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Mean field kinetic theory

X. Garbet

July 16, 2022

Abstract

This note presents the theoretical framework to predict the evolution of a mean dis-
tribution function in an Hamiltonian dynamical system. Assumptions are an integrable
unperturbed Hamiltonian and a scale separation between mean and perturbed distribu-
tion functions. The first result shows that that the evolution of the mean distribution
function, which depends on action only, can be written in a conservative form. In other
words the advection contribution to the kinetic equation can be written as the divergence
of a flux in the action space. Moreover fluxes can be computed via a principle of mini-
mum entropy production rate. The special case of a single perturbation is treated first.
It appears that the set of constant energy surfaces bear the shape of an island near the
resonant surface in the phase space. The distribution function gets flat within the island,
while strong gradients develop near its separatrix. Not surprisingly the entropy produc-
tion rate is maximum in the separatrix region. The case of multiple perturbations is then
addressed. A Chirikov overlap parameter is defined that measures the degree of island
overlap, i.e. compares the island width with the distance between adjacent resonant sur-
faces. Whenever the Chirikov overlap parameter exceeds 1, trajectories become chaotic.
Under some conditions a quasilinear transport theory can then be used. Finally the case
where two perturbations are involved, but do not produce chaos is also investigated.

Sections labelled with a star “*” can be skipped in a first reading.

1 Introduction

The aim of this note is to compute the mean distribution function of a population of
charged particles in a magnetised plasma. The word “mean” is somewhat vague at this
point. It refers to mean field theories, which assume that a field, here the distribution
function, can be split into mean and fluctuating parts. It relies on scale separation in
time, i.e. assumes that the mean part of the distribution function evolves on time scales
much longer than fluctuations - also the latter are supposed to be much smaller in am-
plitude than the mean component. The problem at hand consists in calculating a kinetic
equation that governs the distribution function for a given electromagnetic field, which
can itself be split into a mean field and perturbations. In other words, the objective for
now is to compute a statistical distribution of charged particles submitted to a known
electromagnetic field.

2 Statistical equilibrium in a collisionless plasma

2.1 Unperturbed distribution function

Let us remind that the distribution function F (x,p, t) of a given species is solution of the
Fokker-Planck equation

∂F

∂t
− {H,F} = C[F ] (1)
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where (x,p) are the particle position-momentum coordinates, H the particle Hamiltonian,
C[F ] a collision operator, and { , } the Poisson bracket written in (x,p) variables

{H,F} =
∂H

∂x
· ∂F
∂p
− ∂H

∂p
· ∂F
∂x

The collision operator C[F ] is a complex object: it is quadratic in F and involves multi-
species collisions. Its general form is given in Appendix A.1. However, it will be seen
that a simplified form is sufficient for our purpose in the following. We look for time
independent solutions of the Fokker-Planck, i.e., loosely speaking an “equilibrium”. The
analysis is restricted to the case where the unperturbed Hamiltonian is integrable. It was
seen in the lecture on particle motion that this situation occurs whenever 3 invariants of
motion can be found [1]. Obviously, the particle energy Heq is an invariant of motion if the
electromagnetic field is static. If the magnetic field is strong enough, a second invariant
is the particle magnetic moment µ. Finally, if the system is left invariant by a rotational
symmetry, a third invariant can be built according to the Noether theorem, for instance
the canonical toroidal momentum in an axisymmetric configuration like a tokamak. If
trajectories are bounded in the phase space, a set of action/angle variables (α,J) can be
built such that the equations of motion bear a symplectic form1

dαi
dt

=
∂Heq

∂Ji
= Ωi

dJi
dt

= −∂Heq

∂αi
= 0

where Heq(J) is the unperturbed Hamiltonian and Ωi = ∂JiHeq are the resonant angular
frequencies. The unperturbed distribution function Feq in a collisionless plasma is solution
of a Vlasov equation for each species

{Heq, Feq} = 0

where the Poisson bracket is now expressed in the new conjugate variables (α,J)

{Heq, Feq} =
∂Heq

∂α
· ∂Feq
∂J
− ∂Heq

∂J
· ∂Feq
∂α

The variables α are angles so that the distribution function Feq(α,J) can be expressed
as a Fourier series

Feq(α,J) =
∑
n

Fn(J) exp [i (n ·α)]

where n designates a triplet of integers (n1, n2, n3). It then appears that the unperturbed
distribution function Feq, the “equilibrium” distribution function, is in fact an average of
the distribution function over the angles α. Hence the word “mean” takes now a precise
mathematical definition. Plugging this Fourier series in the Vlasov equation implies

[n ·Ω(J)]Fn(J) = 0

If n 6= 0, the solution is Fn(J) ∼ δ [n ·Ω(J)], where δ is the Kronecker function. The
surface in the action space such that n ·Ω(J) = 0 is called a resonant surface. It depends
uniquely on the choice of the triplet n. This result implies that Fn(J) vanishes every-
where, except on the resonant surface associated with the triplet n. If the distribution
function is smooth in the phase space, then all Fn(J) are null, except F0(J). Hence the
unperturbed, or “equilibrium”, distribution function must be a function of the invariants
of motion Feq(J). The shape of Feq(J) is however arbitrary. This means that an infinity of

1Strictly speaking, angles should be written in a contravariant form, and action in covariant form to ensure
some coherence. We will avoid this complication since no formula of differential geometry will be needed.
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equilibrium solutions exists. This finding is surprising since a single well defined statistical
equilibrium is usually observed in a physical system2. The answer to this conundrum is
that collisions should be added to reduce the number of possibilities down to one. This
conclusion is reinforced by the assumption of smooth distribution function in the phase
space to eliminate singular solutions on resonant surfaces. Adding collisions regularises
the solution and wipes out singular solutions. The need for dissipation processes can be
better clarified by computing the response to small perturbations.

Figure 1: Resonant surface in the action space

2.2 Response to a small perturbation - resonances

Let us assume that the Hamiltonian is the sum of its unperturbed value Heq(J), plus a
set of time dependent perturbations

H̃(α,J, t) =

∫ +∞

−∞

dω

2π

∑
n

Hnω(J) exp [i (n ·α− ωt)] (2)

If the perturbed distribution function is small, the Vlasov equation can be linearised3 to
give an expression for each Fourier harmonic Fnω(J)

Fnω(J) =
n · ∂Feq∂J

n ·Ω(J)− ω
Hnω(J) (3)

This result should be marked. A kinetic response to an arbitrary perturbation that is
analytic is indeed a quite remarkable property, even if linearised. The structure of this
linear response is worth being commented. It contains three ingredients: a perturbed
Hamiltonian, a numerator proportional to the gradient of the distribution function in the
action space, and a resonant denominator. We will see that the gradient ∂JFeq of the
distribution function measures the departure from thermodynamic equilibrium as long
as the distribution function does not depend uniquely on the unperturbed Hamiltonian
Heq. The resonant denominator deserves some attention. The linear response is infinite
whenever ω − n · Ω(J) = 0. This condition defines a “resonant surface” characterised
by the angular frequency ω and the triplet n - resonant surfaces associated with a static
perturbation form a special case n · Ω(J) = 0 (see Fig.1). A resonance is met when
particles stay in phase with the perturbation along their motion and thus respond in an
optimum way. Indeed, the derivative in time of the phase n · α − ωt along the motion

2There are exceptions of course, like bistable systems.
3Here “linearise” means keeping order 1 contribution in a small parameter that measures the relative per-

turbation.
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of a particle is nothing else than n ·Ω− ω. Hence the resonant condition can be seen as
a condition of constant phase. If a particle stays in phase with a force, the exchange of
energy is optimal. This is the basic process that underlies a Landau resonance. Describing
a Landau resonance is not in the scope of the present note. The reader is sent to the
abundant literature on this subject [2, 3, 4, 5]. Nevertheless, an urgent matter for our

Figure 2: Integration path for an inverse Fourier-Laplace transform

purpose is to elucidate how a singular response can be handled. There exists at least 2
ways to solve the singularity across a resonance ω−n ·Ω(J) = 0, with real ω. One radical
solution is to add collisions - for instance, if one adds a Krook operator4 −ν(F − Feq),
where ν is a collision frequency, to the right hand side of the Vlasov equation, then the
resonant denominator becomes ω − n · Ω + iν. The singularity is thus resolved since
the plasma response is now well defined all over the phase space. This recipe is however
questionable as treating collisionless problems is desirable. In this case, the original path
followed by Landau [2] is more appropriate. It can be summarised as follows. Let us
continue to expand the perturbed distribution function and Hamiltonian in angles, but
not in time. The Vlasov equation reads

∂Fn(J, t)

∂t
+ in ·Ω(J)Fn(J, t) = −i

(
n · ∂Feq

∂J

)
Hn(J, t)

A Fourier-Laplace transform in time is then introduced instead of a conventional Fourier
transform5

Fnω(J) =

∫ +∞

0
dtFn(J, t)eiωt

This definition holds in the frequency upper half-plane =(ω) > 0. The Fourier-Laplace
transform of the Vlasov equation is performed using the property∫ +∞

0
dt
∂Fn(J, t)

∂t
eiωt = iωFnω(J)− Fn(J, t = 0)

This result is obtained via an integration by parts, and using Fn(J, t = +∞) = 0, which
is granted in the frequency upper half-plane =(ω) > 0. The actual domain of integration
actually depends on the asymptotic behaviour of Fn(J, t → +∞). The solution of the
linearised Vlasov equation now reads

Fnω(J) =
1

n ·Ω(J)− ω

[
n · ∂Feq

∂J
− iFn(J, t = 0)

]
Hnω(J) (4)

4Strictly speaking one should also remove the “adiabatic” response, i.e. use −ν(F − Feq − Hnω
∂Feq

∂E ). We
will come back to this point

5Let us stress that a conventional Laplace transform would involve an integral over e−st instead of eiωt here,
hence the name “Fourier-Laplace”. The essential difference with a conventional Fourier transform is of course
the lower bound in time, 0 in Laplace in place of −∞ for Fourier.
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A key step is to reconstruct the time dependent functions Fn(J, t) and Hn(J, t), knowing
their Fourier-Laplace transforms. This is done thanks to the inverse Fourier-Laplace
transform

Fn(J, t) =

∫ +∞+iν

−∞+iν

dω

2π
Fnω(J)e−iωt

where ν is a small positive number. The latter grants that the integral is computed in
the definition domain of Fnω, i.e. the upper half-plane =(ω) > 0, see Fig.2. A similar
expression rules Hn(J, t) vs Hnω(J). The asymptotic value of Hn(J, t) when t → +∞ is
often of interest, to get information on stability for instance. Given the definition of the
inverse Fourier-Laplace transform, asymptotic values t→ +∞ are expediently calculated
by deforming the contour of integration to the lower half =(ω) < 0 of the space of complex
values of ω. This requires an analytic continuation of Hnω in the lower half-plane. In this
lecture, quantities of interest involve integrals over the phase space and time, e.g.

A =

∫
d3Jd3αdtFn(α,J, t)Hn(α,J, t) =

∑
n

∫
C

dω

2π

∫
d3JHnω(J)F−n−ω(J) (5)

where the Parseval’s theorem has been used. Examples of this type of integrals are
the action functional to compute the electromagnetic field, or entropy production rates.
The contour C has to be chosen in the domain of convergence of Hnω(J) and F−n−ω(J).
Since (ω,−ω) with =(ω) > 0 covers the whole complex plane, the simplest procedure is
to manipulate exclusively analytic functions in the frequency space. Af first sight, this
would require an analytic continuation of Fnω and Hnω in the frequency lower half-plane.
However, an analysis of Eq.(5) combined with Eq.(4) points out the need for integrals of
Fnω(J) over the action space, to be continued analytically in the frequency lower half-
plane. This property greatly simplifies the process of continuation since an integral over
the action space smooths the singularity. The integrals of interest are of the form

I(ω) =

∫
d3J

Λ(J)

n ·Ω(J)− ω

where Λ(J) is a smooth function. It is useful to replace one of the actions by a new variable
Ω = n ·Ω(J), better suited to resolve the singularity. The variable Ω is complemented by
two variables (J,K) that spans the resonant surface (see Fig.1). The integral I(ω) then
becomes

I(ω) =

∫
d2S

∫ +∞

−∞
dΩ

Λ(Ω, J,K)

Ω− ω

where d2S = dJdK/J (Ω, J,K), and J (Ω, J,K) is the Jacobian of the new set of variables.
The integral over the variables (J,K) does not raise any difficulty. So we focus on the
difficult point, i.e. the treatment of the singularity, by analysing functions of the form

Z(ω) =

∫ +∞

−∞
dΩ

Λ(Ω)

Ω− ω

Function Z can be seen as a prototype of the integrals that are looked for. It is requested to
be analytic in ω. The regularisation is done in three steps: first choose a half-plane where
the function Z behaves well without further modification, second resolve the singularity
on the real axis in ω, third perform an analytic continuation towards the other half-plane.
The process can be understood from Fig.3 and is detailed as follows. Let us take the
simple example of a function Λ(Ω) that converges at infinity in the upper-half plane.
In this case, a method of residues can be used to compute Z(ω)6. The contour is an

6Note that the function Λ(Ω) may not satisfy the conditions for ignoring the integral on a outer circle

at infinity. A classical counter-example is Λ(Ω) = 1√
π
e−Ω2

which generates a Z function called the plasma

dispersion function, or Fried and Conte function. Λ(Ω) does not converge to 0 in the left-upper quadrant. In
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integration line along the real axis in Ω, from −∞ to +∞, complemented by a half-circle
at infinity. If the pole Ω = ω is in the upper half-plane, =(ω) > 0 (panel a), the integral
is well resolved - no special care is required provided that Λ(Ω) decreases at least as 1/Ω
at infinity. This is the situation when dealing with the Fourier-Laplace transform. If the
pole is in the lower half-plane =(ω) < 0, and the integration contour still the same, a
difficulty occurs since the pole has now crossed the real line so that the value of Z(ω) is
shifted by −2iπΛ(ω) - this means that Z(ω) is discontinuous. This unwelcome difficulty
is overcome by deforming the integration contour as shown in Fig.3.c, which consists in
adding 2iπΛ(ω) times the residue to the principal part7. The case where the pole is just
below the real axis is special, since the jump would be −iπΛ(ω) when the pole barely
crosses the real axis. The contour is deformed accordingly, as shown in Fig.3.b. Finally
the analytic continuation of Z(ω) reads

Z(ω) =


∫ +∞
−∞ dΩΛ(Ω)

Ω−ω if =(ω) > 0

P.P.
∫ +∞
−∞ dΩdΩΛ(Ω,J,K)

Ω−ω + iπΛ(ω) if =(ω) = 0∫ +∞
−∞ dΩΛ(Ω)

Ω−ω + 2iπΛ(ω) if =(ω) < 0

where it is reminded that a principal part, noted P.P., is calculated as follows

P.P.

∫ +∞

−∞
dΩ

Λ(Ω)

Ω− ω
= lim

ε→0+

[∫ ω−ε

−∞
dΩ

Λ(Ω)

Ω− ω
+

∫ +∞

ω+ε
dΩ

Λ(Ω)

Ω− ω

]
This choice is consistent with the Plemelj formula

lim
ν→0+

Λ(Ω)

Ω− ω − iν
= P.P.

Λ(Ω)

Ω− ω
+ iπδ(Ω− ω)

In the following we will use massively the Fourier-Laplace transform. Whenever expres-
sions of the form Eq.(3) are used, the frequency ω will be noted ω+ iν to recall the above
treatment of integrals.

3 Transport equations

3.1 Thermodynamic potential

The next step is to write an evolution equation over the mean distribution function Feq.
The analysis is greatly simplified by using an extended phase space. Let us first introduce a
angular variable α0 = Ω0t+α00, where α00 is an initial condition, Ω0 the lowest frequency
of fluctuations, and J0 an action conjugate to α0. The Hamiltonian character of the
dynamics is preserved by using a unperturbed Hamiltonian Heq + J0Ω0

8. In practice J0

this case the contour must be deformed accordingly, or another technique be used. A powerful method consists
in using the relationship 1

Ω−ω = i
∫ +∞

0
dσe−iσ(Ω−ω), valid for =(ω) > 0. In the special case of the plasma

dispersion function, a few manipulations lead to the relationship Z(ω) = i
√
πe−ω

2

erfc(−iω). The function
erfc(−iω) is analytical over the whole complex plane in ω, so that there is no further need to worry about the
singularity!

7Perhaps this point can be clarified in the following way. When the pole ω gets near the real axis, it reads
ω = ωr + iγ, where ωr is the real part of ω, and γ its positive imaginary part. The singularity can be isolated
by using the relation 1

Ω−ω = Ω−ωr+iγ
(Ω−ωr)2+γ2 . When γ � ωr, the imaginary part is close a Kronecker δ function

+iπδ (Ω− ωr). When ω crosses the real axis, than ω = ωr − iγ, with γ > 0. All the formulas are the same,
with γ changed in −γ. Hence the imaginary part of 1

Ω−ω gets close to −iπδ (Ω− ωr). Hence the real part of Z
remains unchanged, while the imaginary part jumps by −2iπδ (Ω− ωr) Λ(ωr). Therefore Z(ω) is discontinuous
unless a corrective factor +2iπδ (Ω− ωr) Λ(ωr) is added to compensate this jump. If one stops the process right
at the real axis, the jump is just −iπδ (Ω− ωr) Λ(ωr).

8Strictly speaking, other notations should be used in the spirit of what was done in the note on gyrokinetics.
For the sake of simplicity, we will keep the same notation in the 8D extended phase space.
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Figure 3: Analytic continuation of a resonant function
∫ +∞
−∞ dΩΛ(Ω)

Ω−ω . The integration contour is shown
in red. Panel a): ω is in the upper half-plane - the resonant function is well defined. Panel b) ω is
just below the real axis: the integration contour must be deformed to incorporate the pole Ω = ω - a
phase shift −iπ appears that must be compensated to ensure analyticity. b) ω is well below the real
axis: the phase shift is −2iπ and must be compensated accordingly (inspired from references [3, 5]).

appears as a dummy variable that disappears at the end of the calculation. This trick
allows treating time on the same footing as the other angles. The Hamiltonian equations
read

dαi
dt

=
∂Heq

∂Ji
= Ωi

dJi
dt

= −∂Heq

∂αi
= 0

where now the index i runs from 0 to 3. Of course time does not play a symmetrical role as
the other variables, because of the resonant character of the perturbed distribution func-
tion. Nevertheless we know how to solve this difficulty thanks to the Landau methodology.

We would like to allow collisions in the analysis. The full collision operator in a
plasma is intricate, in particular in the multi-species case. For now we simplify the
problem by considering one species only, and replace the full collision operator, which is
quadratic in F , by a linearised version noted C[F ]. Thermodynamic equilibrium of an
isolated plasma in contact with a thermostat at temperature T0 is associated with a mean
distribution function of the form exp(−Heq/T0), where Heq is the mean Hamiltonian in
the extended phase space. This reference distribution must be in the kernel of C[F ],
i.e. C [exp(−Heq/T0])] = 0, since collisions enforce a relaxation of the plasma towards a
thermodynamic equilibrium. Of course plasmas of interest are not in full thermodynamic
equilibrium - in particular they are inhomogeneous, and moving. Solutions of C [FM ] = 0
are local Maxwellians [6]

FM (x,v) = Neq(x)

(
m

2πTeq(x)

)3/2

exp

{
−m(v −Veq(x))2

2Teq(x)

}
where Neq, Teq, and Veq are respectively the density, temperature and velocity. However
a local Maxwellian is usually not a solution of the Fokker-Planck equation that rules the
distribution function F 9

−{Heq, F} = C[F ] (6)

Indeed the left-hand side of Eq.(6) does not generally satisfy {Heq, FM} = 0, while the
r.h.s. vanishes, C[FM ] = 0. As seen before, in absence of fluctuations, the solution Feq
of {Heq, Feq} = 0 is a function of the invariants of motion. It can thus be anticipated

9Note that the distribution function F does not depend explicitly on “time” t since time dependencies are
already contained in the angle variable α0 = Ω0t+ α00.
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that the mean distribution function is some compromise between a local Maxwellian and
a function of the actions.

