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A property of C k,α functions

zeros of f , then f 1/m is not necessarily in C 1 [a, b] (See [START_REF] Dieudonné | Sur un théorème de Glaeser[END_REF]). Finally let f ∈ C k,α [a, b], k ≥ 1 and f ≥ 0. Then f 1/k+α is absolutely continuous (See [START_REF] Colombini | Well posedness in the Gevrey classes of the Cauchy problem for a nonstrictly hyperbolic equation with coefficients depending on time[END_REF] Lemma 1 and also Remark 2 in [START_REF] Dalmasso | A property of C 1,α functions[END_REF] when k = 1). Now let f ∈ C k,α [0, T ], T > 0, k ≥ 2, be such that f (j) (x) = 0 for some x ∈ [0, T ], j = 0, • • • , k. Then we define

N(x, y) = (y -x) k-1 1 0 (1 -s) k-2 f (k) (sy + (1 -s)x) ds ,
and, if f ≥ 0,

D(x, y) = ((y -x) k 1 0 (1 -s) k-1 f (k) (sy + (1 -s)x) ds) (k+α-1)/(k+α)
for x , y ∈ [0, T ]. We have the following theorem.

Theorem. Let f ∈ C k,α [0, T ], T > 0, k ≥ 2, be such that f ≥ 0. Assume that f has at least one zero in [0, T ]. If f ′ (x) = • • • = f (k) (x) = 0 when f (x) = 0, then f µ is differentiable for µ ∈ (1/(k +α), 1). If moreover N(x, y)/D(x, y) is bounded for (x, y) ∈ {t ∈ [0, T ]; f (t) = 0} × {t ∈ [0, T ]; f (t) > 0}, then (f µ ) ′ is Hölder continuous with exponent β = µ(k + α) -1 at x such that f (x) = 0 (if β ≤ 1). (f µ ) ′ is Lipschitz continuous at x if f (x) > 0.
Proof. f µ is clearly differentiable at x ∈ [0, T ] when f (x) > 0. Suppose that f (x) = 0. For y ∈ [0, T ] we can write

f (y) = (y -x) k (k -1)! 1 0 (1 -s) k-1 f (k) (sy + (1 -s)x) ds ≤ |y -x| k (k -1)! 1 0 (1 -s) k-1 |f (k) (sy + (1 -s)x)| ds ≤ C |y -x| k+α (k -1)! 1 0 (1 -s) k-1 s α ds = C (1 + α) • • • (α + k) |y -x| k+α , (1) 
for some constant C, which implies that

f µ is differentiable at x. Let x ∈ [0, T ]. Suppose first that f (x) = 0. Then f (j) (x) = 0 for j = 1, • • • , k. Let y ∈ [0, T ] be such that f (y) > 0. We can write f ′ (y) = (y -x) k-1 (k -2)! 1 0 (1 -s) k-2 f (k) (sy + (1 -s)x) ds , and 
f (y) = (y -x) k (k -1)! 1 0 (1 -s) k-1 f (k) (sy + (1 -s)x) ds .
Using (1) we get

|(f µ ) ′ (y) -(f µ ) ′ (x)| = µ|f (y) µ-1 f ′ (y)| = µ|f (y) µ-1 k+α f (y) -k+α-1 k+α f ′ (y)| = C 1 |f (y) µ-1 k+α |N(x, y)|/D(x, y) ≤ C 2 f (y) µ-1 k+α ≤ C 3 |y -x| β ,
for some constants C j (j = 1, • • • , 3) where C 2 and C 3 may depend on x.

Since f µ is C 1 near t when f (t) > 0, this implies that f µ ∈ C 1 [0, T ]. Suppose now that f (x) > 0. There exist c, d ∈ [0, T ] such that c < d, x ∈ [c, d] when x = 0 or x = T and x ∈ (c, d) when x ∈ (0, T ) and f (y) ≥ f (x)/2 for y ∈ [c, d]. Let y ∈ [c, d]. We have |(f µ ) ′ (y) -(f µ ) ′ (x)| = µ|f (y) µ-1 f ′ (y) -f (x) µ-1 f ′ (x)| ≤ µ(f (y) µ-1 |f ′ (y) -f ′ (x)| +|f ′ (x)||f (y) µ-1 -f (x) µ-1 |) ≤ C 1 |y -x| , for some constant C 1 depending on x. Since (f µ ) ′ is continuous on [0, T ] there exists a constant C 2 depending on x such that |(f µ ) ′ (y)-(f µ ) ′ (x)| ≤ C 2 |y-x| for y ∈ [0, T ]\[c, d].
The proof of the theorem is complete.

