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Introduction

This note addresses the calculation of transport across magnetic surfaces due to collisions in a fusion device. Several monographs on this topic are available for tokamaks [START_REF] Hazeltine | Plasma Confinement[END_REF][START_REF] Goldston | Introduction to Plasma Physics[END_REF][START_REF] Helander | Collisional Transport in Magnetized Plasmas[END_REF], stellarators [START_REF] Mynick | Transport optimization in stellarators[END_REF][START_REF] Helander | Theory of plasma confinement in non-axisymmetric magnetic fields[END_REF], and rippled tokamaks [START_REF] Yushmanov | Diffusive transport processes caused by ripple in tokamaks[END_REF]. The book [START_REF] Helander | Collisional Transport in Magnetized Plasmas[END_REF] provides a didactic and detailed account of the subject. So why a lecture on this subject? The objectives here are two-fold. First, provide a derivation of neoclassical fluxes based on a minimum entropy production rate. This compact formulation yields an alternative point of view on the physics of collisional transport. Second, extend the approach to 3D magnetic configurations, e.g. stellarators, or tokamaks with ripple. Why is this topic important? It is well known that collisions in a magnetised plasma are responsible for a "classical" transport. A collision between two charged particles results in a deviation of their velocities that was predicted long ago (Rutherford formula). This change of velocity is responsible for a modification of the cyclotron motion of the colliding particles, and therefore a displacement of their guiding-centres since this process is local in physical space, i.e. occurs at the position where the particles collide. After each collision, impinging particles are subject to a random displacement across the magnetic field, of the order of the Larmor radius ρ c . Hence an individual guiding-centre follows a random walk where its position deviates by a distance ∼ ρ c across the magnetic field every typical collision time τ coll . Theory of Brownian motion tells us that diffusion occurs, i.e. the average quadratic displacement 1 behaves as (x ⊥ (t) -x ⊥ (0)) 2 = D cl t where

D cl = lim ∆t→0 |∆x ⊥ | 2 2∆t
is the Fokker-Planck scattering diffusion coefficient, and the bracket a statistical average, for instance an average over several realisations. The diffusion coefficient D cl , is of the order of νρ 2 c , where ν = 1/τ coll is a collision frequency. This process, called "classical" diffusion, is well documented, and can be put on a firm ground by solving the Fokker-Planck equation [START_REF] Helander | Collisional Transport in Magnetized Plasmas[END_REF]. Classical diffusion occurs in any magnetised plasma. However, it is usually sub-dominant compared with turbulent diffusion. However this is not the end of the story by far. Let us start with tokamaks, or any axisymmetric configuration (e.g. RFP, quasi-axisymmetric stellarator). An isolated particle is well confined because the deconfining effect of the magnetic drift velocity, which is nearly vertical in a tokamak, is "compensated" thanks to the motion of the particle successively at the top and bottom of a magnetic surface. However, when collisions occur, the compensation is no longer perfect, so that charged particles diffuse across magnetic surfaces. In the collisional regime, this process is called Pfirsch-Schlüter diffusion. Compensation of the magnetic drift motion becomes hard to achieve when the particle guiding-centre velocity along the magnetic field, called "parallel velocity"1 v , becomes nearly zero v = 0. Indeed in this case, the time needed to explore a magnetic surface up and down becomes very large. In that limit, even long collision time has a strong deconfining effect. This is in fact a resonant effect located at v = 0 in the phase space. This process is called "banana-plateau" diffusion. The reasons for this exotic terminology will be seen later on. The enhancement of collisional transport via the magnetic drift is called "neoclassical transport"-the word neoclassical refers to classical transport as the basic reference. One important point to keep in mind is that all these processes coexist, i.e. the total diffusion coefficient reads

D = D cl + D ps + D bp
where D cl , D ps , and D bp are respectively classical, Pfirsch-Schlüter, and banana-plateau diffusion coefficients. The situation becomes somewhat more intricate when axisymmetry is lost. In a tokamak, this situation is generic due to several reasons. The discrete number of coils lead to periodic variations of the magnetic field in the toroidal direction, called "ripple". Sometimes, additional helical coils are used to control MHD instabilities. Also, small adjustment errors often occur during the assembly of the various coils, which lead to so-called error fields, i.e. departures from the designed magnetic field. Moreover, another class of magnetic configurations is by design non axisymmetric, namely stellarators. Some classes of particles which are locally trapped in minima of the magnetic field are not confined because their magnetic drift is not compensated. Collisions play in some sense a beneficial role by detrapping these particles and thus re-confining them. Nevertheless this effect disappears for vanishing collision frequency, which manifests itself via a diffusion coefficient that behaves as 1/ν, a catastrophic behaviour for hot fusion plasmas. Fortunately the situation comes back to acceptable due to the development of a radial electric field and the associated E × B drift velocity. These complex features can be captured with a variational principle that will be derived in the following sections.

2 Heuristic derivation of neoclassical diffusion

Ordering parameters

Trajectories of charged particles in a strong magnetic field are characterised by 3 typical frequencies: the highest one is the cyclotron frequency Ω c = e a B 0 /m a (B 0 is a reference cyclotron frequency, e a the particle charge and m a its mass), while a second lower one is the transit frequency Ω t = v /L , where v is the parallel velocity. In this section, we replace v by the particle velocity modulus v, i.e. v ∼ v, keeping in mind that this does not allow a proper discrimination between trapped (low v /v) and passing ( v v) particles. Distinction between trapped and passing particles will introduced later on. Finally a third frequency is identified, which is associated with the magnetic drift and is noted Ω D = v D /L ⊥ , where v D vρ c /R 0 is a magnetic drift velocity, ρ c = v/Ω c a gyroradius, and L ⊥ a transverse length. A useful estimate of L is the connection length between the low and high field side along a field line, i.e. L = qR 0 (omitting a pre-factor π), where q is the safety factor and R 0 the major radius of a magnetic surface. This estimate can be recovered from the equation of motion on the poloidal angle θ (ignoring the magnetic drift) dθ/dt v /L . As to the choice of the perpendicular macroscopic length L ⊥ , one possible choice is the minor radius r of a magnetic surface, which is representative of gradient lengths 2 .

The ratio of these frequencies involves the parameter δ = ρ p /r, where ρ p = qR 0 r ρ c . More precisely

Ωt Ωc ∼ δ = ρp r Ω D Ωt ∼ ρp R 0 = r R 0 δ
Recall that a magnetised plasma must verify by definition the constraint ρ * = ρ c /r 1. The condition δ 1 is slightly more difficult to fulfil q > 1 and r/R 0 < 1 in tokamaks. Nevertheless this condition is usually satisfied, except in some sharp transport barriers, or very near the magnetic axis. So the ratio δ of the poloidal gyroradius to plasma size will be considered as a small parameter.

Whenever collisions are accounted for, a fourth frequency comes into play, namely the collision frequency ν. In fusion plasmas, the parameter ∆ = ν/Ω c is always smaller than one. It remains to position the collision frequency with respect to the transit frequency. The ratio of collision to transit frequency is

ν Ω t = a ρ p ν Ω c = ∆ δ
This is a ratio of two small parameters. Hence no conclusion can be drawn on the ordering of transit vs collision times. Regimes will therefore have be identified depending on the value of this parameter.

Primer on the magnetic equilibrium 2.2.1 General properties of magnetic coordinates

A Fokker-Planck drift-kinetic equation must be solved in order to compute collisional transport in a magnetic configuration. The distribution function depends on 5 variables : 3 coordinates that label the position of a guiding-centre, its parallel velocity, and the magnetic moment (some authors prefer the perpendicular velocity). A clever choice of coordinates greatly simplify the calculations. In particular, choosing a set of magnetic coordinate present many advantages, in particular simpler forms of differential operators. The reader is sent to the lecture note "Magnetic coordinates and equilibrium magnetic field" for details. It is reminded that the magnetic field in a toroidal configuration that satisfies the magnetostatic force balance equation is of the following form

B = ∇χ × ∇θ + ∇ζ × ∇ψ
where (θ, ζ) are poloidal and toroidal angles, ψ is related to the flux of poloidal field normalised to 2π3 , and χ is the flux of the toroidal flux normalised to 2π. The toroidal magnetic flux χ is a function of the poloidal magnetic flux ψ such that dχ/dψ = q(ψ), where q(ψ) is the safety factor. An equivalent compact formulation of the field, valid only in a tokamak, is B = I(ψ)∇ζ + ∇ζ × ∇ψ where I(ψ) is a magnetic flux function, close to the current that passes through the toroidal coils. The Jacobian of the system of coordinates (ψ, θ, ζ) is

√ g = [(∇ζ × ∇ψ) • ∇θ] -1 = 1 B • ∇θ = qR 2 I
where R is the major radius. The gradient along the magnetic field can then be computed Results will be often illustrated with a simplified magnetic configuration where the magnetic surfaces ψ = cte are circular concentric, see Fig. 1. This is not a very accurate description of most tokamaks since their magnetic surfaces are usually shaped, i.e. non circular, and also radially shifted because of a Shafranov shift. The main advantage of this class of equilibria is to provide analytical estimates, and therefore some insight in the underlying physics. The poloidal magnetic flux ψ can then be replaced by the minor radius of a magnetic surface, with the relationship dψ dr = r q(r)R 0 , where R 0 is the major radius of the magnetic axis, while the current function I is just I = B 0 R 0 . The magnetic field then reads

B • ∇F = I R 2 ∂F ∂ζ + 1 q ∂F ∂θ A useful relationship is B B 2 × ∇ψ = I B B 2 -R 2 ∇ζ

Circular concentric magnetic configuration

B = B 0 R 0 R êζ + r q(r)R 0 êθ
where (ê θ , êζ ) are the unit poloidal and toroidal vectors. The Jacobian of the coordinate system (r, θ, ζ) is just √ g = rR 2 /R 0 , while the parallel gradient reads

B • ∇F = B 0 R 0 R 2 ∂F ∂ζ + 1 q ∂F ∂θ
A further approximation consists in assuming small values of inverse aspect ratio = r/R 0 . The parameter is then used as an expansion parameter, though this is done for convenience: it is not a fundamental expansion parameter of collisional transport theory -these are derived in the next section.

Figure 2: Contribution in the phase space of passing particles near the cone located around the axis v = 0 and of angle ∆ξ. Plateau regime holds as long as the extent ∆ξ of the collisional cone is larger than the region where trapped particles are located ξ ξ tr . This condition can be recast ν * > 1.

Neoclassical transport in a tokamak -heuristic derivation

It is desirable to derive first simple expressions of neoclassical diffusion coefficients in various collisionality regime. As said, the key element here is the magnetic drift velocity v D , essentially vertical in a tokamak, and assumed upward here to illustrate the mechanisms at work. The magnetic drift pulls a particle out of a magnetic surface in the upper half-plan, whereas it pushes it inside in the lower half-plan. Without collisions, a particle explores equally the upper and lower half planes thanks to its motion along a field line, so that the outward and inward displacements due to the vertical drift compensate. This is no longer true when collisions occur, i.e. outward and inward displacements do not necessarily balance any more. Let us call τ c the time needed by a particle to move from the upper to lower half-plane, and vice versa. The motion of a guiding centre becomes random under the effect of collisional velocity scattering. In other words, it is similar to a Brownian motion as described by Eq. [START_REF] Hazeltine | Plasma Confinement[END_REF]. The diffusion coefficient is D ⊥ ∼ 2 c /τ c , where c is the mean free path, and is of the order of c ∼ v D τ c , so that

D ⊥ ∼ v 2 D τ c
Hence the time τ c plays the role of a jump time in a Brownian motion, c being a jump length. Let us first consider the strong collisional regime, called Pfirsch-Schlüter regime.

It is defined as the case where the mean free path along a field line λ = v /ν is smaller than the connection length L ∼ qR 0 . For passing particles, the parallel velocity can be assimilated to the particle velocity modulus v. Hence the Pfirsch-Schlüter regime is reached when ν > v/qR 0 . In this high collisional regime, the motion of a particle along the field line is diffusive (x (t) -x (0)) 2 D t

where D the collisional diffusion coefficient, if the order of D ∼ λ 2 τ coll ∼ v 2 ν . Applying this expression to x (t) -x (0) = qR 0 yields an estimate of τ c

τ c ∼ ν q 2 R 2 0 v 2
Let us now remember that the vertical drift scales as vρ c /R 0 where ρ c = v/Ω c is the gyroradius (assimilating the perpendicular velocity v ⊥ to the velocity modulus v). Combining these equations yield the Pfirsch-Schlüter diffusion coefficient

D ps ∼ νq 2 ρ 2 c
Hence the Pfirsch-Schlüter diffusion coefficient is q 2 larger than the classical diffusion coefficient. Let us now analyse the opposite situation where ν < v qR 0 , i.e. the particle makes several turns around the tokamak before enduring a binary collision. This is the point where resonant effects start prevailing. As mentioned, resonant particles bear a nearly zero parallel velocity -in absence of collision these particles drift vertically until they leave the plasma. This situation changes radically when collision occurs. A model collision operator is described in Appendix B, which remains quite complex. However, estimates can be produced by noting that the process at work is a scattering diffusion in the pitch-angle 4 ξ = v v variable. Pitch-angle scattering re-confines resonant particles by changing their parallel velocity from 0 to a finite value. Seen in the phase space, a region develops in the phase space (v , v ⊥ , ς) where resonant particles are deeply affected by collisions (see Fig. 2). This region is a cone of angle ∆ξ, such that the effective collision frequency ν ∆ξ 2 balances the transit frequency on the cone surface v qR 0 = v qR 0 ∆ξ -this balance provides a value of the cone extent ∆ξ

∆ξ = νqR 0 v 1/3
An effective collision time can then be calculated

τ ef f = 1 ν ef f = ∆ξ 2 ν
The fraction of particles affected by this process is just ∆ξ, so that the diffusion coefficient in plateau regime is

D p ∼ ∆ξv 2 D τ ef f ∼ v qR 0 q 2 ρ 2 c = qR 0 v v 2 D ( 1 
)
The expression resembles the Pfirsch-Schlüter diffusion coefficient, with the collision frequency replaced by a transit frequency, so that both expressions match when ν = v/qR 0 . Remember however that the two processes are very different -we will come back to this point. The rationale above holds as long as ∆ξ is larger than the trapped domain. Let us remind that below a pitch-angle ξ tr (B max -B min )/B 0 , particles bounce back and forth due to the mirror force along a field line -these are called toroidally trapped particles. In a large aspect ratio tokamak, (B max -B min )/B 0 2 = 2r/R 0 , where r is the minor radius of a magnetic surface. When the collision frequency decreases, the collision cone around the axis v = 0 and of extension ∆ξ ∼ (νqR 0 /v) 1/3 changes into a collisional layer (layer between two cones) near the trapped-passing border ξ = ξ tr ∼ 1/2 , see Fig. 3. The width ∆ξ tr of this layer is such that the effective collision frequency balances the bounce frequency of a trapped particle ν/∆ξ 2 tr ∼ ω b , where ω b ∼ v/(qR 0 ) 1/2 is the bounce frequency. Hence the width of the boundary layer is ∆ξ tr ∼ 1/2 ν 1/2 * where ν 1/2 * is a banana collisionality parameter defined as

ν * = νqR 0 v 3/2 (2)
Therefore, the banana regime is reached when the condition ν * < 1 is satisfied, i.e. the condition under which ∆ξ tr ≤ 1/2 . The effect of the vertical drift is essentially to confer a finite width to particle trajectories. The corresponding width is

δ b ∼ v D /ω b ∼ qρ c / 1/2 .
The cross section in a poloidal plane of the drift surface of toroidally trapped particles looks like a banana of width δ b . This is the reason why they are often dubbed "banana" particles. The bounce motion of particles remove the resonance singularity. Collisions acts essentially to transform trapped in passing particles and vice-versa. The fraction of trapped particles is f t ∼ 1/2 while the effective detrapping collision frequency is ν ef f ∼ ν/ξ 2 tr ∼ ν/ . Since the particle bounces several times before a collision occurs, a trapped particle experiences a random walk with jump length equal to the banana width δ b and a jump time 1/ν ef f . Only the fraction f t of trapped particles is affected. This argument yields the banana diffusion coefficient

D b ∼ f t ν ef f δ 2 b ∼ ν 3/2 q 2 ρ 2 c
The banana regime prevails over the plateau regime when the transit frequency of trapped particles ξ tr v/qR 0 gets lower than the effective detrapping collision frequency ν ef f i.e. ν * < 1. With this convention, the transition to the Pfirsch-Schlüter regime occurs when ν * = -3/2 . As said, this has a meaning only in the large aspect ratio limit 1. Here we arrive to a rather subtle point. A difference must be made in the phase space between resonant particles, in the vicinity of the v = 0 line, and passing particles, subject to a Pfirsch-Schlüter random walk. Hence both physics coexist. Let us call D BP the diffusion coefficient of resonant particles. The banana and plateau values have been already computed. There exists also a limit in the Pfirsch-Schlüter regime, that can be shown to decrease as the inverse of the collision frequency. Its calculation is beyond the scope of the present section -we just request continuity and decay as 1/ν. Therefore the banana-plateau diffusion coefficient normalised to the plateau reference Eq.( 1) reads banana

D bp Dp = ν * when ν * 1 plateau D bp Dp = 1 when 1 ν * -3/2
Pfirsch-Schlüter

D bp Dp = -3/2 ν -1 * when -3/2 ν *
The banana-plateau diffusion coefficient is shown vs ν * on Fig. 4 . Pfirsch-Schlüter diffusion coefficient is always equal to D ps ∼ νq 2 ρ 2 c -however it becomes subdominant compared with D bp in the banana or plateau regime. Hence the sum of D bp and D ps looks like Fig. 5. This figure, shown in many textbooks, give the impression that D ps replaces D bp at high collisionality whereas in fact they coexist. Let us note also that the range of validity of the plateau regime 1 ν * -3/2 is narrow, and only makes sense for very small values of the inverse large aspect ratio 1. For realistic values of (usually 1/3 at the edge of most tokamaks), the plateau regimes is merely a flattening of the curve D bp /D p vs ν * .

