sys ( t + t MFOP / H i,t (i=1 à n) ) R sys ( t / H i,t (i=1 à n) ) (2) 
This information can be quantitative (degradation measurement) or qualitative ("Working mode" / "Failure mode"). This means S i =1 at the design parameter level. For this purpose, Lesobre et al., [START_REF] Lesobre | A maintenance free operating period policy for a multi-component system with different information levels on the components state[END_REF] propose three levels of information that we will use in our approach. Level 1: No information; Level 2: Operating Status Information On / Off; Level 3: Degradation Measure.

The different values taken by R i (t /H i,t ) and R i (t + t MFOP /H i,t ), namely the reliability of component i at the beginning and the end of each MFOP depending on its level information availability H i,t , are:

Level 1 when H i,t = Φ, in this case we have:

• R i (t /H i,t )= R i (t) • R i (t + t MFOP /H i,t )= R i (t + t MFOP )
Level 2 with H i,t = "Failed", in this case we have:

• R i (t /H i,t )= 0 • R i (t + t MFOP /H i,t )= 0
Level 2 when H i,t = "Working", and so:

• R i (t /H i,t )= 1 • R i (t + t MFOP /H i,t )= Ri(t+tMFOP) Ri(t)
Level 3 when H i,t = Z i (t) > L, in which case the component is failed, and we have:

• R i (t /H i,t )= 0 • R i (t + t MFOP /H i,t )= 0
Level 3 when H i,t = Z i (t) < L, in which case the component is working, and we have:

• R i (t /H i,t )= 1 • R i (t + t MFOP /H i,t )= R i (t + t MFOP /Z i (t))
where Z i (t) is the degradation function of component i and L is the degradation limit.

Figure 1 illustrates for a possible design solution Sl p , the decision process for developing dynamic maintenance plan, referred to as MP py (y=1,…,M) with M as the number of possible maintenance plan, for the solution Sl p . This plan, based on the MFOP concept, is organized into two steps:

The first step consists of defining the dates of the maintenance stops t j , the duration t MFOPj of each period MFOP j and the total number of maintenance stops N MS over the entire operating life T. It should be noted that the date t j of a maintenance stop represents the end of an MFOP period (preventive stop) or the occurrence of a failure (corrective stop) in the system.

The second step consists in selecting the maintenance actions X ij to be performed at each maintenance stop event j on each component i. Noting that X ij can take two values:

In this article, a dynamic maintenance plan is considered possible, only if the maintenance recovery period at each stop j does not exceed a threshold MRP max given by:

MRP j = ∑ n i=1 MTTR i X ij (3) 
In this context, a constraint optimization problem can be formulated mathematically as follows:

max {Xij} MFOPS sys j , j = 1, …, n MFOP (4) 

s.t. MRP j ≤ MRP max

Where n MFOP is the number of MFOP performed by the system on [0, T], MRP max the maximum maintenance recovery period authorized to perform a set of operations {X ij } during a maintenance time.

Finally, note that more accurate the information is, the better is the maintenance prediction.

Thus, over the entire operating life T, the end of period MFOP j and the beginning of period MFOP j+1 can be confused. This is because MRP max is so small compared to all periods MFOP j that we have not added it in the T That is to say, calculate in relation to T instead of T + ∑ nMFOP j=1 MRP j .

Simultaneous evaluation and selection

After generating possible design solutions, as well as their possible maintenance plans, we must now define the evaluation objective in order to select a compromised solution (design solution and the associated maintenance plan). In this article two goals are considered, LCC 1 if the component i is replaced at the beginning of the MFOP j period (maintenance stop j); 0 otherwise.

and TOR to select an optimal design. However, to select a dynamic maintenance plan, we consider one goal, TOR. The evaluation of these objectives usually requires numerical evaluation methods, such as Monte Carlo method.

LCC assessment model

The LCC of multi-component industrial systems typically includes two types of costs; deterministic costs (such as capital costs, disposal costs, etc.) and probabilistic costs (such as maintenance costs, spare parts, gross margin loss, etc.) [START_REF] Sinisuka | Life cycle cost analysis on the operation of power generation[END_REF]. However, in this manuscript as in the work of Hwang [START_REF] Hwang | Costing RAM design and test analysis model for production facility[END_REF] and Okasha et al., [START_REF] Okasha | Lifetime-oriented multi-objective optimization of structural maintenance considering system reliability, redundancy and life-cycle cost using GA[END_REF], the life-cycle cost of multi-component industrial systems is limited to initial costs (initial investments) IC and total maintenance costs TMC. Its mathematical formula is:

LCC(T) sys = IC + TMC(T) (5)
The initial costs of the system, corresponding to:

IC ∑ n i=1 ( C i + C s,i ) (6) 
Where C i is the cost of the component i and C s,i represents the cost related to the information available on component i (example: cost of a sensor).

