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ABSTRACT

Survival analysis of DLBCL patients requires the interpre-
tation of PET images characterised by multiple small le-
sions. Current machine-learning approaches addressing simi-
lar problems consider as input the cropped image of a single
lesion or the whole volume. In this paper, we incorporate
the information of all lesions by modeling their joint survival
analysis with a graph learning approach. We propose a com-
pact graph representation of the segmented lesions enriched
by radiomics features and edge weights. The representa-
tion is fed to a graph attention network to predict the 2-year
Progression-Free Survival of a DLBCL patient, formalised
as a graph classification problem. Experimental results on a
clinical prospective database with 583 patients show that our
method improves over three baseline fusion approaches.

Index Terms— DLBCL, Survival Analysis, Graph Atten-
tion Networks, Multiple lesion fusion

1. INTRODUCTION

Diffuse Large B-cell Lymphoma (DLBCL) is a haematologi-
cal disease characterised by the clonal proliferation of lym-
phocytes. Following current guidelines, the diagnosis and
follow-up of DLBCL patients involves the interpretation of
full-body 3-D Positron Emission Tomography (PET) images
by a nuclear physician. DLBCL PET images are charac-
terised by multiple small lesions (see Figure 1. (a)-(b)). Re-
cently, there has been increased interest in machine learning
approaches predicting the survival of DLBCL patients from
their PET image at diagnosis. In particular, nuclear physi-
cians target the 2-years progression-free survival (PFS) as a
risk indicator. In this paper, we propose a computer-aided de-
cision approach to predict the 2-year PFS based on a graph
neural network, with the final aim to early identify patients
with a high-risk profile.

In the context of survival analysis from PET images,
most existing machine learning methods fall among three
categories: combining radiomics features extracted from the

PET volumes with classical machine learning methods [1]
or deploying a convolutional neural network (CNN) whose
input is either a single lesion ([2], [3]), or the full volume [4].
However, resuming a full-body PET image to a single ROI
may not fully represent the patient’s disease. At the same
time, in full-image predictions, the lesions’ information is
diluted within the large background and thus may be difficult
to capture. As an intermediate alternative solution, we pro-
pose to model the joint survival analysis of multiple lesions
relying on graph-learning approaches. Although graph-based
approaches have been explored for histopathological image
survival analysis[5], their use on PET images is only very
recent[6]. In fact, PET images from DBLCL patients pose
several challenges: the lesions are small and sparsely dis-
tributed over the body; patients may have from a single to a
large number of lesions; and healthy organs like the brain or
bladder may have similar intensities to lesions.

To effectively represent images of multiple and sparsely
distributed small lesions, it is essential to characterise the
individual lesion’s heterogeneity while reducing the back-
ground’s influence. The question we address here is how to
fuse image information from multiple lesions to make better
predictions. Indeed, the varying number of lesions makes late
fusion through concatenation inadequate. As we later show,
early (e.g. averaging of the lesions’ features) or late fusion
(e.g. through multiple instance learning) are ineffective. In-
stead, we propose i) building a graph representation on top
of the lesions’ segmentation ii) characterising the image re-
gion covering each lesion with conventional and radiomics

Fig. 1: Cross-sectional views of a 3D PET image of a DLBCL pa-
tient (a) and (b). (c) binary mask of one of the lesions.



features, and finally, iii) learning to fuse their information
and make predictions with attentional graph. For the choice
of GNN, we opt for attention layers to model the relative
importance of each node, while optimizing the prediction. In
particular, we rely on the recent dynamic Graph Attentional
Network (GATv2) [7], which considers different lesions may
rank differently the importance of their neighbouring nodes.

From an application perspective, this is the first DBLCL
2-year PFS prediction model to consider multiple lesions ex-
plicitly. While some existing methods characterise the lesion
spread through dissemination features [8] we tackle the prob-
lem from a "learning to fuse" perspective through an effective
graph attention model.