Neoclassical transport in 3D geometry -heuristic derivation

The derivation above holds as long as long as the magnetic configuration exhibits a symmetry. This is the case of a tokamak, which exhibits a toroidal symmetry and was treated above, or a helically symmetric configuration (including quasi-axisymmetric configurations). Situation gets more complicated when symmetry is broken. This occurs in a tokamak when accounting for the finite number of coils, which is responsible for a field oscillation in the toroidal direction called ripple, or when helical external coils are added (resonant magnetic perturbations). Also the adjustment of coils is never perfect. These imperfections in the magnetic field topology are called "error fields", and are also sources of symmetry breaking. Another known configuration that may combine several helical symmetries is the stellarator. We focus here on the case of magnetic ripple. A new class of trapped particles appear, that move back and forth in the local minima of the magnetic field. These are called locally trapped. At this stage two types of effects are possible : the effect of the vertical drift on locally trapped particles, and the effect of ripple on 

Effect of a magnetic field ripple on toroidally trapped particles*

Let us call δ(r) the amplitude of the ripple field, i.e. the amplitude of δB/B, where δB measures the amplitude of the field corrugation. A realistic ripple amplitude also depends on the poloidal angle θ. However, in order to avoid unnecessary complications, we will limit the discussion to a dependence on minor radius. Because of the mirror force due to variations of the magnetic field along the field lines, a particle can be locally trapped in a local minimum of the magnetic field due to ripple, or bounce toroidally as it would without ripple. This can be understood with a model of the B field

B eq = B 0 (1 -cos(θ) + δ(r) cos(N c ζ)) (3) 
where N c is the number of toroidal coils, and = r/R 0 l is the inverse aspect ratio 5 . Along a field line ζ = ζ + q(r)θ, where ζ is a field line label. Plugging the expression of ζ in the field Eq.( 3) yields an energy µB eq (θ) as shown on Fig. 6. Extending the calculations done above for toroidally trapped particles, the fraction of trapped particles is ∼ δ 1/2 while the effective detrapping collision frequency is ν δ ∼ ν/δ. In absence of any E × B drift or magnetic drift due to ripple, the vertical magnetic drift of locally trapped particles that results from the 1/R variation of the toroidal field is not compensated since the motion of the particle in the toroidal direction is bounded. Hence the particle cannot explore the magnetic surface -only collisions can reconfine these particles thanks to collisional scattering in the velocity space. The diffusion coefficient reads

D sb,1/ν ∼ δ 1/2 1 ν δ v 2 D ∼ δ 3/2 v 2 D ν
where the label "sb" stands for superbanana -we will soon see why. This expression is unfavourable as the diffusion coefficient increases at low collisionality. Therefore, collisional transport becomes large when approaching the conditions for fusion. This is the so-called "1/ν regime". The situation improves somewhat when the E × B and magnetic drifts (the bit due to ripple) are accounted. The E × B drift is due to a negative radial electric drift that builds up to ensure charge ambipolarity. Indeed the expression above gives a diffusion coefficient that is larger for ions than for electrons. The E × B drift velocity is responsible for a particle motion in the poloidal direction with an angular frequency Ω Eθ = v Eθ /r where v Eθ = -E r /B 0 is the poloidal component of the E × B drift velocity. Moreover, a magnetic drift appears due to the gradient of ripple amplitude dδ/dr. This magnetic drift generates a poloidal precession of locally trapped particles. For deeply trapped particles, this precession frequency is typically Ω Bθ 1/r µ/e a dδ/dr. Overall a locally trapped particle precesses poloidally with a frequency Ω dθ = Ω Eθ + Ω Bθ . This poloidal motion broadens the orbit width of locally trapped particles, which may become quite fat -hence the name "superbanana particles". Let us note that in tokamaks, the precession displaces particles from large to low ripple areas, a feature that has been left aside when ignoring poloidal variations of the ripple amplitude 6 . This variation also provides a mechanism for reconfinement. Let us focus on the consequence of orbit width broadening. The typical radial size or displacement of a superbanana is ∆r θ ∼ v D /Ω dθ . When lowering the collision frequency, a particle can turn around in the poloidal plane several times before enduring a collision. The motion is random with a step ∆r θ , collision time 1/ν δ while the fraction of affected particles is δ 1/2 . Diffusion coefficient reads

D sb,ν ∼ δ 1/2 ν δ ∆r 2 θ ∼ 1 δ 1/2 ν v 2 D Ω 2 dθ (4)
The behaviour with collision frequency is much more favourable since linear. The two expressions can be fitted by the formula

D sb ∼ δ 1/2 ν δ Ω 2 dθ + ν 2 δ v 2 D ( 5 
)
The collisional diffusion vs collisionality is illustrated in Fig. [START_REF] Galeev | Plasma diffusion in a toroidal stellarator[END_REF]. However the reader should be aware that this formula is much too simplified, for two reasons: • For intermediate collisionality ν δ Ω dθ , and when δ > ( unrealistic for tokamaks, but common in stellarators), a boundary layer develops near the border between locally trapped particles and passing particles [START_REF] Galeev | Plasma diffusion in a toroidal stellarator[END_REF]. In other words, the collisional cone around the line v = 0 of width δ 1/2 is replaced by a boundary layer around the trapped/passing limit ξ tr = δ 1/2 , and of width ∆ξ. This width is such that the effective collision frequency ν/∆ξ 2 balances the frequency Ω dθ , i.e. ∆ξ ∼ (ν/Ω 2 dθ ). The fraction of particles in the boundary layer is ∆ξ so that the diffusion coefficient is

D sb, √ ν ∼ ∆ξ ν ∆ξ 2 ∆r 2 ∼ ν 1/2 v 2 D Ω 3/2 dθ
This regime is dubbed √ ν, see Fig. 9. Eq.( 5) should then be replaced by something like

D sb ∼ δ 1/2 ν 1 + C 0 ν1/2 + C 1 ν v 2 D
where ν = ν δ Ω dθ , and C 0 , C 1 are suitable coefficients.

• Some particles may satisfy the resonance condition Ω dθ = 0, which clearly invalidates Eq.( 4). Two sub regimes can be identified : i) for large enough collisionality the diffusion coefficient does not depend on the collision frequency -this is called the superbanana plateau regime -ii) at lower collisionality, the singularity is resolved by looking into the trajectory broadening associated with second derivative of potential and ripple amplitude in r. The calculation is similar to the banana regime, and leads again to a diffusion coefficient proportional to ν -this is the superbanana regime [START_REF] Shaing | An approximate analytic expression for neoclassical toroidal plasma viscosity in tokamaks[END_REF].

This complex behavior is illustrated in Fig. [START_REF] Shaing | An approximate analytic expression for neoclassical toroidal plasma viscosity in tokamaks[END_REF]. It is stressed again that these are asymptotic values. In practice, several regimes can mix up, so that diffusion is rarely found to match one of these scalings. Nevertheless these expression give a flavour of collisional transport dependence on various parameters. Also, it must be realised that the complications associated with the ν and √ ν only occurs at very low collisionality in the specific case of ripple in a tokamak. locally trapped particle drifts vertically because of its magnetic drift. After an effective collision time, it becomes a toroidally trapped particle (banana). Right panel: in presence of a E × B drift velocity, a locally trapped particle remains confined, with a drift surface that is shifted by ∆r θ compared with a reference magnetic surface. The effective collision frequency is determined by the condition ν ∆ξ 2 Ω dθ . This defines a collisional boundary layer near the locally/toroidally trapped border.

Effect of ripple on banana tips

The effect of ripple on toroidally trapped particles is essentially due to the small displacement it induces on the position of the banana tip, Fig. 10. The calculation of this displacement is somewhat intricate, but a reasonably accurate estimate is derived in Appendix A, namely

∆r δ = π √ 2 q 2 δ 3/2 J 0 (N c qθ b )N c sin(N c ζ)ρ c
where ρ c = m a v/e a B 0 is the gyroradius. The argument of the Bessel function is larger than 1 since N c >> 1 and q > 1, except for vanishing bounce angles θ b . It can then be approximated by its asymptotic expression J 0 (x) = 2 πx cos(x + π/4), so that

∆r δ πN c θ b q 3/2 δρ c cos N qθ b + π 4 sin(N c ζ) (6) 
This gives an estimate of the max amplitude of the displacement

∆r δ,max πN c θ b q 3/2 δρ c
A more accurate calculation based on the invariance of the longitudinal invariant of motion gives the same relationship with θ b replaced by sin(θ b ). Let us recall that ∆r δ,max is the displacement of a banana tip after a bounce time. It is in fact easier to work with an effective velocity v Def f that is the maximum radial velocity dr/dt and is readily calculated from Eq.( 6)

v Def f ∼ N c q δ v D
As mentioned several times now, a diffusion coefficient behaves as

D f t v 2 D τ c
, where f t is the fraction of toroidally trapped particles, and τ c is a relevant jump time for the random walk process at work. Several frequencies are candidate. An obvious one is the bounce time 1/Ω b ∼ qR 0 /(v √ ). A second time scale should involve collisions. An educated guess suggests a jump time equal to the collision detrapping time /ν. However, a more accurate estimate is necessary. A glance at the radial displacement of a banana tip Eq. [START_REF] Yushmanov | Diffusive transport processes caused by ripple in tokamaks[END_REF] shows that it changes sign when θ b = π/(N c q). This is to be compared with the transition from trapped to passing particles that occurs at θ b = π. In the latter case, the corresponding width in scattering angle δξ was √ . For the effect of ripple on banana tips, the counterpart is rather δξ ∼ √ /(N c q). The effective collision time is therefore

ν ef f ∼ N 2 c q 2 ν
The collision frequency is very large compared with the conventional frequency ν. As a consequence banana tips under the effect of ripple are easily in a collisional regime. Finally, it must be remembered that bananas precess around the vertical axis under the effect of both magnetic and E × B drift velocities. The precession frequency is noted Ω dζ . Let us remember that the ripple period in toroidal angle is 2π/N c , so that the time necessary to cross a period due to the precession scales as 1/(N c Ω dζ ). The relevant frequency to be compared with the two frequencies Ω b and ν ef f is therefore

ω dζ = N c Ω dζ .
In usual conditions ω dζ Ω b , so that 3 situations are met depending on the position of ν ef f on the frequency scale.

Let us consider first the case where Ω b ν ef f . In this case a collision always occurs just before a toroidally trapped particle reaches a bounce point (banana tip). The effective jump time is therefore 1/Ω b . The diffusion coefficient is

D rp ∼ f t v 2 Def f Ω b ∼ N c q δ 2 D p
where D p = v 2 D qR 0 /v is the plateau diffusion coefficient. This regime is called the "rippleplateau" regime. Since δ in tokamaks, it tends to produce diffusion coefficients that are smaller than the plateau reference, partially compensated by the prefactor N c q.

We now consider the regime ω dζ ν ef f Ω b . In this case, the relevant jump time is the longest one 1/ν ef f the diffusion coefficient reads This expression resembles the 1/ν diffusion coefficient already met for locally trapped particles -a catastrophic behaviour. Once again drifts save the day whenever ν ef f ω dζ . The jump time becomes shorter because a particle covers a large number of periods before a collision. This leads to a reduction of the above coefficient by (ν ef f /Ω dζ ) 2 . The resulting diffusion coefficient is better written

D bd,1/ν ∼ f t v 2 Def f ν ef f ∼ 1 ν * 1 N c q δ 2 D P
D bd ∼ f t v 2 Def f ν ef f ω 2 dζ + ν 2 ef f ∼ 1 ν * 1 N c q δ 2 D p 1 + NcΩ d ν ef f 2
We now see that at low collision frequency, the diffusion coefficient is proportional to ν. So in summary one finds ripple-plateau

Drp Dp = N c q δ 2 when Ω b ν ef f banana-drift 1/ν D bd,1/ν Dp = 1 ν * 1 Ncq δ 2 when N c Ω dζ ν ef f Ω b banana-drift ν-linear D bd Dp = ν ef f NcΩ dζ 2 D bd,1/ν when ν ef f N c Ω dζ Note that ν ef f /Ω b = ν * (N c q) 2 .
It appears that all diffusion coefficients normalised to the plateau reference depends on 3 dimensionless parameters ν * , N c q and δ/ , plus the ratio ω dζ /ν ef f . As for superbananas, these expressions are dubious at low frequencies, because of complications coming from boundary layers (in the case δ < ) and resonances Ω dζ = 0.

General results

We aim now at a detailed calculation of neoclassical fluxes. Our starting point is a tokamak magnetic configuration, an emblematic example of axisymmetric configuration. It can be generalised to other magnetic configurations that exhibit a symmetry, typically helically symmetric stellarators. As mentioned above, there exists already several overviews and textbooks that address this topic. It turns out that exact analytical solutions can be found in many situations. We use here a variational approach that allows the use of general principles stated in the lecture note on "mean field kinetic theory". Though the results are the same, the spirit is somewhat different. Besides it offers unified approach and thus a fruitful comparison with other topics such as turbulent transport and kinetic MHD.

Drift kinetic equation

Collisional transport is mainly associated with processes at large spatial scales, i.e. larger than a gyroradius. This implies that a gyrokinetic formulation is of no need in that matter, though of course it could be used as well -this is actually mandatory when combining neoclassical and turbulent transport. For now, we use the so-called drift-kinetic approach. There exists in fact several formulations, depending on the choice of variables. The derivation chosen here aims at computing a distribution function for each species, which depends on the guiding-centre position X = (ψ, θ, ζ), magnetic moment µ (an invariant of motion), sign of the parallel velocity (for passing particles), and total energy (the same as the guiding-centre Hamiltonian) H = E + e a Φ eq , where Φ eq is the electric potential, and E = 1 2 m a v 2 + µB eq (ψ, θ). Axisymmetry is reflected by the independence of the Hamiltonian on ζ, and consequently of the distribution function, which does not depend on ζ. Neoclassical theory aims at computing equilibria in steady-state, hence is time independent. This does not mean that the total energy H is constant, reason being that in a tokamak an electric field is produced by an inductive field E ind = -∂A ∂t . This field is small compared to the contribution due to the electric potential -so that

dH dt = e a v G • E ind e a v E ind (7) 
where E ind is the parallel component of the inductive field. The inductive effect has little effect on ions, but a crucial one since it is responsible for the current that drives the poloidal field in a tokamak. To simplify the discussion, it will be ignored for now, and re-established when the case of electrons will be discussed. The drift-kinetic equation then reads

v ∇ F + v D • ∇F = C[F ] ( 8 
)
where F is a function of H, µ, , ψ, θ , v D and v E are the magnetic and E × B drift velocities, and C[F ]. The full collision operator is a complex object -in general it is replaced by a reduced model. An equivalent formulation is

-{H, F } = C[F ] (9) 
where the bracket designates a Poisson bracket, detailed in the lecture note on trajectories. This is where we start to depart from the traditional approach. In order to use the invariants of motion in the best way possible, it is convenient to replace the poloidal flux ψ, which labels the magnetic surface where the particle is located, by the particle canonical toroidal momentum P ζ = -e a ψ +m a I B v , or equivalently by any other invariant constructed with P ζ that is dimensional to a flux, for instance 7 ψ * = -P ζ /e a . Since it may be disturbing for the reader, let us comment this point. Let is ignore the collision operator and expand the distribution function as a power series in the small parameter

ρ * F = F 0 + F 1 + o(ρ 2 * ) Since v D /v ∼ o(ρ *
), it appears from Eq.( 8) that ∇ F = 0, hence F does not depend on θ. An expansion of Eq.( 8) then yields an equation over

F 1 v ∇ F 1 = - ∂F M ∂ψ v D • ∇ψ| H,ψ
The invariance of P ζ implies that

v D • ∇ψ| H,ψ = v ∇ I e a B eq m a v 7 An alternative choice is ψ = -m a I Beq v t -P ζ /e a
, where the bracket is a time average. so that an explicit expression of F 1 is derived

F 1 = -m a v I e a B eq ∂F M ∂ψ H,ψ (10) 
In the "Hamiltonian" approach, the solution of Eq.( 9) without equation is a distribution function that depends on the invariants of motion only, i.e. F = F 0 ψ * , H, µ, . A Taylor expansion based on the expression of ψ * = ψ -I eaBeq m a v immediately reproduces the result Eq.( 10), hence proving the equivalence between the two approaches. Neoclassical theory aims at calculating the solution of equation Eq. [START_REF] Samain | Onsager relaxation of toroidal plasmas[END_REF]. As said, the solution of {H, F } = 0 is a function of invariants of motion (H, µ, ψ * , ), or equivalently of the 3 action variables J. On the other hand, the solution of C(F ) = 0 is a local Maxwellian, which is usually not a function of invariants of motion. Hence the difficulty is to reconcile these two asymptotic solutions of the kinetic equation. This can be done numerically. A different strategy is adopted here by guessing an approximate solution, then compute a perturbed distribution function and associated transport. The trial distribution function is

Structure of flows

F 0 (J) = F M 0 (J) 1 + m a T eq v (J)W (J) (11) 
where v (J) has the same parity as the parallel velocity, but is a function of the invariants of motion. The reasons for this choice are commented in Appendix C. The function F M 0 is an unshifted Maxwellian

F M 0 (H, ψ * ) = N eq (ψ * ) m a 2πT eq (ψ * ) 3/2 exp - H T eq (ψ * )
where N eq (ψ) = N eq (ψ) exp e a Φ eq (ψ)

T eq (ψ)

is an effective density. The function W (J) can be calculated exactly in standard neoclassical theory, at least for some model operators -here it will be build in a different way. The notation J stands for (H, µ, ψ * , ). Before moving to detailed calculations, it is interesting to analyse the consequences of the trial distribution function Eq. [START_REF] Garbet | Entropy production rate in tokamaks with nonaxisymmetric magnetic fields[END_REF]. Flows are averages of the distribution function over moments. Hence the computation of the parallel flows from Eq.( 11) requires to perform integrals over the velocity space. The volume integration in the guiding-centre in the phase space is

dγ = d 3 xd 3 p = dVm 3 a dv 2π m a B * || dµ
where dV = dψ dθ Beq•∇θ dζ is a volume element in the physical space and B * || = B eq + mav ea e • ∇ × e is the Jacobian of the guiding-centre transform. It turns out that B * || = B + o(ρ * β) -since β is small in fusion plasmas, i.e. scales as ρ * , we set B * || = B eq up to second order in the small parameter ρ * . The parallel velocity and magnetic moment are not suitable variables whenever collisions come into play -the reason is that the test particle collision particle operator is separable in velocity and pitch-angle angle. A first step is to make use of the kinetic energy E and pitch-angle variable λ = µB 0 /E -here, B 0 is a reference magnetic field. The parallel velocity then reads

v (ψ, θ, E, λ) = ± 2T eq (ψ) m a E T eq 1/2 1 -λb(ψ, θ)
where b(ψ, θ) = B(ψ, θ)/B 0 . The weighted element of phase space reads

dγF M 0 = dV 1 √ π =±1 dE T eq E T eq 1/2 exp - E T eq b(ψ, θ)dλ 2 1 -λb(ψ, θ) (12) 
We are now in a position to compute the "parallel velocity" v , function of invariants of motion. Using Eq.( 10), let us note that

F M 0 (ψ * , H) = F M 0 (ψ, E) 1 - m a T eq (ψ) v (ψ, θ, E, λ)V * ζ (ψ, θ, E) (13) 
where

V * ζ (ψ, θ, E) = I(ψ) T eq (ψ) e a B eq (ψ, θ) ∂Ξ ∂ψ (ψ, E) (14) 
and

∂Ξ ∂ψ = ∂ ln F M ∂ψ ψ,H = dP eq P eq dψ + e a T eq dΦ eq dψ + E T eq - 5 2 
dT eq T eq dψ (15) 
The field V * ζ is dimensional to a velocity, and turns out to coincide with the toroidal component of the diamagnetic velocity. Combining Eq.( 11) with Eq.( 13), one finds

F 0 = F M 0 1 + m a T eq v W -v V * ζ (16) 
Let us recall that v is a function of the invariants of motion, hence (H, λ, ψ * , ). Since this term is of order of ρ * second order corrections can be ignored, so that ψ * can be replaced by ψ (equivalent to an approximation of thin orbits) and v can thus be as well written as a function of (E, λ, ψ, ). As said, it can be computed exactly when using a model collision operator [START_REF] Helander | Theory of plasma confinement in non-axisymmetric magnetic fields[END_REF].