The total updated maintenance cost TMC(T) is given by:

TMC(T) = ∑ nps k=1 C prevk (1 + ν) tpk + ∑ ncs q=1 C corq + C diaq (1 + ν) tcq (7) 
Where C prev k represents the cost of preventive maintenance stop k, n ps is the number of preventive maintenance stops of the system on [0, T], tp k is the date of preventive maintenance stop k, ν is the discount rate, C corq is the cost of corrective maintenance stop q, n cs is the number of corrective maintenance stops of the system on [0, T], tc q is the date of corrective maintenance stop q, and finally C diaq is the additional cost related to the diagnosis when the system is in the corrective maintenance.

The undiscounted cost of preventive maintenance stop Cprev k corresponds to: [START_REF] Boothroyd | Product Design for Manufacture and Assembly, Revised and Expanded[END_REF] Where δ i, k is a boolean equal to 1 if the component i is replaced during the preventive maintenance stop k, 0 otherwise, τ O is the hourly rate of labor, C plog is the logistics cost linked to preventive maintenance stops.

C prevk = ∑ n i=1 (C i + MTTR i * τ O ) * δ i, k + C plog
The undiscounted cost of corrective maintenance stop C corq is given by:

C corq = ∑ n i=1 ((C i + MTTR i * τ 0 ) + (MTTR i * τ immob )) * δ i, q + ( C clog + ( D clog * τ immob )) (9) 
Where δ i, q represents a boolean equal to 1 if the component i is replaced during the corrective maintenance stop q, 0 otherwise, τ immob is the loss per system downtime, D clog is the logistic duration related to the corrective maintenance stop, C clog is the logistic cost related to the corrective maintenance stop. Note that the δ i,k and the δ i,q can be linked with X ij as follows:

• X ij =δ i,k if the maintenance action is preventive;

• X ij =δ i,q if the maintenance action is corrective.

During a corrective shutdown, the diagnostic system identifies the component(s) responsible for the failure in order to guide the maintenance actions. For some components, the available monitoring infor-mation provides information about how they work. In this case, no additional cost of diagnosis will be counted. Conversely, for components whose operating status is unknown, a test must be carried out generating additional costs. These costs will be taken into account in the expression C diaq given by: C diaq = (C UD +(D UD * τ immob )) * n SIS [START_REF] Corbett | Design for manufacture: strategies, principles, and techniques[END_REF] Where C UD is the unit diagnostic cost for a component, D UD is the unit diagnostic time for a component, and finally n SIS is the number of components in the system whose monitoring information is not available. We therefore choose to count the diagnosis only during the system failure on unmonitored components. In other situations, we assume that the costs related to the diagnosis are taken into account in the cost of the monitoring architecture, not in the TMC(T).

TOR assessment model

In this article, we define the TOR of the system, referred to as TOR sys (T), as the mean of all MFOPS sys j because, the system performs a succession of periods of duration t MFOPj . Equation [START_REF] Adjoul | Algorithmic strategy for optimizing product design considering the production costs[END_REF] gives the TOR sys as a function of MFOPS sys j :

TOR sys (T) = ∑ nMFOP j=1 MFOPS sys j n MFOP (11)
However, the process of maximizing the MFOPS sys j is to maximize the TOR sys (T) and to ensure that each MFOPS sys j is infinitely close to the TOR sys (T), i.e. minimize the variance, which is given by the following formula:

Var ( MFOPS sys j ) = 1 n MFOP ∑ nMFOP i=1 ( MFOPS sys j -TOR sys (T) ) 2 = ( 1 n MFOP ∑ nMFOP i=1 (MFOPS sysj 2 ) ) -TOR sys (T) (12) 
This process will allow us to have a single maximum value for the reliability of the system over its entire lifetime.

