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Abstract 30 

 Obesity is a chronic and debilitating disorder that originates from alterations in energy-31 

sensing brain circuits controlling body weight gain and food intake. The dysregulated syntheses 32 

and actions of lipid mediators in the hypothalamus induce weight gain and overfeeding, but the 33 

molecular and cellular underpinnings of these alterations remain elusive. 34 

In response to changes in the nutritional status, different lipid sensing pathways in the 35 

hypothalamus direct body energy needs in a Yin-Yang model. Endocannabinoids orchestrate the 36 

crosstalk between hypothalamic circuits and the sympathetic nervous system to promote food 37 

intake and energy accumulation during fasting, whereas bile acids act on the same top-down axis 38 

to reduce energy intake and possibly storage after the meal. In obesity, the bioavailability and 39 

downstream cellular actions of endocannabinoids and bile acids are altered in hypothalamic 40 

neurons involved in body weight and metabolic control. Thus, the onset and progression of this 41 

disease might result from an imbalance in hypothalamic sensing of multiple lipid signals, which 42 

are possibly integrated by common molecular nodes.  43 

In this viewpoint, we discuss a possible model that explains how bile acids and 44 

endocannabinoids may exert their effects on energy balance regulation via interconnected 45 

mechanisms at the level of the hypothalamic neuronal circuits. Therefore, we propose a new 46 

conceptual framework for understanding and treating central mechanisms of maladaptive lipid 47 

action in obesity. 48 
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Abbreviations  62 

Central nervous system, CNS; arcuate nucleus, ARC; neuropeptide Y, NPY; agouti-related 63 

peptide, AgRP; amphetamine-regulated transcript, CART; proopiomelanocortin, POMC, blood-64 

brain barrier, BBB; lipoprotein lipase, LPL; hormone-sensitive lipase, HSL; high-fat diet, HFD; 65 

mediobasal hypothalamus, MBH; sympathetic nervous system, SNS; Δ
9
-tetrahydrocannabinol, 66 

THC; cannabinoid type 1 receptors, CB1; brown adipose tissue, BAT; 2-arachidonoylglycerol, 2-67 

AG; single-minded 1, SIM1; steroidogenic factor 1, SF1; 2α/β-hydrolase domain containing 6, 68 

ABHD6; ventromedial hypothalamic nucleus, VMH; 2-arachidonoylglycerol, 2-AG; nucleus 69 

tractus solitarii, NTS, arachidonoylethanolamine, AEA; body mass index, BMI; farnesoid X 70 

receptor, FXR; G-protein coupled receptor G-protein bile acid-activated receptor, GPBAR-71 

1/TGR5; glucagon-like peptide-1, GLP-1; cholic acid, CA; chenodeoxycholic acid, CDCA; diet-72 

induced obese, DIO; tyrosine hydroxylase, TH; oleoylethanolamide, OEA; N-73 

acylphosphatidylethanolamine-selective phospholipase D, NAPE-PLD; N-acylethanolamines, 74 

NAEs; small extracellular vesicles, sEV. 75 

 76 

1) Introduction 77 

Over million years of evolution in an environment characterised by cataclysms and often 78 

scarce energy sources, the mammalian brain has developed adaptive mechanisms that promote 79 

survival by manoeuvring the body energy state. Multiple studies have shed light on the 80 

neurobiology of these mechanisms, and this advancement provides a more precise framework for 81 

understanding and treating pathological conditions linked to altered energy balance regulation, 82 

such as obesity. Accordingly, we now know that obesity is primarily a brain disease since most of 83 

the genetic mutations underlying disease progression map in the central nervous system (CNS). 84 

These mutations affect molecular factors responsible for synaptic transmission and neuronal 85 

responses to hormones and energy substrates (1). 86 

The outstanding ability of CNS neurons to monitor and maintain energy balance relies on 87 

its dynamic crosstalk with the peripheral organs. In the hypothalamic arcuate nucleus (ARC), the 88 

heterogeneous populations of neurons relay the peripheral signals by producing neurotransmitters 89 
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and neuropeptides that regulate feeding and metabolism (2-4). When energy reserves decline 90 

during fasting, neuropeptide Y (NPY) and agouti-related peptide (AgRP) co-expressing neurons 91 

are activated to promote food consumption and energy accumulation in peripheral organs (5). 92 