Its general structure is v (ψ, E, λ, ) = 2T eq m a E T eq 1/2 v λ (ψ, λ) (17) 
Moreover the function W can be written as

W (ψ, E) = W 0 (ψ) + W 1 (ψ) E T eq - 5 2
This corresponds to an expansion in the 2 first Sonine polynomial S 0 (E/T eq ) = 1 and S 1 (E/T eq ) = (5/2 -E/T eq ) -see Appendix C for a short introduction to expansions in Sonine and Legendre polynomials. Given Eqs. [START_REF] Hinton | Theory of plasma transport in toroidal confinement systems[END_REF][START_REF] Hirshman | Neoclassical transport theory of a multispecies plasma in the low collision frequency regime[END_REF], the distribution function finally reads

F 0 = F M 0 1 + U eq T eq (18) 
where

U eq (ψ, θ, λ, E, ) = U 0 (ψ, θ, λ, ) + U 1 (ψ, θ, λ, ) E T eq - 5 2
is part of the thermodynamical potential that is odd in parallel velocity. Its components are of the form

U n = m a v W n -m a v V * ζn
where

V * ζ0 =
IT eq e a B eq dP eq P eq dψ + e a T eq dΦ eq dψ ( 19)

V * ζ1 = I e a B eq dT eq dψ (20) 
We are now in position to compute from Eq.( 16) the mean parallel velocity

V eq (ψ, θ) = 1 N eq d 3 pv F 0
and the parallel heat flux

q eq (ψ, θ) = P eq N eq d 3 p E T eq - 5 2 v F 0
After some calculations detailed in Appendix D, the following expressions of the mean parallel velocity and heat fluxes are found

V eq (ψ, θ) = - 1 N eq e a dP eq dψ + dΦ eq dψ I(ψ) B eq (ψ, θ) + f c W 0 (ψ) B eq (ψ, θ) B 0 (21) 
and 2 5

q eq (ψ, θ) P eq (Ψ) = - I(ψ) B eq (ψ, θ) 1 e a dT eq dψ + f c W 1 (ψ) B eq (ψ, θ) B 0 (22) 
Several important conclusions can be drawn from these two expressions:

• Parallel velocity and heat flux are not surface flux functions, i.e. do not depend on ψ only

• this is consistent with considerations that come from fluid dynamics. Indeed using

V = V E + V * + V eq e , where V * = Beq×∇Peq NeqeaB 2 eq
is the diamagnetic velocity, and

V E = Beq×∇Φeq B 2
eq the E × B drift velocity, plus the condition ∇ • V = 0, it appears that the fluid velocity is of the form

V = K(ψ)B eq - 1 N eq e a dP eq dψ + dΦ eq dψ R 2 ∇ζ (23) 
In the same way, the heat flux is found of the form q = L(ψ)B eq -5 2

P eq e a dT eq dψ R 2 ∇ζ (24)

Projecting these relations along the unit vector e yields the same expression as Eqs. [START_REF] Goldston | Confinement of high-energy trapped particles in tokamaks[END_REF][START_REF] Grua | Collisionless diffusion regimes of trapped particles in a tokamak induced by magnetic field ripples[END_REF], with K = f c W 0 /B 0 , and L = 5 2 P eq f c W 1 /B 0 . In other words, the velocity V * ζ can be identified with the toroidal projection of the diamagnetic and E × B drift velocities, while W is the non diamagnetic part of the plasma toroidal flow.

• this poloidally asymmetric parts of the parallel velocity and heat flux are called Pfirsch-Schlüter flows. They result from the compressibility of the perpendicular velocity (or heat flux), which must be balanced by a parallel flow. This mechanism is illustrated in Fig. 12.

• Hence the velocity V * ζ is clearly related to the toroidal projection of the diamagnetic velocity. It will loosely be called diamagnetic velocity in the following. The sign minus can be understood with the help of Fig. 11. × ∇P eq . Its divergence is non zero and must be balanced by a parallel current density such that ∇ • J e + J dia = 0. This process is illustrated on the left panel. Note that the part of the diamagnetic current that bears a non zero divergence is near vertical, and is in fact related to the magnetic drift of particles. The right panel shows the contour line of a parallel Pfirsch-Schlüter flows (here for a heavy impurity) as computed by the GYSELA code.

Variational principle

Entropy functional

A variational principle is used here to compute neoclassical transport coefficients. Obviously, much of forthcoming derivations involve a collision operator. The latter is essentially a Boltzmann collision operator derived for Coulombian interaction, i.e. the Fokker-Planck equation reads

∂F a ∂t -{H a , F a } = b C ab (F a , F b ) (25) 
where C ab (F , F b ) is the collisional operator between particles of species a and b

C ab (F a , F b ) = 1 2 γ ab ∂ ∂p • d 3 p L • F b (x, p , t) ∂F a (x, p, t) ∂p -F a (x, p, t) ∂F b (x, p , t) ∂p (26) 
where

γ ab = 4π e 2 a e 2 b ( 4π 
0 ) 2 ln Λ
with ln Λ the Coulombian logarithm, and

L = u 2 I -uu u 3 with u = ∂H a (x, p, t) ∂p - ∂H b (x, p , t) ∂p
the relative velocity. When resonant Hamiltonian perturbations are accounted for, additional sources of entropy production come from the resonant motion of particles. This case was treated in the note "Mean field kinetic theory". Details can be found in the references [START_REF] Samain | Onsager relaxation of toroidal plasmas[END_REF][START_REF] Garbet | Neoclassical equilibrium in gyrokinetic simulations[END_REF][START_REF] Garbet | Entropy production rate in tokamaks with nonaxisymmetric magnetic fields[END_REF]. The distribution function of a species "a" is written

F a = exp - H a -U a T 0
where H a is the total Hamiltonian and U a a thermodynamic potential. The unperturbed part of the distribution function reads similarly

F eq,a = exp - 1 T 0 (H eq,a -U eq,a ) (27) 
where H eq,a and U eq,a are the mean parts of the Hamiltonian and thermodynamic potential. An entropy functional is then derived that reads

S = a S t,a + a S res,a + ab S coll,ab
where

S t,a U eq,a , U † eq,a = 2 T 2 0 dγF eq,a U † eq ∂U eq,a ∂t (28) 
S res,a U eq,a , U † eq,a

= - 2 T 2 0 dγ ∂U † eq,a ∂J • Γ a (29) 
and

S coll,ab (U † eq,a , U † eq,b ) = γ ab 4T 2 0 d 3 xd 3 pd 3 p F Ha,eq F H b ,eq ∂U † eq,a ∂p - ∂U † eq,b ∂p • L • ∂U † eq,a ∂p - ∂U † eq,b ∂p (30) 
where

∇ J • Γ a = -{H a , U a }
and the bracket is an average over the angle variables and time. Incidentally, this expression demonstrates the self-adjointness property of the collision operator. The extremum of the functional S for all variations of U † eq,a near U eq,a yields a transport equation

∂U eq,a ∂t + ∇ J • Γ a = b C ab (U eq,a , U eq,b )
This entropy principle is close to the one devised by Rosenbluth et al. [START_REF] Rosenbluth | Plasma transport in toroidal confinement systems[END_REF].

Structure of the resonant entropy production rate

It will be seen in the following that under reasonable assumptions, U ,a1 = 0, while U ,a0 can be identified as the equilibrium parallel velocity V ,a . For a given species, fluxes and thermodynamical forces can be properly defined from the resonant production rate using the following expression

Ṡres,a = -2 d 3 xN eq,a Γ N a N eq,a d ln N † eq,a dψ + e a T eq,a dΦ † eq dψ + M ,a N eq,a m a v T a V † eq,a v T a + Γ T a N eq,a T eq,a d ln T † eq,a dr  
where Γ N a and Γ T a are the particle and heat fluxes, and M ,a is the rate of dissipated parallel momentum due to collisional transport. Resonant fluxes are therefore functional derivatives of the resonant entropy production rate.

Entropy production rate due to profile evolution

The entropy production rate due to profile evolution reads for a single species

S t U eq , U † eq = 2 T 2 0 dγF eq,a U † eq,a
∂U eq,a ∂t

Using the expression Eq.( 33), an explicit expression is

S t U eq , U † eq = 2 dγF eq,a ln N † eq,a + e a Φ † eq T eq,a + E 1 T † eq,a - 1 T 0 - 3 2 ln T † eq + m a v V † eq,a T eq,a   ∂ ln N eq,a ∂t + E T eq - 3 2 1 T eq,a ∂T eq,a ∂t + m a v T eq,a
∂V eq,a ∂t

This expression can be made somewhat more enlightening by assuming that U † eq,a is close to U eq,a , so that S t U eq , U † eq = 2 dγF eq,a δN eq,a N eq,a + e a δΦ eq T eq,a

+ E T eq,a - 3 2
δT eq,a T eq,a + m a v δV eq,a T eq,a 1 N eq,a ∂N eq,a

∂t

+ E T eq,a - 3 2 1 T eq,a ∂T eq,a ∂t + m a v T eq,a
∂V eq,a ∂t

where δN eq,a = N † eq,a -N eq,a , δT eq,a = T † eq,a -T eq,a , and δV eq,a = V † eq,a -V eq,a .

4 Single ion species

Resonant entropy production rate

As mentioned above, the low collisionality regime is deeply impacted by resonant particles at vanishing parallel velocity v = 0.

General formulation

The resonant entropy production rate can be calculated exactly for some model collision operators. We use here a different approach. We consider Hamiltonian systems such the unperturbed motion of particles is integrable and quasi-periodic, and therefore characterised by 3 invariants of motion, and 3 angle variables. The resonant entropy production rate can be calculated for any Hamiltonian perturbation that involve a single helical perturbation. We use here a trick that consists in separating the magnetic field B into a part B 0 that does not depend on θ (it may depend on ψ though), and a remaining part B that is considered as a perturbation. This makes sense only if B is smaller than B 0 -this is equivalent to consider tokamaks with a small inverse aspect ratio 1, a stringent but acceptable limitation as long as the objective is to illustrate the neoclassical machinery. Species labels are dropped in this section (except for charge and mass) since the resonant entropy production rate results from the dynamics of the considered species only. The Hamiltonian can be split in "equilibrium" and perturbed parts

H = H eq + H
where H eq = 1/2m i v 2 + µB 0 + e i Φ eq (J 3 )8 and H = µ B, where e i is the ion charge, and m i its mass. This means that at lowest order in , no particle trapping occurs. The magnetic configuration is assimilable to a periodic screw pinch. Trapping emerges when adding the perturbed part of the Hamiltonian H = -µB 0 cos θ For 1, the expression of the third action reads

J 3 = e i ψ -m i R 0 u
where I = B 0 R 0 has been used, and u is the parallel velocity of passing particles in a screw pinch, an invariant of motion9 . At equilibrium, particles stay on magnetic surfaces, so that the second action reads

J 2 = e i χ (ψ)
Using d qRdθ, dχ/dψ = q, it appears that J 2 e a χ (ψ) . This gives an explicit expression of u as function of (J 2 , J 3 )

u (J 2 , J 3 ) = 1 m i R 0 (J 3 -G(J 2 ))
where G(J 2 ) = e i ψ(J 2 /e i ), and dG/dJ 2 = 1/q(J 2 /e i ), q is the safety factor expressed as function of the toroidal flux χ. It can be verified that Ω 2 = u /(qR 0 ) and Ω 3 u /R 0 , where the E × B poloidal drift frequency e i dΦ dJ 3 is neglected compared with the toroidal transit frequency u /R 0 (the ratio is of order ρ * ). The resonant condition u = 0 reads

J 3 = G(J 2 )
and draws a surface in the action space J = (J 1 , J 2 , J 3 ). Remains to compute the entropy production rate due to the perturbed Hamiltonian. Fortunately, this calculation is standard (see note an "Mean field kinetic theory") and produces the following result

S res U eq , ∂ J U † eq = 1 T 2 0 dγF eq (J)δ(n • Ω)h 2 (J)Λ(J) n • ∂U † eq ∂J 2 (32) 
where

Λ(J) = π 2 η ≥ 1 2Iη η ≤ 1
and I 1.38. The parameter η is defined as the ratio η = τ b /τ d of a bounce time τ b = 1/ω b to the detrapping time τ d . The later is defined as

τ d = ω 2 b /D Ω , where D Ω = 1 2 ∆Ω 2 /∆t is the Fokker-Planck diffusion coefficient of the resonant pulsation Ω = n • Ω -ω due to collisions. Hence η = D Ω ω 3 b = 1 2 ∆Ω 2 ∆t 1 ω 3 b
The expression for η 1 breaks down for large values of η. It ultimately decreases as 1/η. The entropy production rate corresponds to a perturbed Hamiltonian of the form

H = -h cos(n • α -ωt)
For the case considered, ω = 0, n 2 = 1 and n 1 = n 3 = 0 and h = µB 0 . The plateau regime corresponds to the collisional regime η ≥ 1. In the opposite case η ≤ 1, the particle experiences many bounce times before it experiences a collision -this is in fact the banana regime. The physics that goes with a resonant increase of entropy is illustrated in Fig. 13. 

Thermodynamical potential

A comparison of the distribution function Eq.( 27) with the trial distribution function Eq.( 11) provides the thermodynamic potential U eq

U eq T 0 = ln N eq + H eq 1 T eq - 1 T 0 - 3 2 ln T eq + m i u W T eq (33)
where the function v has been assimilated to u . Keeping in mind that J 1 = e i µ/m i , and that J 3 -e i ψ at lowest order in ρ * , partial derivatives of U eq are readily calculated

1 T 0 ∂U eq ∂J 2 J 1 ,J 3 = m i T eq ∂u ∂J 2 W 1 T 0 ∂U eq ∂J 3 J 1 ,J 2 = - 1 e i ∂Ξ ∂ψ - m i e i T eq u ∂W ∂ψ + m i T eq ∂u ∂J 3 W
In the considered case where the unique non zero wave number is n 2 = 1, only the partial derivative with respect to J 2 matters

1 T 0 ∂U eq ∂J 2 J 1 ,J 3 = 1 T eq W qR 0 4.1.

Banana-plateau entropy production rate

We are now in a position to compute the entropy resonant production rate. The calculation is restricted to a single ion species to start with -the ion charge number is Z = 1 (hydrogenoid ion), so that the plasma is a mix of electrons and ions with equal densities. Let us recall that the perturbed Hamiltonian is h = µB 0 -we define in the following a normalised perpendicular energy u = µB 0 /T eq . For a perturbation n = (0, 1, 0), The Hamiltonian "curvature" is

C = ∂ 2 H eq ∂J 2 2 J 1 ,J 3 = 1 m i q 2 R 2 0 so that the bounce frequency is ω b = √ Ch = µB 0 m i qR 0 = v T i qR 0 √ u
where v T i = T eq /m i is the thermal velocity. Obviously the resonant frequency is Ω = Ω 2 = u /qR 0 . The scattering in parallel velocity happens to be

1 2 ∆v 2 = ν d,ii v 2 2 = ν d,ii v 2 T i x 2 (34) 
where 10 x = E/T eq , and ν is the ion-ion collisional frequency. This collision frequency can be split in a thermal value ν i times a energy dependent form factor ν(x)

ν d,ii = ν i ν(x) (35) 
where 11

ν i = 4 √ π 3 e 4 i (4π 0 ) 2 N eq m 2 i v 3 T i ln Λ
10 The notation x is not particularly smart given that x is often used as a spatial coordinate. But it is the usual notation for calculations that involve collisions. We will stick to it to allow comparison with classical works in the matter. 11 To compare with Helander-Sigmar's notation

ν i = 2 Ω C ∆Ω 2 Ω b η dγF M δ(Ω) v qR 0 1 m i q 2 R 2 0 1 q 2 R 2 0 ∆v 2 1 qR 0 µB 0 m i η = ν * ν( √ u) √ u d 3 x √ 2π dv due -u δ v N eq qR 0 v T i
Table 1: Principal parameters when the Hamiltonian perturbation is due to the 1/R decay of the magnetic field, and the perturbed Hamiltonian is H = -µB 0 cos(θ).

is the thermal ion collision frequency. Here ln Λ denotes the Coulomb logarithm. The form factor is given by the following relation

ν(x) = 3 4 √ 2π erf(x) -G(x) x 3 where erf(x) = 2 √ π x 0 dx exp -x 2 G(x) = erf(x) -xerf (x) 2x 2
Close to the resonance v = 0, one has x (µB 0 /T eq ) 1/2 = √ u. The η parameter thus reads

η = ν * i ν ( √ u) √ u
where is defined in Eq.( 2), but for thermal values, i.e.

ν * i = ν i qR 0 v T i 3/2 . The weighted element of integration is dγF M δ(Ω) = N eq qR 0 v T i d 3 x √ 2π dv due -u δ v
All these quantities are summarised in Table 1. The entropy production rate bears a simple form that reads

S res U eq , ∂ J U † eq = d 3 x √ 2π N eq v T i qR 0 2 +∞ 0 due -u Λ(r, u)u 2 W v T i 2 (36) 
where

Λ(J) = π 2 if ν * i ≥ 1 2Iν * i ν( √ u) √ u if ν * i ≤ 1 4.1.4
Resonant entropy production rate in the low aspect ratio limit

Banana regime

The resonant entropy production rate Eq.( 36) can be rewritten in the regime ν * 1 as

S res U eq , ∂ J U † eq = 4I √ 2π d 3 xN eq √ ν i v 2 T i +∞ 0 dxe -x 2 x 4 ν(x)W 2 where x 2 = m i v 2 2Teq
. It is traditional to introduce a bracket {} that stands for a weighted average in the velocity space 12{G} = 1

N eq d 3 v m i v 2
T eq F M 0 G (37) freely along the field lines, so that their distribution is shifted. Trapped electrons cannot move freely, up to their diamagnetic velocity, so that their distribution function is unshifted, when expressed as functions of (H, µ, P ζ ). As a consequence boundary layers develop at the passing/trapped interface, which is resolved by collisions. Resonant neoclassical transport originate from this region.

for any function G(v, ξ). Note that if the G function depends on v only, this average reads as

{G} = 4π 3 m i N eq T eq +∞ 0 dvv 4 F M 0 G = 8 3 √ π +∞ 0 dxx 4 e -x 2 G(x) (38) 
The entropy production rate then becomes 13 S res [U eq , ∂ J U eq ] = 3I 2

d 3 xN eq ν i v 2 T i √ ν d,ii τ ii W 0 - 5 2 -x 2 W 1 2 (39) 
Introducing the notation

ν ij = τ ii {ν d,ii S i S j }, a compact expression is S res [U eq , ∂ J U eq ] = √ 2 d 3 xN eq ν i v 2 T i f t ν 00 W 2 0 -2ν 01 W 0 W 1 + ν 11 W 2 1 ( 40 
)
where

f t = 3I 2 √ 2 √ 1.46 √
is the fraction of passing particles, close to the value found in the literature even if the calculation is done differently. This expression can be made quantitative by using the relationships

τ ii {ν d,ii } = 2 - √ 2 ln 1 + √ 2 τ ii ν d,ii x 2 = 1 √ 2 τ ii ν d,ii x 4 = 9 4
one finds ν 00 = 0.753 ν 01 = ν 10 = 0.882 ν 11 = 1.956 13 Beware that W 1 is not the coefficient of S 1 , but its opposite.

Plateau regime

In the collisional case ν * 1, the resonant entropy production rate Eq.( 36)

S res [U eq , ∂ J U eq ] = d 3 xN eq v T i qR 0 2 1 v 2 T i W 2 0 + W 0 W 1 + 13 4 W 2 1 (41)
Note that these entropy production rates have been computed as functions of ∂ J U eq instead of ∂ J U † eq for readability. Hence all W n should be replaced by W † n when time will come to compute an extremum.

Physics behind this increase of entropy is relatively easy to understand, and illustrated in Fig. [START_REF] Hinton | Theory of plasma transport in toroidal confinement systems[END_REF]. Passing particles move freely along the field lines, so that their distribution is shifted in the v direction. Trapped electrons cannot move freely, up to their diamagnetic velocity, so that their distribution function is unshifted, when expressed as functions of (H, µ, P ζ ). As a consequence a boundary layer develops at the passing/trapped interface, which is resolved by collisions. Resonant neoclassical transport originates from this region.