Looking now at the evaluation of the MFOPS sysj (j = 1, .., n MFOP ). We defined it previously as the ratio of the system reliability at the end of the period j (R sys (t j +t MFOPj )) over the reliability of the system at the beginning of this period j (R sys (t j )), considering the available information H i,tj at t j . Thus, its mathematical formula is given by:

MFOPS sysj R sys ( t j + t MFOPj / H i,tj (i=1 à n) ) R sys ( t j / H i,tj (i=1 à n) ) (13) 
To evaluate the reliability of a multi-component system over the interval [0, t], the first step is to evaluate the reliability of each component over this interval. Then, depending on the relationships between the components (parallel or serial) of the system, the evaluation of the reliability of the system R sys (t) can be established. The application of the reliability calculation expressions at these two basic subsystems makes it possible to evaluate the reliability of the complete system R sys (t) over the interval [0, t]. The following expressions provide the reliability of serial and parallel structure [START_REF] Dhillon | Life Cycle Costing for Engineers[END_REF].

Parallel structure system R sys (t) = 1 - ∏ m i=1 (1 -R Ai (t)) ( 14 
)
Serial structure system R sys (t) = ∏ m i=1 R Ai (t) ( 15 
)
Where m is the number of components of the structure and R Ai (t) is the reliability of each component i.

In the case of having two-component parallel system, the MFOPS sys j (t) over the period MFOP j becomes:

MFOPS sys j ( t j ) = 1 - ( ( 1 -R 1 ( t j + t MFOPj / H 1,tj )) . ( 1 -R 2 ( t j + t MFOPj / H 2,tj ))) 1 - ( ( 1 -R 1 ( t j / H 1,tj )) . ( 1 -R 2 ( t j / H 2,tj ))) (16) 
Where R 1 (t) and R 2 (t) are the reliability at time t of components 1 and 2 respectively. H 1,t j and H 2,t j are the information available at time t j of component 1 and 2 respectively.

Mathematical formulation

Finally, note that this simultaneous design and maintenance modeling, discussed above, can be formulated as a problem of multiobjective optimizations under the constraints given in equation 16.

The mathematical formulation of this problem can be given as follows: [START_REF] Nourelfath | Optimization of series-parallel multi-state systems under maintenance policies[END_REF] Where C imin and C imax are the minimum and maximum investment costs of the component i. The purpose of these constraints is to limit the number of possible solutions.

Minimize { LCC sys , -MFOPS sys j } under constraints ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ R imin ≤ R i ≤ R imax MTTR imin ≤ MTTR i ≤ MTTR imax C imin ≤ C i ≤ C imax 0 ≤ t i ≤ t m P i ϵ{0, 1, 2, ..} S i ϵ{0, 1} X ij ϵ{0, 1} MRP j ≤ MRP max i = 1, 2, …, n j = 1, 2, …, n MFOP
To solve this multi-objective optimization problem, we use genetic algorithms because, they are adapted for optimization problems with several objectives and / or constraints, and to effectively handle different variables [START_REF] Deb | Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms[END_REF]. For this reason, a hybrid algorithm, based on genetic algorithms, at two levels, is developed in the following section.

Resolution method: Hybrid Algorithmic Tool (HAT)

We are proposing, here, a hybrid optimization tool for design and maintenance based on genetic algorithms. This hybrid algorithmic tool (HAT) combines two dependent algorithms, a main algorithm and a secondary one. The main algorithm, based on the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) method, ensures design optimization in terms of reliability (R i ), redundancy (P i ), monitoring architecture (S i ) and accessibility characterized by the MTTR i (solving the problem described by equation ( 17)). The output of this algorithm represents all the optimal solutions that maximize the Mean Total Operational Reliability, noted TOR mean sys (T), and minimize the Mean Life Cycle Cost, noted LCC mean sys (T), of a given system. These design solutions constitute a Pareto frontier. The secondary algorithm determines an optimal dynamic maintenance plan, based on the MFOP, by maximizing the TOR mean sys (T) of each solution (problem described by equation ( 4)). The operating process of the Hybrid Algorithmic Design and Maintenance Optimization tool has been implemented as shown in Figure 2:

Step 1. Generation of design solutions This step consists of generating the possible design solutions Sl p (p=1,…, N) by adjusting the four design parameters for each component i under the resource constraints.

Step 2. Evaluation of possible design solutions Sl p This step aims to evaluate the LCC mean sys (T) and the TOR mean sys (T) of each possible solution Sl p equations ( 5) and (( 11)). For this purpose, the secondary algorithm is executed n I iterations of Monte Carlo.

Step 2.1. Generating failures The objective of this step is to simulate the dynamic behavior of each Sl p solution in the operating phase in terms of failures. This is done by a Monte Carlo simulation that generates random failures. To guarantee the convergence of the results, it is recommended to use a large number of iterations (n I ). The accuracy of the simulations is strictly proportional to the number n I considered.

