Supplementary methods

We want to compute a substitutability score such as:

- 1. Two items are highly substitutable if they are consumed in similar contexts.
- 2. Two items are less substitutable if they are consumed together (association).
- 3. Substitutability is a symmetrical relationship.

Let us denote, for an item x, the context set C_x as the set of dietary contexts in which x is a consumed item. If the number of items in C_x (denoted as $|C_x|$) is high, then x will be substitutable in many dietary contexts.

For two items x and y, the condition '1' is described by the intersection of C_x and C_y , (noted as $C_x \cap C_y$, *i.e.* the dietary contexts in which x and y appears). If $|C_x \cap C_y|$ (*i.e.* the number of dietary contexts in which x and y appears) is high, then x and y are consumed in similar contexts. As $|C_x \cap C_y|$ will inevitably be higher if x or y are frequently consumed items, $|C_x \cap C_y|$ needs to be corrected by $|C_x \cup C_y|$ (*i.e.* the number of dietary contexts in which x or y appears) to provide a first estimation of substitutability between x and y.

We denote $A_{x:y}$ the set of contexts of x where y appears. The number of items in $A_{x:y}$ denotes how y is associated to x. Condition '2' also implies that the substitutability score of x by y must be corrected by $|A_{x:y}| + |A_{y:x}|$. We thus propose the substitutability score inspired by the Jaccard index (24):

$$f(x, y) = \frac{|C_x \cap C_y|}{|C_x \cup C_y| + |A_{x:y}| + |A_{y:x}|}$$

This score equals 1 when x and y appear in the same contexts and $|A_{x:y}| = |A_{y:x}| = |\emptyset|$. If x and y are never consumed in the same context then the score equals 0. The higher $|A_{x:y}| + |A_{y:x}|$ is, the higher the association of x and y is and the lower the score is. It is important to note that, in general, $|A_{x:y}| \neq$ $|A_{y:x}|$. For instance let's consider *bread* and *jam*, overall, *bread* is rarely associated with *jam* as a consequence $|A_{bread:jam}|$ is quite small, whereas since *jam* is often associated with *bread*, $|A_{jam:bread}|$ is high. Here is a simple example of calculation of a substitutability score; let's consider the 6 following meals:

Meal 1: (pasta, tomato sauce, chicken)

Meal 2: (pasta, tomato sauce, meatballs)

Meal 3: (pasta, pesto, meatballs)

Meal 4: (pasta, pesto, chicken)

Meal 5: (*rice*, *chicken*)

Meal 6: (chips, meatballs)

We then obtain the following sets:

C_{meat-balls} =< pasta, tomato sauce >; < pasta, pesto >; < chips >

 $|C_{chicken} \cap C_{meatballs}| = 2$ $|C_{chicken} \cup C_{meatballs}| = 4$

 $|A_{chicken:meatballs}| = |\emptyset| = 0$

 $|A_{meatballs:chicken}| = |\emptyset| = 0$

 $f(chicken, meatballs) = \frac{|C_{chicken} \cap C_{meatballs}|}{|C_{chicken} \cup C_{meatballs}| + |A_{chicken:meatballs}| + |A_{meatballs:chicken}|} = 0.5$