Conversely, when energy becomes available after dietary intake, neurons that co-express 93 

amphetamine-regulated transcript (CART) and proopiomelanocortin (POMC) are recruited to 94 

antagonise the actions of NPY/AgRP neurons to reduce food intake and stimulate whole-body 95 

energy expenditure (6). AgRP and POMC neurons compose a unique neural circuit known as the 96 

melanocortin system (6), which is modulated by the neighbouring non-neuronal cells, including 97 

microglia, astrocytes, tanycytes, and endothelial cells (7). Non-neuronal cells regulate the 98 

melanocortin system by two mechanisms, the secretion of signalling molecules that influence 99 

synaptic plasticity directly and the modulation of blood-brain barrier (BBB) permeability (7), 100 

which subsequently impacts the transport of metabolic messengers from the bloodstream to the 101 

brain. As thoroughly reviewed, hypothalamic neuronal circuits integrate these peripheral 102 

metabolic signals into output autonomic responses that influence feeding behaviour and 103 

maintain the metabolic processes necessary for survival (8, 9).  104 

 The intercellular signalling between hypothalamic cells is tightly controlled by lipid-105 

derived messengers, either produced from cellular precursors in the brain or transported from the 106 

bloodstream. Free fatty acids, for instance, can cross the BBB (10-13). These lipids can also 107 

reach the hypothalamus as triglyceride-rich lipoproteins, which are then hydrolysed by enzymes, 108 

such as the lipoprotein lipase (LPL) in neurons and glia (14, 15). Genetic ablation of LPL in glial 109 

cells induces exaggerated body weight gain and glucose intolerance in mice exposed to a high-fat 110 

diet (HFD), possibly impacting the function of hypothalamic neuronal circuits (15, 16). Likewise, 111 

non-selective deletion of LPL in the mediobasal hypothalamus (MBH) by viral transfection 112 

induces weight gain and glucose intolerance in mice fed with a chow diet (17). Additionally, 113 

hormone-sensitive lipase (HSL), which regulates intracellular lipolysis, is expressed in 114 

appetite-regulating hypothalamic neurons, and its activity in the MBH suppresses stress-115 

induced food intake and HFD-induced obesity (18). 116 

Hence, the action of lipids in the hypothalamus is critical for body weight control and the 117 

maintenance of energy homeostasis, although the resulting neurophysiological adaptations can be 118 

either beneficial or detrimental to metabolic health. The chemical configuration of the lipid 119 

species, for instance, the double bonds in the fatty acids, can affect the metabolic outcome. 120 
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Accordingly, intracerebroventricular administration of the saturated palmitic acid enhances 121 

hepatic gluconeogenesis in mice, possibly due to central leptin resistance and inflammatory 122 

responses in the hypothalamus (19), whereas central administration of unsaturated oleic acid 123 

modulates the excitability of hypothalamic POMC neurons (20) and elicits beneficial metabolic 124 

responses, including inhibition of hepatic glucose production and food intake (21, 22).  125 

Of note, certain lipid species, such as endocannabinoids (ECs), can act as retrograde 126 

neuromodulators regulating neural plasticity in the CNS, including the hypothalamus. ECs are 127 

endogenous ligands of cannabinoid receptors that favour food intake and energy accumulation 128 

when energy is scarce, for instance, during fasting (23). These lipid mediators inform the body 129 

about low energy availability by acting on the hypothalamus-sympathetic nervous system 130 

(SNS) axis (23). In contrast, other periphery-derived lipids, such as bile acids (BAs), can 131 

convey information about energy accumulation in the body through the same top-down axis 132 