The process for generating failure times is as follows:

The first step consists of randomly obtaining a rand value between 0 and 1, for each component, according to a uniform law. This step is provided by the Rand function of Matlab.

The second step aims to calculate the failure time of each component from this random value and according to the inverse of the law of statistical distribution of reliability. For example, for a component whose reliability model follows a Weibull law with a shape parameter η and a scale parameter λ, the failure times are generated by the following formulation:

t fault = -λ (logrand) 1 η (18)
These two steps are finally applied iteratively until the sum of the failure times for each component is reached or exceeds the simulation time T.

The last step, depending on the structure of the multi-component system and the failure times generated previously, we consider that the system is down or not.

Step 2.

Generation of dynamic maintenance plans MP py

The secondary algorithm consists, first, at defining the dates of the maintenance stops t j , the duration t MFOPj of each period MFOP j and the number of maintenance stops. Then generate possible maintenance plans MP py (y=1,…,M) for each possible solution Sl p (section 3.2) and adjusting the X ij maintenance actions to be performed on each component i.

Step 2.3. Selecting optimal dynamic maintenance plans MP po The third step aims, first, to evaluate and classify the generated maintenance plans using the decision criteria, the TOR sys (T), the MFOPS sysj , the variance Var(MFOPS sysj ) and MRP j equations (3), (( 7) and ( 11) -( 13)). Then, for each possible solution ( Sl p ), it selects the MP po maintenance plan that maximizes the TOR sys (T). Furthermore, the reliability MFOPS sys j over each period j is close to the calculated total reliability TOR sys (T).

Steps 2.2 and 2.3 are finally applied in an iterative way until the iteration number (n I ) of the Monte Carlo simulation is reached.

Step 2.4. Evaluation of the TOR mean sys (T), the TMC mean sys (T) and the LCC mean sys (T) The final step is to calculate the Mean Total Maintenance Cost, referred to as TMC mean sys (T), and the TOR mean sys (T) of each possible solution ( Sl p ). These values can be obtained by averaging the results of n I iterations. These can be given mathematically as follow:

TOR mean sys (T) = ∑ nI e=1 TOR syse n I TMC mean sys (T) = ∑ nI e=1 TMC syse n I ( 19 
)
The LCC mean sys (T) may be given by:

LCC mean sys (T) = IC sys + TMC mean sys (T) (20) 
Step 3. Selection of optimal solutions (Pareto set) The final step in the main algorithm is to classify the different solutions based on their TOR mean sys (T) and their LCC mean sys (T), in order to select the ones that have the best compromise. These selected solutions thus constitute a Pareto frontier that will allow the design team to choose a solution according to their objectives.

Finally, note that these two algorithms, main and secondary, of the HAT were implemented using the MATLAB programming language toolbox. Therefore, convergence is ensured by a fixed number of iterations, used as a stopping criterion. All the necessary parameters, including the number of iterations, for the execution of the two algorithms are defined in the section 6.

In addition, both algorithms use a strategy that limits the search for solutions in the area of possible solutions, since there is not an exhaustive enumeration of all possible solutions.

Numerical Example

In this section, the goal is to test HAT tool and develop a support mapping to select an optimal design solution. In this context, we present, initially, the reference system considered and the simulation hypothesis. Then we finish with the results and their interpretations.

For this example, we will take a multi-component system consisting of five (05) serial components, whose data are a combination of those applied in [START_REF] Lesobre | A maintenance free operating period policy for a multi-component system with different information levels on the components state[END_REF][START_REF] Lesobre | Evaluation of decision criteria to optimize a dynamic maintenance policy based on Maintenance Free Operating Period concept[END_REF]. Figure 3 illustrates the structure of the system under study.

For this reference system, we assume that the cost and the unit duration Table 1 summarizes the design parameters (R i , P i , MTTR i , S i ) of different components of the reference system considered in this example.

We also introduce hypothesis about the reference system, to define the necessary parameters for the simulation:

Ø The implementation and the adjustment of the four parameters (R i , P i , MTTR i , S i ) is possible for each component i. Ø The parameters R i and MTTR i are real and c with max and min values vary between -50% and + 50% of the reference system values. Ø The installation of sensor on the components i = 1, 2, 3 and 4 gives only information about operation or failure of the component (when S i = 1). Conversely, on component 5, the sensor provides information on its degradation (always S i = 1). Ø Parameters P i and S i are discrete integers that can only take the value of 0 or 1. Ø The properties of A i and A ′ i (its component in parallel) are assumed to be identical. Ø The installation of a sensor will result in a cost C s,i =50€.