We perform experiments on the prospective GAINED
phase 3 trial (NCT 01659099) which enrolled 583 newly
diagnosed and untreated DLBCL patients. A comparison to
three baselines, shows our approach’s feasibility and the per-
tinence of the graph attentional fusion for DBCL prognosis.

2. PROBLEM STATEMENT

We formulate the prediction of the DLBCL Progression-Free
Survival (PFS) as a binary classification problem: estimate
whether or not an event (death or progression) has occurred
between 0 and 2 years after the beginning of the treatment
(2-years PFS). We consider as input a PET volume taken at
diagnosis and a prior segmentation of the lesions. Our method
compactly models the relevant information from the image
with a graph connecting the regions surrounding the lesions.
With this representation in mind and a supervised learning
approach, the problem becomes that of graph classification
which we address with a Graph Neural Network (GNN).

3. PROPOSED METHOD

Starting from a dataset of PET images from N patients and
their associated 2-year PFS outcome, i.e. {Ii, yi}Ni=1, we pro-
pose a framework that first, builds a graph Gi from every im-
age, and then, trains the weights θ of a GNN fθ(·) to make
predictions for a new patient k: ŷk = fθ(Gk). Fig. 2 il-
lustrates the proposed PFS classification framework with two
stages: graph construction and survival learning with a GNN.

3.1. Graph construction

Starting from the image and the segmented lesions of a pa-
tient, we build a fully-connected patient-level graph Gi =
{Ni, Ei}, where Ni represents the set of nodes correspond-
ing to the different lesions of patient i. Each node m ∈ Ni,
identified with its index m over the Mi lesions, has an asso-
ciated feature vector xi,m. Edges em,n are drawn between
every pair of nodes m,n ∈ Ni, including a self loop. Finally,
weights wm,n are computed for every edge, built based on
spatial proximity and feature similarity.

3.1.1. Node features extraction

Feature extraction is performed to compactly characterise the
information of the raw 3D image region around lesion li,m,
and form the feature vector xi,m. In this work, we focus on
two types of features: classical and radiomics features. After
the extraction step, we pile the vectors of the different lesions
as rows of the node features matrix Xi ∈ RMi×Din , where
Din is the dimensionality of the feature vector of each node
(Din = 11 in our case).

Classical features are conventional quantitative measure-
ments extracted from the segmented lesions, describing the
intensity distribution of individual voxels without taking into
account their spatial relationships. In this work, we extract
three classical features: the standard uptake value of the
maximum intensity voxel within the lesion (SUVmax), the
Metabolic Tumour Volume (MTV) of the lesion and the Total
Lesion Glycolysis (TLG) from each of the segmented lesions.
MTV refers to the volume of the metabolically active region
of the lesion and TLG is the product of the metabolic volume
with the mean standard uptake value of the lesion.

Radiomics features While classical features provide
limited tumour characteristics, radiomics features based on
intra-tumoural heterogeneity can more comprehensively as-
sess the 3D landscape of the lesion[9]. For each lesion li,m,
we extract first-order, second-order and shape radiomics fea-
tures. First-order features do not take into account the spatial
relations between the voxels in the lesions. Second-order
textural features take into account the inter-relationships
among voxels and are extracted from different matrices such
as the Gray Level Co-occurrence Matrix (GLCM) and the
Gray-Level Run-Length Matrix (GLRLM) [10]. The shape
based features are relevant for the shape characteristics of
the lesions. Inspired by [11], we select the following set of
radiomics features:

Radiomics features
Shape Sphericity
First order Mean

Standard deviation
Entropy

Second order Contrast
Correlation
Inverse difference normalized
Joint energy

3.1.2. Edge weights

To define the edge weights, we consider the product of two
negative exponential terms: the first one computed on the
node feature distance, and the second on the Euclidean dis-
tance between the 3D centroid coordinates of each lesion:

wm,n = e
−
||Ci,m−Ci,n||

aσ21 × e
−
||xi,m−xi,n||

aσ22 , (1)