Studying the processes that lead to a relaxation of the mean distribution function

Figure 4: Schematic rationale of a kinetic mean field theory.

towards its equilibrium value is the main objective of this lecture note. Hence a slow
time variation of the mean fields must be allowed. This is done by writing the mean
distribution function as Feq(J, εDt), where εD � 1, in spirit of a multi-scale approach.
In the following, the parameter εD will not appear explicitly, but one should keep in
mind that explicit derivatives of Feq with time are small compared with the characteristic
time scale of fluctuations. If τc denotes the fluctuation typical time scale, and τD the
slow relaxation time evolution of the mean distribution function, a mean field approach
is appropriate whenever τc � τD. In view of the discussion above, it makes sense to look
for a distribution function of the form

Feq = exp

{
−Heq − Ueq

T0

}
where Ueq is a thermodynamic potential. The ratio Ueq/T0 measures the distance to a local
thermodynamic equilibrium. We assume now that the system is close to thermodynamic
equilibrium, i.e. Ueq/T0 � 1.

3.2 Mean field theory

Both thermodynamic potential and Hamiltonian are split into mean and perturbed parts

F (α,J, t) = Feq(J, t) + F̃ (α,J)

H(α,J) = Heq(J) + H̃(α,J)

The collision operator C[F ] is linearised in F near a Maxwellian. A rough justification is
that collisions regularise fast variations in velocity space over a collision time, and thus
maintain the distribution function close to a Maxwellian. This approximation has to be
verified a posteriori depending on the problem at hand and the definition of the model of
collision operator that is chosen. The equations over Feq and F̃ are then readily obtained

∂Feq
∂t
−
〈{
H̃, F̃

}〉
= C[Feq] (7)

−
{
H, F̃

}
− C[F̃ ] =

{
H̃, Feq

}
(8)
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where the brackets denote an average over the angles α. Let us note that a term − <
{H̃, F̃} > was neglected in Eq.(8). It also appears in the evolution equation over Feq
Eq.(7). The reason why it is kept in Feq Eq.(7), and not in Eq.(8), is that is is responsible
for the relaxation of Feq, i.e. of the order of Feq/τD, hence smaller than F̃ /τc, provided
that

τc
τD
� F̃

Feq

This condition has to be verified a posteriori. In fact, the term −
〈{
H̃, F̃

}〉
is the

divergence of a flux Γ, i.e.

∇J · Γ =
∂Γi
∂Ji

= −
〈{
H̃, F̃

}〉
When the direct effect of collisions on Feq is small, the equation eq.(7) then bears a
conservative form

∂Feq
∂t

+∇J · Γ = 0 (9)

where

Γi =

∫
d4α

(2π)4

(
−∂H̃
∂αi

)
F̃ (10)

The set of equations Eqs.(7, 8) is in line with the rationale of a mean field theory: the
unperturbed system drives fluctuations because the plasma is not at full thermodynamic
equilibrium - this excitation occurs on fast time scales. Fluctuations produce in turn
a slow relaxation of the distribution function towards its equilibrium value, see Fig.4.
A key question is then to relate the flux Γ to gradients of the mean distribution Feq,
which measure the distance from equilibrium. This is called a constitutive relation. If a
constitutive relation can be built, the equation that rules Feq is autonomous. It is called
a transport equation. A simple constitutive equation is of diffusive type, viz.

Γi = −Dik
∂Feq
∂Jk

(11)

This relation is in fact a generalisation of Fick’s and Fourier’s laws10. The procedure
that consists in splitting thermodynamic fields into a mean and fluctuation parts is classic
and abundantly commented in textbooks [7, 8, 9]. The construction of a mean field via
projectors is called sometimes Zwanzig-Mori approach, after their seminal papers [10, 11]
(see also [12] for the relationship with plasma physics).

3.3 Entropy production and variational principle

3.3.1 Definition of entropy and entropy production rate

This methodology allows computing an entropy production rate that is minimum at equi-
librium. This is the basis for a more general variational principle, associated with trans-
port equations as described in the previous section. The advantages of a variational

10Fick’s law relates a particle flux to a density gradient. It is a special case of Eq.(11). Indeed let us consider
an isothermal plasma with no flow, so that Feq = Neq exp(−H/T0). Let us also consider the case of a plasma
submitted to a uniform magnetic field B0 directed along z - we use a set of Cartesian coordinates (x, y, z). The
density Neq is supposed to depend on x only. The vector potential can be chosen as Aeq = B0xey. The canonical
momentum py = eB0x+mvy is conserved since there is no explicit dependence of the particle Lagrangian on the
y coordinate. The action J is equal to the momentum py up to a spatial period Ly in the y direction supposed
periodic - more precisely 2πJ =

∮
pydy = pyLy. If the magnetic field B0 is strong enough so that eB0x� mvy,

one has J ' eB0xLy/2π. The Eq.(7) combined with Eq.(11) restricted to the sole variation along the action J
can then be seen as a diffusion equation in the x direction on the density Neq, similar to the Fick’s equation. A
similar exercise can be done for the temperature by relaxing the isothermal assumption.
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principle are numerous. It is usually more compact than the whole set of transport equa-
tions - quite a number in a multi-species plasma. Its variational character offers a recipe
to compute a reduced set of transport equations. In the case of transport equations, it
appears that it can be used to demonstrate Onsager symmetry relations. In the sim-
plest case of diffusive constitutive relations Eq.(11), this implies that the matrix Dik is
symmetric. The entropy is defined here in its conventional form, i.e.

S = −
∫
dγF lnF

where dγ = d4αd4J is the element of volume in the phase space, and F the distribution
function of the considered species, which depends on (α,J, t). For a multi-species plasma,
the total entropy is the sum of entropies over all species. For a fixed total number of
particles and energy in the plasma, the entropy production rate reads

Ṡ = −
∫
dγ
∂F

∂t
lnF

The entropy production rate is exactly zero in absence of collisions. This is an important
property, which results from the cancellation of the average of a Poisson bracket over the
phase space, here {H, s}, with s = F lnF −F , provided that ∇Σ · ∂s∂J = 0, where Σ(J) = 0
defines the plasma boundary in the action space. This is equivalent to assuming that the
system is isolated (no flux of entropy trough the plasma boundary). Hence the important
conclusion that the total entropy increases because of collisions only. Let us write the full
distribution in the form

F = exp

(
−H − U

T0

)
(12)

where U is a generalisation of the thermodynamic potential that was introduced earlier.
The entropy production rate can be recast as

Ṡ = − 1

T0

∫
dγ
∂F

∂t
U (13)

The contribution ∂tFH has been ignored. This is a consequence of the identity

H
∂F

∂t
=

1

2

{
H2, F

}
= HC[F ]

that comes from the Fokker-Planck equation Eq.(1). As mentioned before, the average
of a Poisson bracket over the whole phase space vanishes with appropriate boundary
conditions. Besides the collision operator conserves the Hamiltonian11.

3.3.2 A mean field entropy production rate

Let us consider the implications for a mean field theory. The distribution function F and
the potential U are expanded as sums of unperturbed and perturbed contributions. Hence
the entropy production rate Eq.(13) can be split into contributions associated with mean
and perturbed parts of the thermodynamic potential, keeping in mind that all perturbed
quantities average out to zero because of the integration over the angle variables. Let us
focus on the entropy associated with the unperturbed distribution function

Ṡeq = − 1

T0

∫
dγ
∂Feq
∂t

Ueq

11Strictly speaking it conserves the total energy, i.e. once summed over species. We will assume for now
equal temperatures for all species. If it is not the case, it suffices to add an equipartition term in the transport
equations.
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where

Feq = exp

[
− 1

T0
(Heq − Ueq)

]
It reads as well

Ṡeq = − 1

T 2
0

∫
dγFeq

∂Ueq
∂t

Ueq

since the unperturbed Hamiltonian does not depend on the slow time scale t. Using Eq.(7),
it appears that Ṡeq contains two contributions that come respectively from transport and
collisions

Ṡeq = Ṡres + Ṡcoll

where

Ṡres = − 1

T 2
0

∫
dγ ΓU ·

∂Ueq
∂J

(14)

Ṡcoll = − 1

T 2
0

∫
dγFeqUeqC[Ueq] (15)

where an integration by parts has been performed, assuming a thermodynamically insu-
lated plasma12. The flux ΓU is defined as

ΓU = T0Γ

and the collision operator is written formally

C[Ueq] =
T0

Feq
C[Feq]

A justification of this form comes from the general expression of the linearised Boltzmann
collision operator, which is detailed in Appendix A.1. The label “res” refers to the reso-
nant character of the perturbed distribution function in the limit of weak collisions, while
Ṡcoll is the entropy production rate directly related to collisions. This terminology is some-
what stretched since collisions also participate in the resonant contribution via resonance
broadening. In some cases Ṡres can also be seen as collisional transport enhanced by res-
onances. This is the essence of “neoclassical” transport in fusion devices. Let us consider
the generic case where the flux is linearly related to the gradient of the thermodynamic
potential via the diffusive relation Eq.(11). The resonant entropy production rate then
becomes quadratic in ∂JUeq

Ṡres[Ueq, ∂JUeq] =
1

T 2
0

∫
dγFeq

∂Ueq
∂J
·D · ∂Ueq

∂J
(16)

where D is the diffusion matrix. In the simple case of a diagonal matrix, Ṡres is always
positive since a diagonal diffusion coefficient is positive, except in some special situations.
One may then argue that the entropy production rate associated with the mean thermo-
dynamic potential should be positive. There is no general rigorous proof of this property,
which should be demonstrated for each case of interest13. If the mean thermodynamic po-
tential is eligible to the second principle, the diffusion matrix should grant a positive Ṡres.
In other words D should be definite-positive14. This raises an apparent paradox. It was
seen that entropy is conserved in absence of collisions. How could it be that the resonant
entropy production is positive? The response is that the entropy production associated

12Γ · ∇Σ = 0 on the plasma boundary Σ(J) = 0, since ∇Σ is a vector normal to the enclosing surface.
13In fact the anti-hermitian character of the Poisson bracket in the Vlasov equation prevents deriving a general

result. Mean field theory is a notable exception, under the restrictions that are described in this note.
14Since the operator Λ is requested to be self-adjoint, the matrix D is symmetric, a property sometimes

satisfied, related to Onsager symmetries. A sufficient condition for definite-positiveness is Dii >
∑
j 6=i |Dij |.
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with Ũ decreases in time. Landau resonances indeed produces smaller and smaller scales
in angle variables which are wiped out by the averaging procedure that defines Ueq. In
contrast, the increasing complexity in F̃ leads to a decrease of the corresponding entropy.
This is equivalent to a coarse-graining procedure. This subtle point is discussed in [13].
The general properties of a collision operator grant a positive entropy production as long
as the operator is of the Boltzmann-type. Also this operator is self-adjoint, a property
that will often be used. If the properties of the operator that relates the flux Γ to the
gradient of the thermodynamical potential ∂JUeq are the same as those of the collision
operator C, then properties of the entropy production functional will be the same as the
case with collisions only. In particular, the mean field entropy production is positive, viz.
Ṡeq > 0. Equilibrium is reached whenever Ṡeq = 0, i.e. when the entropy production
reaches a minimum. This is called a principle of minimum of entropy production. In
practice it can be used to compute Ueq by requesting that the functional Ṡeq[Ueq, ∂JUeq]
exhibits a minimum with respect to ∂JUeq i.e.15

δṠeq
δ(∂JUeq)

= 0

This result relies unfortunately on severe assumptions: proximity to thermodynamic equi-
librium, self-adjointness of the constitutive relations, positiveness of the resonant entropy
production rate. Nevertheless it turns out that it applies to many practical situations,
and is thus useful. We now consider a more general variational principle, that contains a
principle of minimum entropy production.

3.3.3 Entropy variational principle

The minimum of entropy production provides the steady-state value of the mean field
potential Ueq. However it does not provide information on its (slow) evolution. To this

aim a functional S
(
Ueq, U

†
eq

)
is built and reads [14, 15, 16]

S = St + Sres + Scoll

where

St
(
Ueq, U

†
eq

)
=

2

T 2
0

∫
dγFeqU

†
eq

∂Ueq
∂t

(17)

Sres
(
Ueq, U

†
eq

)
= − 2

T 2
0

∫
dγ
∂U †eq
∂J
· ΓU (18)

Scoll
(
Ueq, U

†
eq

)
= − 2

T 2
0

∫
dγFeqU

†
eqC [Ueq] (19)

The extremum of the functional S for all variations of U †eq near Ueq yields the transport

equation Eq.(7). This is readily demonstrated by writing U †eq = Ueq + δU †eq and recasting
the functional variation δS in the form

δS =
2

T 2
0

∫
dγδU †eq

(
∂Feq
∂t

+∇J · ΓU − C [Ueq]

)
where an integration by parts has been performed using the boundary conditions afore-
mentioned. Stating δS = 0 for all δU †eq is equivalent to Eq.(7). This procedure is some-
times called “weak formulation” of Eq.(7), keeping in mind Eqs.(9,11). In the frequent
case where the flux Γ is diffusive Eq.(11), and the collision operator C is self-adjoint in

15 δṠeq

δ∂JUeq
is a functional derivative, already met in gyrokinetics. It is performed like a conventional derivative,

i.e. by adding an increment δ∂JUeq to ∂JUeq.
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the velocity space, a convenient formulation of the functionals Sres and Scoll can be found,
namely

Sres
(
Ueq, ∂JU

†
eq

)
= − 1

T 2
0

∫
dγFeq

∂U †eq
∂J
·D · ∂U

†
eq

∂J
(20)

Scoll
(
Ueq, ∂JU

†
eq

)
= − 1

T 2
0

∫
dγFeqU

†
eqC
[
U †eq

]
(21)

The notation ∂JU
†
eq in the functional indicates that U †eq appears only via its gradient in

the action space - the latter measures the distance to thermodynamic equilibrium. Note
the pre-factor 2 has become unity in both Sres, Scoll by virtue of the self-adjointness of the
corresponding operators. The functional S[Ueq, ∂JU

†
eq] is equal to zero when U †eq = Ueq,

i.e. is solution of the transport equation Eq.(7). It then appears that Sres + Scoll = Ṡeq,
i.e. the entropy function is equal to the entropy production rate, a convenient property.
Hence for time-independent potentials Ueq, finding an extremum of S is equivalent to
finding a minimum of entropy production.

4 Non linear equilibrium for a single perturba-

tion

The case of a single perturbation is worth being analysed in detail, to see how the resonant
singularity is non linearly resolved.

Figure 5: Schematic view of an island in the phase space. The action space is reduced to a 2D space
(J1, J2) and the angle space to the island phase ξ = n · α − ωt. In that case, the resonant surface
Ω = n ·Ω(J)− ω = 0 reduces to a curve. The island displacement I is directed along the vector n.

4.1 Island in the phase space

4.1.1 Reduced dynamics

Let us consider a single perturbation

H̃(α,J, t) = −h(J) cos [(n ·α− ωt)]

To simplify h(J) is supposed constant. Actions evolve as follows

dJi
dt

= −∂H̃
∂αi

= −hni sin ξ (22)
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where ξ = n ·α− ωt. The phase ξ is ruled by the equation

dξ

dt
= ni

∂H̃

∂Ji
= Ω(J)

where Ω = n ·Ω(J)−ω. The dynamics is scrutinised near the resonant surface Ω = 0. The
resonant surface is labelled by two variables (J,K). An approximate solution of Eq.(22)
is

J = JR(J,K) + In (23)

with
dI

dt
= −h sin ξ

and JR an action vector that lies on the resonant surface, hence Ω(JR) = 0. The frequency
Ω can be Taylor expanded near JR as Ω(J) = C(JR)I , where

C = ninj
∂2Heq

∂JiJj

∣∣∣∣
J=JR

(24)

The scalar C is called here, somewhat abusively, Hamiltonian “curvature”. The evolution
equation of the phase is then simply

dξ

dt
= CI

A new invariant of motion HI , an Hamiltonian in fact16, is built, namely

HI =
1

2
CI2 − h cos ξ

A slightly different reformulation is obtained by introducing a frequency ωb = (Ch)1/2,
and a normalised Hamiltonian HΩ = CHI = 1

2Ω2 − ω2
b cos(ξ) that is homogeneous to

the square of a frequency. The total Hamiltonian is therefore H = H(JR) + HΩ
C . The

equations of motion for the coordinates (ξ,Ω) read

dξ

dt
=

∂HΩ

∂I
= Ω

dΩ

dt
= −∂HΩ

∂ξ
= −ω2

b sin ξ

This formulation bears this advantage that quantities of interest (Ω, ωb) are frequencies.
The frequency ωb provides a natural frequency unit. Its meaning is elucidated in the
following.

4.1.2 Island characteristics

The Hamiltonian HΩ is similar to the one found for a pendulum. The lines of constant
energy HΩ draw the usual shape of an island (or cat-eye) in the phase space (see Fig.5 and
Fig.6). This kind of Hamiltonian was met when analysing the trajectories of charged par-
ticles in a tokamak. Hence the analysis is the same, and the main results are summarised
here (more details can be found in the Appendix B). Particles are “trapped” whenever
−ω2

b ≤ HΩ ≤ ω2
b , and are passing when ω2

b ≤ HΩ ≤ +∞. Trapped particles move back
and forth between two angle positions −ξb and ξb (modulo 2π) such that HΩ = −ω2

b cos ξb.
In contrast, passing particles span the whole ξ domain. The two domains are isolated by
a separatrix defined in the space (ξ,Ω) by the condition HΩ = ω2

b . The separatix equation
is thus Ω = ±2ωb cos (ξ/2). The island half-width is therefore δΩ = 2ωb in frequency unit,
and δI = 2

√
h/C in action units.

16It is an Hamiltonian because the equations of motion in (ξ, I) bear a symplectic form.
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Figure 6: Contour lines of the Hamiltonian HΩ = 1
2Ω2 − ω2

b cos(ξ).