Collisional entropy production rate

We now have to compute the collisional production rate. This is in general a difficult task. We use here a simplified pitch-angle collision operator as given by Eq.(72) (without the diffusion in gyroangle since we deal here with guiding-centres), namely

C i [F ] = ν d,ii L[F ] + ν d,ii mv M T eq F M 0 (42) 
where

L[F ] = 1 2 ∂ ∂ξ 1 -ξ 2 ∂F ∂ξ
and ξ = v /v is the pitch-angle. A useful alternative expression of the pitch-angle collision operator is

L[F ] = 2 b v v 2 ∂ ∂λ λv ∂F ∂λ where b(r, θ) = B(r, θ)/B 0 = 1 -cos(θ).
The velocity U (x) must be chosen such that parallel momentum is conserved, i.e.

d 3 vv C[F ] = 0 . Using d 3 v = 2πv 2 dvdξ d 3 p m i v 2 T eq ν d,ii F M 0 M = d 3 vν d,ii v F
Let us now go back to the trial distribution function Eq.( 18), and give a look at the relation Eq. [START_REF] Varennes | Flow drive in tokamak plasmas : competition and synergies between turbulence and neoclassical effects[END_REF]. The collisional entropy production rate comes essentially from passing particles 14 . For these particles v and v are close. Let us finally note that a reasonable proxy of U eq at vanishing values of the inverse aspect ratio is

U eq = m a v U eq (43) 
where

U eq = W -V * ζ (44) 
and correspondingly

U n = W n -V * ζn
14 they are in greater number than trapped particles and there is no resonant amplification here where V * ζ0 and V * ζ1 are given by Eqs. [START_REF] Varennes | Flow drive in tokamak plasmas : competition and synergies between turbulence and neoclassical effects[END_REF][START_REF] Garbet | Entropy production rate in tokamak plasmas with helical magnetic perturbations[END_REF]. The constraint of momentum conservation Eq.( 43) provides a relationship between the velocity moment M and the flow U eq

M = ν d,ii U eq {ν d,ii }
Let us now compute the collisional entropy production rate

S coll (U eq , U eq ) = -dγ ln F eq C [F eq ] = - 1 T 2 0 dγF eq U eq C [U eq ]
where

C[U eq ] = F M 0 ν d,ii L[U eq ] + ν d,ii m i v M T eq F M 0
The collisional entropy production rate contains two contributions, which corresponds to the two parts of the collision operator, i.e. the pitch-angle scattering operator, and the momentum conservation piece. The first contribution reads

S (1) coll (U eq , U eq ) = 1 2T 2 0 d 3 x2π +∞ 0 dvv 2 F M 0 (v)ν d,ii (v) 1 -1 dξ 1 -ξ 2
∂U eq ∂ξ 2 Using Eq.( 43), it appears that

S (1) coll (U eq , U eq ) = m i T eq d 3 xN eq ν d,ii U 2 eq
A similar calculation shows that the contribution associated with the momentum closure term in the collision operator reads

S (1)
coll (U eq , U eq ) = -

m i T eq d 3 xN eq ν d,ii U eq 2 {ν d,ii }
A total entropy production rate is therefore

S coll (U eq , U eq ) = m i T eq d 3 xN eq ν d,ii U 2 eq - ν d,ii U 2 {ν d,ii }
We now use the expansion U eq = U 0 S 0 -U 1 S 1 . It appears readily that the Sonine polynomial does not contribute S 0 , so that

S coll (U eq , U eq ) = d 3 xN eq U 1 (ψ) v T i 2 ν d,ii S 2 1 - {ν d,ii S 1 } 2 {ν d,ii }
In other words the collisional entropy production depends on the parallel heat flux U 1 only. Using the definition ν ij = τ ii {ν d,ii S i S j }, an alternative expression is

S coll (U eq , U eq ) = √ 2c coll d 3 xN eq ν i v 2 T i W 1 -V * ζ1 2 ( 45 
)
where

c coll = ν 11 - ν 2 01
ν 00 . A straightforward calculation yields c coll = 0.923. It appears that this coefficient can be computed exactly from the full collision operator, yielding c coll = 2. This value is adopted in the following. As for the resonant entropy production rate, Ṡcoll (U eq , U eq ) is computed as a function of U eq , which should be replaced by U † eq when computing its extremum. One key feature of Eq.( 45) is that it involves U 1 = W 1 -V * ζ1 , i.e. the parallel heat flux. Hence collisions try to enforce a relaxation of the parallel heat flux to 0. The corresponding distribution function is a local Maxwellian.

Extremum of the total entropy production rate 4.3.1 Computing an extremum

The total production rate is the sum of 3 contributions: a first one S t (U eq , U † eq ) associated with the time evolution of various profiles Eq.( 31), a second one that is due to resonant production S res as given by Eqs.(40,41), and a third one due to non resonant collisional dissipation S coll Eq.(45). As mentioned several times, the two last are quadratic functions of U † eq , while the first one is linear in δU eq = U † eq -U eq . The extremum with respect to N † eq , T † eq , U † 0 , U † 1 yields time evolution equations for the density, temperature, parallel momentum and heat flux. An extra equation on the electric potential is obtained by summing all charge density equations over species. However in the single ion species case, it is redundant with the ion density evolution equation. As long as an equilibrium is computed, it is sufficient to find an extremum of S = S res +S coll . This is certainly justified for the electric potential that is the fastest field to reach its equilibrium value. This is because a magnetised plasma stays close to charge neutrality, as long as relevant scales are much longer than the Debye length. The evolution equation for the parallel momentum is a disappointment: no relaxation frequency is found. This is a well known result : there is no banana-plateau amplification of the collisional damping rate. This result makes sense since neoclassical amplification comes from a resonant process that takes place at zero parallel velocity v . It thus appears that the collision dissipation is always of the Pfirsch-Schlüter type. Therefore the only quantity of interest in terms of relaxation rate is the heat diffusivity. We now proceed with the computation of the extremum of S res + S coll .

Force balance equation

Comparing Eqs.(40,41) with Eq.( 45) it turns out that the collisional entropy production rate is 1/ √ than the resonant entropy production rate. Let us assume that is very small. Then the collisional entropy production rate prevails. Its extremum with respect to W 1 imposes that W 1 = V * ζ1 , or equivalently U 1 = 0, i.e. vanishing parallel heat flux. The component U 0 is the ion toroidal velocity 15 V t , so that

W = V t + V * ζ (46) 
A practical expression of the toroidal diamagnetic velocity

V * ζ is V * ζ =
T eq e i B p dP eq P eq dr + e i T eq dΦ eq dr + E T eq -5 2

dT eq T eq dr (47

)
where B p is the poloidal magnetic field. The n = 0 component of Eq.( 46) reads

- dΦ eq dr -V t B p + W 0 B p = 1 N eq e i
dP eq dr This is nothing else than the radial force balance equation. Hence the quantity W 0 B p /B t is in fact poloidal velocity V p , consistently with the general expression of the flow Eq.( 23). The extremum with respect to W 0 imposes that

W 0 = ν 01 ν 00 W 1 = 1.17V * ζ1
in the banana regime, while

W 0 = - 1 2 W 1 = -0.5V * ζ1
15 This can be verified by computing the average parallel velocity from the distribution function.

where V * ζ1 is given by Eq.( 20). Hence the poloidal velocity is of the form

V p = k Vp 1 e i B t dT eq dr (48) 
where k Vp = 1.17 in the banana regime, and k Vp = -0.5 in the plateau regime. The change of sign is a remarkable feature of this coefficient.

The structure of the solution in banana regime is worth being commented. The distribution function is given by Eq.( 16), and reads

F 0 = F M 0 1 + m a v T eq E T eq -1.33 I e a B eq dT eq dψ - m a v T eq V * ζ
where the function v can be retraced from the note on mean field kinetic theory. It is also given in all classical references in neoclassical theory [START_REF] Hinton | Transport properties of a toroidal plasma at low to intermediate collision frequencies[END_REF][START_REF] Hinton | Theory of plasma transport in toroidal confinement systems[END_REF][START_REF] Hirshman | Neoclassical transport theory of a multispecies plasma in the low collision frequency regime[END_REF][START_REF] Helander | Theory of plasma confinement in non-axisymmetric magnetic fields[END_REF] v = 2E m a H (λ min -λ)

λ min λ dλ 1 -λ b(θ)
where the bracket is a flux surface average, and λ = λ min is the passing/trapped boundary. This structure illustrates rather well the notion of boundary layer. In the trapped domain λ min ≤ λ ≤ λ max , the function v is null. This form results from a flattening of the distribution within the trapped domain. In the passing domain 0 ≤ λ ≤ λ min , the function v gets closer to the conventional parallel velocity v when λ → 0. This structure of the distribution function is shown on Fig. 15. Note that the derivative of the distribution function is infinite at λ = λ min . Collisions smooth out this discontinuity, which is responsible for the resonant increase of entropy. 

Heat equation

The residual entropy production rate reads

S residual [U eq , ∂ J U eq ] = √ 2 d 3 xN eq ν i v 2 T i ν 11 - ν 2 01 ν 00 f t V 2 * ζ1 = 1.35 d 3 xN eq ν i q 2 ρ 2 T i 3/2
dT eq T eq dr 2 (49) in the banana regime and

S residual [U eq , ∂ J U eq ] = 3 d 3 xN eq v T i qR 0 2 1 v 2 T i V 2 * ζ1 = 3 d 3 xN eq v T i qR 0 q 2 ρ 2 T i
dT eq T eq dr 2 in the plateau regime. The general form is

S residual U eq , ∂ J U † eq = d 3 xN eq χ T 1 T eq dT † eq dr 2
where the quadratic dependence in U † eq has been re-established. The entropy production rate associated with the temperature evolution reads

S t U eq , U † eq = 3 d 3 x δT eq T eq 1 T eq
∂T eq ∂t

The volume element reads d 3 x = 4π 2 R 0 rdr in cylindrical geometry. The extremum of S t + S residual is calculated after an integration by parts to isolate T † eq 16 . This gives a heat equation 3 2

∂T eq ∂t - 1 r ∂ ∂r rN eq χ T ∂T eq ∂r = 0 (50) 
The transport coefficient χ T can then be identified with the heat diffusivity. Hence

χ T = 1.35ν i q 2 ρ 2 T i 3/2
in the banana regime, while

χ T = 3 v T i qR 0 q 2 ρ 2 T i
in the plateau regime. Of course in presence of heating, a source should be added on the right hand side of Eq.(50). This equation can be understood as a prototype of all transport equations in a fusion device. In this particular case, it the heat equation determines the temperature profile for a given heat source -see Fig. 16 17 . We will see however that the structure of the heat flux can be more complex than a simple Fourier law.

Finite inverse aspect ratio corrections

One drawback of the method described above is its inaccuracy. Indeed the "small parameter" is not small in practice 18 . It makes therefore more sense to find an extremum of S = S res + S coll calculated up to second order in √ . However the calculation of S coll as was done above becomes somewhat inaccurate. This is because v was identified with v . This approximation introduces errors of order √ since the integral of v over the velocity space is proportional to the fraction of passing particles. The exact calculation is lengthy and will not be reproduced here. A fast way to re-establish an expression that makes more sense is to add a weight f c to all places where the coefficients W n appears, since the function W is the coefficient of v . Note that there is no such weight for the diamagnetic velocity since all particles contribute to the diamagnetic velocity, including trapped particles. The total entropy in the banana regime becomes

S = √ 2 d 3 xN eq ν i v 2 T i f t f c ν 00 W 2 0 -2ν 01 W 0 W 1 + ν 2 11 W 2 1 + 2 f c W 1 -V * ζ1
2 16 Beware that a factor 2 then appears which has no counterpart in the extremum of S t . 17 As a simple check, the reader can verify that for a constant heat source S T , and density N eq , the steady solution of the heat equation with boundary condition T eq (r = a) = 0 is just T eq = S T 4Neqχ T (a 2 -r 2 ). 18 = r/R 0 = 1/3 in the edge of most tokamaks, and gets lower near the axis. This expression is close to the one found in [START_REF] Helander | Theory of plasma confinement in non-axisymmetric magnetic fields[END_REF]. The extremum is therefore (almost) the same. The extremum with respect to W 0 gives the relation ν 00 W 0 = ν 1 W 1 and

W 1 = V * ζ1 f c + f t ν 11 - ν 2 01 ν 00 = V * ζ1 f c + 0.462f t
The residual entropy production rate reads

S residual [U eq , ∂ J U eq ] = d 3 xN eq ν i q 2 ρ 2 T i 3/2
1.35 f c + 0.462f t dT eq T eq dr 2 which obviously provides the requested correction on the heat diffusivity. More detailed expressions can be found in [START_REF] Chang | Effect of finite aspect ratio on the neoclassical ion thermal conductivity in the banana regime[END_REF][START_REF] Taguchi | Improved method for calculating neoclassical transport coefficients in the banana regime[END_REF]. The poloidal rotation is still V p = ( /q)(ν 01 /ν 00 )W 1 so that the coefficient k Vp now reads

k Vp = 1.17 f c + 0.462f t
Clearly the correction due to finite values of √ is not small.

5 Electron transport 5.1 Electron entropy production rate

Electron collision operator

A model of collision operator for electrons reads

C e [F e ] = C ee [F e ] + C ei [F e ]
where C ee [F e ] is the electron-electron collision operator. It is taken identical to the ion-ion collision operator Eq.( 42)

C ee [F e ] = ν d,ee L[F e ] + ν d,ee m e v M e T eq,e F M 0e
where it is recalled that F M 0e is the unshifted electron Maxwellian distribution function.

The velocity M e is constrained to ensure momentum conservation

M e = 1 {ν d,ee } d 3 vν d,ee v F e (51) 
It is reminded that the parenthesis {...} is not a parenthesis nor a Poisson bracket, but an average over the velocity space, as defined in Eq.(37), or Eq.(38) in the specific case of an isotropic distribution function. The operator C ei [F e ] accounts for the collisional drag force between electrons and ions. We choose here the following model operator

C ei [F e ] = ν d,ei L[F e ] + ν d,ei m e v V eq,i T eq,e F M 0e (52) 
We see now why this operator makes sense, by specifying the expression of the collision frequencies ν d,ee and ν d,ei . The electron-electron collision frequency ν d,ee is given by Eq.( 35) where

ν i = 1 τ i = 1 √ 2τ ii
should be replaced by ν e = 1 τe = 1 τ ei . Its explicit expression is

ν e = 4 √ 2π 3 e 4 (4π 0 ) 2 N eq,e m 2 e v 3 T e ln Λ
Note the √ 2 difference with the ion thermal collision frequency Eq.( 36). The electron-ion pitch-angle collision frequency is somewhat simpler

ν d,ei = 3 √ 2π 4 N eq,i Z 2 N eq,e ν e x 3 
e
where Z is the ion charge number. This formula can also be related to the electron ion collision time τ ei by using the relationship

1 τ ee = 1 √ 2 N eq,e N eq,i Z 2 1 τ ei (53) 
To get quantitative formulas, the following results will turn out useful

τ ee {ν d,ee } = 2 - √ 2 ln 1 + √ 2 0.753 τ ee ν d,ee x 2 = 1 √ 2 0.707 τ ee ν d,ee x 4 = 9 4
Moreover

τ ei ν d,ei x 2n = n!
The electron-ion collision friction force is defined as

R ei = d 3 vm e v C ei [F e ]
Electron-electron collisions do play any role since momentum is strictly conserved. Let us now use the model operator Eq.(52). A straightforward calculation yields

R ei = -N eq,e m e 1 N eq,e d 3 vv ν d,ei F e -{ν d,ei } V eq,i
Let us now consider the special case of a shifted Maxwellian distribution function

F e = F M 0e 1 + m e v
T eq,e V eq,e + 2 5

q eq,e N eq,e T eq,e

x 2 e -5 2
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The friction force then reduces to R ei = -N eq,e m e ν ei V eq,e -V eq,i -3 5

q eq,e N eq,e T eq,e which is identical to the expression given in Appendix B with a more precise operator. This is mainly the justification for the choice of the model operator Eq.(52). Obviously the action/reaction theorem imposes that R ie = -R ei . This implies that the ion-electron collision frequency is very small, and will be ignored. In the following we will use an effective scattering electron collision frequency defined as

ν d,e = ν d,ee + ν d,ei (54) 
As a last remark, let us stress that for a vanishing parallel electron heat flux, collision friction enforces R ei 0, and therefore V eq,e V eq,i .

Reformulation of the electron kinetic equation

Electrons are more mobile than the ions along the field lines due to their small mass.

Hence they carry most of the current density in a hot plasma. Consequently, the inductive field must be accounted for. When accounting for the energy time variation Eq.( 7), the drift-kinetic equation Eq.( 55) becomes for electrons

v ∇ F e + v De • ∇F e + eE ind T eq,e v F M 0e = C[F e ]
where e is the proton charge. It is convenient to introduce a "Spitzer" distribution function

F sp,e such that C[F sp,e ] = eE ind T eq,e v F M 0e
Given the model collision operator above, it reads

ν d,e L[F sp,e ] + m e v T eq,e F M 0e ν d,ee M e + ν d,ei V i = m e v T eq,e F M 0e eE ind m e (55) 
The drift-kinetic equation then reads

v ∇ F e + v De • ∇F e = C[F e -F sp,e ]
Given the parity in parallel velocity, Spitzer distribution function F sp,e reads

F sp,e = F M 0e 1 + U sp,e
T eq,e where U sp,e = m e v T eq,e U sp is a "Spitzer" thermodynamic potential. The parallel Spitzer flow U sp is then written in the ion rest frame, for convenience

U sp = Ũsp + V eq,i
The relative parallel Spitzer flow Ũsp can itself be decomposed over Sonine polynomials The current density associated with the Spitzer distribution function is equal to J = -e d 3 vF sp,e v + N eq,e eV eq,i = -N eq,e e Ũsp Using the solution found above, one finds 

Ũsp = U sp0 + U sp1 E T eq,e - 5 
J =    ν d,ee ν d,e 2 

Electron collisional entropy production rate

The calculation of the electron collisional entropy production rate requires a bit of care, compared with ions. Indeed the inductive field appears as a source of entropy production, which must be accounted for. We thus use the original formulation in terms of test thermodynamical potentials. The Fokker-Planck equation is equivalent to get an extremum of the following functional

S coll (U eq , U eq ) = -2 dγF M 0e 1 T 2 eq,e U †
eq,e C [U eq,e ] + γ ind m e v T eq,e F M 0e

with respect of all variations of U † eq,e near U eq,e , with U eq,e = U sp,e for the specific Spitzer problem at hand. A straightforward calculation provides the following expression

S coll (U eq , U eq ) = -2 d 3 x N eq,e v 2 T e ν d,ei Ũsp Ũ † sp + 2 d 3 x N eq,e v 2 T e   ν d,ee Ũsp Ũ † sp - ν d,ee Ũsp ν d,ee Ũ † sp {ν d,ee }   -2 d 3 x N eq,e v 2 T e γ ind Ũ † sp
Unfortunately, the projection of the variational principle on Sonine polynomials does not provide the result above. An option is to replace it with a functional that reproduces the Spitzer result, for instance 

S coll (U eq , U eq ) = 2 √ 2c coll,e d 3 x N eq,e v 2
where U 0,e = V ,e -V ,i and U 1,e = 2 5 q eq,e

Neq,eTeq,e . This contribution must be added to the ion entropy production rate

S coll (U eq , U eq ) = 2 √ 2c coll,i d 3 xN eq,i ν i v 2 T i U 1,i U † 1,i
Therefore the total collision entropy production rate contains 3 parts. The first one is due to a collisional scattering ion the velocity space (the same as Eq.( 45)), the second is its counterpart for electrons and the third one is the electron-ion friction force adjusted to reproduce the Spitzer result. We will see that the latter is in fact not accurate enough to reproduce the neoclassical prediction for the current driven by density and temperature gradients (bootstrap current), but other expedients can be used to do so. As mentioned before, the collisional entropy production prevails in the limit of small inverse aspect ratio. In this case, the solution satisfies q eq,e 0, q eq,i 0. This then implies that the parallel electron heat flux can be ignored in the friction force. As mentioned above, electron-ion friction force imposes V eq,e V eq,i in the vicinity of the resonant area in the phase space.