Ø The cost of each component i must not exceed 1000 €.

Note finally that the information on the operation / failure state of the system is assumed to be known. This hypothesis is realistic if we consider that the failure of the system systematically causes a breakdown.

In order to demonstrate the relevance of the proposed approach, the following section will present a full analysis of the results obtained on the example detailed here.

RESULTS AND DISCUSSION

Based on the system properties and the hybrid design and maintenance multi-objective optimization tool, Monte Carlo simulations are implemented to evaluate the TOR mean sys (T) and the LCC mean sys (T). The simulation horizon is set at 5 years. We also consider that the annual mileage is set at 100,000 km. We assume that the MFOP is fixed at six Figure 3. Structure of the multi-component reference system [START_REF] Lesobre | A maintenance free operating period policy for a multi-component system with different information levels on the components state[END_REF][START_REF] Lesobre | Evaluation of decision criteria to optimize a dynamic maintenance policy based on Maintenance Free Operating Period concept[END_REF]. months, which corresponds to a mileage of 50,000 km. Finally, the maximum maintenance operations time MRP max is fixed at 3h. The primary and secondary algorithms of the HAT tool have been implemented using the MATLAB programming language. Table 2 presents the parameters for NSGA II and GA.

Figure 4 shows a Pareto curve where each point represents an optimal design solution, so-called compromise solution, in terms of mean lifecycle cost and TOR mean sys (T). In order to show the effectiveness of this method, we will compare the new solutions generated by our algorithm with the reference solution from published research work. Table 3 shows 3 optimal design solutions chosen arbitrary on the Pareto graph, noted respectively Sl X1 , Sl X2 and, Sl X3 as well as the reference solution noted Sl 0 . We note that with the same constraints, the solutions generated are more efficient than the reference solution. This result gives us an idea of the effectiveness of these new solutions according to the right choices of design parameters for maintenance, such as the monitoring integration, redundancy, components choice, accessibility as shown in Figures 5. This shows the value of this tool allowing designers to visualize the consequences of their design decision on LCC and on TOR. Thus, will be able to guide the design according to the economic models in which the future product will be exploited.

In this context of various optimal Pareto solutions, it will be difficult to choose the best solution. There are methods to determine the best solution in a set of Pareto solutions. The L 2 -norm method is proposed by [START_REF] Eschenauer | Multicriteria Design Optimization: Procedures and Applications[END_REF][START_REF] Amiri | Developing a bi-objective optimization model for solving the availability allocation problem in repairable series-parallel systems by NSGA II[END_REF], is widely used. This technique calculates the standardized minimum distance of the whole set of Pareto solutions. Then it, selects the solution that has the most optimal value. The equation is given by [START_REF] Kasprzak | An Approach to Facilitate Decision Tradeoffs in Pareto Solution Sets[END_REF] :

Min [ ∑ w z=1 ( f z (x) -f min z f max z -f min z ) 2 ] 1 2 ( 21 
)
Where w is the number of the objective function, f z (x) the optimal value of a Pareto frontier, and f min z and f max z are the minimum and maximum values of the z-th objective function of the optimal set of Pareto. In this formula, all objective functions must be minimized.

In this illustration, we apply the L 2 -norm method to select the best design solution from the set of Pareto solutions in Figure 4. We choose here to take only 10 Pareto solutions (points marked in red in Figure 4) in order to easily illustrate and justify the results obtained by this technique. To use this technique, first, the objective function related to operational reliability (maximizing the operational reliability of the system) must be transformed into minimization. To do this, the system's unreliability is calculated. Next, we evaluate the distance defined in equation ( 21) for each optimal solution. Table 4 shows the distance of the 10 optimal solutions with the best one marked in bold. The characteristics of the most optimal solutions are presented in Table 5. Thus, Figure 6 illustrates the structure of this best non-dominated solution.

Table 1

Reference system design parameters (W= Weibull distribution, G=Gamma process and L=Degradation Limit) [START_REF] Lesobre | A maintenance free operating period policy for a multi-component system with different information levels on the components state[END_REF][START_REF] Lesobre | Evaluation of decision criteria to optimize a dynamic maintenance policy based on Maintenance Free Operating Period concept[END_REF] 

Conclusions and Perspectives

This research has two major interests. The first is to find the design that maximizes system performance in TOR at the lowest LCC. The second is to allow designers to experiment with several possible solutions by adjusting design variables, objectives and maintenance constraints. In this paper, an approach to simultaneous design and maintenance optimization of large-scale multi-component industrial systems has been proposed and tested. This approach is intended to help designers to make compromise decisions for multi-objective design issues. Depending on the intended operating life, the MRP, the design parameters and the MFOP, the tool calculates the solutions set that maximizes TOR and minimizes LCC, it also identifies the compromise solution.