(24, 25). After being produced by the liver and released in the gastrointestinal tract 133 

following dietary intake, BAs are reabsorbed into the circulation and act on the 134 

hypothalamus to enhance SNS activity, promote energy dissipation, and inhibit appetite, 135 

thus eliciting opposite physiological effects to ECs (24, 25). Intriguingly, the bioavailability 136 

and downstream signalling cascades of both ECs and BAs are altered in the hypothalamus 137 

in obesity. These multiple lipid-mediated cascades might therefore converge to common 138 

molecular nodes that act as ‘super lipid sensors’ in regulating metabolism, while the onset 139 

and progression of metabolic diseases might result from the unbalanced regulations by 140 

these cascades.   141 

Here we will discuss the recent evidence on the roles of ECs and BAs in fine-tuning the 142 

hypothalamic circuits regulating energy balance. Moreover, we will interrogate the potential 143 

interconnection of BAs- and ECs-mediated signalling pathways along the hypothalamus-144 

periphery axes implicated in body weight control. Finally, we will highlight how these 145 

investigations have led us to propose a novel framework for understanding and possibly treating 146 

maladaptive changes in hypothalamic lipid action in obesity. 147 

 148 

2) Hypothalamic sensing of endocannabinoids: from physiology to obesity development 149 

For centuries, marijuana (Cannabis sativa) has been known to stimulate food intake, 150 

particularly for sweet and palatable food. However, the discovery of the biological mechanisms 151 
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underlying ‘the munchies’ started only in the 60s with the identification of Δ
9
-152 

tetrahydrocannabinol (THC), the main psychoactive component of Cannabis sativa (26). Almost 153 

30 years later, specific cannabinoid receptors were identified as the downstream targets of THC 154 

(27, 28), which was followed by the characterisation of their endogenous lipid-derived ligands, 155 

ECs (29, 30) and the enzymatic machinery necessary for ECs syntheses and degradations (31). 156 

We now know that these molecular components form the endocannabinoid system, which mainly 157 

operates to maximise the introduction, accumulation, and storage of energy substrates in the body 158 

(32). These effects are achieved by tissue-specific changes in ECs syntheses and the subsequent 159 

activation of cannabinoid type 1 receptors (CB1) expressed in the brain and peripheral organs 160 

(23, 32, 33). From a biochemical standpoint, certain ECs, such as anandamide (AEA) and 2-161 

arachidonoylglycerol (2-AG) are derived from the precursor arachidonic acid (AA) (33). 162 

Others, such as N-eicosapentaenoylethanolamide and N-docosahexaenoyl-ethanolamide, are 163 

synthetized from the n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) 164 

and docosahexaenoic acid (DHA), respectively (33). PUFAs, including linoleic acid and 165 

linolenic acid, are essential fatty acids that must be obtained from the diet, and the amount 166 

and the types of PUFA from dietary intake can influence ECs biosyntheses. Hence, amongst 167 

the several factors influencing ECs production, the availability of lipid precursors directly 168 

obtained through the diet plays a crucial role.  169 

ECs are produced from several sources in the body, for example, the brain and 170 

peripheral tissues; their production is dependent on the global energy state of the organism. 171 

When body energy level drops during fasting, brain ECs levels are increased to achieve energy 172 

homeostasis by restoring the internal energy loss (23). ECs-mediated control of neuronal 173 

functions contributes to this adaptive response. In 2010, our group characterised a transgenic 174 

mouse model bearing selective CB1 deletion in the principal forebrain (including the 175 

hypothalamus) and sympathetic neurons (CB1-KO mice) and observed that these mutants are 176 

resistant to obesity with higher energy expenditure and enhanced brown adipose tissue (BAT) 177 

thermogenesis (35). Since the SNS controls adaptive thermogenesis and BAT function (36), we 178 

asked whether neuronal ECs actions modulate these peripheral metabolic outputs. Using 179 

chemical and surgical SNS denervation procedures, we have observed that the increased 180 

functional activity in the BAT of CB1-KO mice results from an upregulated SNS tone (35). 181 

Likewise, Piomelli and his team have studied the phenotype of a transgenic murine model 182 