Resonant entropy production rate for electrons

The calculation of the resonant entropy production is then essentially the same for electrons and ions. However some additional difficulties emerge in the calculation for electrons due to the inductive field. In particular the parallel Spitzer flow U sp,e must be accounted for when computing the electron distribution function. Moreover V eq,e V eq,i in the vicinity of the resonant layer. On the other hand, the entropy functional is still built by multiplying the Fokker-Planck equation by U † eq,e , i.e. the same as for the ions, with ions replaced by electrons. This said, we do not need to repeat the calculations done for ions. We focus on the banana regime, which is of interest in weakly collisional plasmas -plateau regime does not raise any major difficulty. Details can be found in Appendix E. Let us remind the structure of the ion resonant entropy production Eq.( 39)

S res,i [U eq , ∂ J U eq ] = 2 d 3 x N eq,i v 2 T i f t ν d,i W ,i W † ,i (57) 
Hence the resonant entropy production for electrons reads

S res,e [U eq , ∂ J U eq ] = 2 d 3 x N eq,e v 2 T e f t ν d,e W ,e + U sp W † ,e (58) 
5.2 Computing fluxes and parallel current

Alternative expression of the resonant entropy production rate

A seen above, collisions in the bulk of a species enforce a parallel heat flux U 1,a = 2 5 q a

Neq,aTeq,a that vanishes for each species, leaving only the component U 0,a that is identified with the toroidal velocity. Hence for each species "a"

W ,a = V t,a + V * ζ,a where V * ζ,a =
T eq,a e a B p d ln P eq,a dr + e a T eq,a

dΦ eq dr + E T eq,a - 5 2 
d ln T eq,a dr

Using the force balance equation

- dΦ eq dr -V t,a B p + V p,a B t =
T eq,a e a d ln P eq,a dr

one gets the following expression for the flow W ,a

W ,a = B t B p V pa + 1 e a B t E T eq,a - 5 2
dT eq,a dr

and thus a useful expression of the resonant entropy production rate

S res,a [U eq , ∂ J U eq ] = 2 d 3 xN eq,a f t q 2 ρ 2 T a 2 ν d,a e a B t T eq,a V p,a + q U sp ,a + E T eq,a - 5 2 
d ln T eq,a dr e a B t T eq,a V † p,a + E T eq,a - 5 2 
d ln T † eq,a dr 
where in fact the Spitzer shift U sp ,a has to be included only for electrons. Here ρ 2 T a = mav T a eaBt is a thermal particle gyroradius.

Explicit expression of the electron resonant entropy production

Because the ion collision frequency is m i /m e larger than the electron collision frequency, the ion resonant entropy production rate is dominant. Hence it must be made extremum before finding an extremum for electrons. As a result, Eq.(48) yields the ion poloidal velocity

V p,i = k Vp 1 ZeB t dT eq,i dr
where Z is the ion charge number, and k Vp = 1.17 in banana regime. Also the ion heat diffusivity remains the same. Combining the force balance equations for both ions and electrons, one then finds an expression of the electron poloidal velocity Note that V ,a V t,a in the limit of small inverse aspect ratio 1. Moreover, a subtle point is that V t,e must be set equal V t,i in the calculation of the resonant response of electrons, but not in the trial thermodynamic potential! Hence an explicit expression of the electron resonant entropy production is then found, namely 

- eB t V p,
S res,e [U eq , ∂ J U eq ] = 2 d 3 xN eq,e f t q 2 ρ 2 T e 2 ν d

Particle and heat fluxes

Particle and heat fluxes are obtained by computing an extremum of this functional with respect to electron density and temperature gradients. The solution of the Spitzer problem turns out to be (ν d,ei + ν d,ee ) U sp = -1.66

eE ind m e
Let us also remember that ν e = 1/τ ei and 1/τ ee is given by Eq.( 53). Fluxes are computed by using the following relationships

{ν d,ee } = ν ei 1 + 0.53 Z ν d,ee x 2 = ν ei 1 + 0.5 Z ν d,ee x 4 = ν ei 2 + 1.59 Z
In the case where Z 1, electron-electron collisions can be ignored. In the more realistic case N eq,e = N eq,i Z and Z of a few units, one gets the following particle flux, obtained by computing an extremum with respect to dNeq,e dr The structure of the particle flux is the same as in classical textbooks [START_REF] Hinton | Theory of plasma transport in toroidal confinement systems[END_REF][START_REF] Wesson | Tokamaks[END_REF][START_REF] Helander | Theory of plasma confinement in non-axisymmetric magnetic fields[END_REF]. The numerical coefficients are estimates and should not be considered too seriously 19 . One striking feature of the particle flux is the presence of terms that are not proportional to the density gradient, bur rather to the density itself see Fig. 18. These terms are called pinch velocities. Indeed a negative pinch velocity results in a peaked density profile, even without a source -hence a "pinch effect". One component of the neoclassical pinch velocity is proportional to the temperature gradient, and corresponds to a thermodiffusion. This one is expected since the temperature gradient is a thermodynamic force. the second one is more of a surprise, since proportional to the inductive field. It will be commented in more details in the next section. The heat flux is given by the extremum with respect to the temperature at constant A 1,e = δPe,eq Pe,eq -eδΦeq Te,eq . In other words, we need to compute the moment associated with (x 2 -5

Γ N e = -f t ν e q 2 ρ
2 ). The solution of the Spitzer problem for the moment The structure is similar to the particle flux, i.e. a heat pinch velocity proportional to the density gradient (the Onsager symmetrical to thermodiffusion), and a pinch velocity proportional to the inductive field.

x 2 is (ν d,ei + ν d,ee ) x 2 U sp = -2.

Parallel current density

Let us recall first that the extremum of the collisional resonant entropy production Eq.( 56) yields the Spitzer current. Hence the extremum of Eq.( 59) with respect to V † t,e ) yields a correction to the Spitzer current. Unfortunately this calculation is not accurate due to the approximation done in the calculation of the collisional entropy production rate. A more precise approach proposed in Helander and Sigmar's book is as follows. Let us remark that the difference of the current density with its Spitzer value reads

J -J spitzer = -e d 3 pv (F -F sp )
where F sp is calculated in the ion rest frame (see section above). Let us now make use of the Spitzer function defined as

C F M 0 v τ sp = F M 0 v
The function τ sp can be interpreted as a collision time (inverse of a collision frequency). Using the collision self-adjointness property, the following identity is found

d 3 pv (F -F sp ) = d 3 pC [F -F sp ] v τ sp
The resonant entropy production rate that matters for the current is therefore the same as above, but weighted by the function τ sp . All calculations done, one finds

V e -V i -U spitzer = -f t τ sp ν d,e U sp + f t τ sp ν d,e
T eq,e eB p d ln N eq,e dr + T eq,i ZT eq,e d ln N eq,i dr

+ E T eq,e - 3 2 
d ln T eq,e dr -0.17 T eq,i ZT eq,e d ln T eq,i dr

The parallel current density satisfies the equality J = -N eq,e e V eq,e -V eq,i . A complete calculation requires the solution of the Spitzer problem to compute fs . However in the case Z 1, then τ sp = 1/ν Let us insist on the fact that the derivation is approximate. This said, the structure is the right one. It appears that the first term of the r.h.s. is a correction to the Spitzer conductivity, while the second represents a current generated by density and temperature gradients. The latter is called bootstrap current. The reduction of the Spitzer conductivity is due to the decrease of free charge carriers due to trapping : only passing electrons can carry current, and their fraction is f c = 1 -f t .

Physics of Ware pinch and bootstrap current

Interest of Ware pinch and bootstrap current

Two striking features of the results above are

• an inward flux of electrons proportional to the inductive field, and called Ware pinch,

• a contribution to the parallel current proportional to density and temperature gradients called bootstrap current.

Both play a favourable role in tokamak plasmas since an inward pinch allows a density peaking near the magnetic axis without a particle source (always difficult to produce in the plasma core). Since fusion power is proportional to the square of the density, such a peaking is welcome in terms of fusion power. Bootstrap current can provide a very significant contribution to the total plasma current. One drawback of tokamak is that the poloidal magnetic field is produced thanks to the current density, itself generated by the inductive field. A tokamak thus works as a transformer, where the primary is a set of poloidal coils that produce the poloidal magnetic field, and the secondary is the plasma itself. The variation of currents in the transformer primary induce a current in the plasma. A tokamak plasma is therefore a transient, that lasts as long as some magnetic flux is available in the primary of the transformer to induce an electric field in the plasma, the transformer secondary. Hence bootstrap current brings a welcome "free" contribution to the current density -free in the sense that it comes from the gradients that are anyway necessary to reach fusion conditions -and thus spares some magnetic flux consumption in the transformer primary. Other methods are possible based on RF wave propagation and absorption ("current drive"), but these are expensive schemes. On the side of drawbacks, an excessive density peaking may lead to impurity accumulation. Also the bootstrap current density is off-axis since all gradients must vanish on the magnetic axis. This situation may lead to instabilities, and indeed no plasma have been shown to last for ever with 100 % bootstrap current. 

Physics of the Ware pinch

The inward Ware pinch is carried by trapped electrons. Let us remember that the canonical toroidal momentum P ζ = -e a ψ + m a I B v is an invariant of motion. Trapped electrons feel the inductive field mostly at turning points v = 0. As said in previous section, the inductive field E ind comes from the time variation of the poloidal field. More exactly the Lenz law states that the loop voltage V loop = -∂ t Ψ, with Ψ = -2πψ (the function ψ was defined as minus the poloidal flux normalised to 2π), and V loop = 2πRE ind , so that E ind = ∂ t ψ/R. An alternative path is to notice that ψ = -A t R, where A t is the toroidal component of the vector potential, and E ind = -∂ t A t . Hence the canonical toroidal momentum varies by, see Fig. 19,

δP (1) ζ
= -e a δψ = e a E ind Rδt over a small time δt near the time at which a trapped electron bounces. Since P ζ is an invariant of motion, this variation must be balanced by a radial displacement δψ of the particle such that δP 

δr δt part = - E ind B p
The corresponding flux is the density of trapped electrons times their radial velocity, hence

Γ N,W are = -f t N eq,e E ind B p
The scaling of the Ware pinch flux is thus recovered. It is quite remarkable that the collision frequency does not appear in the Ware flux whereas the underlying mechanism is collisional.

Physics of bootstrap current

The processes that lead to a bootstrap current can be understood as follows. Using again the invariance of the canonical toroidal momentum P ζ , one gets a relationship between the radial displacement of a trapped particle and its parallel velocity r -m e v eB p Using B p R r/qB t and the trapping condition for thermal particles v 1/2 v T e , with

v T e = T eq,e /m e the thermal velocity, one recovers the typical radial extent of a trapped particle δ be = qρ T e / 1/2 (banana width). However the relation above tells us more. Since it holds at any time, it implies that the displacement is inward (outward) for a co(counter)current moving electron v /B p > 0 (poloidal field has the same sign as plasma current).

Let us now consider a specific magnetic surface, on the low field side where trapped particles are located. Some trapped electrons come from the interior of the magnetic surface, with δr > 0: these electrons move against the current. Other trapped electrons arrive from the exterior and are thus co-current electrons. Because of collisions, some trapped electrons become passing at this location. For a peaked density profile ∂ r N eq,e < 0, detrapped co-current electrons are less numerous than counter-current electrons. This means that a negative electromotive force with respect to the current direction is generated. This force must be compensated by the collision friction force between electrons and ions, thus producing a current -see Fig. 20. Let us put this process in equations. The detrapping collision frequency is ν ei / , assuming that electron-ion collisions dominate. The force density is the time variation of the electron momentum m e v 1/2 m e v T e per unit of volume. The number of relevant electrons is the density difference between trapped electrons that come from inside vs outside within a banana width, i.e. f t ∂ r N eq,e δ be . Hence an estimate of the electromotive force density is F em ν ei f t ∂N eq,e ∂r δ be 1/2 m e v T e = f t ν ei ∂N eq,e ∂r m e T eq,e eB p

The force balance equation for passing electrons read F em -N eq,e m e ν ei V eq,e -V eq,i = 0

It expresses the balance between the electromotive force due to collisional detrapping and the collisional friction between passing electrons and ions. This equation provides the increment of velocity and therefore the bootstrap current J boot = -N eq,e e V eq,e -V eq,i

J boot = -f t T eq,e B p ∂N eq,e ∂r ( 60 
)
This expression is in qualitative agreement with detailed calculations given above. It explains why the bootstrap current does not depend explicitly on the collision frequency while the underlying processes are collisional. This curious feature comes from a compensation between the collisional detrapping rate and the collisional drag between electrons and ions. side of an electron banana branch. When the particle comes from the right, v < 0, while its sign is opposite when it comes from the left. Because of collisions, trapped electrons become passing on a given magnetic surface. Since the density is not constant, more electrons come from the left than from the right. This process hence procudes an electromotive force along the field line. Its balance with collisional drag produces the bootstrap current.

Neoclassical transport with ripple*

A common task encountered in fusion devices is the computation of collisional transport in presence of 2 or more perturbations. The number of perturbations refer here to a reference configuration that is a screw pinch. In tokamaks, a first perturbation corresponds to the 1/R decay of the magnetic field. As seen above, it can be treated as a perturbed Hamiltonian H = -µB 0 (r) cos θ, in the limit of small inverse aspect ratio. A second perturbation must be added when the effect of magnetic ripple is to be accounted for. Magnetic ripple is the corrugation of the toroidal field due to the finite number of coils used to produced the toroidal field, thus leading to a second perturbation H = µB 0 δ(r, θ) cos (N b ζ), where N b is the number of coils, and δ(r, θ) the ripple amplitude. Another example is provided by non resonant helical perturbations produced with external coils. For a single helicity, the additional perturbation is H = µB 0 δ(r) cos (N b ζ + M b θ). In this case, the aim is to control edge localised modes (ELMs). Stellarators provide another important class of configurations where several magnetic perturbations coexist. These configurations have all in common that all perturbations resonate at vanishing parallel velocity v = 0. An additional difficulty comes from the stochastic character of particle trajectories in some specific limits. The kinetic treatment of multiple perturbations that resonant nearby or at the same position in the phase is challenging. It is addressed with some generality in the note "Mean field kinetic theory", in the section "Nearly degenerate Hamiltonian perturbations". The present section essentially applies the expressions derived in this note to the case of magnetic ripple in tokamaks. An overview of neoclassical transport in presence of ripple can be found in [START_REF] Yushmanov | Diffusive transport processes caused by ripple in tokamaks[END_REF] -details in the spirit of the present note can be found in [START_REF] Varennes | Flow drive in tokamak plasmas : competition and synergies between turbulence and neoclassical effects[END_REF]. The present section aims at summarising all regimes in a compact form thanks to a principle of minimum entropy production rate.

Local trapping and stochastic losses 6.1.1 Local trapping

A general expression of the entropy production rate for a non turbulent tokamak plasma, starting from the general expression derived in the note "Mean field kinetic theory", and in presence of ripple can be found in reference [START_REF] Garbet | Entropy production rate in tokamaks with nonaxisymmetric magnetic fields[END_REF] -it has been extended to helical perturbations in reference [START_REF] Garbet | Entropy production rate in tokamak plasmas with helical magnetic perturbations[END_REF]. The calculation is restricted to the case of ripple in a simple circular concentric equilibrium. Moreover a single ion species is considered. The equilibrium Hamiltonian is

H eq = 1 2 m i v 2 + µB 0 + e i Φ eq (r)
where m i is the mass, v the parallel velocity, µ the magnetic moment, B 0 the magnetic field on the magnetic axis, and Φ eq (r) the mean electric potential. The perturbed Hamiltonian now reads

H = -µB 0 (r) cos θ + µB 0 δ(r, θ) cos (N b ζ)
where (r) = r R 0 and δ(r, θ) is the amplitude of the ripple perturbation, and N b the number of coils. It is convenient to decompose the latter in a poloidal modulation δ(r, θ) and a poloidal average δ(r), i.e. δ(r, θ) = δ(r) δ(r, θ) , where

δ(r) = 2π 0 dθ 2π δ(r, θ) 1/2 and δ(r, θ) = δ(r, θ) δ(r)
Particles are trapped in the helical perturbation when the magnetic fields exhibit local extrema along the field lines. If N b q(r) 1, local trapping occurs when

Y (r, θ) = α(r, θ) |sin θ| < 1 where α(r, θ) = (r) N b q(r)δ(r, θ)
This condition defines for each minor radius r a domain in θ where some particles are locally trapped -see example Fig. 21. One can define an effective ripple amplitude, which is the depth of the magnetic well along the field lines between successive minima and maxima [START_REF] Yushmanov | Diffusive transport processes caused by ripple in tokamaks[END_REF], namely

2δ ef f = B max B min -1 = 2δ 1 -Y 2 -Y arccos Y (61)
The ripple amplitude used throughout this note is then

δ(r, θ) = δ(r, θ) if Y ≥ 1 δ ef f (r, θ) if Y < 1 ( 62 
)
It can be split in a poloidal average and modulation as well. Hence two kinds of trapped particles exist: toroidally trapped, and ripple trapped particles. It should be noted however that above a critical energy that depends on the ripple amplitude, the motion of particles is no longer regular, and becomes stochastic instead. This feature obviously modifies the transport properties, and is treated in the next section. 

Stochastic losses

The calculation of neoclassical transport is done in the adiabatic limit where N b Ω d Ω b , where Ω d is the precession frequency of trapped particles, and Ω b their bounce frequency. In the opposite limit N b Ω d Ω b , stochasticity develops above a threshold that involves the particle energy and ripple amplitude [START_REF] Goldston | Confinement of high-energy trapped particles in tokamaks[END_REF]. We admit here that the neoclassical calculation is valid until stochasticity emerges. This occurs when the Chirikov island overlap parameter is above a critical value S c of order 1. The Chirikov overlap parameter is found to be [START_REF] Grua | Collisionless diffusion regimes of trapped particles in a tokamak induced by magnetic field ripples[END_REF] 

S I = 4 F c Θ 1/2 (N b q) 3/4 δ1/2 2 qρ T R 0 u 1/2
where F c ∼ s (s = d log q d log r is the magnetic shear), Θ =

πθ b 2 , θ b is the bounce angle, ρ T i = m i v T i
e i B 0 is the thermal Larmor radius, and u = µB 0 /T eq = x 2 a normalised energy. Hence stochasticity sets on for energetic particles such that u ≥ u c , where u c is defined as

u c = Θ F c S c1 4 2 1 (N b q) 3/2 4 δ R 0 qρ T i 2
A difficulty is that this critical energy depends on the bounce angle θ b , which makes integrals in the phase space somewhat tricky. An approximation consists in setting θ b = π 2 , and S c = 2 π (a proxy for 2/3 -let us note that Goldston et al. seems to use S c = 1/π [START_REF] Goldston | Confinement of high-energy trapped particles in tokamaks[END_REF]), which imposes

u c = 1 8π 1 (N b q) 3/2 4 δ 1 s R 0 qρ T i 2
Hence the energy integral in the neoclassical entropy production rate, and calculated for the effect of ripple on banana tips, should be limited to u ≤ u c . For u ≥ u c , stochastic losses prevail. In this limit, the diffusion coefficient is given by the quasilinear theory

D QL = 1 2 u 3/2 θ b D p δ 2 5/2
where D p is the "plateau" diffusion coefficient

D p = qR 0 v 2 D v T i
Hence the value is about the same as the ripple-plateau diffusion. To simplify the expressions, the quasilinear value is adjusted to match exactly the ripple-plateau entropy production. Above a second critical value of energy, the quasilinear theory does not apply any more. This regime corresponds to the so-called strong perturbation regime. It is described in the work by Goldston et al. [21]. This regime occurs for a redefined Chirikov parameter S II above a critical value S c . This second Chirikov parameter reads

S II = 2F K Θ 1/2 (N b q) 3/2 δ 5/2 qρ T i R 0 u 1/2
where where S st = 2 in Grua et al. [START_REF] Grua | Collisionless diffusion regimes of trapped particles in a tokamak induced by magnetic field ripples[END_REF]. In the following expressions, the integrals over the bounce angle θ b have been done analytically, and a fit performed in a second stage.