Characterization of design and maintenance are performed by a twolevel HAT using genetic algorithms. The first algorithm, considered as main, used Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to identify all design solutions that offers the best combination between TOR mean sys (T) and LCC mean sys (T). The second algorithm used the GA to propose a dynamic maintenance plan that maximizes the TOR mean sys (T) of each solution of the main algorithm.

The proposed tool HAT was confronted with an example from literature, composed of five components in series. The obtained results proves that this tool made it possible to obtain a set of Pareto solutions. These solutions, which add new components and sensors, have increased the TOR and minimized LCC compared to the initial version, under the same constraints. Indeed, the proposed modifications on the system structure have reduced the probability of occurrence of suspicious events, and increased the robustness of the system. This has resulted in lower total maintenance costs over its lifetime and improved system availability. The Pareto solution set can be a valuable tool for the design team, particularly in finding solutions based on the business model in which the product will operate.

In perspective, several research projects can be investigated, in particular: (a) Adapting the proposed model and procedure to multistate systems; (b) use other meta-heuristic methods such as PSO and compare them with those of GAs; (c) experiment with the proposed approach for the K-out-of-N subsystems and (d) test the robustness of this model on new examples from industrial world with a sensitivity analysis, in particular the four parameters considered ( R i , P i , MTTR i and S i ).
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 1 Figure 1. Dynamic Maintenance plan based on the MFOP concept.
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 2 Figure 2. Operating process of the HAT.

  of diagnosis are respectively C UD = 20€ and D UD = 5 min. The hourly rate of labor is fixed at τ O = 90€ and the operating loss per hour of immobilization at τ immob = 150€. The logistic costs related to preventive and corrective maintenance stops are respectively C plog = 100€ and C clog = 150€ for a fixed duration D clog = 5h.

Figure 4 .

 4 Figure 4. Set of Pareto Design Solutions.

Figure 5 .

 5 Figure 5. (a) Sl X1 Structure; (b) Sl X2 Structure; (c) Sl X3 Structure.

Figure 6 .

 6 Figure 6. Structure of the best model of Pareto solutions.
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		C1	C2	C3	C4	C5
	Reliability	W	W	W	W	G(8e-
	model Ri	(2.8e5,10)	(3.5e5,8)	(5e5,11)	(4.5e5,9)	5,1.5) ;L
						= 20
	Di(h) MTTRi	1.2	1.4	1	1.5	1.7
	Si	0	0	0	0	0
	Pi	0	0	0	0	0
	Ci(€)	305	311	458	407	302

Table 2

 2 execution parameters of the two algorithms.

	Parameters	Crossover	Mutation	Population	Number of
		rate	rate	size	itérations
	Main algorithm	0.5	0.2	100	100
	(NSGA II)				
	Secondary	0.5	0.2	100	200
	algorithm (GA)				

Table 3

 3 The characteristics of Pareto's solutions Sl X1 , Sl X2 et Sl X3 .

			C1 & C1'	C2 & C2'	C3 & C3'	C4 & C4'	C5	LCC mean sys	x e4	TOR mean sys
	Sl0	Refer to Table 1						2.5208		0.812
	SlX1	Ri (KM)	W(3.8e5,10)	W(4.5e5,5)	W(5.5e5,10)	W(5.5e5,6)	G(15e-5,0.9) L = 20	1.0591		0.982
		MTTRi(h)	1.3	1.1	0.9	1.3	0.9		

Table 4

 4 Characteristics of the 10 Pareto solutions marked in red.

	Optimal solutions marked in red	LCC mean sys	x 10 4	1 -TOR mean sys	Distance L2
	1	1.0591		0.0185	1
	2	1.0592		0.0152	0.754601
	3	1.0621		0.0122	0.570567
	4	1.0735		0.0094	0.399275
	5	1.0815		0.0073	0.271729
	6	1.1105		0.0053	0.163663
	7	1.4412		0.0041	0.536288
	8	1.2091		0.0032	0.209347
	9	1.3064		0.0031	0.344025
	10	1.7784		0.0029	1

Table 5

 5 Design parameters for the maintenance of the best model of Pareto solutions.

The product reliability in the operation phase

MTTR: Mean Time To Repair
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