Fig. 2: Overview of the proposed 2-year PFS graph classification framework - The input are 3D PET images and segmented
lesions. Radiomics and other features are then extracted from each lesion to be the nodes attributes of a fully connected graphs.
The graph is fed as input to a graph attentional neural network whose hyper-parameters are optimized with K-cross validation.
At the output of two Graph attention layers, a global max pooling and an activation function are applied to obtain the 2-year
PFS. During inference, the GNN receives a graph and makes a 2-year PFS prediciton.

where Ci,m, Ci,n are the 3D centroid coordinates vectors of
lesions li,m and li,n respectively, and xi,m, xi,n their corre-
sponding feature vectors. σ1 is the population-level standard
deviation of distances between the centroid coordinates, and
σ2 is the population-level standard deviation of distances be-
tween the feature vectors. a is a hyper-parameter that can
be tuned to select the best edge weights relevant to the PFS
classification task. A sample graph constructed from the PET
image of a patient is represented in Figure 2, where the indi-
vidual lesions are the nodes, and the size of each node is equal
to the tumour volume.

3.2. Graph neural network

Once the extracted features are assigned to the nodes and the
weights to the edges, the graph is built. We then aim at ex-
ploiting the relationships between lesions along with their fea-
tures to classify the 3D PET images and provide an output
class (event or no-event). To do so, we rely on a GAT Net-
work [12] fed with the graph Gi as shown in Fig. 2.

From the architecture standpoint, the network is com-
posed of 3 graph attentional convolutional layers. Each
GATp layer (with p ∈ {1, 2, 3}) is composed of a graph
dynamic attention operator [7] followed by an activation
function (ReLU) for both the first and second layer. The third
has only the graph attention operator. The final layer consists
of a global max pooling operation and an activation function
(a sigmoid) to get a value equal to 0 or 1.

Each graph attention layer gets as input the feature matrix
from the previous layer Hp−1 (Xi for the first layer) and pro-
vides as output the transformed matrix Hp. The final output

node feature matrix Hout = H3 ∈ RN×Dout contains the
node representation encoding both graph structural properties
and node features. In our case, we fix Dout to 1 for binary
event probability. The feature matrix Hout is aggregated with
a global maximum graph pooling layer, retaining the max-
imum feature values across the nodes to obtain a fixed-size
vector hi ∈ RDout . A sigmoid activation σ(·) is then applied
on hi to obtain the probability of an event. The prediction for
the entire PET image is computed as ŷi = fθ(Gi) = σ(hi)
where the parameters θ of the GNN are trained by minimizing
an image-wise weighted cross-entropy loss.

4. EXPERIMENTAL VALIDATION

4.1. Dataset description and preprocessing

The dataset comes from the prospective multicentric GAINED
phase III study including imaging data of 583 patients diag-
nosed with DLBCL. The patients are divided into two classes
based on the PFS two-year categorical value: positive class
if an event has occurred for the patient (PFS=1) and negative
class if there is no event occurrence after 2 years (PFS=0).
494 patients belong to the negative category, whereas only 89
patients belong to the positive category.

The imaging data provided for each patient includes 3D
18-FDG PET scans, acquired with different machines during
diagnosis. First, volume resampling is performed to obtain
a fixed voxel size of 2 × 2 × 2mm3. The PET volumes
are then converted to the Standardized Uptake Value (SUV).
Along with the images, we have access to rough 3D seg-
mentation masks of the lesions performed by expert nuclear



MLP MIL GCN GAT (ours)
AUC 0.58 ±0.09 0.56 ±0.09 0.59 ±0.06 0.63 ±0.06
Bal. Acc 0.51 ±0.06 0.58 ±0.08 0.59 ±0.06 0.60 ±0.07
Sensitivity 0.66 ±0.01 0.72 ±0.01 0.67 ±0.03 0.61 ±0.02
Specificity 0.36 ±0.12 0.45 ±0.17 0.52 ±0.13 0.59 ±0.15
Micro F1 0.51 ±0.06 0.58 ±0.09 0.58 ±0.07 0.60 ±0.07
Macro F1 0.50 ±0.07 0.57 ±0.1 0.58 ±0.07 0.60 ±0.07
Weig. F1 0.48 ±0.09 0.57 ±0.1 0.58 ±0.07 0.60 ±0.08