F K = sθ b + 1

Total entropy production rate

The total resonant entropy production reads Ṡres = Ṡrip,I + Ṡtor,II + Ṡtor,I + Ṡrip,II + Ṡst Here the label I means "primary", and II "secondary", while "tor" means toroidal trapping (usual banana particles) and "rip" means local trapping in ripple wells. For instance Ṡrip,I means "local trapping is the primary effect". The component Ṡst accounts for stochastic losses. Some lengthy but straightforward algebra yields the following expression of the various contributions to the entropy production rate

Ṡrip,I = π 2 dV N eq D p (N b q) δ 2 +∞ 0 due -u u 2 K rip,I (r, u) e i B p T eq V t 2 
Ṡtor,I = π 2 dV N eq D p +∞ 0 due -u u 2 K tor,I (r, u)

1 N eq dN eq dr + u - 3 2 1 T eq dT eq dr + e i B p T eq V t
The entropy production rate Ṡtor,II is associated with the effect of magnetic drift on ripple trapped particles. It reads Ṡtor,II = 16 9

2 π 3/2 dV N eq D p δ 3/2 G 1 ν * +∞ 0 due -u u 5/2 1 ν(u) 1 N eq dN eq dr + u - 3 2 1 T eq
dT eq dr 2

The production rate Ṡrip,II is due to effect of the ripple perturbation on bananas. If ν * 1/ 3/2 , the expression of Ṡrip,II depends on the effective collision frequency ν * ef f . It reads

Ṡrip,II = 2 π 3/2 dV N eq D p 1 N b q δ 2 1 ν * uc 0 due -u u 5/2 1 ν(u) K rip,II (r, u) 1 N eq dN eq dr + u - 3 2 1 T eq
dT eq dr 2

The production rate Ṡrip,II is small when ν * 1/ 3/2 (Pfirsch-Schlüter regime), which may need to introduce an additional cut-off.These expressions cover most regimes described in section 2, in particular super-banana transport.

The stochastic component reads

Ṡst = π 2 dV N eq D p N b q δ 2 +∞ uc due -u u 2 K st (r, u) 1 N eq dN eq dr + u - 3 2 1 
T eq dT eq dr 2

In these formula dV = 4π 2 R 0 rdr is the volume element, ν(u) = ν( √ u), v D = Teq eB 0 R 0 is the thermal magnetic drift velocity.

The functions K provide smooth transitions between various collision regimes, and also the transition between the weak and strong stochastic regimes

K rip,I (r, u) = G 0 + min G 0 , G 0 4 π I ν * N b q δ 3/2 ν(u) u 1/2 K tor,I (r, u) = min 1, 4 π Iν * ν(u) u 1/2 K rip,II (r, u) = max 1, π 2 8 ν * (N b q) 2 ν(u) u 1/2
where I = 1.38. The function that ensures a continuous transition from weak to strong perturbation regime reads

K st (r, u) = 1 1 + 2 √ π 1 Sst (N b q) 3/2 δ 5/2 qρ T i R 0 su 1/2
where S st is related to the transition to stochasticity in the strong perturbation regime.

We choose here S st = 2. The function min(x, y) and max(x, y) have discontinuous derivatives along the line y = x. Reasonable fits are 1 min(x, y) = 1

x + 1 y and max(x, y) = x + y When α 1, the form factors G 0 , G 0 , G 0 , G 1 are given by the relations

G 0 (r) = Y >1 dθ 2π δ2 (r, θ) G 0 (r) = Y <1 dθ 2π δ2 (r, θ) G 0 (r) = Y <1 dθ 2π δ 1 2 (r, θ) and G 1 (r) = Y <1 dθ π δ 3 2 (r, θ) sin 2 θ
6.3 Expressions of fluxes 6.3.1 How to proceed?

The strategy to determine a neoclassical equilibrium with ripple is rather straightforward. First the extremum of the entropy production rate with respect to density variations yields the particle flux. The ambipolarity constraint reduces to a condition of vanishing ion flux, Γ N = 0. This constraint gives a relation between the radial electric field, toroidal velocity (or angular frequency) and gradients of density and temperature (the poloidal velocity can be eliminated using the force balance equation). Second the extremum with respect to the toroidal velocity provides the damping rate in the toroidal direction and therefore another constraint. Finally, the extremum with respect to the temperature gradient yields the thermal diffusivity.

Transport matrix

The procedure explained above can be conveniently recast as a transport matrix relationship, which reads

Γ = MA (63) 
where Γ is the " thermodynamical flux" vector

Γ =       Γ N Γ V Γ T       =        Γ N M N e i Bp Q N T       
and A is the "thermodynamical force" vector

A =       A E A V A T       =        1 Neq dNeq dr e i Bp T V t 1 Teq dTeq dr       
and M is the transport matrix

M = -D p   d N N d N V d N T d V N d V V d V T d T N d T V d T T  
The matrix elements are given in Appendix F. The transport matrix can be reshaped in the following form

M = -D p   d 0 + d0 d 0 d 1 + d1 d 0 d 0 + d0 d 1 d 1 + d1 d 1 d 2 + d2   (64) 
The elements are detailed in Appendix F. This structure gives some insight in the physics due to ripple, as seen in the next section.

Electric field and toroidal velocity

In principle, the inversion of the relation Γ = MA yields the values of the forces A given the fluxes Γ. However, this is only true in steady-state, which is not the case of most simulations, unless one waits for a very long computation time. In practice, one can expect the ambipolarity condition Γ N = 0 to be respected on a short time scale, since any departure from ambipolarity produces an electric field that re-establishes ambipolarity in a short time scale. On the other hand, the temperature takes basically a confinement time before it relaxes to its asymptotic value. So it is reasonable to consider A T fixed, i.e. to be a given for a simulation time that is short. Momentum should be somewhere in between. We then focus on the two first lines of the transport matrix Eq.( 64), which yield the electric field A E and toroidal velocity A V given the particle flux Γ N , which is assumed finite for the time being, and the torque Γ V . One expects A E , A V to be proportional to

A T , i.e. A E = -k E A T (beware the sign), A V = k V A T , or equivalently e i E r T eq - 1 N eq dN eq dr = k E 1 T eq dT eq dr and e i B p T eq V t = k T 1 T eq
dT eq dr

The force balance equation, which is always verified on a very short time scale in GYSELA, can be formulated as

e i B 0 T eq V p = 1 N dN dr + e i B p T eq V t + 1 T eq
dT eq dr which can be rephrased as

A V p = e i B 0 T eq V p = A E + A V + A T (65) 
Hence it yields the poloidal velocity once A E and A V are known. Hence one expects

e i B 0 Teq V p = k P A T with k p = -k E + k V + 1
In absence of ripple, it is clear that the two first lines the matrix M, Eq.(64), are the same. This means, as expected, that the system is degenerate. Therefore A E , A V cannot be determined separately, only the combination

A E + A V A E + A V = - d 1 d 0 A T
which happens to yield directly the poloidal velocity

e i B T V p = 1 - d 1 d 0 A T
This is a standard result of neoclassical theory. With ripple the situation changes dramatically. Subtracting the second line from the first line of the relation Γ = MA, one finds the exact relationship

Γ V -Γ N = -D P d0 A V -d0 A E -d1 A T (66) 
If the particle flux is zero, this relation yields the torque Γ V due to magnetic drag versus the gradients A E and A V . All coefficients depend on the ripple amplitude, which makes it particularly attractive. Two limit cases appear:

• friction due to local trapping dominates d0 dn , then Γ V = -D P d0 A V : the velocity should relax toward 0. Hence k T = 0.

• situation where d0 dn , typically 1/ν regime, or absence of local trapping. In this limit Γ V = D P d0 A E + d1 A T , which yields directly the radial electric field vs temperature gradient. This is typically the structure found by Connor et al. [START_REF] Connor | Neoclassical diffusion arising from magnetic-field ripples in tokamaks[END_REF].

As a result, k E = -d1 / d0 .

Let us pursue the analysis of the case with vanishing particle flux Γ N = 0. One can then extract an additional constraint

A E = - d 0 d 0 + d0 A V - d 1 + d1 d 0 + d0 A T
which is readily implemented in Eq.( 66)

Γ V = -D P d0 + d 0 d0 d 0 + d0 A V - d1 d 0 -d0 d 1 d 0 + d0 A T
This expression bears the exact form that is requested, i.e.

Γ V = -ν ζ [A V -k T A T ] (67) 
with

k T = d 0 d1 -d 1 d0 (d 0 + d0 )(d 0 + d0 ) -d 2 0 = d V N d N T -d N N d V T d N N d V V -d 2 N V and νζ = d0 + d 0 d0 d 0 + d0 = d V V - d 2 N V d N N (68) 
Note that again all coefficients go to 0 when ripple vanishes, as they should. This means that the case Γ N = 0 does behave correctly. The torque Γ V Eq.( 67) is responsible for a relaxation of the angular toroidal velocity RV t towards a constant value proportional to the temperature gradient. This process is called magnetic breaking and is illustrated in Fig. 22.

Heat flux

The heat flux is given by the following relation

Γ T = -D P d 1 + d1 A E + d 1 A V + d 2 + d2 A T
At vanishing particle flux Γ N = 0, the electric field A E can be expressed as function of A V and A T using Eq.( 67). This gives the following result

Γ T = -D P      d 1 d0 -d 0 d1 d 0 + d0 A V +   d2 + d2 - d 1 + d1 2 d 0 + d0    A T     
Finally, plugging A V = k T A T in the expression above yields the heat diffusivity. However this last step may not be legitimate since the relation A V = k T A T only applies when a steady-state has been reached for the toroidal momentum. This is usually not the case.

Figure 22:

Principle of magnetic breaking. The mirror force exerted on a guiding-centre in a inhomogeneous magnetic field is -µ∇B. When the field is oscillating, the mirror force can speed up or slow down a particle. This process is responsible for particle trapping. The mirror force induces a response of the distribution function that oscillates with the same spatial periodicity as the magnetic field corrugation. The resulting average torque is responsible for magnetic breaking.

Conclusion

In summary, most result of neoclassical theory can be recovered thanks to a variational principle based on minimum entropy production rate. Its effectiveness is illustrated here with the enhancement of collisional transport by resonant processes, which is at the heart of neoclassical theory of transport. Hence it does not cover the collisional Pfirsch-Schlüter regime. The latter can be added quite easily with a similar approach. When analysed in depth, the key element of neoclassical transport lies in a boundary layer that develops at the interface between trapped and passing domains in the phase space. Loosely speaking, the distribution function is shifted in the parallel velocity direction, whereas trapped particles cannot develop an organised motion, up to their diamagnetic velocity. This leads to a fast variation of the distribution function at the trapped/passing boundary that is regularised by collisions, hence the notion of collisional boundary layer. An extremum of entropy production rate expresses in fact a balance between the increase of entropy production within the boundary layer, and the increase of entropy due to collisions between passing particles, i.e. far away from the boundary layer in the phase space. Neoclassical theory leads to several essential results. First the poloidal velocity of the main ion species relaxes towards a value proportional to the ion temperature gradient. This is the result of a collisional drag between trapped and passing ions. If the effect of electrons is ignored, the main prediction of neoclassical theory is an ion heat diffusivity that is higher than the classical prediction. When electrons are accounted for, the expressions of fluxes become more complex. Basically the particle flux exhibits non diagonal contributions, called pinch terms. Pinch fluxes are proportional to the density, and not its gradient. One contribution to the pinch velocity is due to thermodiffusion, i.e. is proportional to the electron temperature gradient. A second component of the pinch velocity is proportional to the inductive field, and is called Ware pinch. The electron heat flux bears a similar structure, with thermodiffusion replaced by a heat pinch velocity proportional to the electron density gradient. Finally the Ohm's law appears to be significantly modified. First the conductivity decreases since only passing electrons carry current. Moreover a new term appears in the current density, which is proportional to density and temperature gradients and is called bootstrap current. The latter plays an important role in tokamaks, as it reduces the amount of current to be driven by induction.

Finally one additional advantage of using a variational approach is its ability to incorporate more complex processes related to the breaking of axisymmetry. The example that is given here is magnetic ripple, which is a corrugation of the magnetic field due to the finite number of coils in a tokamak. It can be extended to helical perturbations. The main effect of such 3D perturbations (3D in the sense of non-axisymmetric) is to enhance dramatically transport at low collisionality. In a nutshell, neoclassical diffusion coefficients that are proportional to the collision frequency are now inversely proportional to it, hence diverge when plasmas get hotter. Fortunately, motion across the magnetic field, in particular due to the E ×B drift, regularises this behaviour, to produce something again proportional to collisional frequency at very low collisionality. Another important consequence of 3D effects is magnetic breaking, i.e. a relaxation of the toroidal velocity, similar to the one observed in the poloidal direction in conventional neoclassical theory.

As a final note, the reader may question the very idea of computing collisional transport since it is known that perpendicular transport is often dominated by turbulent processes.

One first obvious answer is that physics along the field lines remain controlled by collisions. Hence resistivity and bootstrap current matter. This is also true for the poloidal velocity, which remains quite often determined by neoclassical relaxation -and same for toroidal velocity in presence of strong ripple. This is of course decisive since flows are known to regulate turbulent transport. In addition, there exists cases where neoclassical terms contribute significantly to perpendicular transport of particles, momentum and heat. One well known example is heavy impurity transport. Another one is Ware pinch, which can overcome its turbulent counterpart in regimes where the inductive field is strong, typically transients. Last but not the least, neoclassical and turbulent processes can interact in a synergistic way. All these reasons imply that collisional processes should never be neglected lightly.

APPENDICES A Radial displacement due to ripple in a tokamak

Since we are interested in the motion of a banana tip, it is sufficient to analyse the bounce motion of a particle. The motion of the toroidal angle of the banana tip ζ and the canonical toroidal momentum P ζ is Hamiltonian, i.e.

d ζ dt = ∂ H b ∂P ζ dP ζ dt = - ∂ H b ∂ ζ
where the bracket indicates a bounce average, i.e. an average over the bounce angle. The canonical toroidal momentum is just

P ζ = -e a ψ
, where e a is the algebraic charge and ψ the time average of the poloidal flux. The Hamiltonian H is the sum of an "equilibrium" Hamiltonian, that depends on the invariants of motion only, and a perturbed Hamiltonian H. We choose a simple representation if this perturbed Hamiltonian in the case of ripple, which reads H = -µB 0 δ cos(N c ζ), where µ is the magnetic moment, B 0 is a reference toroidal field, δ the amplitude of the magnetic field ripple assumed constant for simplicity, and N c the number of toroidal coils in the considered tokamak. Let us remember that the particle toroidal angle reads ζ = q θ + ζ, where θ is the poloidal angle of the banana particle, and q( ψ) the safety factor. For deeply trapped particles, θ can be approximated Since the bounce period is much smaller than a precession period, the variation of ∆ ψ after a bounce half-period π/Ω b is

e a ∆ ψ = π Ω b µB 0 δJ 0 (N c qθ b )N c sin(N c ζ)
Moreover, for circular concentric magnetic surfaces in the large aspect ratio limit, ∆ ψ = r/qB 0 ∆r δ , where ∆r δ is the radial displacement of the banana tip that is looked for. One then use the following estimate for trapped particles

Ω b 1 qR 0 µB 0 m a Using µB 0 = m a v 2 /2
, where m a is the particle mass, one finds

∆r δ = π √ 2 q 2 δ 3/2 J 0 (N c qθ b )N c sin(N c ζ)ρ c
B A model for a multi-species collision operator

The full Boltzmann collision operator is a quadratic non linear operator that acts on distribution functions. It is difficult to handle as such, and is thus often replaced by a simpler operator. The first step consists in linearising the operator around a known bulk distribution function, usually a Maxwellian. Though this step greatly simplify the overall structure operator, it is still difficult to use in practice as in involves integrals over the distribution function that is looked for. In other words it is at this stage an integro-differential operator. A step further consists in replacing the integral part by approximations. A systematic procedure can be devised to achieve this goal, with some flexibility in its implementation. The present appendix gives an example of such a model operator, keeping in mind that many others exist in the literature.

B.1 Requirements on a collisional operator

A multi-species collision operator must satisfy several constraints:

• particle, momentum and energy conservation

• H theorem, i.e. positive entropy production rate

• relaxation towards a Maxwellian, which can be considered as part of the H theorem, since the minimum of entropy production rate should be reached when the distribution function is a Maxwellian.

The Boltzmann collision operator satisfies properties of momentum and energy conservation for every couple of species. This detailed force and energy balance can be expressed as follows. The non linear collision operator for a species "a" is written in the form

C tot,a = b C tot,ab (F a , F b ) (69) 
The collisional momentum transfer rate, or equivalently the friction force between species "a" and "b", is defined as

R ab = d 3 vC tot,ab (F a , F b ) m a v
while the collisional energy exchange rate is

Q ab = d 3 vC tot,ab (F a , F b ) 1 2 m a (v -V a ) 2
The detailed balance conservation law takes the form

R ab = -R ba (70) 
Q ab + R ab • V a = -Q ba -R ba • V b (71) 
If all distribution functions are Maxwellian, exact expressions for collisional momentum R M ab and energy exchange rates Q M ab are [START_REF] Helander | Theory of plasma confinement in non-axisymmetric magnetic fields[END_REF][START_REF] Hinton | Theory of plasma transport in toroidal confinement systems[END_REF]]

R M ab = -N a m a ν ab (V a -V b ) and Q M ab + R M ab • V a = -3N a m a m a + m b ν ab (T a -T b )
where N a , V a and T a are the density, velocity and temperature of the species "a", and ν ab is the momentum transfer rate

ν ab = 4 √ 2π 3 N b m a 1 m a + 1 m b e 2 a e 2 b ln Λ (4πε 0 ) 2 1 v 2 T a + v 2 T b 3/2
Obviously the properties Eqs.(70,71) are satisfied by Eq.(72,72). It must be kept in mind that the solution of the advection/diffusion problem is not a Maxwellian in presence of a temperature gradient. As a consequence, extra terms appear in the force R ab , in particular a thermal force.

B.2 General structure of a collision operator

We adopt here an operator that is a variant of the Hirshman-Sigmar class of operators. This operator relaxes towards a Maxwellian, satisfies an H-theorem, and verifies the main conservation laws. In addition, the exact inter-species momentum and energy transfer rate are recovered when the distribution functions are Maxwellian [START_REF] Hirshman | Approximate fokker planck collision operator for transport theory applications[END_REF]. The operator is linearised around unshifted Maxwellian distribution functions F M 0a for all species. The collision operator at lowest order is not zero. We take it of the form

C tot,ab (F M 0a , F M 0b ) = 2 3 Q M ab N a T a m a v 2 2T a - 3 2 F M 0a
This operator ensures that the temperatures of the Maxwellian distribution functions are equal at thermodynamical equilibrium. We now turn to the linearised operator, which is decomposed in a similar form as Eq.( 69), i.e.