Remark. The case k = 1 is treated in [START_REF] Dalmasso | A property of C 1,α functions[END_REF]. Notice that, when k ≥ 2 and µ ∈ [1/2, 1), f µ is in C 1 [0, T ]: See [START_REF] Dieudonné | Sur un théorème de Glaeser[END_REF] or [START_REF] Glaeser | Racine carrée d'une fonction différentiable[END_REF]. Moreover assume that k ≥ 2 and that f ′ (0) = 0 (resp. f ′ (T ) = 0) when f (0) = 0 (resp. f (T ) = 0). Then, if µ ∈ (1/2, 1), (f µ ) ′ is Hölder continuous with exponent 2µ -1 at x if f (x) = 0 and Lipschitz continuous at x if f (x) > 0: See [START_REF] Dalmasso | A property of C 1,α functions[END_REF].

Corollary. Let f ∈ C k,α [0, T ], T > 0, k ≥ 2. Assume that f (j) (0) = 0 for j = 0, • • • , k and that f (k) > 0 on (0, η] for some η ∈ (0, T ) and f (k) ≥ 0 on [η, T ]. Then (f µ ) ′ is Hölder continuous with exponent β = µ(k + α) -1 at 0 (if β ≤ 1). (f µ ) ′ is Lipschitz continuous at x ∈ (0, T ].
Proof. In view of the Theorem it is enough to show that N(0, y)/D(0, y) is bounded on (0, T ]. Let

0 < ε < min(1, ( k -1 2||f (k) || ∞ 1 0 (1 -s) k-2 f (k) (sy)ds) 1 k-1 ) .
We can write

1 0 (1-s) k-1 f (k) (sy)ds = 1-ε 0 (1-s) k-1 f (k) (sy)ds+ 1 1-ε (1-s) k-1 f (k) (sy)ds . Now we have 1-ε 0 (1 -s) k-1 f (k) (sy)ds ≥ ε 1-ε 0 (1 -s) k-2 f (k) (sy)ds , and 1 1-ε (1 -s) k-2 f (k) (sy)ds ≤ ε k-1 ||f (k) || ∞ k -1 . Then 1 0 (1 -s) k-1 f (k) (sy)ds ≥ ε 1 0 (1 -s) k-2 f (k) (sy)ds -ε 1 1-ε (1 -s) k-2 f (k) (sy)ds ≥ ε 1 0 (1 -s) k-2 f (k) (sy)ds - ε k k -1 ||f (k) || ∞ ≥ ε 2 1 0 (1 -s) k-2 f (k) (sy)ds .
Now, when y > 0, we get

N(0, y) D(0, y) ≤ y -α k+α ( 2 ε ) k+α-1 k+α ( 1 0 (1 -s) k-2 f (k) (sy)ds) 1 k+α ≤ C 1 (ε)y -α k+α (y α 1 0 (1 -s) k-2 s α ) 1 k+α ≤ C 2 (ε) .
Then the result follows from the Theorem.

Example 1. Let

β 0 = 0 , β j = 1 j + 1 (β j-1 + 1 (j + 1)! ) , j = 1, • • • , k and T ∈ (0, 1] ,
and let

f (x) =    - x k+1 (k + 1)! ln x + β k x k+1 if x ∈ (0, T ] 0 if x = 0 . Then f ∈ C k,α [0, T ] for all α ∈ (0, 1), f (j) (0) = 0 for j = 0, • • • , k and f (k) (x) = -x ln x.
Then we can apply the Corollary. Notice that here N(0, y)/D(0, y) is continuous on (0, T ] and tends to 0 as y → 0.

Example 2. For α ∈ (0, 1] let f (x) = x k+α g(x), x ∈ [0, T ] where g ∈ C k,α [0, T ] is such that g > 0 on (0, T ]. Then f ∈ C k,α [0, T ], f (j) (0) = 0 for j = 0, • • • , k and N(0, y)/D(0, y) is continuous on (0, T ]. Suppose that g (j) (0) = 0 for some j ∈ {0, • • • , k} and g (i) (0) = 0 for i = 0, • • • , j -1 if j ≥ 1. Then N(0, y)/D(0, y) → l as y → 0 where l > 0 if j = 0 and l = 0 if j ∈ {1, • • • , k}.