 7 

overexpressing the presynaptic hydrolase monoacylglycerol lipase (MGL), an enzyme that 183 

degrades 2-AG, in forebrain neurons. In this model, reduced 2-AG levels in the forebrain results 184 

in phenotypic changes that resemble those observed in the CB1-KO mice, including leanness, 185 

elevated energy cost of activity, resistance to diet-induced obesity, and increased expression of 186 

the thermogenic protein uncoupling protein 1 in the BAT (37). These two studies have set up a 187 

well-accepted model whereby ECs operate in a CB1-dependent manner in the brain to modulate 188 

whole-body energy homeostasis and thermogenesis via peripheral sympathetic 189 

neurotransmission.  190 

Subsequent studies have then uncovered the role of the hypothalamic circuits in mediating 191 

this top-down axis. Mice presenting specific genetic deletion of CB1 in different populations of 192 

hypothalamic neurons, including single-minded 1 (SIM1)- or steroidogenic factor 1 (SF1)-193 

expressing neurons, display increased energy expenditure and a modified sensitivity of the 194 

peripheral SNS to circulating hormones, such as leptin and dietary cues (38, 39). Besides, genetic 195 

deletion of the ECs-degrading enzyme 2α/β-hydrolase domain containing 6 (ABHD6) in the 196 

ventromedial hypothalamic nucleus (VMH), which promotes hypothalamic production of 2-AG, 197 

has been shown to provoke opposite metabolic effects compared with the prior CB1-KO model, 198 

including impairments in adaptive thermogenesis in response to cold exposure or high-fat feeding 199 

(40).  200 

Peripheral organs, such as the adipose tissue, also express enzymes and receptors 201 

necessary for ECs syntheses and actions (34). To explore whether CB1 influences behavioural 202 

and metabolic responses in the adipose tissue, we have characterised a transgenic mouse model 203 

with adipose-tissue-specific CB1 deletion. Notably, we observed adaptive changes in peripheral 204 

SNS neurotransmission and protection from diet-induced obesity (41). Moreover, we have 205 

documented that the hypophagic action of the CB1 antagonist rimonabant inhibits feeding by 206 

activating visceral afferents and glutamatergic transmission in the brain stem nucleus tractus 207 

solitarii (NTS) in a periphery-to-brain manner (42).  208 

Altogether, these studies emphasise the existence of bidirectional brain-periphery 209 

signalling mechanisms, whereby ECs can act centrally and peripherally to modulate food intake 210 

and energy use through the SNS. An additional peripheral route through the vagus nerve is 211 

possibly involved in mediating brain-periphery crosstalk (43, 44). Hence, how can we 212 
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translate these empirical findings to delineate the neural basis of the onset and progression 213 

of obesity? One should mention that brain ECs levels, particularly in the hypothalamus, 214 

vary in response to diet-induced metabolic stress. ECs act as a signal that alerts the brain 215 

when energy reserves are low and need to be restored under physiological conditions. 216 

Paradoxically, their levels in the brain and peripheral organs remain elevated in obesity 217 

(23, 45), a condition of excess energy. Several studies have reported that plasma ECs are 218 

found at supraphysiological levels in obese individuals and positively correlate with body 219 

mass index (BMI) and several biomarkers of disease severity (23, 45). Dysregulated ECs 220 

syntheses and degradation by the enzymatic machinery may be responsible for impaired 221 

energy balance regulation and disease development. Accordingly, ECs syntheses are 222 

increased in association with reduced degradation in a tissue-dependent manner in obesity 223 

(46, 47), particularly in the adipose tissues (34). Besides, missense polymorphisms involving 224 

the fatty acid amide hydrolase (FAAH), a key enzyme controlling AEA degradation, are 225 

associated with a high BMI in humans. Interestingly, the elevated circulating levels of the 226 

ECs 2-AG and AEA in obese subjects after the exposure to rewarding food (23, 45) may 227 

augment their motivation to ingest the palatable food, which further exacerbates obesity. 228 

Another example of how ECs are involved in the bidirectional brain-periphery crosstalk 229 

comes from a study investigating ECs levels during short-term exposure to HFD. Based on this 230 

study, the hypothalamic 2-AG and AEA levels are transiently elevated 7 days after HFD feeding 231 

in mice, followed by a subsequent decline, with levels lower than those in chow-fed mice (48). 232 