C a (F a ) = b C ab (F a )
This operator is parametrized by weighted moments of

F M 0a , F M 0b and δF b = F b -F M 0b .
The argument of this operator is noted F a rather than δF a since F M 0a belongs to the kernel of this operator, as will be shown below. Each term C ab can be split in 2 parts

C ab = C (t) ab + C (f ) ab
The first contribution C 

B.3 Test particle collision operator

The test particle collision operator is most conveniently written in spherical coordinates (v, ξ), where v is the velocity modulus, and ξ = v v a pitch-angle variable. The third variable is the gyro-angle γ. The test particle operator is separable in this set of coordinates and reduces to

C (t) ab (F a ) = 1 v 2 ∂ ∂v v 2 D v,ab ∂F a ∂v + m a v T b F a + ν d,ab L (F a )
where the operator

L (F a ) = 1 2 ∂ ∂ξ 1 -ξ 2 ∂F a ∂ξ + 1 2 1 1 -ξ 2 ∂ 2 F a ∂γ 2 (72) 
accounts for pitch-angle and gyro-angle scattering. The diffusion coefficient in the velocity radial direction is noted D v,ab = 1 2 ν v,ab v 2 . The corresponding diffusion rate ν v,ab is usually called "parallel" collision rate and noted ν ,ab . We will rather name it "radial velocity collision rate", and avoid the notation ν ,ab since it brings some confusion. Indeed the parallel direction designates here the direction along the magnetic field. The collision frequency ν d,ab is the usual collisional deflection rate. The diffusion coefficients in the velocity space D v,ab , and D d,ab are then related to the velocity and deflection collision frequencies ν v,ab and ν d,ab via the relations

D v,ab (v) = 1 2 ν v,ab (v)v 2 = v 2 T a x 2 a ν v,ab (x a ) D d,ab (v) = 1 2 ν d,ab (v)v 2 = v 2 T a x 2 a ν d,ab (x a )
where v is the velocity modulus (i.e. E = 1 2 m a v 2 ) and x a is a normalized velocity modulus

x a = E T a = v √ 2v T a
We introduce a normalizing self-collision frequency ν aa for the species 'a'

ν aa = 4 √ π 3 ln Λ (4πε 0 ) 2 N a Z 4 a e 4 m 2 a v 3 T a
With these notations, the velocity, deflection and slowing-down collision frequencies are

ν v,ab (x a ) = ν HS aa v T a v T b Θ (x b ) x 2 a ν d,ab (x a ) = ν HS aa v T a v T b Ψ (x b ) x 2 a ν s,ab (v) = ν HS aa T a T b 1 + m b m a v T a v T b Θ (x b )
where

ν HS aa = √ 2 N b Z 2 b N a Z 2 a ν aa
Here x b is a function of x a , i.e.

x a = v √ 2v T a x b = x ba x a = v √ 2v T b x ba = v T a v T b
The functions Ψ, G, Φ depend on the velocity modulus only and are defined as

Ψ(x) = 3 √ π 4 1 x [Φ(x) -G(x)] Θ(x) = 3 √ π 2 G(x) x G(x) = 1 2x 2 Φ(x) -xΦ (x) Φ(x) = 2 √ π x 0 dy exp -y 2
The function Φ(x) is the error function, and the function G(x) is the Chandrasekhar function, in accordance with Hirshman-Sigmar [START_REF] Hirshman | Approximate fokker planck collision operator for transport theory applications[END_REF][START_REF] Hirshman | Neoclassical transport of a multispecies toroidal plasma in various collisionality regimes[END_REF] and Hinton-Hazeltine [START_REF] Hinton | Theory of plasma transport in toroidal confinement systems[END_REF][START_REF] Hinton | Collisional transport in plasma, volume I of Basic Plasma Physics[END_REF] papers. These definitions have been chosen such that the deflection and slowing-down frequencies ν d,ab and ν s,ab coincide with the definitions given by Hirshman and Sigmar [START_REF] Hirshman | Approximate fokker planck collision operator for transport theory applications[END_REF]. The notation ν HS aa refers to the interspecies collision rate 1/τ ab defined in [START_REF] Hirshman | Neoclassical transport of impurities in tokamak plasmas[END_REF]. Hence ν HS aa is different from the inter-species momentum transfer rate ν ab . In particular ν HS aa differs from ν aa by a factor √ 2, i.e. ν HS aa = √ 2ν aa . Useful asymptotic limits are

slow particle (x → 0) : Ψ(x) → 1; Θ(x) → 1 fast particle (x → ∞) : Ψ(x) → 3 √ π 4 1 x ; Θ(x) → 3 √ π 4 1 x 3

B.4 Field particle collision operator

The field particle operator is more intricate. Hirshman and Sigmar proposed a general method based on an expansion on spherical functions and Laguerre polynomials [START_REF] Hirshman | Approximate fokker planck collision operator for transport theory applications[END_REF]. We adopt here a simpler version, which fits the forces and heat fluxes. It bears some similarity with the operators proposed by Abel et al. [START_REF] Abel | Linearized model fokker planck collision operators for gyrokinetic simulations[END_REF] and Sugama et al. [START_REF] Sugama | Linearized model collision operators for multiple ion species plasmas and gyrokinetic entropy balance equations[END_REF]. This operator is of the form

C ab (F a ) = ∂ ∂v • F M 0a D ab • ∂g a ∂v -ν s,ab m a v T a • (U d,a -U ba ) F M 0a
where

g a = h a - m a v 2 2T a q ba h a = f a - m a v • U d,a (v) T a
and f a = Fa F M 0a . The distribution F M 0a is the unshifted Maxwellian built with the density N a and the temperature T a ,

F M 0a (x, v, t) = N a (x, t) m a 2πT a (x, t) 3/2 exp - E T a (x, t) (73) 
where

N a = d 3 vF 3 2 N a T a = 1 2 m a d 3 vv 2 F a
The diffusion tensor D ab is of the form

D ab = 1 2 ν v,ab vv + 1 2 ν d,ab (v 2 I -vv)
The velocity U d,a guarantees that the diffusive part of the collision operator conserves momentum. Each of its components is a function of the velocity modulus v only, i.e.

m a v 2 T a U d,a (v) = 3 4π dΩvf a (v, ξ, γ)
where dΩ = dγdξ is the element of solid angle in the velocity space. Conservation results from the following properties

d 3 vG(v)v = 0 and d 3 vG(v)vh a (v) = 0
for any function G that depends on the velocity modulus only. The latter relation comes from the property

dΩv i v j = 4π 3 v 2 δ ij B.4.

Momentum conservation

The velocities U ab are "restoring" coefficients adjusted to ensure the total momentum conservation of the collision operator, i.e. the momentum transferred from species "a" to species "b" must be the opposite of the momentum transferred from "b" to "a". This leads to the following expression [START_REF] Hirshman | Approximate fokker planck collision operator for transport theory applications[END_REF] U ab = N a m a ν s,ab The following properties have been used

Λ ab = N a m a ν ab = N b m b ν ba = Λ ba (74) Λ ab = 1 3 N a m a ν s,ab m a v 2 T a a = 1 3 N b m b ν s,ba m b v 2 T b b
Eq.( 74) underlies the action/reaction principle Eq.(70).

B.4.2 Energy conservation

The parameters Q ab are adjusted to ensure the conservation of total energy, i.e. the energy transfer rate from species "a" to species "b" must be the opposite to the energy exchange from "b" to "a",

Q ab = T b N a ν E,ab mav 2 2 f a a N b ν E,ba m b v 2 2 2 b = T b ν E,ab mav 2 2 f a a ν E,ab mav 2 2 2 a
where ν E,ab is the energy loss rate

ν E,ab = -vν v,ab ∂ ∂v ln ν v,ab F M 0a v 5
This definition agrees with the conventional energy loss rate

ν E,ab = 2ν s,ab -2ν d,ab -ν v,ab
for equal temperatures T a = T b only. The reason is that the test-particle part of the model operator Eq.( 73) differs from the exact one Eq.( 72) by a ratio T b /T a in the drag term. In other words the diffusion/convection part of the collision operator C ab (F a ) relaxes towards a Maxwellian F M 0a with mass m a and temperature T b . Therefore Eq.(75) coincides with Eq.(75) for this particular definition of F M 0a . For obvious practical reasons only one reference Maxwellian distribution function should be handled, namely Eq.( 73). Hence the definition Eq.(75) of ν E,ab will be kept. The following property has been used

N a ν E,ab m a v 2 2 2 a = 3T a T b m a + m b Λ ab = N b ν E,ba m b v 2 2 2 b
This relationship is related to the equipartition principle Eq.( 71). The collisional friction force is readily calculated

R ab = -N a m a ν ab (U ab -U ba )
It can be verified that U d,a = U ab = V a for Maxwellian distribution functions (in the low Mach number limit)

f M a = 1 + m a T a v • V a
The exact form of the collisional momentum exchange Eq.( 72) for a Maxwellian is then recovered, i.e. R ab = R M ab . The collisional energy exchange rate can also be calculated

Q ab + R ab • V a = -3 1 m a + m b N a m a ν ab [(1 + q ab ) T a -(1 + q ba ) T b ]
For Maxwellian distribution functions Eq.( 75), Q ab = Q ba = 0 because ν E,ab v 2 a is null. Hence the equipartition term Q M ab Eq.( 72) is identical to the expected value Eq.(75), i.e. Q ab = Q M ab . The collision operator Eq.( 73) is self-adjoint and satisfies an H-theorem when temperatures are equal. Also the known limit forms of the collision operator are recovered.

B.5 Parallel friction force

Keeping only the first two Sonine polynomials, the normalized distribution function reduces to

F a 1 + v v 2 T a V a - 2 5 
q a N a T a 5 2 -x 2 a ( 75 
)
Let us call C ,ab the term that deals with momentum exchange between different species. The rate of parallel momentum exchange is given by

R ab = -N a m a ν ab U ab -U ba
The two quantities U d,a (v) and U ab are computed by using the approximate distribution function Eq.( 75)

U d,a = V a - 2 5 
q a N a T a 5 2 -x 2 a U ba = V b - 3 5 q b N b T b 1 1 + x 2 ba leading to C ,ab = ν s,ab m a T a v F M 0a V b -V a + 2 5 q a N a T a 5 2 -x 2 a - 3 5 q b N b T b 1 1 + x 2 ba
The collisional drag force becomes

R ab = -N a m a ν ab V a -V b - 3 5 q a N a T a 1 1 + x 2 ab + 3 5 q b N b T b 1 1 + x 2 ba
For a Maxwellian, the result is exact and reduces to the friction force :

R M,ab = -N a m a ν ab V a -V b
Note that particles b are more massive than particles a, i.e. m b m a , then

x ab = v T b /v T a 1 and x ba = v T a /v T b 1 so that R ab -N a m a ν ab V a -V b - 3 5 q a N a T a
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C Constraints on the solution of the Fokker-Planck equation

Let us now address the case with collisions ruled by the equation Eq.( 9). As said, the solution of {H, F } = 0 is a function of invariants of motion (H, µ, ψ * , ), or equivalently of the 3 action variables J, while the solution of C(F ) = 0 is a local Maxwellian

F M (v , µ, ψ, θ) = N eq m a 2πT eq 3/2 exp - 1 T eq 1 2 m a v -V eq 2 + µB eq (76) 
where N eq , T eq , V eq are the density, temperature and parallel velocity, and depend in general on (ψ, θ), but on ζ because of axisymmetry. In general, a Maxwellian distribution function is not a function of the invariants of motion for two reasons:

• all fields depend on (ψ, θ), and not ψ *

• the local Maxwellian Eq.( 76) does not depend explicitly on the Hamiltonian H = 1 2 m a v 2 +µB eq (ψ, θ)+e a Φ eq (ψ, θ), because the variables (v , µ) appear separately, but also because of a mix-up with the mean parallel velocity V eq , and also the absence of the electric potential.

This can be partly cured by introducing the following approximations:

• all fields depend on ψ only 20 . One then introduces the effective density N eq (ψ) = N eq (ψ) exp e a Φ eq (ψ)

T eq (ψ)

• the Mach number V √ Teq/ma is supposed to be small, or order ρ * .

The distribution function can then be reformulated as

F M (H, ψ) = F M 0 (H, ψ) 1 + m a T eq (ψ) v V eq (ψ)
where

F M 0 (E, ψ) = N eq (ψ) m a 2πT eq (ψ) 3/2 exp - E T eq (ψ)
or equivalently

F M 0 (H, ψ) = N eq (ψ) m a 2πT eq (ψ) 3/2 exp - H T eq (ψ)
is called "unshifted" Maxwellian distribution function. We get closer -however {H, F M } = 0 so that this reformulated local Maxwellian F M is still not solution of the drift-kinetic equation. There are two reasons for this • v is not an invariant of motion. Let us note however that passing particles are not far from satisfying this property. Indeed whenever H µB eq , then dv /dt 0.

• ψ differs from ψ * by -

M (H, ψ * ) = F M (H, ψ) - m a v e a I B eq ∂F M ∂ψ (H, ψ)
The second term in the r.h.s. does not satisfy C[F ] = 0 because of a term v E Teq -3 2 , and also again non invariance of v .

It then appears that a local Maxwellian cannot be solution of the drift-kinetic equation because it is not a function of the invariants of motion. The departure from a dependence on J only is thus due to collisions, and is responsible for a transport dubbed neoclassical.

In principal the distribution function should be expanded over a set or polynomials (Legendre and Sonine) to build a full solution. In other words, any function F of energy E and pitch angle ξ = v /v, where v = 2E/m is the velocity modulus can be expanded as

F (E, ξ) = +∞ =0 +∞ n=0 F n P (ξ)S n E T eq exp - E T eq
where P and S k are respectively Legendre and Sonine polynomials. Legendre are orthogonal polynomials with respect to the natural scalar product for a pitch-angle that spans the interval [-1, 1], i.e. Sonine polynomials are not in general eigenvectors of a collision operator21 -but their choice will appear natural in view of the discussion below. In principle all components F n should be computed, and indeed polynomial expansion is the basis for many codes that solve for collisional transport. From the analytical standpoint, this is a formidable task. However it turns out that most results of neoclassical theory can be derived by just keeping the first two Legendre polynomials P 0 = 1 and P 1 = ξ, and also the two first Sonine polynomials S 0 = 1 and S 1 = 5 2 -E. So we go on with a more intuitive (and less ambitious) programme by expressing the distribution function as

F 0 (J) = F M 0 (J) 1 + m a T eq v (J)W (J) (77) 
where v (J) has the same parity as the parallel velocity (i.e. proportional to P 1 ), but is a function of the invariants of motion. This function can be calculated exactly in standard neoclassical theory, at least for some model operators -we will build it up in a different way. The notation J stands for (H, µ, ψ * , ).

D Moments of the distribution function

We are now in position to compute from Eq.( 16) the mean parallel velocity

V (ψ, θ) = 1 N eq d 3 pv F 0 and the parallel heat flux q (ψ, θ) = P eq N eq d 3 p E T eq - 5 2 v F 0
Let us first mention the following identity

d 3 pF M 0 m a v 2 U ψ, θ, E, v = N eq T eq 2 √ π +∞ 0 dE T eq exp - E T eq E T eq 3/2 1 -1 dξξ 2 U (ψ, θ, E, ξ)
for any function U . This justifies a posteriori the choice of scalar products and therefore of Legendre and Sonine polynomials for the projection of the distribution function 22 . This property allows a straightforward derivation of the identities

d 3 pF M 0 m a v 2 = N eq (ψ)T eq (ψ) d 3 pF M 0 m a v 2 E T eq - 5 2 = 5 2 N eq (ψ)T eq (ψ)
This identities in turn provide an easy calculation of moments of the piece of distribution function related to V * ζ . The part related to W requires a bit more care, because v differs from v . Its form Eq.( 17) strongly suggests to use the weighted volume integral Eq.( 12). The integrals of interest reads

d 3 pF M 0 m a v v S n = N eq (ψ)T eq (ψ)f c (ψ)b(ψ, θ)δ n0 and 
d 3 pF M 0 m a v v E T eq - 5 2 S n = 5 2 N eq (ψ)T eq (ψ)f c (ψ)b(ψ, θ)δ n1
where f c (ψ) = 3 4 λmax 0 dλv λ (ψ, θ) depends weakly on θ and is close to a fraction of passing particles.

E Pedestrian derivation of neoclassical fluxes

In order to illustrate the spirit of neoclassical calculations, without making use of a variational formulation, the drift kinetic equation is solved in a simple geometry of circular concentric magnetic surfaces. 22 In the special case where U does not depend on ξ, this identity reads

1 NeqTeq d 3 pF M 0 m a v 2 U (ψ, θ, E) = E.

Fluxes and kinetic equation E.1.Fluxes

One key objective of neoclassical theory is to calculate particle and heat fluxes. Let us consider one species, with charge e a and mass m a . The guiding-centre velocity is of the form

v = v b + v E + v D ,
where v is the parallel velocity, v E the E × B drift velocity, and v D is magnetic drift velocity (b is the unit vector along the magnetic field) 23 . In absence of turbulence, and assuming that the electric potential is a magnetic flux function 24 , the radial component of the velocity is the projection v r D = v D • ∇r of the magnetic drift velocity. Hence the neoclassical particle flux reads

Γ N = d 3 v dθ 2π F v r D
where F is the distribution function, and

v r D = -v D sin θ 1 T eq m a v 2 + µB eq
where v D = Teq eaB 0 R 0 , and µ = 1 2 m a v 2 ⊥ /B(X), where B 0 and R 0 are reference magnetic field and major radius, X the guiding-centre position, m a the particle mass, and e a its algebraic charge. Since v 2 /v 2 ⊥ scales as in the domain of interest, the parallel velocity can be ignored against the perpendicular velocity. A normalized perpendicular energy u = µB 0 /T eq is also introduced, so that

v r D = -v D u sin θ
At this level of approximation, the normalised perpendicular energy u is the same as the normalised energy E Teq = x 2 , where E = 1/2m a v 2 + µB eq (r, θ) is the kinetic energy, so that u = x 2 . The heat flux expression is similar to the particle flux, with an extra energy in the integrand. The final expression of fluxes is therefore

Γ N = -v D d 3 vu dθ 2π F sin θ (78) Γ T = -v D T eq d 3 vu 2 dθ 2π F sin θ (79) 

E.1.2 Perturbative approach

The distribution function F is expressed as a function of the total energy H = 1/2m a v 2 + µB eq (r, θ) + e a Φ eq , µ, r and θ, where Φ eq (r) is the electric potential. Note H and µ are invariants of motion, but not the radial position r of the guiding-centre. The third invariant of motion is the canonical toroidal momentum

P ζ = -e a ψ + m a I(r) B(r, θ) v
where ψ is the opposite of the poloidal flux normalised to 2π. For circular concentric magnetic surfaces, the flux function ψ(r) is such that dψ = B 0 r q dr -in the following we will make an indistinct use of ψ or r as a radial variable that labels magnetic flux surfaces. The kinetic equation then reads

v ∇ F + v D • ∇F + e a E ind m a ∂F ∂v = C [F ]
where C [F ] is a collision operator, and ∇ F = 1 qR 0 ∂ θ , where q(r) is the safety factor. Note that the derivatives in the drift kinetic equation must be performed at constant H and µ. The term related to the magnetic drift velocity v D is responsible for neoclassical transport, as already seen from the structure of the fluxes. Moreover v D /v T scales as ρ * . Hence an expansion is appropriate, i.e. F = F 0 + F 1 + ..., where

v ∇ F 0 -C [F 0 ] = 0 (80) v ∇ F 1 -C [F 1 ] = -v D • ∇F 0 - e a E ind m a ∂F 0 ∂v (81) 
The solution of Eq.( 80) is a function of r and energy that we choose as an unshifted Maxwellian

F 0 = F M 0 = N eq (2π) 3/2 m a T eq 3/2 exp - H T eq
where N eq (r) = N eq exp eaΦeq Teq

, and N eq (r), T eq (r) are the equilibrium density and temperature. Let us introduce the "Spitzer" distribution function F sp defined as

C [F sp ] = - e a E ind T eq F M 0 v
Considerations on parity leads to the following formulation of the "Spitzer" distribution function

F sp = F M 0 m a v U sp T eq
where U sp (H, r) is called "Spitzer" parallel velocity. It is useful to introduce the auxiliary function τ sp defined as follows

C F M 0 v τ sp = F M 0 v
The function τ sp can be interpreted as a collision time (inverse of a collision frequency). Once τ sp is calculated, the velocity U sp and distribution function F sp are readily found

U sp = - e a E ind m a τ sp (82) 
F sp = - e a E ind T eq τ sp v F M 0 (83) 
To solve Eq.( 81), it is useful to make use of the invariance of P ζ , at order one in ρ * , namely

v D • ∇Ψ = Iv ∇ m a v e a B eq
Hence Eq.(81) can be rewritten as

v ∇ F 1 + I m a v e a B ∂F M 0 ∂ψ = C [F 1 -F sp ] (84) 
Far from the trapped domain v √ v T , the unperturbed distribution is a local shifted Maxwellian

F M = F M 0 1 + m a v V eq T eq ( 85 
)
where V eq (r) the fluid parallel velocity, assumed to be much smaller than the thermal velocity, say ρ * . At this stage, the parallel velocity V eq (r) is the same for all species. It makes then sense to introduce an auxiliary distribution function

G 1 = F 1 -F M 0 m a v V eq T eq -F sp
Noting that C F M 0 mv V eq Teq = 0, it then appears that the Fokker-Planck equation Eq.( 84) can be rephrased as

v ∇ G 1 + F M 0 m a v T eq V eq + U sp + V * ζ + = C [G 1 ] (86) 
where

V * ζ = I T eq e a B eq ∂ ln F M 0 ∂ψ ψ,H
is a kinetic diamagnetic velocity.