4.2 Kinetic equilibrium near an island

4.2.1 Reduction of the Fokker-Planck equation

The first step to characterise the thermodynamic equilibrium near an island in the phase
space is to solve Eq.(8)

−
{
HΩ, F̃

}
− C[F̃ ] = ω2

bF
′
eq sin ξ

where the Poisson bracket is calculated in the variables (ξ,Ω) and

F ′eq =
1

C

(
n · ∂Feq

∂J

)∣∣∣∣
J=JR

is the gradient of the unperturbed distribution function on the resonant surface along
the vector n. It is convenient to further reduce this equation by introducing a new set of
conjugate variables (ξ, p = Ω

ωb
) associated with the Hamiltonian for a pendulum submitted

to gravitation

k =
p2

2
− cos ξ

The variable p measures the distance from the resonance Ω = 0 in unit of island width ωb
(ωb is in fact 1/4 of the island width). A normalised distribution function f = f̃(ξ, p) + p
is defined as

f̃ =
F̃

ωbF ′eq

The physical meaning of f̃ gets clearer when remembering that the island half-width is
δΩ = 2ωb in frequency units. The function f then appears related to the distribution F
via the relation

f =
1

ωbF ′eq
[F (α,J)− Feq(JR)]

where
F (α,J) = Feq(JR) + F ′eq(JR)Ω + F̃ (α,J)

is the Taylor development of the distribution function near Ω = 0, see Fig.7. Collisions
are expected to regularise the resonant singularity of the distribution function near Ω = 0.
Hence it makes sense to use a simple diffusion expression

C[F̃ ] =
∂

∂Ω

(
DΩ

∂F̃

∂Ω

)
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Figure 7: Typical shape of a distribution function near an island in the action space.

where DΩ =
〈

∆Ω2

2∆t

〉
is a diffusion coefficient and

〈
∆Ω2

2∆t

〉
a Fokker-Planck scattering term

in Ω, homogeneous to the cubic power of a frequency. The latter is related to collision
frequencies via the relationship between Ω and the particle velocity. Let us note that DΩ

scales as the cubic power of a frequency. This coefficient is calculated at the resonant
surface Ω = 0 since its variations play usually no role. This allows dependences of the η
parameter on the actions JR on the resonant surface. The equation over the normalised
potential f then bears a simple form, i.e.{

k, f̃
}

+ η
∂2f̃

∂p2
= − sin ξ (25)

where the Poisson bracket is calculated in variables (ξ, p). The dimensionless parameter
η is defined as

η =
DΩ

ω3
b

Using the relationship f = f̃(ξ, p) + p, this equation can be written as well

{k, f}+ η
∂2f

∂p2
= 0 (26)

The physical meaning of the parameter η is quite clear. Since collisions are responsible
for a random walk in the phase space, the displacement δΩ = Ω(t) − Ω(0) of a particle
that leaves the resonant surface Ω = 0 at the initial time t = 0 evolves as δΩ2(t) ∼ DΩt.
Since the island half-width is 2ωb, it gets out of the island after a typical detrapping time
τd ∼ ω2

b/DΩ. Hence η = τb/τd is the ratio of a bounce time τb = 1/ωb to the detrapping
time τd. If the particle is detrapped by collisions before exploring the island, then η � 1.
In the opposite case η � 1, the particle experiences many bounce times before it gets out
of the island. In this case, no gradient can be sustained within the island because of a
mixing due to the motion of trapped particles that explore the whole energy surface in the
island before enduring a collision. The result is a flattening of the distribution function
in the island, as shown in Fig.7.
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Figure 8: Schematic random motion of a particle due to collisions. A particle that starts from the
resonant surface Ω = 0 diffuses as δΩ2(t) ∼ DΩt. The island half-width is 2ωb, so that it gets out of
the island after a typical detrapping time τd ∼ ω2

b/DΩ.

4.2.2 Compact formulation of the entropy production rate

Hence the resonant entropy functional as defined in Eq.(20) becomes

Ṡres

[
Ueq, ∂JU

†
eq

]
=

1

T 2
0

∫
dγFeq(J)δ(n ·Ω)h2Λ(J)

(
n · ∂U

†
eq

∂J

)2

(27)

where

Λ(J) = η

∫ +∞

−∞
dp

∫ π

−π

dξ

2π

(
∂f̃(ξ, p)

∂p

)2

is always positive. The value of Λ(JR) can be found by solving the differential equation
that rules f (see Appendix D). The final result is quite simple, though the derivation is
not, and reads

Λ(J) =

{
π
2 η � 1

2Iη η � 1

where I ' 1.38. The expression for η � 1 breaks down for large values of η. It ultimately
decreases as 1/η.

5 Quasi-linear theory

5.1 Transition to chaos

5.1.1 Island overlap criterion

A different situation is now investigated, where several perturbations are present in the
plasma. This case is tractable under some conditions. Since time plays a specific role
in quasi-linear theory, we go back to the original description of the phase space with a
set of 3 angle/action variables (α,J). The perturbed Hamiltonian is now a sum over a
large number of components in the Fourier series Eq.(2). Intuition suggests that chaos
sets on whenever several perturbations are present. At this point a definition of chaos is
needed. One possible, and practical, approach is to analyse particle trajectories. Chaotic
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Figure 9: Schematics of the ergodic property: a particle that starts at position A at t = 0 in a
bounded phase space gets as close as desired to another point B in the phase space.

trajectories are characterised by a great sensitivity to initial conditions, which make them
hardly predictable since the slightest change of initial conditions leads to different paths.
In this section, we call stochastic a subset of chaotic systems that are requested to bear
two properties:

• ergodicity: a trajectory gets as near as wanted to any point of the phase space when
time goes on. In this sense a trajectory covers the whole phase space, see Fig.9.

• exponentiation: two trajectories initially nearby departs exponentially from each
other with time, see Fig.10. This process is responsible for sensitivity on initial
conditions.

These two criteria are in fact quite difficult to fulfil. Many systems are ergodic only lo-
cally. A powerful way to assess ergodicity is to draw a Poincaré map, i.e. a 2D plane
in the action space where the position of a particle is marked every time it goes through
the selected plane. Integrability usually materialises via regular lines in the plane (island
is an example), whereas chaos corresponds to a random walk of this point (see [17] for
an overview). Ergodicity is related to a property shared by many stochastic systems, i.e.
mixing. Mixing is the fact that two regions of the phase space characterised by a different
macroscopic quantity, e.g. different temperatures, get mixed after some time. Note that
mixing may occur in non chaotic systems (an island for instance). Also the concept of
exponentiation has to be understood asymptotically - usually the distance between two
trajectories that start from two points located nearby increase only algebraically for small
times. The exponential increase occurs after a long enough period. The exponential co-
efficient is called Lyapunov exponent. Obviously exponentiation is related to sensitivity
to initial conditions since it implies that two initially nearby trajectories become uncorre-
lated after a time that is measured by the inverse of the greatest Lyapunov exponent. A
dynamical system where several perturbations coexist can be formally represented by a
perturbed Hamiltonian that is expanded in a Fourier-Laplace series, as in Eq.(2). An is-
land can be formally built near each resonant resonant surface ω−n ·Ω(J) = 0. However,
while a situation where islands are far from each other and thus well separated makes
sense, one may expect that a situation where islands are densely packed leads to chaos,
since a particle located in between two resonant surfaces feels equally the action of forces
with different helicities. This behaviour is formalised by the Kolmogorov-Arnold-Moser
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Figure 10: Schematics of the exponentiation property:the distance δ0 between two nearby particles
at t = 0 increases exponentially in time as δ0e

λt. The coefficient λ is a Lyapunov exponent.

(KAM) theorem [18, 19, 20], which roughly states that an integrable system stays inte-
grable when perturbations of the kind Eq.(2) are added, provided their amplitude remains
small. The theorem actually says a bit more since it appears that the onset of chaos takes
place in the form of trajectories that span larger and larger volume of the phase space.
KAM surfaces are surfaces which cannot be crossed by trajectories and can thus be con-
sidered as barriers. While increasing the amplitude of perturbations, KAM surfaces are
“broken”, i.e. some trajectories get through these surfaces, starting with low order ratio-
nal surfaces, i.e. resonant surfaces associated with low order wave numbers (n1, n2, n3).
When the last KAM surface falls down, global chaos takes place, i.e. trajectories fill in the
phase space. Let us stress that chaos is generic, whereas integrability is not. For instance
chaos appears generically for two perturbations only whenever their wave numbers and
frequencies are incommensurate. Nevertheless, the lesson of the KAM theorem is that
confinement has a better chance to be granted when starting from an integrable system,
provided perturbations are small. This is of course of extreme importance for magnetic
confinement fusion. The question that remains to clarify is to determine a criterion for the
onset of chaos. The interested reader is sent to monographs that address this question in
details [21, 4]. We give here a schematic picture. A working rule of thumb is provided by
the Chirikov overlap criterion [22]. For a couple of perturbations (n, ω) and (n′, ω′), the
Chirikov parameter, Sch, is defined as the sum of the half-widths of the corresponding is-
lands divided by the distance between resonant surfaces. The overlap criterion states that
chaos sets on whenever Sch ≥ 1. A slightly more accurate threshold, based on simulations
of various systems, is Sch ≥ 2/3. Of course this criterion is difficult to state for a broad
spectrum of wave numbers and frequencies, since there then exists a multitude of (virtual)
islands of various size and associated distances between resonant surfaces. To grasp some
feeling of it, let us consider a highly simplified situation, where the perturbation H̃ does
not depend on time nor α1. We consider two adjacent perturbations with wave numbers
n = (n2, n3) and n′ = (n2 + 1, n3), see Fig.11. The corresponding resonant frequencies
are Ω = n2Ω2 +n3Ω3, and Ω′ = (n2 + 1)Ω2 +n3Ω3 = Ω + Ω2. Hence the distance between
the 2 resonant surfaces Ω = 0 and Ω′ = 0 in unit of Ω is just dΩ = Ω2. Moreover the
island half-width for the first perturbation is

δΩn = 2ωb = 2 (|CnHnω|)1/2
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Figure 11: Schematics of the Chirikov overlap parameter for a simple example of two islands with
nearby wave numbers.

where Cn is given by Eq.(24). A similar expression yields the second island half-width
δΩn′ = 2ω′b. The Chirikov overlap parameter then reads

Sch =
2

dΩ

(
ωb + ω′b

)
This estimate provides a fast way to assess the degree of stochasticity. In other words it
is related to the greatest Lyapunov exponent.

An example of a transition to chaos is shown for a standard map on Fig.(12). The
standard map is the discrete version of the kicked rotator, whose Hamiltonian is

H(θ, p, t) =
1

2
p2 +Kcos(θ)

+∞∑
n=−∞

δ(t− n)

where θ is an angle, and p a momentum conjugate to θ. The discrete version is obtained
after an integration over time, and yields the recurrence{

pn+1 = pn +K sin(θn)
θn+1 = θn + pn+1

Chaos appears when increasing the K parameter - the critical value is Kc = 0.971635...
[23, 24].

The demonstration of the KAM theorem is quite technical and will not be reproduced
here. The reader is sent to the original article and to textbooks on the subject and related
matter [1, 21]. A pedagogical and pleasant lecture on the transition to chaos can be found
in [25]. The relationship of Hamiltonian chaos with statistical mechanics, notably phase
transitions, is commented in [26]. Finally the interested reader will find an account on
quantum chaos based on Hamiltonian approach in [27].

5.1.2 A pedestrian approach

Let us remind that the mean distribution function is ruled by Eq.(7), where the flux is

Γ =

∫ T

0

dt

T

∫
d3α

(2π)3

(
−∂H̃
∂α

)
F̃ =

∑
nω

inH∗nω(J)Fnω(J) (28)
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Figure 12: Poincaré map of trajectories for the standard map. The index n runs from 0 to Nt =
1000. Trajectories are initiated with 36 initial conditions that are equally spaced over the quadrant
−2 ≤ p ≤ 2 and −π ≤ θ ≤ π. Left panel: K = 0.5, trajectories lie on lines (“KAM surfaces”) , some
island are visible - the system remains integrable. Centre panel: K = 1.0, some trajectories start
being chaotic - however some KAM surfaces resist, preventing particles to cross the domain in the p
direction. Right panel K = 1.5, global chaos is now established over almost the whole interval in p.

where T is a time larger than a turbulence correlation time, and smaller than a time that
characterises the evolution of the mean distribution function. At this stage, Fnω(J) is
unknown and should be computed. Let us recall the Vlasov equation over the perturbed
distribution function

∂F̃

∂t
−
{
Heq + H̃, F̃

}
=
∂Feq
∂J
· ∂H̃
∂α

In an ideal world, the response F̃ is expected to be proportional to the gradient of the
equilibrium distribution function ∂JFeq (departure from thermodynamic equilibrium), and

the perturbed field ∂αH̃ (drive). This is obviously not so, because of the non quadratic
term {H̃, F̃} that appears in the l.h.s. of the Vlasov equation. Let us nevertheless
postulate a response in the Fourier space of the form

Fnω(J) = −iRnω(J)

(
n · ∂Feq

∂J

)
Hnω(J)

where Rnω is dubbed “resonant response function”. The flux is then

Γ =
∑
n

∫ +∞

−∞

dω

2π
= [Rnω(J)] |Hnω(J)|2

(
n · ∂Feq

∂J

)
n

The resonant response is a priori some complicated function of the perturbed Hamiltonian
H̃. Let us suppose for now that it is given by the linear response Eq.(3) computed in the
upper half of the complex plane

R
(0)
nω =

1

−i(ω − n ·Ω + iν)
(29)

where ν > 0. Then

Γ =
∑
nω

|Hnω(J)|2 ν

(ω − n ·Ω)2 + ν2

(
n · ∂Feq

∂J

)
n

The Lorentzian function can be replaced by a Kronecker delta function πδ(ω − n · Ω)
whenever ν � ω. Hence the flux is of the diffusive form Eq.(11), with

Dik = π
∑
nω

|Hnω(J)|2 δ(ω − n ·Ω)nink (30)

The entropy production rate is given by Eq.(20)

Ṡres (Ueq, ∂JUeq) =
π

T 2
0

∑
nω

∫
dγFeq |Hnω(J)|2 δ(ω − n ·Ω)

(
n · ∂Ueq

∂J

)2
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Figure 13: Eulerian correlation function CE(x, t) =
∫ +∞
−∞

dk
2π

∫ +∞
−∞

dω
2πIkω exp (ikx− iω(k)t), where

ω(k) = ω0 + vg(k − k0) and the spectrum power is Ikω = ∆ω
(ω−ω0)2+∆ω2

∆k
(k−k0)2+∆k2 . Parameters are

k0 = 3, ω0 = 3, ∆k = 1, ∆ω = 1. The group velocity vg = ∂ω
∂k

∣∣
k=k0

is set to 0.

5.2 Derivation and conditions of validity

5.2.1 Correlation functions

The derivation of the quasilinear theory was originally done in [28, 29]. A subsequent co-
pious literature is available on this question, including experimental proof. An overview
can be found in [4]. The version that follows is inspired by another overview on quasi-
linear theory [30] (in French), that was developed for the special case of beam-plasma
instabilities. The generalisation to Hamiltonian systems does not raise difficulties. This
methodology relies on a perturbative method that enables a precise identification of the
validity criteria. We consider here an idealised situation where the perturbed Hamilto-
nian H̃(α,J, t) is a turbulent random field, thus allowing a statistical approach. In a first
attempt, we ignore the dependence of the perturbed Hamiltonian on the action J. Also
collisions are neglected. We will come back to these approximations. Turbulence is as-
sumed homogeneous, i.e. the correlation functions are independent of the choice of initial
position and time17. This means that the Eulerian correlation function of the perturbed
Hamiltonian is of the form〈

H̃(α, t)H̃(α′, t′)
〉

= CE(α−α′, t− t′) (31)

where the bracket 〈...〉 denotes a statistical average. The correlation function CE is typi-
cally a decaying function of its arguments, thus defining Eulerian correlation lengths and
times. The decay of its absolute value is often exponential, so that the correlation time
(length) is defined as an e-folding time (length). The Eulerian correlation time is noted
τcE , and the 3 correlation lengths (one for each angle direction) define a vector Lc. Tur-
bulence homogeneity implies that correlation times and lengths are the same whatever
the time and location where they are computed. On the other hand, turbulence is not
supposed isotropic since correlation lengths can differ depending on the considered direc-
tion due to the presence of a magnetic field. Let us stress immediately that a condition
of time decay of the Eulerian correlation function Eq.(31) is not indispensable to use a

17This approximation is not valid for the original problem of the beam-plasma instability, which by definition
is unsteady since the electric field grows exponentially in time
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quasilinear theory. In fact, there exists many instances where quasilinear theory applies
to a static Hamiltonian. It will be seen indeed that another efficient decorrelation process
comes from stochasticity. In terms of the spectral components of the turbulent fields, the
above condition reads 〈

H̃nωH̃
∗
n′ω′

〉
= Inωδnn′δ(ω − ω′)

where δ is a Kronecker delta function and the “ turbulent” intensity is defined as

Inω =

〈∣∣∣H̃nω

∣∣∣2〉
The intensity Inω is the Fourier transform of the correlation function CE(α − α′, t − t′),
i.e.

CE(α−α′, t− t′) =
∑
n

∫ +∞

−∞

dω

2π
Inω exp

[
in · (α−α′)− iω(t− t′)

]
(32)

Examples are shown on Fig.13 and Fig.14. The notion of statistical average may sound
a bit vague. Ideally a statistical average involves multiple realisations of the dynamics
by changing initial conditions. In practice this is rarely possible since experiments or
simulations cannot be reproduced a large number of times. One solution for a stationary
turbulent state is to cut the times series of one experiment/simulation in several subsets,
each one one much longer than a correlation time. In this case, a statistical average is
equivalent to a time average. Moreover, in view of the heuristic approach described above,
it makes sense to extend the statistical average to an average over the angle variables.
Hence a statistical average is in fact a mean over time and angles. In that respect, the

flux Eq.(28) can be understood as Γ =
〈

(−∂αH̃)F̃
〉

, while Feq = 〈F 〉. It may occur that

time an angle averaging is not sufficient to smooth out the distribution functions. This
difficulty is cured by an average in the action space over a few fluctuation correlation
lengths. Hence a mean field theory often requires a heavy coarse-graining procedure in
all direction to be relevant.

Figure 14: Example of a Lorentzian spectral power I(ω) = 2∆ω
(ω−ωk)2+∆ω2

and corresponding correlation

function C(t) = exp(−t/τc) exp(−iωkt) (real part in solid red line, imaginary part in dashed blue line).
The frequency broadening δω and correlation time τc are related through the relationship τc = 1

δω .

The Hamiltonian correlation function can be further detailed by assuming a Lorentzian
frequency spectrum

Inω = In
∆ωn

(ω − ωn)2 + ∆ω2
n
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where ∆ωn is a spectral broadening frequency, and ωn an angular frequency that is often
close to the frequency of the most unstable linear mode at wave number n. The frequency
integral in Eq.(32) is readily done by using the residue theorem

CE(α−α′, t− t′) =
∑
n

In exp
[
in · (α−α′)− iωn(t− t′)

]
exp

[
−∆ωn

∣∣t− t′∣∣]
The Eulerian correlation time τcE,n at wave number n can thus be identified to the inverse
of the spectral width 1/∆ωn. This property is widely used when analysing experimental
data. A similar calculation can be done by assuming a wave number spectra of the form

In = I0

∏
i=1,2,3

∆ni

(ni − n0i)
2 + ∆n2

i

Under some approximations, and after some calculations described in Appendix E, the
Eulerian correlation time is

τcE,n =
1

∆ωn + |∆n · vgn0 |

where vgn0 = ∂ωn
∂n

∣∣
n=n0

is a group velocity calculated at n = n0. Therefore, even in
absence of a frequency broadening width ∆ωn, decorrelation occurs due to the group
velocity combined with wave number spectral broadening. This point is illustrated in
Fig.13 and Fig.15, which show an example of Eulerian correlation functions without and
with a finite group velocity. This rule provides a useful estimate of the correlation time,
and is often met in the literature. The reader should be warned however that the wave
number spectrum for a turbulence rarely looks like a Lorentzian. It is rather a power
Law, e.g. the celebrated Kolmogorov spectrum k−5/3 in 3D hydrodynamic turbulence, or
exponential.

Figure 15: Eulerian correlation function as defined in Fig.13 The group velocity vg = ∂ω
∂k

∣∣
k=k0

is set
to 2. Note that the correlation function in time has shrunk.