The initial transient elevation of the hypothalamic ECs levels is concomitant with the activation 233 

peak of BAT thermogenesis due to the caloric overload (48). To reconcile the initial ECs surge in 234 

the hypothalamus, the authors acutely administered CL316,243, a β3-adrenoceptor agonist that 235 

stimulates BAT thermogenesis mainly via its peripheral action (49). This treatment increased 236 

hypothalamic ECs levels substantially (48-50). These data not only reveal the existence of a 237 

feedback loop linking peripheral changes in BAT function to central hypothalamic ECs levels, 238 

but also suggest that the elevated hypothalamic ECs levels in obesity may represent a 239 

maladaptive counterregulatory mechanism that prevents excessive energy loss from the body in 240 

response to increased BAT thermogenesis.  241 
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Given that ECs signalling in the hypothalamus results in overfeeding and impaired SNS-242 

mediated energy dissipation, this maladaptive adipose tissue-ECs crosstalk accelerates weight 243 

gain after prolonged exposure to an energy-rich diet. However, why are the levels of 244 

hypothalamic ECs reduced after several weeks of HFD feeding when diet-induced obesity is 245 

established (48)? This could be explained by the existence of protective mechanisms that aim at 246 

hindering the upregulated peripheral EC tone (50) and, therefore, disease progression, albeit 247 

without success, since the animal continues to gain weight. 248 

In conclusion, the dysregulated hypothalamic ECs action may cause, or be caused by, the 249 

maladaptive brain-periphery crosstalk mediated by the SNS and likely the vagus nerve in obesity. 250 

These signalling pathways dynamically contribute to the establishment and the progression of 251 

weight gain and its associated metabolic perturbations. 252 

 253 

3) Bile acids: A novel hypothalamic brake on energy excess 254 

BAs are liver-derived products of cholesterol metabolism that exert a series of metabolic 255 

functions via mainly (but not only) their signalling through the nuclear transcription factor 256 

farnesoid X receptor (FXR) and the seven-transmembrane G-protein coupled receptor G-protein 257 

bile acid-activated receptor (GPBAR)-1, also known as TGR5 (51).  258 

A rapid elevation of hepatic BAs syntheses is observed during the transition from fasting 259 

to the fed state, which aids the absorption of ingested lipids in the gastrointestinal system (for a 260 

specific review on this subject, see (52)). Besides, BAs act as endocrine signals in the liver, the 261 

intestine, and the pancreas to modulate multiple metabolic outputs, including lipid and glucose 262 

metabolism (53), hepatic gluconeogenesis (53, 54), insulin and glucagon-like peptide-1 (GLP-1) 263 

release (53, 55), as well as mitochondrial respiration and thermogenesis in white and brown 264 

adipocytes (56-58). 265 

Dietary supplementation of specific BAs, such as cholic acid (CA) and chenodeoxycholic 266 

acid (CDCA), prevents body weight gain and promotes weight loss significantly in diet-induced 267 

obese (DIO) mice through TGR5-mediated signalling (56, 59). These metabolic benefits are 268 

likely the result of increased thermogenesis and energy expenditure (56, 59). Indeed, circulating 269 

BAs levels correlate with energy expenditure in healthy human subjects (60) and with changes in 270 

energy substrate metabolism in obese subjects subjected to Roux-en-Y gastric bypass surgery 271 
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(61). Hence, beyond their actions on nutrient absorption and glucose homeostasis, the observed 272 

systemic elevation of BAs after dietary intake may signify positive energy balance and prompt 273 

adaptive responses towards energy dissipation to restore energy homeostasis. 274 

But can the brain be a possible target of BAs action? BAs are detected in several brain 275 

areas, including the hypothalamus (25, 62). Under cholestasis, when the bile constituents are 276 

accumulated in the blood due to the obstruction of bile ducts or excretory failure of hepatocytes, 277 

the hypothalamic BAs level is augmented, promoting the synthesis of the hypothalamic hormone 278 

vasopressin to protect the liver from BAs-induced hepatotoxicity (63). Indirectly, BAs can 279 