E.1.3 Thermodynamic forces

A delicate step is the calculation of ∂ ψ F M 0 , which must be performed at constant total Hamiltonian H, which differs from kinetic energy E since H = E +e a Φ eq (r). The gradient of F 0 is related to thermodynamic forces, responsible for fluxes. Using Eq.( 85), one finds the following expression

∂ ln F M 0 ∂ψ ψ,H = ∂ ∂ψ ln N eq + e a T eq ∂Φ eq ∂ψ + E T eq - 3 2 
∂ ∂ψ ln T eq

The latter can be restricted to its perpendicular contribution since the parallel part is times smaller. Finally Eq.( 86) can be recast as

v ∇ G 1 + F M 0 m a v T eq U tot = C [G 1 ]
where where B p = q B 0 is the poloidal field. A useful alternative expression for U tot is obtained by using the force balance equation (or more precisely its radial projection) ∂ ∂r ln N eq + e a T eq ∂Φ eq ∂r + B p V t -e a T eq B t V p + ∂ ∂r ln T eq = 0 (87)

U tot = V eq + U sp + V *
where the parallel velocity V eq has been replaced by the toroidal velocity V t , since these are the same at the requested order in . Combining these equations, a compact expression of U tot is found.

q U tot = T e a B 0 ∂Ξ ∂r = V p + 1 e a B t
x 2 -5 2

∂T eq ∂r + q U sp (88)

The combination ∂ r Φ eq + B p V t in Eq.( 87) indicates that the radial electric field cannot be calculated separately from the parallel (in fact toroidal) velocity. This is generic for any axisymmetric system. Toroidal symmetry has to be broken (at this order of the calculation) to compute the radial electric field and toroidal velocity separately. This appears clearly in the expression Eq.(88), which does not depend on the radial electric field nor on the toroidal velocity. Another way of understanding this degeneracy is that neoclassical transport is "automatically" ambipolar, i.e. the ambipolarity condition does not bring a new information that would allow calculating the electric field. Eq.( 88) allows understanding the logical steps of a neoclassical calculation:

• the particle fluxes are calculated as functions of V p and ∂ r ln T eq for each species.

The ambipolarity condition provides the poloidal velocity of the species whose contribution to the radial current is the largest, usually the main ion.

• The poloidal velocity for each species can be calculated by combining the force balance equations. Fluxes for species other than the main ion can then be calculated versus density and temperature gradients.

• The thermal fluxes are calculated using the previous information.

E.1.4 Normalised Fokker-Planck equation

It is reminded here that the Hamiltonian where F is a function of k, x and25 θ. As explained in the introduction, the contribution to fluxes come from a boundary layer in the phase space near the trapped/passing boundary k = 1 (deeply trapped particles correspond to k -1). The distribution function tends to develop a singularity in the velocity space along the direction of the momentum-like variable p. Therefore the dominant term in the collision operator has to be a diffusion along the p direction, namely

C(G 1 ) = 1 2 ∆v 2 x 2 v 2 T ∂ 2 G 1 ∂p 2
where < ∆v 2 > is a collisional scattering diffusion coefficient and generalised to electrons. It is homogeneous to a velocity diffusion coefficient and is of the form < ∆v 2 >= 2νv 2 T x 2 ν(x). It is convenient to introduce the normalized distribution functions f and g defined as

G 1 = 1/2 U tot v T F M 0 xg f = g + p
Also, the velocity integration in the vicinity of the trapped/passing boundary reads where η = ν * ν/x. Eq.(90) can also be written p∂ θ f = -{k, f } = η∂ pp f . It is reminded that k = 1 2 p 2 -cos θ. Since f = g + p, g can be safely replaced by f in the collision operator, consistently with a previous remark on the innocuous effect of collisions on a shifted Maxwellian. In the "f-description", the g function is replaced by f -p in the definition of Λ. Though the difference between f and g is an odd function of p, which at first sight does not contribute to Λ, this shift is necessary to ensure the convergence of integrals in p. In other words, g, not f , is a localized function of p in the boundary layer.

E.2 Explicit solution for a single species

We restrict the calculation to a single ion species (no Spitzer function). It can be easily extended to electrons by using appropriate collision frequencies, and including the Spitzer function.

E.2.1 Plateau regime

It is reminded that in the kinetic equation Eq.(90), p is a function of (k, θ), i.e. p = sgn(p) 2(k + cos θ)

In plateau regime, ν * ≥ 1, the variation of g with k is smooth, i.e. details of the distribution function in the domain |k| < 1 do not matter. Therefore trapping can be neglected, i.e. p sg(ξ) √ 2k so that p and θ can be treated as independent variables. Thus Eq.( 90) is a linear differential equation that can be solved exactly. Using Fourier transforms, the following solution is found26 A straightforward integration provides Λ = π 2 . The collision operator is often replaced in the literature by a proxy called Krook operator -ηg, so that the solution is g = -p p 2 + η 2 cos θ + η p 2 + η 2 sin θ However it turns out that Λ = π 2 is the same! This apparent coincidence results from the smoothness of g in the velocity space, which does not depend on the details of the dissipation (the final result does not depend on ν * ). It will be seen that this trick cannot be used in the banana regime. The particle flux in plateau regime is given by the expression The ambipolarity condition imposes that the sum of fluxes over all species must vanish. For small impurity concentrations, the main ion flux dominates over the electron flux by a factor m i /m e . Hence the ambipolarity constraint implies that the parenthesis in Eq.( 92) vanishes for ions. Using the force balance equation Eq.( 87), one finds the value of the main ion poloidal velocity V p = -1 2 ∂rTeq eaB 0 . For each species other than the main ion, the flux is calculated by using the main ion poloidal velocity and combining the force balance equations to find the poloidal velocity of the considered species. Also the heat flux for the main ion species can be calculated and reads

Γ T = -3 π 2 N eq qR 0 v T v 2 D
∂T eq ∂r

E.2.2 Banana regime

When ν * 1, it appears easier to solve in f , i.e. to solve -{k, f } = η∂ pp f . Moreover, multiplying Eq.( 90) and integrating over the (p, θ) variables leads to an alternative expression of Λ

Λ = η ∞ -∞ dp dθ 2π ∂f ∂p -1 2 
The solution is of the form f (k, θ) = f 0 (k) + ηf 1 (k, θ) + ..., where f 1 is given by 2dx exp (-x 2 ) x 4 ν 1.17

p∂ θ f 1 = η ∂ 2 f 0 ∂p 2 ( 
The ambipolarity condition provides the main ion poloidal velocity V θ = k neo ∂rT eaB , from which all fluxes can be calculated. The heat flux is then

Γ T = -1.35n qR 0 v T v 2 D ν *
∂T eq ∂r

F Transport matrix with ripple

This appendix provides the details of the elements of the transport matrix with ripple.

F.1 Elements of the transport matrix

The transport matrix M is symmetrical. Its 6 independent elements are given by the following expressions. Diagonal elements: 

d N N = π 2

F.2 Reformulation

Regarding the underlying physics, it is interesting to split the coefficients into those which depend on the ripple amplitude, and those which do not. let us define the u-dependent integrand K(u) = π 2 e -u u 2 K tor,I (r, u)

K(u) = 32 9 2 π 3/2 δ 3/2 G 1 ν * e -u u 5/2 1 ν(u) + 2 2 π 3/2 1 N b q δ 2 1 ν * [1 -Y (u -u c
)] e -u u 5/2 1 ν(u) K rip,II (r, u)

+ π 2 N b q δ 2 Y (u -u c ) e -u u 2 K st (r, u) K(u) = π 2 (N b q)
δ 2 e -u u 2 K rip,I (r, u)

where Y is the Heaviside function. The following sub-coefficients are then defined

d n = +∞ 0 du u - 3 2 n K(u)
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 1 Figure 1: Geometry of circular concentric magnetic surfaces.

Figure 3 :

 3 Figure 3: Contribution of trapped particles to collisional transport in the banana regime. Most of the contribution comes from a collisional boundary layer located near the banana-passing border ξ = ξ tr and of width ∆ξ tr = √ ν * ξ tr . Banana regime holds when ν * < 1, where ν * = νqR 0 v 3/2 .

Figure 4 :

 4 Figure 4: Banana-plateau diffusion coefficient vs collisionality parameter ν * . Note the decrease as 1/ν * in the Pfirsch-Schlüter regime ν * 3/2 > 1.

Figure 5 :

 5 Figure 5: Total collisional diffusion coefficient vs collisionality parameter ν * . Note the linear increase in the Pfirsch-Schlüter regime ν * 3/2 > 1 due to the inclusion of the Pfirsch-Schlüter diffusion coefficient.

Figure 6 :

 6 Figure 6: Perpendicular energy µB eq (θ) "seen" by a particle guiding-centre along a field line. Particle bounces back when the equation E = µB eq (θ), E the kinetic energy, admits solutions in θ. Trapping can be local (due tu ripple) or toroidal, due to the 1/R decay of the magnetic field.

Figure 7 :

 7 Figure 7: Schematics of neoclassical transport for super-banana particles (log scale).

Figure 8 :

 8 Figure 8: Detail of neoclassical transport for super-banana particles (log scale) at low collisionality for one class of particle energy.

Figure 9 :

 9 Figure 9: Diffusion of a locally trapped particle. Left panel: in absence of E × B drift velocity, a

Figure 10 :

 10 Figure 10: Schematic random motion of a banana tip under the effect of ripple and collisions. The displacement ∆r δ is given by Eq.(6). It changes sign depending on toroidal and poloidal angles.

Figure 11 :

 11 Figure 11: Structure of flows in a tokamak. The plasma fluid velocity is the sum of a parallel flow, plus perpendicular diamagnetic and E × B flows. Hence the toroidal velocity is close to the parallel velocity minus the projection of perpendicular flows.

Figure 12 : 2 eq

 122 Figure 12: Illustration of the Pfirsch-Schlüter on current density. The diamagnetic perpendicular current density that satisfies a magnetostatic equilibrium is J dia = Beq B 2 eq

Figure 13 :

 13 Figure 13: Increase of entropy associated with a boundary layer in the phase space. In presence of a single Hamiltonian perturbation in the phase space, an island develops. The distribution function is constant along the lines of motion. This produces a jump at the island separatrix between the distribution functions outside and inside the island. This discontinuity is resolved by collisions, via the onset of a boundary layer. This figure corresponds to the case of ions in a tokamak (courtesy G. Dif-Pradalier).

Figure 14 :

 14 Figure 14: Distribution function near the trapped/passing boundary. Passing particles can move

Figure 15 :

 15 Figure 15: Profile of the distribution function vs parallel velocity at θ = 0 and at given µ.

Figure 16 :

 16 Figure 16: Schematics of a temperature profile that results from a central heating and an outward heat flux.
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  eq,e e 2 m e E ind This is an Ohm's law, as expected. It is reminiscent of the Drude's calculation for electrical conductivity, see Fig.

17

 17 

  . The resistivity appears to match the exact value when Z 1, and fits reasonably well when Z = 1.

Figure 17 :

 17 Figure 17: Drude model of conductivity. Electrons are accelerated along a field line by an inductive field, force is -eE ind . Electrons are scattered by ions (assumed immobile) via collisions, resulting in a drag force -m e ν ei V ,e . Force balance leads to an average electron velocity along the field line V eq,e = -e me E ind , and hence a current density J =

  e U 0,e -U spitzer U † 0,e

Figure 18 :

 18 Figure 18: Particle flux vs density gradient.A pinch occurs when the particle flux is not zero at vanishing density gradient. The diffusion coefficient is the slope of the curve flux vs gradient. In absence of particle sources, the particle flux vanishes. In absence of pinch, the resulting density profile would be flat. However when the pinch velocity is not zero, a non flat profile established due to a balance between diffusion and pinch.

Figure 19 :

 19 Figure 19: Schematic of the Ware pinch mechanism. The toroidal canonical momentum computed at a banana tip varies because of the induction. This variation must be compensated by a radial shift of the banana tip. The ware pinch is this radial shift per unit time multiplied by the fraction of trapped particles.

  can be seen as a radial velocity of the particle. Momentum conservation requires δP Let us remind that dψ = B p Rdr, so that

Figure 20 :

 20 Figure 20: Schematic of the bootstrap current mechanism. The parallel velocity is oriented on each

Figure 21 :

 21 Figure 21: Example of regions where local trapping occur Y > 1 or not Y < 1, from [11].

θ b sθ b as

  low values of θ b do not contribute much to the entropy production. The diffusion coefficient reads D = D QL S st S II

=

  by θ b sin(α b ), where θ b is the bounce poloidal angle, and α b the bounce angle, i.e. α b = Ω b t + α b0 , where Ω b is the bounce frequency, and α b0 some initial condition. The bounce average perturbed Hamiltonian then reads H b µB 0 δJ 0 (N c qθ b ) cos(N c ζ) where J 0 is the Bessel function of index 0. The Hamiltonian H b depends on ψ only viathe safety factor. For a small ripple amplitude and low magnetic shear dq/d ψ, it appears that the motion of the banana tip toroidal angle ζ is essentially ruled by the equilibrium Hamiltonian H eq and is therefore close to the unperturbed precession motion. The new feature is the time variation of P ζ = -e a ψ, which is no longer an invariant of motion.

  ab = C tot,ab (δF a , F M 0b ) is usually called "test particle collision operator", and corresponds to collisions experienced by a particle on a Maxwellian distribution of particles "b". The second C (f ) ab = C tot,ab (F M 0a , δF b ) is sometimes named "field particle collision operator", and rather corresponds to a modification of Rosenbluth potentials due to the perturbed distribution function δF b .

mav 2 Ta U d,a a N b m b ν s,ba m b v 2 T b b = ν s,ab v 2 U d,a a ν s,ab v 2
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H eq = 1 2 m a v 2 +where

 2 µB 0 (1 -cos θ) + e a Φ eq is an invariant of motion. This property is sufficient to describe properly the physics of trapping. The problem at hand belongs to the category of boundary layers. It is useful to introduce the dimensionless pitch-angle variable x is a normalised energy defined above. Let us define a normalized Hamiltonian ask = 1 2 p 2 -cos θup to a constant on a given magnetic surface. It appears that p and θ are conjugated variables with respect to the Hamiltonian k. Moreoverv ∇ F = x v T qR 0 1/2 p ∂F ∂θ

d 3

 3 vF M 0 ... = N eq √

3

 3 sin (θ -ρp)

T eq 68 Figure 23 :

 6823 Figure 23: Contour lines of the distribution function in the (θ, v ) space for two values of ν * , calculated with GYSELA (Dif-Pradalier et al.).
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  The calculation of the Spitzer thermodynamic potential has been subject of a large number of studies, including by Spitzer himself. It is therefore considered as a given. Nevertheless it is interesting to compute the resistivity with the simplified operator above. It is convenient to write the flow M e in the ion rest frame, i.e M e = V eq,i + M e . The Vlasov equation Eq.(55) then implies ν d,e Ũsp = ν d,ee M e + γ ind where γ ind = -eE ind /m e is homogeneous to an acceleration. Momentum conservation Eq.(51) imposes that {ν d,ee } M e = ν d,ee Ũsp

	5.1.3 Spitzer resistivity			
	so that	ν d,ee ν d,ei ν d,e	M e =	ν d,ee ν d,e	γ ind
					2
			34		

  They are eigenfunctions of the pitch-angle scattering operator defined in Appendix B (first term in the r.h.s. of Eq.(72) ), with eigenvalues ( + 1)/2. Sonine polynomials are technically speaking Laguerre polynomials of index 3/2, and therefore orthogonal with respect to a suitable scalar product in energy

			1 2	1 -1	dξP (ξ)P (ξ) =	1 2 + 1	δ
	0	+∞	dEE 3/2 e -E S n (E)S n (E) =	Γ n + 5 2 Γ (n + 1)	δ nn

Strictly speaking the notation u should be used to make the difference between the guiding-centre and the particle parallel velocities. However it appears that these two coincides in the guiding-centre at order 1 in the small expansion parameter ρ *

Usually a magnetic surface cross section is not circular -the "minor radius" can nevertheless be chosen as a typical size of its cross section, like an average radius.

Sign depends on the convention on the toroidal angle

Obviously, one can no longer assimilate the parallel velocity v to the modulus v when dealing with resonant particles.

The component in cos θ of the magnetic field comes from a Taylor expansion of the magnetic field for circular concentric magnetic surfaces B = B 0 R 0 /R with R = R 0 + r cos θ.

In a torus, ripple is larger on the low field side where the distance between coils is larger.

The dependence Φ eq on J 3 is demonstrated in the note on trajectories

Again, this is not true in a torus.

π νii and νii = 1/τ ii , τ i = √ 2τ ii = 1 νi .

This bracket is the traditional notation for an average in the velocity space in neoclassical theory. However it should not be confused with the notation { , } for Poisson brackets. The difference lies in the coma.

Neq,ee 2 meν ei E ind , and hence a conductivity σ = Nee 2 meν ei .

Helander and Sigmar find 0.59 instead of 0.80 for the coefficient of the temperature gradient when Z = 1.

In other words, poloidal asymmetries of the density, temperature, potential and velocity are ignored. They are small for density, potential and temperature in normal conditions -this is no longer true, in particular when the plasma rotates or is heated with radio-frequency heating. For the parallel velocity, this is a very poor approximation since poloidal asymmetries are of the order of , so no small except for vanishingly small inverse aspect ratios

The function f n = e -E S n is solution of the differential equation∂ E E 5/2 ∂ E f n = -nE 3/2 f n , or equivalently v -2 ∂ v D v v 2 ∂ v f n = -2nD v f n with D v = v 2 .Comparing with Eq.(72) in Appendix B, this is equivalent to a Fokker-Planck operator with a constant collision frequency, whereas the latter is velocity dependent for Coulombian collisions, typically ν v ∼ 1/v 3 .

3 √ π +∞ 0 dEe -E E 3/2 U (ψ, θ, E), where E = E/T eq . It is noted {U } in the literature.

To simplify the notations, species label "a" is omitted except in charge and mass. It must be kept in mind though that all macroscopic fields like density, velocity and temperature may be different for each species. Same for the magnetic drift velocity

Poloidal asymmetries of the electric potential matter for momentum of heavy impurity transport, which are thus not discussed here.

Note that p∂ θ F = -{k, F } where {f, g} = ∂ θ f ∂ p g -∂ p f ∂ θ g is a Poisson bracket. This relationship allows to bridge this derivation with the one done in the note on mean field statistics

This solution was already derived in the lecture note on mean field kinetic theory, which is of course not a coincidence. The reader is referred to this note for details.

Let us stress some important properties

• The coefficients d n do not depend on the ripple amplitude. Therefore the underlying physics is the standard neoclassical theory.

• The coefficients dn and dn both depend on the ripple amplitude. However they do not cover the same physics. Coefficients dn are finite only when local trapping occur.

On the contrary dn essentially cover the physics of ripple on banana tips, magnetic drift on locally trapped particles, and stochastic losses.

With these definitions, the transport matrix bear a "simple" form

This structure turns to give some insight in the physics due to ripple.