5.2.2 Perturbative treatment of the Vlasov equation

The Vlasov equation over the total distribution function Eq.(1) reads explicitly

∂F

∂t
+ Ω · ∂F

∂α
= E · ∂F

∂J
(33)
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where

E =
∂H̃

∂α

The l.h.s. of Eq.(33) corresponds to the unperturbed ballistic motion of a particle, such
that dtα = Ω and dtJ = 0. The r.h.s. of Eq.(33) is proportional to the random field E. The
operator E = E · ∂J is sometimes called a stochastic operator, and Eq.(33) a stochastic
equation. Let us introduce the propagator (or Green’s function) G0(α,J, t/α0,J0, t0)
associated with the l.h.s. of Eq.(33), and defined as

∂G0

∂t
+ Ω · ∂G0

∂α
= 0

G0(α,J, t0/α0,J0, t0) = δ(α−α0)δ(J− J0)

The propagator G0 can be computed explicitly as

G0(α,J, t0/α0,J0, t0) = δ(J− J0)δ (α−α0 −Ω(t− t0)) (34)

The formal solution of Eq.(33) is

F = G0 ∗ F0 +G0 ∗ E [F ] (35)

where
F0(α0,J0, t) = δ(t0)F (α0,J0, t = 0)

is related to the initial distribution function. The symbol ∗ designates a convolution

(G0 ∗ S)(α,J, t) =

∫ t

0
dt0

∫
dα0

∫
dJ0 G0(α,J, t0/α0,J0, t0)S(α0,J0, t0)

for any function S(α,J, t). Using the expression Eq.(34), this convolution can be made
more explicit

(G0 ∗ S)(α,J, t) =

∫ t

0
dt0S(α−Ω(t− t0),J, t0)

The formal solution of Eq.(35) can be expanded as

F = G0 ∗ F0 +G0 ∗ E [G0 ∗ F0] + (36)

G0 ∗ E [G0 ∗ E [G0 ∗ F0]] + ...+

G0 ∗ E [G0 ∗ E [... ∗ E [G0 ∗ F0]...]] + ... (37)

To illustrate this rather abstract expression, the nth term in this series is given explicitly
as

G0 ∗ E [G0 ∗ E [... ∗ E [G0 ∗ F0]...]] =

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3...

∫ tn−1

0
dtn

E(α−Ω(t− t1), t1) · ∂
∂J

E(α−Ω(t− t2), t2) · ∂
∂J
...

E(α−Ω(t− tn−1), tn−1) · ∂
∂J

E(α−Ω(t− tn), tn) · ∂
∂J
F0(α−Ωt,J, 0)

Eq.(37) is a rather cumbersome expression, and apparently not very useful. However it
appears that after a statistical average, F0 can be replaced by 〈F 〉, with some modification
of the various terms in the series. This result is not obvious and requires a bit of care.
It is demonstrated in Appendix F, using a diagrammatic representation. It appears that
after a statistical average, Eq.(37) can be reformulated as

〈F 〉 = F0 + M 〈F 〉 (38)
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where M is a sum of products of two-field correlated operators, which is sometimes called
a “mass” operator. In this representation, each horizontal line is a convolution G0∗, while
each knot is an operator, here M . This identity is called a Dyson equation, who was the
first to prove it in the context of quantum field theory. The first non zero contribution to
the mass operator is

〈G0 ∗ E [G0 ∗ E [∗ 〈F 〉]]〉 =

∫ t

0
dt1

∫ t1

0
dt2〈

E(α−Ω(t− t1), t1) · ∂
∂J

E(α−Ω(t− t2), t2)·
〉

∂

∂J
〈F 〉 (α−Ωt,J, t2)

Let us now apply the operator ∂t + Ω · ∂α to the expansion Eq.(38). The first term
(∂tΩ · ∂α)(G0 ∗ F0) is equal to F0 which is zero everywhere except on the initial time
t = 0. Using that 〈F 〉 does not depend on the angle α, and employing a statistical
average that encompasses an average over the angles, one gets

∂ 〈F 〉
∂t

=
∂

∂Ji

∫ t

0
dt′CL,ik(J, t− t′)

∂

∂Jk
〈F 〉 (J, t′)

where
CL,ik(J, t− t′) =

〈
Ei(α, t)Ek(α−Ω(t− t′), t′)

〉
is a Lagrangian correlation function18. Its Fourier transform is readily shown to be

CL,ik(J, t− t′) =
∑
n

∫ +∞

−∞

dω

2π
ninkInω exp

(
−i (ω − n · Ω) (t− t′)

)
(39)

It is reminded that the correlation time, whether Lagrangian or Eulerian, is supposed
much smaller than the time scale that characterises the evolution of the distribution
function 〈F 〉, noted τD

19, i.e. we consider the situation τc � τD and τc � t. In this case,
〈F 〉 (J, t′) can safely be replaced by 〈F 〉 (J, t)20, and the integral

∫ t
0 dt

′ can be replaced by∫ +∞
0 dt′. This crucial step is called “markovianisation”, that can be translated as “loss

of memory”. The quasi-linear equation is then of the form Eq.(9) with a flux of diffusive
type Eq.(11) and

Dik =

∫ +∞

0
dτCL,ik(J, τ) = π

∑
nω

ninkInωδ (ω − n · Ω)

This diffusion matrix is the same as the one found in a pedestrian approach Eq.(30).

5.2.3 Validity condition of the quasi-linear equation

The reader will probably find this derivation quite lengthy and cumbersome. After all
the pedestrian approach was more rewarding ... and faster. The crucial point though is
that an estimate of the error that is made when applying the quasi-linear theory is now
within reach. The quasi-linear equation is obtained by keeping the first diagram in the
Dyson expansion. Since in the quasi-Gaussian framework all moments can be expressed
as products of two-point correlation functions, the error, noted K, is the ratio of the 4th
diagram to the second one, so typically

K =

∫ t

0
dt3

∫ t3

0
dt4

〈
∂

∂J
· E(α−Ω(t− t3), t3) · ∂

∂J
E(α−Ω(t− t4), t4)

〉
18In fact a mix of Eulerian and Lagrangian correlation functions
19τD is essentially a diffusion time, typically a2/D, where a is the system size, and D the largest of the

quasi-linear diffusion coefficients Dik.
20This is verified via a Taylor expansion of 〈F 〉 (J, t′) in t′ − t, and using for instance a correlation function

that behaves as exp(−(t− t′)/τc)
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An estimate is done as follows. Contributions from derivatives with respect to the actions
come essentially from derivatives of the Hamiltonian angular frequencies Ω. The error is
easier to compute in the Fourier space

K =
∑
nω

Inω
(

n · ∂
∂J

(n ·Ω)

)∫ t

0
dττ

∫ τ

0
dτ ′(τ + τ ′) exp

(
−i (ω − n ·Ω) τ ′

)
The integrals in time are regularised by the summations in n and ω. This actually yields a
somewhat more accurate definition of the Eulerian and Lagrangian correlation times. The
Eulerian correlation time at wave number n is the inverse of the frequency broadening
∆ωn, i.e. τcL ∼ 1/∆ωn. The Lagrangian decorrelation time is rather the product of the
wave number spectrum width ∆n times the Hamiltonian frequency vector Ω minus the
group velocity

τcL =
1∣∣∆n ·

(
∂ωn
∂n −Ω

)∣∣
The resonant frequency derivative ∂J (n ·Ω) was already met in the case of a single per-
turbation - it is the Hamiltonian curvature Cnω. The product CnωHnω is the bounce
frequency ωb of the nω perturbation. The double integral in time is of order τ4

c . Hence
the error is of the order of K ∼ (Ku)2, where

Ku = ω2
b τ

2
c

is the Kubo number. The alert reader may complain that there was in fact another
assumption: the perturbed Hamiltonian H̃ was supposed not to depend on the action
variables. This can be formally resolved by replacing the stochastic operator E∂J by a
Lagrange bracket {H̃, ·}. The demonstration is the same. However the derivative ∂J
applied on the Hamiltonian H̃(α−Ω(t− tj),J, tj) in each diagram not only acts on the
Hamiltonian frequencies Ω, but also on the explicit dependence on J. Fourier modes
Hnω(J) exhibit usually a final extent LI in the action space near a resonant surface in the
direction n. This introduces a new decorrelation process that matters if the particle gets
out of a nω Hamiltonian mode well before a bounce time. The corresponding decorrelation
time is τw = LI/h. The error made by neglecting the 4th order diagram contribution is
K ∼ (Ku)2 , where the Kubo number is Ku = τc/τw, i.e. the ratio of the decorrelation
time to the time needed by a particle to move over a distance LI under the effect of the
perturbed Hamiltonian. In summary, one should take for τc the smallest of all times

τc = min (τcE , τcL)

and for the Kubo number the smallest of both definitions

Ku = min

(
ω2
b τ

2
c ,
τc
τw

)
The Kubo number represents physically the ratio of a turbulence correlation time to the
time needed to cross a turbulent structure. If the Kubo number is smaller than 1, a
particle leaves a turbulent structure (it can be an island, a vortex, etc..) before fully
exploring it. If the Kubo number is larger than 1, then a particle has enough time to
explore an island/vortex before being subject to a decorrelation process. The condition
Ku� 1 is needed to apply the quasilinear theory. The conditions that we used for deriving
the quasilinear theory can be summarised as follows, see summary in Table 1,

• the dynamics must be chaotic. The condition is that the Chirikov overlap parameter
should be larger than 1, Sch � 1.

• the field should be a quasi-gaussian random field. This condition is not mandatory.
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Condition Criterion
Hamiltonian chaos Sch � 1

Correlation time vs diffusion time τc � τD
Weak perturbation Ku = min(ω2

b τ
2
c , τc/τw)� 1

Table 1: Conditions of validity for the quasi-linear theory. The correlation time τc should be
chosen as the minimum of the Eulerian and Lagrangian times.

• the correlation time τc = min(τcE , τcL) should be smaller than a quasi-linear diffu-
sion time τc � τD. This condition is also at the heart of a mean field theory - so in
some sense a prerequisite.

• the Kubo number should be smaller than 1, Ku = min(ω2
b τ

2
c ,

τc
τw

)� 1. This condition
can be seen as a weak perturbation requirement.

The correlation time τc is defined as τc = min (τcE , τcL) with τcE,n = [∆ωn + |∆n · vgn0 |]
−1

and τcL =
[∣∣∆n ·

(
∂ωn
∂n −Ω

)∣∣]−1
, where ∆ω and ∆n are the frequency and wave number

spectral widths.
One may expect that the condition of random field is automatically fulfilled if tra-

jectories are stochastic, i.e. if the previous condition Sch � 1 is fulfilled. However, the
demonstration of this point requires to solve the Maxwell equations, which relate the
perturbed Hamiltonian to the perturbed distribution function. This delicate question is
beyond the present overview.

5.3 Renormalised quasi-linear theory

The average distribution function 〈F 〉 can be derived from the initial distribution function
via a Green function noted 〈G〉, i.e. 〈F 〉 = 〈G〉F0

21. The Dyson equation Eq.(38) can
then be written as

〈G〉 = G0 +G0M〈G〉
One would be tempted to write formally the solution as 〈G〉 = (1 −M)−1G0, problem
being of course to invert the mass operator M - a formidable task. However a proxy is
built when using a normal distribution of random fields E. In this case, the mass operator
M is a sum of powers of two-field correlation functions, i.e. of diffusion operators in
the framework of the quasi-linear theory. However diffusion was obtained by using a
markovianisation procedure that is only valid for the average distribution function, and a
priori not for fast evolving functions that appear in course of the Dyson expansion. Let
us reformulate the objective in a another way. In the pedestrian approach, a key step was
the resonant response function Eq.(29). This function is the Fourier-Laplace transform of
the propagator G0(α,J, t/0, 0, 0) = δ(J)δ(α−Ωt)22, i.e.

G0nω =

∫ +∞

0
dt

∫
dα

(2π)3
exp (−in ·α + i(ω + iν)t) δ(J)δ(α−Ωt) = R0δ(J)

The resonant function R
(0)
nω gave rise to the Kronecker delta function πδ(ω−n ·Ω) in the

limit ν � ω. This singular function is regularised after a summation over the fluctuation
spectra. One may speculate that higher order terms in the Dyson equation may allow

replacing the resonant function R
(0)
nω by a regularised function

Rnω =
1

−i(ω − n ·Ω + iνd)

21To lighten notations, the convolution symbol ∗ is omitted.
22The Fourier-Laplace transform is performed by integrating over positive times t ≥ 0 instead of −∞ < t <

+∞ in the conventional Fourier transform, and shifting ω by a iν with ν > 0.
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where νd comes from diffusive process of the quasilinear type. This is in practice a non
linear resonance broadening process. It appears that this broadening resonant term can
be calculated explicitly, under some reasonable assumptions. The procedure is described
in Appendix G. The main result is the resonant function

Rnω =

∫ +∞

0
dτ exp

[
i (ω + iν − n ·Ω) τ − τ3

3τ3
d

]
where

1

τ3
d

=
∑
n′

∫ +∞

−∞

dω′

2π

(
n′ · ∂Ω

∂J

)
In′ω′

−i [ω − ω′ − (n− n′) ·Ω + iν]

depends weakly on Ω in the vicinity of Ω = 0. The Dupree time τd depends on (ω,n).
Nevertheless, for low frequency ω and wave numbers n compared with typical fluctuation
parameters, it gets close to τd ' [Dik ∂JiΩ ∂JkΩ]−1/3, where Dik is the quasilinear diffusion
matrix. This simple result can be understood as follows. The phase of a wave is φ =
n ·α− ωt. For a particle that moves ballistically in the wave α = Ω(J)t+α0, this phase
is just φ = Ωt, where Ω = n ·Ω(J)−ω up to a constant. Resonance occurs when the phase
remains constant, i.e. when Ω = 0. If the particle diffuses under the effect of fluctuations
other than the considered wave (typically at smaller scales), then 〈δJiδJk〉 = Dikt , so
that the phase variation evolves in time as

〈
δφ2
〉

= Dik ∂JiΩ∂JkΩ t3. Decorrelation occurs
when δφ ' π, hence after a time of the order of the Dupree time - see Fig.16 for an
illustration.

This important result calls for several remarks:

• a new time τd appears, called Dupree time after the physicist who introduced it first.
Resonant particles can now be defined properly as particles such that Ωτd � 1.

• the regularising parameter ν can be neglected as long as ντd � 1.

• the singular resonant function has now be regularised by a turbulent diffusion matrix
via the Dupree time.

• the diffusion coefficient now depends on a resonant function, which depends itself on
a quasi-linear-like diffusion coefficient. Hence an iterative procedure must be used,
which is called “renormalisation”. It is described in Appendix G. As long as the
Kubo number stays smaller than 1, the quasi-linear diffusion coefficient is not much
affected by this effect.

Figure 16: Physical meaning of the Dupree time for the case of a 1D wave exp [i (kx− ωt)]. The
phase for a particle that moves ballistically in the wave is φ = kv − ωt. Resonance is met when
v = ω/k. However a diffusion in velocity implies that

〈
δv2
〉

= Dvt, so that the phase variation evolves

as
〈
δφ2
〉

= Dvt
3. Decorrelation occurs when δφ ' π after a time t ' τd = (Dk2)−1/3.
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6 Nearly degenerate Hamiltonian perturbations*

6.1 General considerations

So far, two extreme cases have been addressed:

• a single Hamiltonian perturbation. This situation can be extended to the case where
several perturbations are present, but the corresponding resonant surfaces are far
away from each other. Collisions play en essential role in the production of entropy.
An island form near each resonant surface, which strongly reduces the production of
entropy in the weakly collisional regime. This is a consequence of particle trapping
within the island, and subsequent flattening of the distribution function.

• several Hamiltonian perturbations whose resonant surfaces are close to each other. A
Chirikov overlap parameter is defined that measures the degree of island overlap, i.e.
compares the island width with the distance between resonant surfaces. Whenever
the Chirikov overlap parameter exceed 1, trajectories become chaotic. Under some
condition quasilinear theory applies, and the motion is diffusive. This “stochastic
diffusion” is responsible for entropy production.

A third situation is frequently met, where several perturbations resonate on nearby reso-
nant surfaces, but the respective islands are oriented differently. We call this case “degen-
erate” since the resonant surfaces are almost the same. The simplest prototype for this
situations is the case of two perturbations that resonate at the same place (or nearby) in
the phase space - see Fig.(17). In this case, the entropy production can be due to collisions
or stochastic diffusion, depending on the parameters. This is a complex question, that
treat first in a simplified manner. To idendity the difficulty, let us consider two pertur-
bations with frequencies and wave numbers (ω,n) and (ω′,n′). Each single perturbation
is associated with an island near its own resonant perturbation. Intuition suggests that
strong non linear interactions are expected if the islands “overlap”: in this case a particle
trajectory cannot be dictated by a single perturbation. The Chirikov parameter is defined
as the sum of the island half-widths divided by the distance between resonant surfaces.
A chaotic motion is expected when this parameter is greater than one, as seen in Section
5. However peculiar situations must be considered. Let us remember that near resonant
surfaces, the displacements in the action space are respectively oriented along the triplets
n and n′. Also the phases are ξ = ωt−n ·α and ξ′ = ω′t−n′ ·α. If the islands are oriented
very differently, a chaotic motion may never set on, even if the perturbation amplitudes
are large. Let us illustrate this point with the case where ω = ω′ = 0 and n1 = n′1 = 0,
a situation of relevance in fusion devices. Indeed this situation is met in tokamaks when
the magnetic field corrugations due to the finite number of coils (“magnetic ripple”) are
accounted for, or in stellarators where a helical magnetic field coexist with a toroidal
field. In these two examples, perturbations do not depend on time (angle α0, nor on the
cyclotron angle α1). This limit case is modelled by considering an Hamiltonian of the
form

H(α,J, t) = Heq(J) + H̃(α,J, t) + H̃ ′(α,J, t)

where
H̃(α,J) = −h cos (n ·α)

and
H̃ ′(α,J) = −h′ cos

(
n′ ·α

)
where n = (0, 0, n2, n3) and n′ = (0, 0, n′2, n

′
3). The amplitude perturbations h and h′ are

assumed to depend slowly on the action variables. The phases reduce to ξ = n2α2 +n3α3,
and ξ′ = n′2α2 + n′3α3. The resonant surface associated with the first perturbation is
determined by the equation Ω = n2Ω2 + n3Ω3 = 0. This condition defines a surface in
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the action space, such that23 J3 = G(J2). A iota function is also defined as minus the
gradient dJ3/dJ2 along the resonant surface

ι(J2) = − dG
dJ2

The second resonant surface is defined in the same way, with n replaced by n′, hence
Ω′ = n′2Ω2 + n′3Ω3 = 0. This second resonant surface is close to the first one, and may
actually intercept or be identical to the first one.

Let us consider also the extreme case where the two resonant surfaces are the same.
The considerations above suggest that chaos should be maximum. This will be the case
for instance if n′2 = n2, and n′3 = n3 + 1. However, this is not obviously true if n3 = 0 and
n′2 = 0 since in this case the islands are oriented very differently, and overlap only in some
limited area of the phase space. In the latter case, the dominant transport mechanism
is related to particle trapping in a primary perturbation, say (n2, n3), that is affected by
a secondary perturbation, here (n′2, n

′
3). Hence the particle of motion remains regular

in this case, and a calculation of the Zakharov-Karpman type should be conducted to
calculate the entropy production rate.

Figure 17: Example of 2 neighbouring resonant surfaces in the action space.