stimulate FGF15 release from the intestine, which enters the brain and activates FGF receptors in 280 

the hypothalamic AGRP/NPY neurons (64). The BAs-mediated gut-brain axis leads to 281 

improvements in glucose tolerance that are likely mediated by changes in the peripheral 282 

autonomic nervous system (64). 283 

 Our group has also observed that the hypothalamic BAs levels in mice change according 284 

to the nutritional state based on a fasting-refeeding paradigm experiment (25). We have inquired 285 

whether activating TGR5 in the brain affects food intake and body weight in C57BL6 mice fed 286 

with a regular chow diet. After acute infusion of a BAs mix into the brain, we have observed a 287 

significant reduction in food intake and the syntheses of the orexigenic peptides AgRP and NPY 288 

from the hypothalamus (25). To investigate whether hypothalamic TGR5 signalling mediates 289 

long-term effects on body weight control, we have chronically infused a TGR5-specific, semi-290 

synthetic BAs analogue into the cerebral ventricles. Coherently, food intake is transiently 291 

reduced, but the prolonged activation of central BAs signalling does not lead to changes in food 292 

intake or body weight (25). Hence, BA-TGR5 signalling in the hypothalamus coordinates satiety 293 

during the fasting-refeeding transition but is not involved in long-term body weight maintenance 294 

under physiological conditions. 295 

As previously discussed, lipid-mediated homeostatic responses in the hypothalamus can 296 

be compromised in obesity. In an additional study, we have explored whether the brain BA-297 

TGR5 axis might have a more dominant role in regulating energy balance in obesity. Using 298 

pharmacological and genetic approaches, we have observed that activating brain TGR5 signalling 299 

counteracts diet-induced obesity (DIO) progression in mice by reducing food intake and 300 

increasing energy expenditure through increased SNS activity. On the other hand, genetic down-301 

regulation of hypothalamic TGR5 actions accelerates obesity development and progression (24). 302 
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Thus, the role of the hypothalamic BA-TGR5 pathway in the top-down control of body weight 303 

seems more prominent in obesity. This also implies that hypothalamic BAs sensing may be 304 

impaired in obesity, which is supported by the observation that levels of BAs species acting as 305 

TGR5 agonists in the hypothalamus are reduced in DIO mice (24).   306 

Due to their heterogeneous structure and target specificity, BAs may confer different 307 

metabolic effects through different downstream receptors. Brain infusion of the FXR agonist 308 

GW4064 reduces the expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in 309 

catecholamine synthesis, and subsequently, the sympathetic tone (65). The reduction in the 310 

sympathetic tone might involve changes in hypothalamic neuronal activity, given that 311 

hypothalamic TH expression is reduced following brain GW4064 infusion (65). Conversely, in 312 

agreement with our observations (24), brain infusion of tauro-lithocholic acid, a TGR5 agonist, 313 

promotes lipid metabolism and enhances the SNS tone (66). Hence, the membrane receptor 314 

TGR5 and the nuclear receptor FXR might have opposing functions on energy balance regulation 315 

in the hypothalamus in response to changes in BAs species.  316 

 In summary, the hypothalamic BA-TGR5 pathway affects a top-down neurophysiological 317 

mechanism that leads to satiety and enhanced energy dissipation by changing peripheral SNS 318 

activity. This pathway may operate via the same hypothalamic circuits sensitive to ECs action, 319 

but with an opposite physiological goal: to counteract pathological conditions of energy excess, 320 

such as obesity.  321 

 322 

4) Concluding remarks and perspectives 323 

Under physiological conditions, the levels of BAs and ECs are regulated in an 324 

opposite manner in the hypothalamus in response to the nutritional state. The Yin-Yang 325 

regulation allows plastic changes in peripheral SNS neurotransmission and may affect 326 

metabolic flexibility between the fast-and-fed transition (Figure 1). ECs and BAs-mediated 327 

actions in the hypothalamus may act on common intracellular lipid sensors that integrate 328 

neuronal CB1 and TGR5 signalling to regulate food intake and the autonomic nervous 329 

system (Figure 1). The identities of these molecular underpinnings and the neuronal circuits 330 

involved are far from being elucidated. However, addressing this knowledge gap may 331 

provide progress towards understanding the aetiology of metabolic disorders, such as 332 

obesity.   333 
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 334 

 335 

Figure 1. Graphical representation of a possible yin-yang mechanism of energy balance 336 

regulation by CB1 and TGR5 in the hypothalamus under physiological conditions. 337 