Table 1: Results of the proposed method vs three baselines.

physicians. Considering these masks as initial bounding
boxes, and following current practices in PET image segmen-
tation [13], we perform majority voting on the outcome of
three lesion segmentation methods: SUV 2.5, 41% SUVmax
and K-means.The radiomics features were extracted using
PyRadiomics [14], a Python package for the extraction of
radiomics features, which is IBSI compliant [15].

4.2. Experimental setup and results

We split the data into a training and a testing sets, with
466 and 117 patients respectively. We then deploy a 5-fold
cross-validation with a grid search to automatically obtain
the best hyper-parameters - learning rate, number of epochs
and the edge weight constant a- on the training set. After
this step, the GNN model is trained again with the selected
hyper-parameters and tested on the test set.

To deal with the imbalance, we implement stratified splits,
where the same ratio of positive and negative samples are
maintained in the train-test sets and K-folds. We also employ
a weighted loss during training, which gives higher weights
to the loss of the minority class samples. Finally, we draw 5
class-balanced sub-sets from the test set and report the mean
and standard deviation over them.

We compare the results of the proposed method against
three baselines. The first, is a MultiLayer Perceptron (MLP)
with early fusion, which receives as input, a feature vector per
patient computed by averaging the feature vectors of his/her
Mi lesions. The MLP is composed of three dense layers of
dimension 32, the first two followed by a ReLU non linearlity
and the last one by a sigmoid. The second baseline is a Mul-
tiple Instance Learning (MIL) approach, where each patient
is represented as a bag of lesions. This method passes the
feature vector of each lesion through an MLP, with the same
architecture as before but with a final aggregation step (late
fusion) consisting of a global max pooling operation over the
lesion-wise predictions. Finally, the third baseline model is
a Graph Convolutional Network (GCN) with 3 layers but no
attention module (graph convolutional layers).

Table 1 compares the performance of our GAT model
against the three baselines. The overall performances reflect
the difficulty of the task. When looking at the mean AUC for
the MLP classifier, we observe it has a low performance, with

Fig. 3: ROC-AUC plots for MLP model, MIL model, Graph-
Conv (GCN) model and our GATv2Conv (GAT) model.

a mean AUC of 0.58. Its standard deviation is high for all the
metrics except for sensitivity, indicating that the model is less
reliable and does not perform consistently for different input
sets. It can be reasoned that much of the imaging information
of the patient is lost by averaging the imaging features of all
the lesions.

The MIL approach also performs poorly, with an AUC of
0.56. The standard deviation of this model is very high. The
MIL classifier performs better than the MLP model. This can
be explained by the fact that all the lesion features are fed as
the input and late fusion looks promising. In what concerns
the graph-based methods, the GCN model performs slightly
better with an AUC of 0.59. This classification model has
a lower standard deviation than the baseline models. This
result indicates that the model is more reliable and displays
lower sensitivity to different input sets. The GAT model per-
forms best, with an AUC of 0.63. The GAT model also dis-
plays the best mean performance in terms of mean balanced
accuracy, specificity, balanced accuracy, micro, macro and
weighted F1-scores. The model is very stable, with a low
standard deviation for all the metrics.

5. CONCLUSION

This paper proposes a novel framework for the 2-year survival
classification of DLBCL patients from PET images, based on
lesion graph attention-based neural networks. By applying a
graph neural network coupled with attention, we are able to
fusion the features of different lesions in the PET volume in
a meaningful manner. The experimental results show that our
framework improves over other machine learning models re-
lying on simpler fusion strategies. These results highlight the
importance of the information in graph representations. The
framework is potentially generalizable to metastatic cancer
PET images. Future work will include the combination with
an automatic lesion segmentation approach.
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