6.2 Condition for particle trapping

A first difficulty is the modification of the condition for trapping in a secondary pertur-
bation due to the primary one. This can be understood as follows. The phase evolves
in the primary perturbation as dξ

dt = Ω, while the secondary phase obeys to the equation
dξ′

dt = Ω′. Near the first resonant surface, J = JR + nI, and Ω = CI, Ω′ = C∗I, where C
is given by Eq.(24), and C∗ is an “hybrid” curvature

C∗ = nin
′
j

∂2Heq

∂JiJj

∣∣∣∣
J=JR

(40)

Let us now consider the adiabatic limit, where the dynamics along the resonant surface is
slow compared with the one across the resonant surfaces. The two phases are then related

23This explicit relation excludes de facto multivalued function. Though such a situation may occur - in fusion
devices for instance - it is not addressed here.
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via the relationship ξ′ − ξ′0 = σ(ξ − ξ0), where σ = C∗/C = Ω′/Ω, and (ξ0, ξ
′
0) evolve

slowly in time. Let us suppose that σ � 1. The full Hamiltonian perturbation can be
expressed versus the phase ξ′ as

H̃(J, ξ′) = −h cos

(
ξ0 +

1

σ
(ξ′ − ξ′0)

)
− h′ cos

(
ξ′
)

Since σ � 1, the condition for trapping in the primary perturbation is not much changed
since ξ = ξ0 + 1

σ (ξ′ − ξ′0) ' ξ0. However the condition for trapping in the secondary
perturbation is modified by the first one. Indeed trapping is subject to the existence of
local extrema of H̃ when expressed as a function of ξ′ (see Fig. 18). The existence of a
vanishing derivative of H̃ in ξ′ imposes that

sin
(
ξ′
)

= −α∗ sin (ξ0) (41)

up to corrections of order 1/σ. The parameter α∗ measures the relative amplitude of
perturbations and is defined as

α∗ =
h

σh′

It appears immediately that trapping in the secondary perturbation requires Y ≤ 1, where
Y is defined as

Y = |α∗ sin (ξ0)|

This condition defines a domain D in the phase space. If σ � 1, the role of primary and
secondary perturbations is exchanged, and the condition becomes Y =

∣∣ 1
α∗ sin (ξ′0)

∣∣ ≤ 1.
The depth of the Hamiltonian perturbation can be calculated as follows. If Y = 0,

the minima and maximum correspond respectively to ξ′1 = 0 and ξ′2 = π, and the depths
is just ∆H = 2h′. Let us now assume that Y is small but finite. Eq.(41) implies that
minima and maxima of H̃(J, ξ′) are reached for respectively ξ′ = ξ′1 = arcsinY and
ξ′ = ξ′2 = π − arcsinY . The depth of the Hamiltonian well ∆H is computed by making

the difference between H̃ computed at ξ′ = ξ′2 and ξ′ = ξ′1. A straightforward calculation
provides

∆H = H̃(J, ξ′2)− H̃(J, ξ′1) ' 2h′
[√

1− Y 2 − Y arccosY
]

It may be more accurate in some cases to replace h′ with ∆H/2. This complication will
be avoided, but it will be kept in mind that some of the expressions derived below are
valid only in the domain D or its complementary.

6.3 Entropy production rate for a double Hamiltonian per-
turbation

The objective of this section is the computation of the entropy production rate due to
collisions. Schematically, one can define a primary perturbation, say H̃, and a secondary
perturbation, H̃ ′. The entropy production rate associated with the primary perturbation
has already been calculated, and is given by Eq.(27). Hence the entropy production
rate due to the secondary perturbation remains to be computed. Obviously the role of
the primary and secondary perturbations can be exchanged, so that the total entropy
production rate contains 4 contributions. The calculation is somewhat cumbersome and
is detailed in Appendices H and I. A short summary is produced in the following sections.

6.3.1 Key parameters

Let us define first the main parameters that determine the validity domain for each regime.
It is important to realise that the main contribution to transport comes from particles
trapped in the primary perturbation, the motion of which is affected by the secondary
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Figure 18: Particle trapping in primary and secondary perturbations.

perturbation in presence of collisions. An important parameter is the effective detrapping
collision frequency in the primary perturbation, which is potentially modified by the
secondary perturbation. A change of sign of the displacement in the action space due to
H̃ ′ occurs when the phase ξ′ changes by an amount of π. It is this change of sign that
matters for the random walk responsible for diffusion.

Let us recall that the two phases are related via the relationship ξ′ − ξ′0 = σ(ξ − ξ0).
The phases (ξ0, ξ

′
0) evolve slowly in time, so that their exact values does not matter

much in this discussion. We set ξ0 = ξ′0 = 0 to simplify the discussion. When σ � 1,
the effect of the secondary perturbation on the force felt by the particle in the primary
perturbation is weak since decorrelation occurs when ξ′ ' π, i.e. when ξ ' π/σ � π,
i.e. well after the change of sign in the first perturbation ξ ' π. The effective detrapping
collision time in the primary perturbation is therefore unchanged: decorrelation in the
secondary perturbation occurs when the primary phase is shifted by ξ ' π. The relation
HΩ = 1

2Ω2 − ω2
b cos ξ implies that this corresponds to a variation δΩ ' ωb. The effective

collision frequency, defined as the inverse of the time needed by a particle to cross the
trapped domain associated with the primary perturbation, is therefore νeff ' DΩ/ω

2
b ,

where DΩ =
〈

∆Ω2

2∆t

〉
is a diffusion coefficient in the variable Ω that scales as a cubic

frequency. In the opposite case, σ � 1, the secondary perturbation plays an important
role since decorrelation occurs when ξ′ ' π, and thus ξ ' π/σ � π. A phase shift ξ ' π/σ
implies a shift δΩ ' ωb/σ for deeply trapped particles. The effective collision frequency
is thus enhanced by a factor σ2, i.e. νeff ' σ2DΩ/ω

2
b . So the general expression of the

effective collision frequency is

νeff '
DΩ

ω2
b

max(1, σ2) (42)

Another key quantity is the drift frequency of the secondary phase on the primary
resonant surface. This comes from the fact that in the relation ξ′ − ξ′0 = σ(ξ − ξ0), ξ0

and ξ′0 can move slowly in time, related to the dynamics along the resonant surface, while
the part σξ is rather related to the motion across the resonant surface. It is shown in
Appendix H that this drift frequency, noted ωd, is

ωd = (n′ − σn) ·Ω
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The third characteristic frequency is the bounce frequency of particles trapped in
the primary perturbation ωb =

√
Ch. So in terms of typical frequency, one can define

two frequency ratios, e.g. ωd/ωb, and νeff/ωb. Other dimensionless parameters are the
curvature ratio σ = C∗/C and the ratio of Hamiltonian perturbations h′/h. This set fully
characterises the collisional entropy production (see Fig. 19). The stochastic case involves
a few additional parameters, which will be discussed later on.

Figure 19: Various transport regimes for a double resonant perturbation in the space ωd/ωb, and
νeff/ωb.

6.3.2 Entropy production rate for a double perturbation

All calculations done, the final expression of the entropy production rate due to the
secondary perturbation reads as follows. In the collisional case νeff � ωb, the production
rate is of the Landau type, similar to the single perturbation case in the same collisional
regime

Ṡres

[
Ueq, ∂JU

†
eq

]
=

1

T 2
0

π

2

∫
dγ δ(n′ ·Ω) Feq(J) h′2

(
(n′ − σn) · ∂U

†
eq

∂J

)2

In the weakly collisional regime νeff � ωb, two situations may be met :
i) an adiabatic regime where ndΩd � Ωb

Ṡres

(
Ueq, ∂JU

†
eq

)
=

1

T 2
0

∫
dγ δ(n ·Ω) Feq(J) Λ(J) h′2

νeffωb

[(n′ − nσ) ·Ω]2 + ν2
eff

((
n′ − nσ

)
· ∂U

†
eq

∂J

)2

where

Λ(J) =

{
16
9π if σ � 1
1
πσ if σ � 1
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and

σ =
n′2ι+ n′3
n2ι+ n3

νeff = Max(1, σ2)
DΩ

4ω2
b

ii) a stochastic regime where ndΩd � Ωb. It is useful to define the following frequency
and time

ωI =
[
CΛ

√
2

πσθb
h′
]1/2

; τ = KΛ
CΛ

where

KΛ = nb
∂(σθb)

∂Jb

∣∣∣∣
J=JR

+ nd
∂(σθb)

∂Jd

∣∣∣∣
J=JR

CΛ = nb
∂ωnb
∂Jb

∣∣∣∣
J=JR

+ nd
∂ωnb
∂Jd

∣∣∣∣
J=JR

and ωnb = nbωb + ndωd.
Depending on the value of τωI , two sub-regimes can be identified [31]

• the weak perturbation regime defined by the condition τωI ≤ 2. The Chirikov
overlap parameter is SI = 4ωI

Ωb
and trajectories are stochastic whenever SI ≥ Sc,

where Sc is a number of order 1.

• the strong perturbation regime τωI ≥ 2. The Chirikov parameter becomes SII =

2
τω2

I
Ωb

. Stochasticity occurs whenever SII ≥ Sc [32].

Let us note the relationship

SII =
τωI

2
SI

This relationship shows that the stochasticity condition SI ≥ Sc implies that SII ≥ Sc in
the strong perturbation regime since the latter is conditioned to τωI ≥ 2. The condition
τωI = 2 defines a critical value of h′ that depends on h and other geometrical and plasma
parameters.

For values of SI much larger than the stochasticity threshold Sc, and therefore SII ≥ Sc
in the strong perturbation regime, a diffusion coefficient can be computed under some
hypothesis detailed in Appendix J. The corresponding entropy production rate is

Ṡres

(
Ueq, ∂JU

†
eq

)
=

1

T 2
0

π

8

∫
dγFeq

h′2

Ωb
Λ(J)

(
(n′ − σn) · ∂U

†
eq

∂J

)2

where the form factor Λ(J) is such that

• if σ � 1, then Λ(J) = 1

• if σ � 1, then

Λ(J) =
2

πσθb
min

(
1,
Sst
SII

)
' 2

πσθb

1

1 + SII
Sst

where

SII =

√
2

πσθb

KΛh
′

Ωb

This expression bears the advantage of being continuous across the transition from weak
to strong perturbation regime. However it predicts a transition when

SII =
τωI

2
SI ' Sst
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Consistency imposes that Sst > Sc - Grua et al. [31] recommends Sst = 2. Given the
expression of the form factor Λ(J), the quasilinear diffusion DQL that applies in the weak
perturbation regime reads

DI = DQL =
1

2σθb

h′2

Ωb

The diffusion coefficient in the strong regime is just DI = DQLSst/SII . As expected the
quasilinear diffusion coefficient behaves as h′2 in the weak perturbation regime, and h′ in
the strong perturbation regime. It is sketched on Fig.20.

Figure 20: Diffusion coefficient normalised to the quasilinear value versus the Chirikov overlap pa-
rameter.

7 Conclusion

It is time to wrap up the main results of this lecture note. What is left of the initial
objective, which was to predict the time evolution of the mean distribution function of an
Hamiltonian dynamical system? Let us remind first the assumptions :

• the unperturbed Hamiltonian is integrable and the phase space is bounded. This
allows defining a set of angle and action variables. The actions are invariant of mo-
tions, and the time derivatives of the angle variables are resonant angular frequencies,
which depend on the actions only.

• a scale separation allows a clear separation between the mean and perturbed dis-
tribution function. More precisely the Hamiltonian can be separated in a mean
integrable part plus fluctuations. The mean distribution function, defined as an av-
erage over the angles and time, evolves on time scales that are much larger than
those of fluctuations.

The first result deals with the mean distribution function. In absence of collisions, it has
to be a function of the invariants of motions, thus justifying its definition as an average of
the full distribution function over the angle variables. With collisions only, the distribu-
tion function is known to be a local Maxwellian, usually not a function of the invariants of
motion. Hence the steady-state “equilibrium” distribution function has to be a compro-
mise between a local Maxwellian and a function of the actions. The problem of finding the
mean distribution is expressed in a variational form, which physically expresses that the
mean distribution function minimises the entropy production rate. This formulation can
be extended to compute the slow time evolution of the mean distribution function. In the
latter case, it appears that the evolution of the mean distribution function can be written
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in a conservative form, the contribution from the motion of particles in the Fokker-Planck
equation can be written as the divergence of a flux in the action space. This is an essen-
tial result: this methodology gives access to particle transport in the phase space. More
precisely, each moment of the distribution function is associated with a flux. Fluxes are
related to thermodynamic forces via a transport matrix. Under some conditions, this
matrix is symmetric, consistently with Onsager symmetry prescription. It remains to
compute these fluxes explicitly, or equivalently to compute the entropy production rate.

The special case of a single perturbation is treated first. The Vlasov equation can
be solved case when it is linearised. It appears that the solution is singular near a reso-
nant surface in the action space, where the phase of the Hamiltonian perturbation stays
constant in time, hence optimising the exchange of energy between the particles and the
perturbation. A closer look at the trajectories shows that they lie on surfaces of constant
energy. The set of constant energy surfaces bear the shape of an island near the resonant
surface in the phase space. Within the island, the perturbation phase felt by particles
bounces back and forth in time - these are called trapped particles. Outside the island,
the phase felt by particles move forward or backward without bouncing - these are called
passing particles. These two domains in the action space are separated by a separatrix,
that defines the island boundary. An exact solution of the Fokker-Planck equation, i.e.
with collisions, can be computed. The mean distribution is found to flatten within the
island, a consequence of mixing due to particles that spans surfaces of constant energy
on a short time scale, combined with a slow collisional diffusion across these iso-energy
surfaces. On the contrary, the mean distribution function develops strong gradients at
the separatric between trapped and passing particle domains in the phase space, i.e. near
the island separatrix. Not surprisingly the entropy production rate is maximum in the
vicinity of the island separatrix, where strong gradients develop.

The case of multiple perturbations is then addressed. A Chirikov overlap parameter is
defined that measures the degree of island overlap, i.e. compares the island width with the
distance between adjacent resonant surfaces. Whenever the Chirikov overlap parameter
exceeds 1, trajectories become chaotic. 3 limits are then identified:

• the resonant surfaces associated with perturbations are far away from each other in
the phase space, i.e. Chirikov overlap parameter is smaller than 1. This is equivalent
to treat several single perturbations independently. Collisions play en essential role
in the production of entropy, which is just the sum of individual entropy production
rates near each island.

• resonant surfaces are close to each other, i.e. the Chirikov overlap parameter is
larger than 1. Under some condition quasilinear theory applies, and the motion is
diffusive. This “stochastic diffusion” is responsible for entropy production. It does
satisfy the Onsager symmetry constraint.

• resonant surfaces are close, but the direction of Hamiltonian perturbations across
resonant surfaces are not aligned. This is the most intricate situation since collisions
or chaos may prevail depending on the parameters. The case of two Hamiltonian
perturbations whose resonant surfaces are close in the action space is addressed as
a prototype of this peculiar configuration. After some effort, the entropy produc-
tion rate is calculated. Collisions or chaos can indeed contribute most to transport
across the resonant surfaces, depending on collisionality and the hierarchy of reso-
nant frequencies. The parameter domain that defines the various regimes is made
available.

At this stage, a sceptical reader may question the relevance of all these efforts. The
reason is that these various cases cover most of the situations encountered in plasma
physics. Here a major issue is to compute the transport due to collisions and/or tur-
bulence. It appears that in many cases, transport coefficients can actually be computed
from the expressions given in this lecture, provided the spectrum of fluctuations is given.
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A second criticism lies with the almost infinite range of possibilities offered by numerical
simulations. So why bothering with analytical formula? One reason is that codes, even the
most powerful ones, need be verified. Analytical formula allows a thorough verification,
i.e. check they provide the right answer whenever an exact solution is known. Besides, it
appears that the computation time may be unreasonably large. This is quite frequently
the case for turbulence simulations. It is then useful to develop reduced models, based
on known analytical formula. Reason why quasi-linear models underlie most successful
turbulent transport models. Finally, deep understanding of transport processes provides
us with an intuition which is certainly useful when running experiments.
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APPENDICES

A Collision operator

A.1 Fokker-Planck operator

We are interested here in the evolution of the distribution function Fa(z) of a species a,
where z = (x,p, t) (x and p are the particle position and momentum). This evolution is
dictated by the motion of particles a, and collisions with other species b (including other
particles of species a). This evolution is ruled by the Fokker-Planck equation

∂Fa
∂t
− {Ha, Fa} =

∑
b

Cab(Fa, Fb)

where

{Ha, Fa} =
∂Ha

∂x
· ∂Fa
∂p
− ∂Ha

∂p
· ∂Fa
∂x

is a Poisson bracket, Ha(z) the Hamiltonian of species a,

Ca(Fa) =
∑
b

Cab(Fa, Fb)

is the collision operator of species a, and Cab(Fa, Fb) is the collisional operator between
particles of species a and b

Cab (Fa, Fb) =
1

2
γab

∂

∂p
·
{∫

d3p′L ·
[
Fb(z

′)
∂Fa(z)

∂p
− Fa(z)

∂Fb(z
′)

∂p′

]}
with24 z′ = (x,p′, t)

γab = 4π
e2
ae

2
b

(4πε0)2 ln Λ

and

L =
u2I− uu

u3

is a tensor. Here ea is the charge, ln Λ the Coulombian logarithm and

u(x,p,p′, t) =
∂Ha(z)

∂p
− ∂Hb(z

′)

∂p′

is the relative velocity. The structure of the collision operator Cab is of the Fokker-Planck
type

Cab (Fa, Fb) = − ∂

∂pi
(Aab,iFa) +

1

2

∂2

∂pipj
(Dab,ijFa)

where

Aab,i =

(
1

ma
+

1

mb

)
γabmb

∂Kb

∂pi

Dab,ij = γabm
2
a

∂2Gb
∂pipj

and Hb and Gb are the Rosenbluth potentials defined in Ref.[33]

Kb(z) =

∫
d3p′Fb(z

′)
1

u
(z,p′)

Gb(z) =

∫
d3p′Fb(z

′)u(z,p′)

The collisional operator in Eq.(43) is the starting point for expressing the Fokker-Planck
equation in a variational form.

24Note that the collision operator is local in space and time, but not in momentum

39



A.2 Thermodynamical potentials

Let us now write each distribution function in the form Eq.(12), i.e.

Fa = exp

(
−Ha − Ua

T0

)
where T0 is a constant25. Here the function Ua(z) is a thermodynamical potential that
measures the departure from thermodynamical equilibrium. Using the property L ·u = 0,
it appears readily that Cab(FHa, FHb) = 0, where

FHa = exp

(
−Ha

T0

)
It is then convenient to define a collision operator on the potentials (Ua, Ub) as follows

Cab(Fa, Fb) = Fa
1

T0
Cab(Ua, Ub)

or equivalently

Cab(Ua, Ub) =
1

Fa

1

2
γab

∂

∂p
·
∫
d3p′FaFbL ·

[
∂Ua
∂p
− ∂Ub
∂p′

]
where Ua is a function of z = (x,p, t), while Ub is a function of z′ = (x,p′, t). Note that
at this stage, the operators Cab are not linearised with respect to the functions Ua. With
these notations, and assuming that the system is static, the Fokker-Planck equation can
be recast as

∂Ua
∂t
− {Ha, Ua} =

∂Ha

∂t
+
∑
b

Cab(Ua, Ub)

A.3 Properties of the collision operator

Collision operators verify some important properties which are summarised here - demon-
strations can be found in [6]. First a collision operator grants the positivity of distribution
functions provided that the initial distribution functions are positive (and of course ignor-
ing the Poisson bracket in the evolution equation). Second, collision operators conserve
the density for each species, and also total momentum and energy (total means here after
summation over all species). Also functions in the kernel of collision operators , i.e. such
that Cab(Ua, Ub) = 0, are local Maxwellian, i.e. their thermodynamic potential read

Ua(x,p) = Aa(x) + Va(x) · p + βa(x)Ha(x,p) (43)

As a consequence, a collision operator induces a relaxation of the distribution towards a
loca Maxwellian. Finally let us define an entropy as

Sa = −
∫
dγFa lnFa (44)

where dγ = d3xd3p is the volume element in the phase space. It appears that collision
operators ensure that entropy increases in time, in accordance with the Boltzmann H-
theorem.