Endocannabinoids (ECs) and bile acids (BAs) might regulate whole-body metabolic flexibility 338 

in the hypothalamus through CB1 and TGR5 receptors, respectively. During fasting (left), the 339 

hypothalamic levels of ECs are increased, whereas BAs signalling is suppressed. This 340 

imbalance results in hunger and possibly in modification of the sympathetic nervous system 341 

(SNS) tone to impede energy storage. An opposite situation is observed after a meal (right), as 342 

hypothalamic ECs levels are reduced, whereas central BAs signalling is stimulated. This leads 343 

to satiety and dissipation of excess energy by thermogenesis via upregulated SNS activity. The 344 

'super lipid sensor' might integrate the inhibitory CB1 signalling and the activatory TGR5 345 

signalling in the hypothalamus to facilitate energy balance regulation and metabolic flexibility. 346 

 347 

Obesity is a disease characterized by the maladaptive upregulation of the ECs tone and the 348 

concomitant downregulation of central BAs actions. Of note, the hypothalamic expression 349 

of BAs transporters exhibits plastic changes during the transition from fasting to refeeding 350 

in control lean mice but not in DIO mice (24). Thus, dysregulated hypothalamic BAs and 351 

ECs availability and sensing in the brain might contribute to obesity development, possibly 352 

causing impaired hypothalamus-SNS communication and metabolic inflexibility (Figure 2). 353 
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 354 

 355 

Figure 2. Graphical representation of a possible mechanism underlying maladaptive 356 

hypothalamic CB1 and TGR5 signallings in obese pathophysiology. In obesity, ECs levels in 357 

the hypothalamus are increased, while BAs levels are reduced in both the fasted and the fed 358 

state. As a result, the peripheral SNS does not cope with changes in energy availability during 359 

the transition from fasting to the fed state. The transition might lead to a constant feeling of 360 

hunger and a maladaptive drive towards excessive energy accumulation. An intracellular lipid 361 

sensor might mediate alterations in this top-down axis in hypothalamic neurons. The 'super 362 

lipid sensor' might be controlled in an opposite manner by ECs and BAs-mediated signalling 363 

via CB1 and TGR5, respectively. 364 

 365 

Based on these proposed models, we envision that ECs and BAs-mediated actions on 366 

energy balance may be interconnected. Accordingly, peripheral administration of 2-AG 367 

promotes hepatic BAs syntheses (67), suggesting that the increased levels of certain ECs 368 

during a negative energy state during fasting may elicit BAs syntheses, perhaps to prepare 369 

the body for BAs release during the upcoming meal. On the other hand, BAs availability 370 

may influence ECs production in response to changes in the body energy needs. This latter 371 

hypothesis is supported by the observation that certain BAs, such as deoxycholic acid, can 372 

target specific binding sites of N-acylphosphatidylethanolamine-selective phospholipase D 373 
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(NAPE-PLD) (68), the enzyme required for the syntheses of ECs-like lipid species known as 374 

N-acylethanolamines (NAEs) (69).  375 

If confirmed, these peripheral mechanisms of communication between BAs and ECs 376 

may impact the hypothalamic circuits via different routes. First, BAs (63) and ECs (70) can 377 

cross the blood-brain barrier. Also, CB1- and TGR5-expressing hypothalamic neurons in 378 

the ARC are ideally positioned in close contact with the fenestrated capillaries to sense 379 

systemic changes in ECs and BAs levels. Thus, hypothalamic neurons may be capable of 380 

responding to changes in the peripheral bioavailability of these lipid mediators. 381 