25Note that the same reference temperature T0 is chosen for all species
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A.4 Collisional entropy variational principle

The set of Fokker-Planck equations for all species is equivalent to find an extremum of
the following entropy functional for all variations of U †a

δṠ =
2

T 2
0

∑
a

∫
dγFaU

†
a

(
∂Ua
∂t
− {Ha, Ua}

)
+
∑
ab

Ṡcollab (Ua, U
†
b ) (45)

where the functional Ṡcollab is defined as

Ṡcollab (Ua, U
†
b ) =

1

T 2
0

γab
2

∫
d3xd3pd3p′FaFb[

∂Ua
∂p
− ∂Ub
∂p′

]
· L ·

[
∂U †a
∂p
−
∂U †b
∂p′

]
(46)

which is close to the expression given in Ref.[34]. This definition is consistent with the
standard entropy for a species a, as defined in Eq.(44). It yields the production rate

Ṡa = − 1

T 2
0

∫
dγFaUa

∂Ua
∂t

at constant number of particles and energy. The collisional contribution Ṡcollab (U,U) to
the entropy production rate Eq.(46) is always positive (consistently with the Boltzmann
H-theorem). Moreover it is equal to zero if and only if Ua(x,p) is of the form Eq.(43).
When Ua � Ha, the functional Eq.(46) can be replaced by the symmetrical form

Ṡcollab (U †a , U
†
b ) =

1

T 2
0

γab
4

∫
d3xd3pd3p′FHa,eqFHb,eq[

∂U †a
∂p
−
∂U †b
∂p′

]
· L ·

[
∂U †a
∂p
−
∂U †b
∂p′

]
(47)

Many interesting problems are time-dependent so that the Hamiltonian is not an invariant
of motion. In that case, the variational principle Eq.(45) does not hold.

B Angle and action of an island in the phase

space

It is useful to introduce the trapping parameter

κ2 =
2ω2

b

HΩ + ω2
b

Particles are passing if 0 ≤ κ ≤ 1 and trapped if 1 ≤ κ ≤ +∞. The motion is periodic,
which allows defining a “bounce/transit” frequency Ωb, equal to 2π/Tb, where Tb is the
period

Tb =
2π

Ωb
=

∮
dξ

Ω
=

{ ∫ π
−π

ξ
Ω 0 ≤ κ ≤ 1

2
∫ ξb
−ξb

ξ
Ω 1 ≤ κ ≤ +∞

(48)

For trapped particles, a period covers a forward motion from −ξb to ξb, and then back
from ξb to −ξb. After some algebra, the angular frequency Ωb reads

Ωb =
2ωb
κτ(κ)

with

τ(κ) =
2

π

{
K(κ2) 0 ≤ κ ≤ 1

2
κK
(

1
κ2

)
1 ≤ κ ≤ +∞
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and K is the complete elliptic function of the first kind

K (m) =

∫ π
2

0

du√
1−m sin2 u

Since K(0) = π/2, it appears that Ωb coincides with the reference value ωb for deeply
trapped particles κ→∞, and

√
2HΩ for freely passing particles κ→ 0. The bounce/transit

period becomes large near the passing/trapped boundary κ = 1 since K(κ) ' −1
2 ln |1− κ|

for |1− κ| � 1. The angle ξ can be expressed as a function of the angular variable αb = Ωbt

sin

(
ξ

2

)
=


sn
(

1
2τ(κ)αb , κ

2
)

0 ≤ κ < 1

1
κsn

(
1
2κτ(κ)αb ,

1
κ2

)
1 < κ < +∞

valid for all αb, ξ. The function sn(δ,m) is the Jacobian elliptic function that coincides
with the trigonometric sin δ function for m� 1, more precisely

sn(δ,m) = sin
[(

1− m

4

)
δ +

m

8
sin 2δ

]
+ o(m2)

One recovers that ξ = αb+ 1
4κ

2 sin(αb) for quasi-freely passing particles κ→ 0. For deeply
trapped particles κ→∞, ξ = ξb sinαb where ξb is the bounce angle, sin (ξb/2) = 1/κ.

An action Jb can be built by using the invariance of the Poincaré-Cartan integrals
under a canonical change of variables (see lecture on particle trajectories)

2πJb =

∮
Ωdξ (49)

Practical expressions are found after a bit of algebra

Jb = 4ωb
2

π


1

2κE(κ2) 0 ≤ κ ≤ 1

E
(

1
κ2

)
−K

(
1
κ2

)
+ 1

κ2K
(

1
κ2

)
1 ≤ κ ≤ +∞

(50)

where E is the complete elliptic integral of the second kind

E (m) =

∫ π
2

0
du
√

1−m sin2 u

For deeply trapped particles κ → ∞, a Taylor development of the elliptic functions near
m = 0 gives the expression Jb = 2ωb/κ

2 = (HΩ + ω2
b )/ωb. A combination with Ωb = ωb

provides the relationship HΩ = −ω2
b + JbΩb. For freely passing particles κ→ 0, one finds

Jb = ωb/κ =
√
HΩ/2, which combined with Ωb =

√
2HΩ yields HΩ = JbΩb. In both case,

Ωb = dHΩ/dJb, as expected. This property can be verified for arbitrary values of κ by
using the definitions of Ωb and Jb, Eqs.(48,49).

C More on islands

C.1 Island and conjugate variables

The description of an island in the phase space can be made more accurate by building a
new set of conjugate variables. The perturbed Hamiltonian in the extended phase space
reads

H(α,J) = Heq(J)− h(J) cos [n ·α]

To keep the analysis as simple as possible, we assume that the resonant condition Ω =
n ·Ω = 0, which defines a surface in the phase space, can be written as J3 = R(J∗), where
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J∗ = (J0, J1, J2), and R is a single-valued and smooth function (see Fig.21). We wish to
construct a new set of conjugate variables (θ, I) that decouple the island dynamics from
the dynamics over the resonant surface. Let us remember that one way to construct such
a set of variables is to use the invariance of the action

A =

∫
J · dα−Hdτ =

∫
I · dθ −H′dτ + dS

under a canonical change of variables. Here τ is the time in the extended phase space,
and S(θ, I,α,J) is a generating function chosen here as

S(θ, I,α,J) = −I · θ + I3n ·α + JR(I∗)

where JR = (I∗, R(I∗)), and I∗ = (I0, I1, I2). Calculating the partial derivatives of S
provides the link between the old and new set of variables, i.e.

Jk = Ik + nkI3 ; θk = αk + ∂R
∂Ik

(I0, I1, I2)

J3 = R(I0, I1, I2) + n3I3 ; θ3 = n ·α
(51)

where the index k runs from 0 to 2. This is consistent with the relation J = JR+I3n found
above, where I3 coincides with I, and α3 with ξ, with a clean definition of JR. The last
constraint that comes from the action invariance relates the old and new Hamiltonians

H′(I, θ3) = H(JR + I3n)− h(JR + I3n) cos(θ3)

A Taylor development for small values of J3 provides H′ = H(JR)+ 1
2CI

2
3 −h(JR) cos(θ3),

where C is the Hamiltonian curvature. Hence our previous result is recovered. As men-
tioned above the couple of variables (I3, θ3) can itself be transformed into a new set of
action/angle variables such that the Hamiltonian H′ depends on the actions only. In other
words the system stays integrable. Note that the variables θk are not strictly angles since
when the angle αk spans 2π, the angle θk is equal to 2π + ∂IkR which differs from 2π
unless the partial derivative ∂IkR vanishes.

Figure 21: Example of a resonant surface where the third action is a single-valued function of the
two others J3 = R(J1, J2)

C.2 Angle/action variables

C.2.1 Another recipe

The change of variables Eq.(51) is asymmetric, i.e. the new variables θ are related to
the old ones α, but the old variables J are functions of the new ones I. Obviously a
relationship that relates new variables to old variables is preferable. Also manipulating
a set of angle/variables offers some comfort. To this aim, another recipe is used to build
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up a new set of conjugate variables (θ, I) from old ones (α,J). If the following properties
can be proved {

αi, αj
}

= 0
{
αi, Jj

}
= δij

{
J i, Jj

}
= 0 (52)

then (θ, I) are conjugate. All Poisson brackets in Eqs.(52) are calculated in (α,J) vari-
ables. The latter also satisfy the same constraints. One can then look for new variables
linearly related to the old ones, and use the constraints above to find the coefficients

C.2.2 Angle/action variables in a 2D subset

This programme can be executed in the case of 2 degrees of freedom, i.e. when two pairs
of conjugate variables can be separated from the others,and can be extended to higher
dimensions. This is for instance the case whenever the considered perturbation does not
depend on time α0 nor on the gyroangle α1. One example is the calculation of collisional
(“neoclassical”) transport in fusion devices, or more generally the effect of a departure of
the magnetic field from its required value (“error field”). The objective is then to find
two angles (θ2, θ3) and conjugate actions (I2, I3) versus (α2, α3, J2, J3). We assume that
the integers (n2, n3) are coprime numbers 26. In this case, there exists a pair of two other
prime numbers (p2, p3) (Bézout’s identity) such that

p2n2 + p3n3 = 1

The conditions Eq.(52) produce in practice 4 independent relations. An additional con-
straint is provided if one chooses θ3 = n2α2 + n3α3. All the other variables are then fully
determined. The result is (

θ2

θ3

)(
p3 −p2

n2 n3

)(
α2

α3

)
for angles, and (

I2

I3

)(
n3 −n2

p2 p3

)(
J2

J3

)
for actions. The reader can verify directly that the constraints on Poisson brackets
Eqs.(52) are verified. These relations can be easily inverted as(

α2

α3

)(
n3 p2

−n2 p3

)(
θ2

θ3

)
and (

J2

J3

)(
p3 n2

−p2 n3

)(
I2

I3

)
Let us stress that the variables (θ2, θ3) are angles since when the angles (α2, α3) are equal
to a multiple of 2π, (θ2, θ3) are also equal to multiples of 2π. This change of variables
turns out to be very useful for practical calculations.

C.2.3 Extension to 3D

The 3D case is handled as follows. Let us define the change of variables

θ =

 b× p
p× τ

n

 ·α
26If not, (n2, n3) can be written as k(n′2, n

′
3), where k is an integer, and (n′2, n

′
3) are coprime numbers. The

analysis that follows can then be generalised without any difficulty.
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for angles, and

I =


τ

b·(p×τ )
b

b·(p×τ )

p

 · J
The parenthesis are to be read as matrices whose components on each row is given by a
vector. The basis (τ ,b,n) is a set of 3 orthogonal and unitary vectors whose components
are integers27. The vector p satisfies the Bezout’s identity p · n = 1. It then appears
that Eqs.(52) are verified since Poisson brackets are just scalar products between the
lines of the two matrices that relate the new to the old variables. Let us stress that the
components that relate θ to α are all integers, which guarantees that the variables θi are
angles (but with a periodicity that is usually not 2π). On the other hand, the coefficients
that relates the actions are not integers. This methodology can be extended to higher
dimensions.

D Solution of the Fokker-Planck equation

D.1 Solution in the collisional regime η � 1

The collisional regime is treated by solving Eq.(25) that reads

−p∂f̃
∂ξ

+ sin ξ
∂f̃

∂p
+ η

∂2f̃

∂p2
= − sin ξ (53)

The function f̃(ξ, p) is then developed as a Fourier series

f̃(ξ, p) =
+∞∑
`=−∞

f̃`(p)e
i`ξ

The term − sin ξ in the r.h.s. of Eq.(53) acts as a source and involves only the ` = ±1
harmonics. The first and third terms in the l.h.s. are “linear” in the sense that they
respond to the drive with the same harmonics ` = ±1. In contrast the second term in the
l.h.s. is “non linear” as it involves beating terms with harmonics other than ` = ±1. The
key point is that the linear response involves a typical value of p of the order η1/3. This
property is obtained by balancing the linear terms in the l.h.s. of Eq.(53). Balancing the
first and third term in the l.h.s. yields p ∼ 1/η1/3, while balancing one of those with the
drive (r.h.s of Eq.(53)) implies f̃±1 ∼ 1/η1/3. As a consequence, the non linear term scales
as 1/η4/3. It is thus subdominant when η � 1 and can be neglected. The resulting linear
equation is readily solved in f̃±1(p) via a Fourier transform in the variable p. The final
result is

f̃(ξ, p) =

∫ +∞

0
dρ exp

(
−ηρ

3

3

)
sin (ξ − pρ) (54)

The resonant entropy production rate can now be calculated. Using Eq.(10), it appears
that

Γ = ΓhF ′eqωbn

where

Γ =

∫ π

−π

dξ

2π
sin ξf̃(ξ, p)

27For instance, given a Cartesian basis (e1, e2, e3) and a vector n not aligned with e3, i.e. n = n1e1 +n2e2 +
n3e3, an example of such a basis is τ = e3 × n and b = n× τ .
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Hence the resonant entropy functional as defined in Eq.(20) becomes28

Ṡres

[
Ueq, ∂JU

†
eq

]
=

1

T 2
0

∫
dγFeq(J)δ(n ·Ω)Λ(JR)h2

(
n · ∂U

†
eq

∂J

)2

(55)

where

Λ(JR) = −
∫ +∞

−∞
dp

∫ π

−π

dξ

2π
sin ξf̃(ξ, p) (56)

A useful equivalent form is found by multiplying Eq.(25) by f̃ and integrating over the
phase space29

Λ(JR) = η

∫ +∞

−∞
dp

∫ π

−π

dξ

2π

(
∂f̃(ξ, p)

∂p

)2

(57)

This formulation grants positivity of the entropy production rate. Plugging the collisional
solution Eq.(54) in Eq.(56), or equivalently Eq.(57), one finds Λ(JR) = π

2 . The Kronecker
δ(Ω) function is just a trick to deal with a surface integral, i.e.∫

dγG(J)δ(n ·Ω) =

∫
dS∗dIG(J)δ(CI) =

1

C

∫
dS∗G(JR)

where dS∗ is a surface element on the resonant surface Ω = n ·Ω = 0. The structure of
the resonant production rate is quite interesting:

• It appears that it is a quadratic function of the gradient of the thermodynamic
potential along the vector n, namely n · ∂Ueq∂J . Therefore gradients of the thermo-
dynamic potential along action variables measure departures from thermodynamic
equilibrium.

• The production of entropy is localised near the resonant surface Ω = 0, thus justify-
ing the name “resonant”. the localising Kronecker δ(Ω) function is a bit misleading
in that regard, since the entropy is produced within a layer, not just at Ω = 0. The
width of this boundary layer is η1/3ωb. So it increases slowly with collisionality.

• Quite remarkably the form factor Λ(JR) is a constant, and hence the resonant pro-
duction rate does not depend on the collision diffusion DΩ. This result is quite
general and depends weakly on the details of the collision operator. A simple Krook
operator produces the same result. However this is no longer true in the weakly
collisional regime η � 1.

D.2 Solution in the weakly collisional regime η � 1

Access to the weakly collisional regime turns put to be easier by solving Eq.(26) in the
limit η � 1. In absence of dissipation η = 0, the solution f0(k, σ) is a function of the
invariant of motion k and the sign σ of p. However the exact shape of f0(k, σ) is unknown.
Thus dissipation is needed to compute the entropy production rate, as expected. This is
readily done by looking for a solution f that is a function of (k, ξ, σ). The distribution
function f is then expanded in powers of η, namely

f(k, ξ, σ) = f0(k, σ) + η f1(k, ξ, σ) + o(η2)

28One must be cautious that the flux given above in Ω coordinate. The flux in action space is obtained after
a multiplication by ωb. This is the one that must be used to compute the entropy production rate. The factor
ω2
b = Ch provides an extra perturbed Hamiltonian h, while the curvature C recombines with F ′eq.
29Note that the integral over the phase space of the Poisson bracket

{
k, f̃2

}
vanishes. This is a general

property of Poisson bracket with appropriate boundary conditions.

46



Eq.(26) becomes at first order in η

∂f1

∂ξ
=

∂

∂k

(
p
∂u0

∂k

)
(58)

where p is here a function of (k, ξ, σ), namely p = σ
√

2(k+ cos ξ)1/2. All functions are 2π
periodic in ξ. Integrating Eq.(58) yields a solvability equation that rules f0(k, σ)

∂

∂k

[(∮
dξ

2π
p(k, ξ)

)
∂f0

∂k

]
= 0

This equation is in fact an equation of conservation of the flux across the island. It must
be solved separately inside and outside the island, because of the change of topology at
the island separatrix. The meaning of the contour integral is given in Appendix B (see
Eq.(48). The solution of this equation is

∂f0

∂k
(k, σ) = σ

A

Q(k)

where

Q(k) =
√

2

∮
dξ

2π
(k + cos ξ)1/2

The function Q is close to the bounce action Jb defined in Appendix B (see Eq.50). The
integration constant A has to be determined inside the island −1 ≤ k < 1, and outside
the island k > 1 for both σ = +1 and σ = −1. Since Q(k) vanishes at the island O point
k = −1, the constant A must be zero within the island, otherwise f0 would be singular
at the O point. Outside the island, and far away from the island k →∞, f0 must match
the unperturbed solution f0 → p. This imposes that A = 1 whatever the sign of p. Hence
the thermodynamic potential is at lowest order in η

f̃0(ξ, p) = σΘ(k − 1)

∫ k

1

dk′

Q(k′)
− p (59)

where Θ is a Heaviside function and and k = p2

2 − cos ξ. The resonant entropy production
is still given by Eq.(55) with Λ(JR) given by Eq.(56). The calculation is not difficult but
requires some care. The equivalent expression of Λ(JR) Eq.57 is easier to manipulate in
this case. At lowest order in η, f̃ can be replaced by ũ0. The integrand is an even function
of p, so that Λ is twice the integral over positive values of p. Eq.(59) yields

∂f̃(ξ, p)

∂p
= Θ(k − 1)

|p|
Q(k′)

− 1 (60)

Note that the derivative of the Heaviside function with k yields a η(k − 1) contribution
that vanishes since multiplied by a function that vanishes at k = 1. Moving to the set of
coordinates (k, ξ) is then timely. It is found that

Λ(JR) = 2Iη

where I is a number

I = lim`→+∞

∫ `

−1
dk

∮
dξ

2π

1

|p|

(
Θ(k − 1)

|p|
Q(k)

− 1

)2

The limit has been introduced to anticipate cancellations between large contributions.
Noting that

dQ

dk
=

∮
dξ

2π

1

|p|
and Q(−1) = 0, one gets the final expression

I = lim`→+∞

(
Q(`)−

∫ `

1

dk

Q(k)

)
' 1.38
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E Eulerian correlation time for a broad spectrum

Teh objective is to compute the correlation function CE(α−α′, t− t′), i.e.