Additionally, although several peripheral organs are potential sources of ECs release in the 382 

bloodstream (71), the enzymatic machinery necessary for ECs syntheses and degradations 383 

is also expressed in the brain (31, 72). Therefore, it is tempting to speculate that the ECs 384 

syntheses in the hypothalamic neurons may be adjusted in response to changes in BAs levels 385 

and actions. Given that ECs are modulators of synaptic plasticity (31), modulating ECs 386 

productions may fine-tune synaptic functions to orchestrate whole body changes in energy 387 

needs. 388 

It is noteworthy that EC-like species can be highly heterogeneous in their molecular 389 

functions and physiological effects. Oleoylethanolamide (OEA), for instance, is a shorter 390 

monounsaturated analogue of the endocannabinoid AEA. Unlike AEA, OEA acts 391 

independently of the CB1 signalling pathway and can suppress appetite (33), possibly via 392 

regulation of the nuclear peroxisome proliferator-activated receptor-alpha receptor 393 

(PPARα) and the G protein-coupled receptor GPR119 (33, 73). OEA can also modulate BAs 394 

syntheses, conjugation, and transport via PPARα-mediated activation (74). Moreover, the 395 

OEA receptor GPR119 mediates some of the effects of BAs on gastric emptying and 396 

satiation (74). Thus, the complexity may go beyond our proposed conceptual framework 397 

(Figure 1) because certain canonical ECs-like molecules may operate via CB1-dependent 398 

signalling in an opposite manner to BAs. In contrast, others, such as OEA, may resemble 399 

BAs-elicited physiological responses, such as satiety, through modulaiton of common 400 

hypothalamic downstream receptors. 401 

Overall, this evidence suggests the existence of intracellular ‘super lipid sensors’ that 402 

integrate the extracellular actions of multiple lipid species in the hypothalamus. Uncovering 403 

the identity of these master regulators of neuronal lipid action might have therapeutic 404 
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implications, for instance, the development of novel anti-obesity pharmacological paradigms that 405 

target specific molecular pathways in specific neuronal populations. Several advancements have 406 

recently been made in this direction. For instance, small extracellular vesicles (sEVs) have been 407 

used to shuttle a pharmacological inhibitor of the energy sensor AMPK in hypothalamic SF1-408 

expressing neurons in the obese murine models (75), and this approach lowers the body weight of 409 

obese mice by sympathetic activation of BAT function (75). 410 

 In the past few years, we have contributed to the generation and functional validation of 411 

novel unimolecular conjugates that combine GLP-1 analogues with synthetic activators of 412 

metabolic transcription factors, such as the glucocorticoid receptor or PPARs (76, 77). The GLP-413 

1 moiety of these conjugates is designed to internalise the nuclear ligand in GLP-1R-expressing 414 

cells to target organs such as the hypothalamus, where GLP-1R expression is abundant. However, 415 

organs with negligible or low GLP-1R expression are spared from these conjugates, which can 416 

overcome the potentially toxic and off-target effects of glucocorticoids or PPARs (76, 77). 417 

Chronic treatments of obese mice with a conjugate that co-activates PPARα and PPARγ in GLP-418 

1R positive cells elicit clear-cut anti-obesity and anti-diabetic effects partly through their actions 419 

on the hypothalamus (77). Notably, this cell-specific targeting approach does not induce 420 

cardiovascular and kidney dysfunctions associated with non-specific PPAR agonism (77). Thus, 421 

this chemical conjugation strategy combining GLP-1R agonists and nuclear-acting metabolic 422 

hormones offers a novel therapeutic option for ameliorating obesity and its co-morbidities in a 423 

safe and cell-specific manner. 424 

To tackle the growing obesity epidemic and its negative impact on health (78), there is an 425 

urgent need to decipher the neural mechanisms leading to the dysregulation of energy 426 

homeostasis. Unidentified molecular pathways might integrate the action of multiple lipids-427 

sensing mechanisms in the hypothalamus, thus contributing to disease development. Uncovering 428 

these pathways will expand our understanding of the aetiology and treatment of obesity. Towards 429 

this goal, exploring the functional interaction of ECs and BAs in the brain warrants further 430 

investigation. 431 
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