CE(α−α′, t− t′) =
∑
n

∫ +∞

−∞

dω

2π
Inω exp

[
in · (α−α′)− iω(t− t′)

]
(61)

when the fluctuation spectrum is Lorentzian

Inω = I0

∏
i=1,2,3

∆ni

(ni − n0i)
2 + ∆n2

i

∆ωn

(ω − ωn)2 + ∆ω2
n

where ∆ωn is a spectral broadening frequency, and ωn an angular frequency that is often
close to the frequency of the most unstable linear mode at wave number n. The summation
over n is performed by using several approximations:

• the summation over n is replaced by an integral
∫
dn1dn2dn3. The procedure is valid

as long as ∆ni � 1. It is equivalent to using a trapezoidal rule (assuming In ∼ 0
for |n| → ∞).

• the frequency ωn is expanded linearly near n = n0, i.e. ωn = ωn0 + vgn0 · (n− n0),
where vgn0 = ∂ωn

∂n

∣∣
n=n0

is a group velocity calculated at n = n0.

• ∆ωn ' ∆ωn0 , i.e. the frequency spectrum width is assumed constant near the peak
wave number n = n0.

The result is

CE(α−α′, t− t′) = I0 exp
[
in0 · (α−α′)− iωn0(t− t′)

]
exp

[
−∆ωn

∣∣t− t′∣∣]
exp

[
−
∣∣∆n ·

(
α−α′ − vgn0(t− t′)

)∣∣]
Let us now call CE(t − t′) the correlation function CE(α − α′, t − t′) calculated at the
position α = α′. It appears readily that

CE(t− t′) = I0 exp
[
−iωn0(t− t′)

]
exp

[
− (∆ωn + |∆n · vgn0 |)

∣∣t− t′∣∣]
Hence the Eulerian correlation time is

τcE,n =
1

∆ωn + |∆n · vgn0 |

F Diagrammatic representation and Dyson equa-

tion

Let us remind the structure of the formal solution of Eq.(35), which can be expanded as

F = G0 ∗ F0 +G0 ∗ E [G0 ∗ F0] +

G0 ∗ E [G0 ∗ E [G0 ∗ F0]] + ...+

G0 ∗ E [G0 ∗ E [... ∗ E [G0 ∗ F0]...]] + ... (62)

It is quite useful to make use of a diagrammatic representation to better see the fate of
the various terms in Eq.(37). Each convolution G0∗ is represented by an horizontal bar,
and the stochastic operator E [ ] is represented by E . The formal solution Eq.(37) in Fig.22.
The nth diagram in this series is
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Figure 22: Diagrammatic representation of the formal solution Eq.(37) of the Vlasov equation. Each
horizontal bar is a convolution G0∗. The stochastic operator E [ ] is represented by the symbol E . F0

is the initial distribution function.

G0 ∗ E [G0 ∗ E [... ∗ E [G0 ∗ F0]...]] =

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3...

∫ tn−1

0
dtn

E(α−Ω(t− t1), t1) · ∂
∂J

E(α−Ω(t− t2), t2) · ∂
∂J
...

E(α−Ω(t− tn−1), tn−1) · ∂
∂J

E(α−Ω(t− tn), tn) · ∂
∂J
F0(α−Ωt,J, 0)

Note that the derivative ∂J with respect to the action variables do not commute with the
random fields E even if they do not depend on J. The reason is that the Hamiltonian
resonant frequencies Ω are action dependent.

F.1 Statistical average

We now make use of the random character of the turbulent field E by computing the
statistical average of Eq.(37). The structure of the correlation function Eq.(31) implies
that fields are correlated if their argument are within a correlation time. Two types of
correlation times appear, the Eulerian one τcL, and Lagrangian correlation times that
will be defined as Lci/Ωi in each 3 angle direction i = 1, 2, 3. We note τc the longest
time of all. For a given diagram of length n, two adjacent fields computed at time ti
and ti−1 may be within a correlation time |ti − ti−1| < τc or not. If the times ti and
ti−1 are within a correlation time, the corresponding diagram is called “connected”, and
represented with a hat that connects the two fields. If not, the diagram is “disconnected”.
An essential property of a Markov process is that disconnected diagram can be decomposed

Figure 23: Decomposition in connected diagrams of a 4th order contribution to the diagrammatic
expansion of Fig.22.

as a product of connected diagrams. Moreover, the analysis is restricted to a Gaussian
distribution of random fields. A field Gaussian (or normal) is defined as follows. To ease
the understanding, we E(α−Ω(t−ti), ti) as E(i), and derivatives with respect to the action
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are ignored. A Gaussian random field distribution is such that the statistical average of an
odd number of fields vanish, e.g. 〈E(1)E(2)E(3)〉 = 0. Conversely, the statistical average of
an even number can be expressed as a sum of product of two point correlation functions,
e.g.

〈E(1)E(2)E(3)E(4)〉 = 〈E(1)E(2)〉 〈E(3)E(4)〉+

〈E(1)E(3)〉 〈E(2)E(4)〉+ 〈E(1)E(4)〉 〈E(2)E(3)〉

A two-point correlation function does not vanish as long as the corresponding times are
within a correlation time τc. The advantage of a Gaussian random field is that all correla-
tion functions can be reduced down to products of two-point correlation functions. How-
ever a realistic turbulent field is usually not Gaussian. But it is often “quasi-Gaussian”, in
the sense that odd moments can be expressed as function of even moments via a closure.
The even moments can still be reduced to two-point correlation function. For this reason
we will keep odd moments in the development, provided of course that the corresponding
times cluster within a correlation time. Note however that the 1st moment 〈E(i)〉 = 0 is
always zero. For instance, let us consider the full 4th order diagram

〈G0 ∗ E [G0 ∗ E [G0 ∗ E [∗E [G0 ∗ F0]]]]〉 =

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4〈

E(α−Ω(t− t1), t1) · ∂
∂J

E(α−Ω(t− t2), t2) · ∂
∂J

E(α−Ω(t− t3), t3) · ∂
∂J

E(α−Ω(t− t4), t4)

〉
· ∂
∂J
F (α−Ωt,J, 0)

where the initial distribution function has been put outside the bracket since it is not a
random field. Let us now assume that t2 − t3 � τc, then one has

〈G0 ∗ E [G0 ∗ E [G0 ∗ E [∗E [G0 ∗ F0]]]]〉 =

∫ t

0
dt1

∫ t1

0
dt2〈

E(α−Ω(t− t1), t1) · ∂
∂J

E(α−Ω(t− t2), t2)

〉
· ∂
∂J∫ t2

0
dt3

∫ t3

0
dt4

〈
E(α−Ω(t− t3), t3) · ∂

∂J
E(α−Ω(t− t4), t4)

〉
· ∂
∂J
F (α−Ωt,J, 0)

Of course one has to look in all position combinations of the various times. The final result
is represented graphically in Fig.23. We now call a nth order diagram “irreducible” if no
line can be drawn that would cut this diagram in correlated subparts. With these con-
ventions, the distribution function can be expanded as a function of irreducible diagrams
as shown on Fig.24.

〈F 〉 = F0 + D F0 (63)

where D is the sum of all possible products of irreducible diagrams (products meaning
convolutions).

F.2 Dyson equation

We arrive now to an essential result. The Eq.(63) can be reformulated as

〈F 〉 = F0 + M 〈F 〉 (64)

where M is the sum of all irreducible diagrams, sometimes called a “mass” operator. This
identity is called Dyson equation, who was the first to prove it in the context of quantum
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field theory. This demonstrated by iterating Eq.(64) and iterating with respect to F0. It
can then be proved that the two expansions are identical. The first non zero diagram is

〈G0 ∗ E [G0 ∗ E [∗ 〈F 〉]]〉 =

∫ t

0
dt1

∫ t1

0
dt2〈

E(α−Ω(t− t1), t1) · ∂
∂J

E(α−Ω(t− t2), t2)·
〉

∂

∂J
〈F 〉 (α−Ωt,J, t2)

Figure 24: Expansion of the formal solution Eq.(37) in connected diagrams.

G Renormalisation procedure

G.1 Equation over the resonant function

A proxy for the propagator 〈G〉, that is called quasi-linear propagator, is obtained by
keeping only the first term in the Dyson expansion

G = G0 +G0 〈EG0E〉 G

Applying the operator ∂t + Ω · ∂α on this relation, and using (∂t + Ω · ∂α)G0 = 0, one
gets the equation(

∂

∂t
+ Ω · ∂

∂α

)
G =

∂

∂Ji

∫ t

0
dt′CL,ik(J, t− t′)

∂

∂Jk
G(α−Ω(t− t′),J, t′) (65)

where the partial derivative ∂Jk applies only on the explicit dependence of G on J, and
not on its indirect dependence via Ω(J). Let us now compute the Fourier-Laplace of this
equation. First an integration by part shows that∫ +∞

0
dt exp (i(ω + iν)t)

∫
dα

(2π)3
exp (−in ·α)(

∂

∂t
+ Ω · ∂

∂α

)
G = −i(ω + iν − n ·Ω)Gnω − δ(J)

Since the function CL,ik(J, t − t′) does not depend on α, the Fourier-Laplace transform
(noted FLT) of the r.h.s. of Eq.(65) reads

FLT (r.h.s.) =

∫ +∞

−∞

dω1

2π

∫ +∞

0
dt exp [i(ω + iν − ω1)t]

∂

∂Ji

∫ t

0
dτCL,ik(J, τ) exp [i (ω1 − n ·Ω) τ ]

∂

∂Jk
Gnω1(J)
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Since correlation functions decrease fast in time, the upper bound in the integral on τ can
be expanded to the interval +∞. The two integrals in t and τ can then be decoupled.
The expression Eq.(39) of CL,ik(J, τ) is then used to find

FLT (r.h.s.) =

∫ +∞

−∞

dω1

2π

1

i (ω1 − ω − iν)

∂

∂Ji

∑
n′

∫ +∞

−∞

dω′

2π

n′in
′
kIn′ω′

−i [ω1 − ω′ − (n− n′) ·Ω]

∂

∂Jk
Gnω1(J)

The integration over ω1 by the residue theorem yields the final result

−i(ω − n ·Ω + iν)Gnω −
∂

∂Ji

[
D̃nω,ik

∂Gnω
∂Jk

]
= δ(J) (66)

where

D̃nω,ik =
∑
n′

∫ +∞

−∞

dω′

2π

n′in
′
kIn′ω′

−i [ω − ω′ − (n− n′) ·Ω + iν]

Let us stress that the diffusion matrix D̃nω,ik depends on nω. Since the propagator Gnω
yields the resonant response function Rnω, it is worth being compared with the linear

resonant function R
(0)
nω Eq.(29). Dividing the equation Eq.(66) by ω − n · Ω + iν to

find Gnω gives rise to a double pole (not located at the same position though). This is
the simplest example of a non linear Landau resonance. We can nevertheless simplify
this equation further, by noting that quasilinear transport is essentially a transport of
resonant particles such that ω = n ·Ω. For these particles the resonance in the r.h.s. of
Eq.(66) is in fact ω1 = n1 ·Ω. It then appears that the real part of the diffusion matrix
D̃nω,ik coincides with the quasilinear diffusion matrix Dik given by Eq.(30). The other

limit where the D̃nω,ik ∼ Dik is the low frequency limit ω → 0,n1 = 0 that corresponds to
the evolution of the average distribution function 〈F 〉. The resonant function is solution
of the equation

−i(ω − n ·Ω + iν)Rnω −
∂

∂Ji

[
D̃nω,ik

∂Rnω

∂Jk

]
= 1 (67)

G.2 Calculation of the resonant function

Solving Eq.(66) is feasible but somewhat cumbersome - it requires diagonalising the matrix
D̃nω,ik. Nevertheless a reasonable proxy can be found via an educated guess the resonant
function Rnω should evolve rapidly across the resonant surface Ω = n · Ω − ω = 0. In
addition we assume that the resonances that matter in the diffusion matrix D̃nω,ik are
close to Ω = 0. This is a consequence of the Chirikov overlap parameter. As for the case
of a single perturbation, we use a change variables in the action space J = JR(J,K) + In
(see Eq.(23) for definitions). If the variations are fast in the Ω = CI direction, and slow
along the resonant surface J = JR, the diffusion regularisation builds down to a second
derivative with respect to I (or equivalently Ω = CI). With this approximations, the
derivatives n · ∂J can be replaced by C∂Ω, and Eq.(67) becomes

i(Ω− iν)Rnω −
∂

∂Ω

[
1

τ3
d

∂Rnω

∂Ω

]
= 1 (68)

where
1

τ3
d

=
∑
n′

∫ +∞

−∞

dω′

2π

(
n′ · ∂Ω

∂J

)
In′ω′

−i [ω − ω′ − (n− n′) ·Ω + iν]
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depends weakly on Ω in the vicinity of Ω = 0. The solution is readily found to be

Rnω =

∫ +∞

0
dτ exp

[
i (ω + iν − n ·Ω) τ − τ3

3τ3
d

]
This important result calls for several remarks. First a new time τd appears, called
Dupree time after the physicist who introduced it first. Resonant particles can now be
defined properly as particles such that Ωτd � 1. Second the regularizing parameter ν
can be neglected as long as ντd � 1. Third, the singular resonant function has now be
regularised by a turbulent diffusion matrix D̃nω,ik via the Dupree time. This regularisation
is therefore a non linear process.

G.3 Iterative procedure

Let us wrap up this lengthy procedure. The quasi-linear flux is related to the resonant
function and sources and drive via Eq.(29). The resonant function is solution of the
diffusion equation Eq.(67, where the diffusion matrix D̃nω,ik is given by Eq.(67). One can
then establish the following iterative procedure, labelled with the integer index m,

D̃
(m)
nω,ik =

∑
n′

∫ +∞

−∞

dω′

2π
=
[
R

(m)
n−n′,ω−ω′

]
n′in
′
kIn′ω′

−i(ω − n ·Ω + iν)R
(m+1)
nω − ∂

∂Ji

[
D̃

(m)
nω,ik

∂R
(m+1)
nω

∂Jk

]
= 1

D̃
(m+1)
nω,ik =

∑
n

∫ +∞

−∞

dω

2π
=
[
R

(m+1)
nω

]
ninkInω

The procedure is started with R
(m+1)
nω = R

(0)
nω, which is the linear resonant response. This

recurrence can be seen as a renormalisation procedure. In the case where D̃nω,ik is close
to Dik, reason being that transport is dominated by resonant particles, this recurrence is
a series over Dik. The quasilinear diffusion coefficient is the fixed point of this iteration.

Let us note that unless the regime is strongly non linear, the final result is in fact close
to the pedestrian one.

H Hamiltonian perturbations on nearby resonant

surfaces

H.1 Primary and secondary perturbations

A special case is considered where two Hamiltonian perturbations resonate on nearby
surfaces in the action space. This situation is met in tokamaks when the magnetic field
corrugations due to the finite number of coils (“magnetic ripple”) are accounted for, or
in stellarators where a helical magnetic field coexist with a toroidal field. In these two
examples, perturbations do not depend on time (angle α0, nor on the cyclotron angle α1).
This limit case is modelled by considering an Hamiltonian of the form

H(α,J, t) = Heq(J) + H̃(α,J, t) + H̃ ′(α,J, t)

where
H̃(α,J) = −h cos (n ·α)

and
H̃ ′(α,J) = −h′ cos

(
n′ ·α

)
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where n = (0, 0, n2, n3) and n′ = (0, 0, n′2, n
′
3). The amplitude perturbations h and h′ are

assumed independent of the action variables. The resonant surface associated with the first
perturbation is determined by the equation Ω = n2Ω2 + n3Ω3 = 0. The second resonant
surface is defined in the same way, with n replaced by n′, hence Ω′ = n′2Ω2 + n′3Ω3 = 0.
In the following, the variables (α0, α1) and the corresponding actions (J0, J1) are not
mentioned explicitly, except in calculations that involve an integration over the phase
space volume.

The objective of this section is to calculate the entropy production rate due to collisions
or chaotic motion. Schematically, one can define a primary perturbation, say H̃, and a
secondary perturbation, H̃ ′. The entropy production rate associated with the primary
perturbation has already been calculated, and is given by Eq.(27). Hence the entropy
production rate due to the secondary perturbation remains to be computed. Obviously
the role of the primary and secondary perturbations can be exchanged, so that the total
entropy production rate contains 4 contributions.

H.2 Primary perturbation

We assume that the equation that rules the primary surface Ω(J2, J3) = 0 can be written
in an explicit form J3 = G(J2), where G is a function that such Ω(J2, G(J2)) = 0. To
avoid unnecessary complications, G is assumed single-valued. The derivative of the G
plays an important role. It is useful de define a iota function as

ι(J2) = − dG
dJ2

Any point on the resonant surface can then be identified by its coordinates (J2, J3), noted
JR2, and JR3 = G(JR2). A function F (J2, J3) is calculated on the resonant surface via
the expression FR(JR2) = F (JR2, G(JR2)). Let us now introduce a new set of variables θ
and I, defined in the vicinity of a specific point J∗ that lies on the resonant surface. This
new set of variables is defined as

θ2 = n2α2 + n3α3

θ3 =
α2 − ια3

ιn2 + n3

I2 =
ιJ̃2 + J̃3

ιn2 + n3
(69)

I3 = n3J̃2 − n2J̃3 (70)

where J̃ = J−J∗, and ι is calculated at J∗, i.e. ι = ι(J∗2 ) - hence it is now a parameter. It
can be verified that (θ, I) is a set of conjugate variables since {Ij , Ik} = 0, {θj , θk} = 0 and
{θj , Jk} = δjk whatever the indices (j, k) ∈ [2, 3]. This property can also be demonstrated
by constructing the generating function that relates (θ, I) to (α,J). Note however that
θ2 is not an angle since ι is not necessarily a rational number. However it can be made
an angle via a small adjustment in the choice of J∗ since the space of rational numbers is
dense in the space of real numbers. In the following Fourier series in θ2 instead of integrals,
to simplify the notations. The relationship between angles can be inverted easily

α2 = n3θ3 +
ιθ2

ιn2 + n3

α3 = −n2θ3 +
θ2

ιn2 + n3

In a similar way, the relationship on action variables is inverted in a convenient form

J = J∗ + I2n + I3t (71)
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where the vector

t =
1

n2ι+ n3

(
1
−ι

)
is tangent to the resonant surface at J = J∗ in the (J2, J3) space30. Defining JR as
JR = J∗+I3t, it appears that Eq.(71) can be recast as J = JR+I2n, where JR lies on the
resonant surface. This relation is identical to Eq.(23). The nature of the actions (I2, I3)
becomes clear: I3 characterises the dynamics along the resonant surface in the vicinity of
J∗, whereas I2 measures the dynamics across the resonant surface. Turning our gaze to
the angles, θ2 appears to be the argument of the primary perturbation, while the variable
θ3 characterises the missing dimension in a convenient way such that the new system of
coordinates is conjugate. The set of variables (θ, I) is invertible, thus allowing moving
back and forth from old to new set of conjugate coordinates. Still in the vicinity of the
resonant surface, the Hamiltonian reads

H(α,J, t) = Heq(JR) +
1

2
CI2

2 − h cos θ2 (72)

where the Hamiltonian curvature was already met in the section 4.1.1 and is given by
Eq.(24). Its expression is reproduced here

C = ninj
∂2Heq

∂Ji∂Jj

∣∣∣∣
J=JR

(73)

It was seen that a new set of action/angle variables (αb, Jb) can be constructed such that
Jb is an invariant of motion, and dtαb = Ωb(Jb, I3). The label “b” stands for “bounce”.
As done before, the action I2 can be replaced by the pulsation Ω = CI2, so that dtθ2 = Ω.
The Hamiltonian can be recast as H = HeqR + 1

CHΩ, where

HΩ =
1

2
Ω2 − ω2

b cos θ2

It is convenient to introduce the trapping parameter 0 ≤ K ≤ 1 defined as

K =
1

2ω2
b

(
HΩ + ω2

b

)
The limit K → 0 corresponds to deeply trapped particles, while K → 1 for barely trapped
particles. Let us note that

K =
Ω2

4ω2
b

+ sin2

(
θ2

2

)
(74)

The invariance of Poincaré integrals under change of conjugate variables implies that

2πJb =

∫ 2π

0
dα2I2

An expression of the action Jb, valid for all values of K, reads

Jb = λm

∮
dθ2

2π

√
K − sin2

(
θ2

2

)
(75)

where the integral covers the interval −θb ≤ θ2 ≤ +θb back and forth, i.e. twice, and θb is

the bounce angle defined by K = sin2
(
θb
2

)
. The pulsation reads

Ωb =
2ωb∮

dθ2
2π

1√
K−sin2

(
θ2
2

) (76)

30This is really verified by noting that ∂JΩ is a vector normal to the resonant surface. Since ΩR(J2) = 0
all along the resonant surface, it readily appears that (∂J2Ω− ι∂J3Ω)|J=J∗ = 0, hence t · ∂JΩ|J=J∗ = 0, which
demonstrates that t is tangent to the resonant surface at J = J∗.
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For deeply trapped particles (small bounce angle θb � 1), one has K ' θ2
b
4 and

θ2 = θb sinαb

Ω = ωbθb cosαb

where Ωb = ωb =
√
Ch. The Hamiltonian H = HΩ reads

HΩ =
1

2
ω2
bθ

2
b = CJbΩb

Hence the trapped/passing limit K = 1 corresponds to θb = θm = 2 if one stays in the
deeply trapped limit, whereas obviously θm = π in the general case, consistently with
Eq.(74). Note also that in the deeply trapped limit

Jb ' λm
θ2
b

4
(77)

with λm = 2
√

h
C . The corresponding resonant frequency is the bounce frequency Ωb.

The angles (θ3, I3) are re-labeled (αd, Jd), where the subscript “d” stands for “drift”.
The associated resonant angular frequency is noted Ωd. Then the new set of variables
(αb, αd, Jb, Jd) is conjugate to (α2, α3, J2, J3) and provides a convenient set of coordinates
to treat the secondary perturbation. The system is integrable, and the new “unperturbed”
Hamiltonian is noted Heq(Jb, Jd).

H.3 Secondary perturbation

The phase ξ′ = n′ · α of the secondary perturbation can be expressed as function of the
variables θ using the relationship between α and θ, i.e.

ξ′ = σθ2 + ndθ3

where
nd = n′2n3 − n2n

′
3

and

σ =
n′2ι+ n′3
n2ι+ n3

where ι is calculated on the resonant surface (strictly speaking at J∗). The parameter σ
can be given a physical interpretation as follows. Let us use the expansion Eq.(72) of J
near the specific point J∗ on the primary resonant surface, hence Ω(J∗). The resonant
frequency Ω reads

Ω = Ω(J∗) + I2

(
n · ∂Ω

∂J

∣∣∣∣
J=J∗

)
+ I3

(
t · ∂Ω

∂J

∣∣∣∣
J=J∗

)
where t is the tangent vector given by Eq.(72). Since Ω(JR) = 0 on the primary resonant
surface for any JR, and therefore any I3, the tangent derivative t · ∂JΩ|J=J∗ must vanish31.
This imposes the following constraint

∂Ω

∂J2

∣∣∣∣
J=J∗

= ι(J∗)
∂Ω

∂J3

∣∣∣∣
J=J∗

Let us now expand the resonant frequency Ω′ in a similar way, than

Ω = Ω′(J∗) + I2

(
n · ∂Ω′

∂J

∣∣∣∣
J=J∗

)
+ I3

(
t · ∂Ω′

∂J

∣∣∣∣
J=J∗

)
31Another way to derive this relation is note that t is tangent to the resonant surface at J = J∗, while

∂JΩ|J=J∗ is normal to the resonant surface. Hence their scalar product must be zero.
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Combining these relations, one finds the following constraint

Ω′(J) = Ω′(JR) + σΩ(J) (78)

where JR = J∗ + I3t. This property holds nearby J = J∗. It was also seen that

Ω = CI2

Ω′ = Ω′(JR) + C∗I2

where

C = nj
∂Ω

∂Jj

∣∣∣∣
J=J∗

= (n2ι (J∗2 ) + n3)
∂Ω

∂J3

∣∣∣∣
J=J∗

and

C∗ = n′j
∂Ω

∂Jj

∣∣∣∣
J=J∗

=
(
n′2ι (J∗2 ) + n′3

) ∂Ω

∂J3

∣∣∣∣
J=J∗

Hence the important property

σ =
C∗

C

These relationships turn out to be quite useful when interpreting the results. In particular
the relation ξ′ = ndθ3 +σθ2 can be re-examined as follows. Since the phase of the primary
perturbation is ξ = n · α, the time derivative of this relation reads Ω′ = ndΩd + σΩ,
consistently with Eq.(78). Moreover it allows the identification of ndΩd with Ω′(JR), and
ndθ3 with a reference phase ξ′0 such that dtξ

′
0 = Ω′(JR) = ndΩd. Since the number nd is

unique and fully defined by (n,n′), we introduce a drift frequency

ωd = ndΩd

Also the bounce frequency of deeply trapped particles ωb will often be taken as a proxy
for the bounce frequency Ωb. This may actually be quite wrong, in particular for barely
trapped particles for which Ωb ' 0. Nevertheless several calculations will be done in the
limit of deeply trapped particles Ωb ' ωb, thus justifying this estimate.

The perturbation H̃ ′(α,J) can be re-expressed as a function of the new angles and
actions, periodic in (αb, αd). Its expansion in Fourier series reads

H̃ ′(αb, αd, Jb, Jd) =

+∞∑
nb=−∞

H ′nb(Jb, Jd)e
i(nbαb+ndαd)

where nd = n′2n3 − n2n
′
3. In the limit where only deeply trapped particles within the

primary perturbation are considered, one gets

H ′nb(Jb, Jd) = −h
′

2
Jnb(σθb)

where θb must be understood as a function of (Jb, Jd), and σ is a function of Jd. Large
values of σ, i.e. σ � 1, allow using the following asymptotic form of the Bessel functions

Jnb(σθb) '
√

2

πσθb
cos
(
σθb − nb

π

2
− π

4

)
(79)

H.4 Solving the Fokker-Planck equation

H.4.1 Formulation of the Fokker-Planck equation

The effect of the primary perturbation is to produce an new equilibrium such that the
distribution function, noted Feq, is a function of the invariants of motion on the resonant
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surface, i.e. Feq, and therefore the corresponding thermodynamic potential Ueq, is a
function of JR = (J0, J1, Jd = I3). At low collisionality, the effect of the secondary
perturbation is essentially to perturb the motion of trapped particles in the primary one.
This motion can be stochastic, and thus produce some transport. When the collision
frequency gets higher, the effect of trapping vanishes, and the secondary perturbation
mainly affects passing particles - the response is essentially of the Landau type. The
equation to be solved is the Fokker-Planck equation

−
{
H̃ ′,Feq

}
−
{
Heq, F̃

′
}

= C[F̃ ′] (80)

written in the initial system of variables (α,J). The Fokker-Planck equation can be
expressed as well in the new set of variables (αb, αd, Jb, Jd). If the amplitude of the
secondary perturbation is small enough, the Fokker-Planck equation becomes

−
{
H̃ ′,Feq

}
−
{
Heq, F̃

′
}

= C[F̃ ′] (81)

where the collision operator is linearised in F̃ 32.

H.4.2 Collisional regime

Let us remind that the effective detrapping collision frequency in the primary perturbation
modified by the effect of the secondary perturbation is given by Eq.(42), i.e. νeff '〈
∆Ω2

〉
/ω2

b max(1, σ2). If the regime is collisional νeff � ωb, the Fokker-Planck equation
Eq.(80) is readily solved via a method already used for a single perturbation. Indeed it
was seen in Appendix D.1 that in this regime the full collision operator can be replaced
by a simple Krook operator, to yield the Fourier components of the distribution function

F ′n′ = −H ′n′
n′ · ∂Feq∂J

n′ ·Ω− i0+
(82)

It is the same as the linear response Eq.(3) translated to the secondary perturbation.
However, one important difference is that the distribution function Feq is the one for a
modified equilibrium in presence of the primary perturbation.

H.4.3 Weakly collisional regime and adiabatic limit ωb � ωd

In the weakly collisional regime νeff � ωb, it is better to solve the Fokker-Planck equation
in the new set of conjugate variables (αb, αd, Jb, Jd) Eq.(81). The perturbed distribution
function is expanded in Fourier series, as was done for the Hamiltonian Eq.(79)

F̃ ′ =
+∞∑

nb=−∞
F ′nbe

i(nbαb+ndαd)

If the frequency Ωb ∼ ωb is much larger than ωd = ndΩd, the response of the harmonics
nb 6= 0 are smaller than those with nb = 0 in the ratio ωd/ωb. In this limit, only the single
Fourier component (nb = 0, nd) of the distribution function, i.e. F ′0, needs be calculated,
i.e.

−ind
∂Feq
∂Jd

H ′0 + iωdF
′
0 = C[F̃ ′]0

As done previously, it is anticipated that most of the entropy production comes from the
fast variation of the distribution near the primary resonant surface. The collision operator
is essentially a diffusion operator

C[F ] =
1

2

∂

∂I2

(〈
∆I2

2

〉
∆t

∂F

∂I2

)
=

1

2

∂

∂Ω

(〈
∆Ω2

〉
∆t

∂F

∂Ω

)
32Strictly speaking, a notation other than F̃ ′ should be used since the variables have been changed - we will

keep up with only one label to avoid excessive technicalities.
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It is recalled that calculating an harmonic nb = 0 is equivalent to compute an average
over the angle αb. Hence

C[F̃ ′]0 =

∫ 2π

0

dαb
2π

∂

∂Ω

(
DΩ

∂F ′0
∂Ω

)
= DΩΩb

∂

∂HΩ

[(∫ 2π

0

dαb
2π

Ω

)
∂F ′0
∂HΩ

]
' DΩ

∂

∂HΩ

(
HΩ

∂F ′0
∂HΩ

)
(83)

where DΩ = lim∆t→0
〈∆Ω2〉

2∆t . Several operations and approximations have been done to
get there. First it is recalled that the Fourier component F ′0 is much larger than the other
components. This allows ignoring terms in the collision operator that involves time average
over these components. Second the diffusion coefficient

〈
∆Ω2

〉
is supposed not to depend

on the angle αb, a reasonable approximation in general. The average over αb is restated
as dαb = Ωbdα2/Ω. When moving to the variable HΩ instead of Ω, one has ∂Ω = Ω∂HΩ

.

Besides it has been used that F ′0 does not depend on αb and that 2πCJb =
∫ 2π

0 dα2Ω -
both are exact results. The third approximation consists in assuming that Ωb ' ωb is a
constant, and hence can be moved inside the derivative with respect to HΩ. The identity
HΩ = CJbΩb was then used. These two statements are correct only for particles that are
deeply trapped in the primary perturbation.

The Hamiltonian HΩ is not convenient for practical calculations. It is replaced by the
bounce angle θb. Using HΩ = 1

2ω
2
bθ

2
b , the following expression is obtained

C[F̃ ′]0 =
DΩ

2ω2
b

1

θb

∂

∂θb

(
θb
∂F ′0
∂θb

)
The Fokker-Planck equation of interest finally reads

ωdF
′
0 + i

DΩ

ω2
b

1

2θb

∂

∂θb

(
θb
∂F ′0
∂θb

)
= −nd

∂Feq
∂Jd

h′

2
J0(σθb)

The solution F ′0 must vanish at the trapped/passing boundary θb = θm. In principle this
limit sits at θm = π. However, in the approximation of deeply trapped particles θb � 1,
this upper bound must be modified. Two limits can be solved - approximate solutions are

• σ � 1

F ′0 = −h
′

2

nd
∂Feq
∂Jd

ωd − iνeff

(
1−

θ2
b

4

)
(84)

• σ � 1

F ′0 = −h
′

2

nd
∂Feq
∂Jd

ωd − iνeff
J0(σθb) (85)

where

νeff = Max(1, σ2)
DΩ

2ω2
b

The solution F ′0 found in the limit σ → 0 satisfies the requested boundary condition
F ′0 = 0 at θb = θm, provided that θm = 2 is chosen (see also discussion in Appendix I),
ωd → 0, and also by using J0(σθb) → 1. On the contrary, in the case σ � 1, J0(σθb)
is an exact solution of the differential equation. However it only satisfies approximately
the boundary condition J0(σθm) ' 0. Indeed an approximate expression of the Bessel
function J0 for large arguments is obtained from Eq.(79)

J0(σθb) '
√

2

πσθb
cos
(
σθb −

π

4

)
(86)
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So it oscillates fast and is equal to zero via a change of the upper bound θm by a small
shift of order33 1/σ.

H.4.4 Weakly collisional regime and stochastic limit ωb ' ωd

If the frequency Ωb ∼ ωb scales as ωd = ndΩd, the response of all harmonics nb 6= 0 must
be accounted for. The detailed calculation is quite complex and is detailed in Appendix
J.

H.5 Entropy production rate due to the secondary pertur-
bation

The resonant entropy production rate is given by Eqs.(18,9)

Ṡres

(
Ueq, ∂JU

†
eq

)
= − 2

T0

∫
dγ U †eq

{
H̃ ′, F̃ ′

}
=

2

T 2
0

∫
dγ Feq

{
H̃ ′,U†eq

}
Ũ ′

The functional can be as well expressed as a bi-linear function of U†eq just by removing
the pre-factor 2. The volume element in the integral is just

dγ = d4x d4p = d4α d4J δ(J0 −H) = (2π)2 dαb dαd dJ0 dJ1 dJb dJd δ(J0 −H)

where the dummy variables J0 and J1 have been re-established to compute correctly the
integral over the whole phase space.

In the collisional case νeff � ωb, one uses the set of variables (α,J) to find

Ṡres

(
Ueq, ∂JU

†
eq

)
=
π

2

1

T 2
0

∫
dγ Feq(J) δ(n′ ·Ω)h′2

(
n′ · ∂U

†
eq

∂J

)2

(87)

In the weakly collisional case νeff � ωb, it is better to work with the new set of
variables (αb, αd, Jb, Jd). Using

{
H̃ ′,U†eq

}
=
∂H̃ ′0
∂αd

∂U†eq
∂Jd

and expanding all perturbed fields in Fourier series while keeping only the ±nd and nb = 0
components, one finds

Ṡres

(
Ueq, ∂JU

†
eq

)
=

1

T 2
0

∫
dγFeq

[
−ind

∂U†eq
∂Jd

h′

2
J0(σθb)

]∗
U ′0 + c.c.

The limit solutions of the Fokker-Planck equation Eqs(84,85) can now be used, to yield

Ṡres

(
Ueq, ∂JU

†
eq

)
=

1

2T 2
0

<
∫
dγFeqh

′2
−i
(
nd

∂U†eq
∂J̄3

)2

ωd − iνeff
J2

0 (σθb)

where J2
0 (σθb) is replaced by 1− θ2

b
4 when σ � 1. Let us spend some time on the integration

volume. It reads

dγ = dSdJb = dS
θbdθb

2
λm (88)

33More precisely, if k is the closest integer to 2
πσθm−

1
2 , then θm should be chosen equal to π

2σ

(
k + 1

2

)
. Hence

θm is shifted by ν π
2σ , where ν is a number between 0 and 1.

60



where the integration element along the resonant surface is dS = (2π)4dJ0dJ1dI3δ(J0−H).
The second equality is obtained by using Jb = λmθ

2
b/4, where λm = 2

√
h/C. A tractable

expression of the entropy production rate is therefore

Ṡres

(
Ueq, ∂JU

†
eq

)
=

1

2T 2
0

<
∫
dSλmFeqh

′2

(
nd

∂U†eq
∂Jd

)2

iωd + νeff
Λ(σ) (89)

where

Λ(σ) =
1

2

∫ θm

0
dθbθb

{ (
1− θ2

b
4

)
if σ � 1

J2
0 (σθb) if σ � 1

(90)

Using the asymptotic expression Eq.(86) of the Bessel function, one gets Λ(σ) = 1
πσ when

σ � 1. In the limit σ � 1, one finds Λ(σ) = 1
2 . A more accurate calculation yields

Λ(σ) = 16
9π (see Appendix I).

H.6 Covariant expression of the entropy production rate

The expression Eq.(89) is an attractive result, but still depends explicitly on the new set
of variables that was constructed to derive it. It is of interest to derive an expression that
is independent of the choice of variables, that is call here “covariant”. Let us note first
that the element of surface along a resonant surface can be written34

λmdS = 2dγ δ(Ω) ωb

Of course the δ function enforces all functions to be calculated at I2 = 0, which leaves
the action I3 as an integration variable. It is convenient to replace the variable I3 by a
variable closer to the action JR2, or equivalently J̃2, on the resonant surface. The relation
JR = J∗ + I3t imposes the relation

J̃R2 =
I3

ιn2 + n3
(91)

The change of variables Eq.(70), and its reverse Eq.(71 ) becomes

I2 =
ιJ̃2 + J̃3

ιn2 + n3
(92)

J̃R2 =
n3J̃2 − n2J̃3

ιn2 + n3
(93)

and
J = J∗ + I2n + J̃R2t

′ (94)

where t′ is a new tangent vector defined as

t′ =

(
1
−ι

)
= (ιn2 + n3)t

34The sequence of steps is

λmdS = (2π)4dJ0dJ1dI2δ(J0 −H)2

√
h

C

= (2π)4dJ0dJ1δ(J0 −H)dI2dI3δ(Ω)C2

√
h

C

= (2π)4dJ0dJ1δ(J0 −H)dI2dI3δ(Ω)2ωb

= 2dγδ(Ω)ωb

.
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Let us note also that n′ − nσ = ndt
35. It then appears that for any function Ueq, its

derivative on a resonant surface reads

nd
∂Ueq
∂Jd

∣∣∣∣
I2=0

= nd
∂Ueq
∂I3

∣∣∣∣
I2=0

=
nd

n2ι+ n3

∂Ueq
∂JR2

∣∣∣∣
J=JR

= (n′ − nσ) · ∂Ueq
∂J

∣∣∣∣
J=JR

(95)

where the relation Eq.(91) has been used, and also the expression of the derivative of a
function U(J2, J3) along the resonant surface

dUR
dJR2

=

(
∂U

∂J2
− ι(J2)

∂U

∂J3

)∣∣∣∣
J=JR

= t′ · ∂U
∂J

∣∣∣∣
J=JR

where JR = (JR2, G(JR2)) and UR = U(JR). Applying Eq.(95) to the special case Ueq =
Heq, one finds a practical expression of the drift frequency ωd

ωd = nd
∂Heq
∂Jd

∣∣∣∣
I2=0

= (n′ − nσ) · ∂Heq

∂J

∣∣∣∣
J=JR

(96)

Combining all these expressions, a covariant expression of the entropy production rate
reads

Ṡres

(
Ueq, ∂JU

†
eq

)
=

1

T 2
0

∫
dγδ(Ω)Feqh

′2Λ(σ)
νeffωb

[(n′ − nσ) ·Ω]2 + ν2
eff

((
n′ − nσ

)
· ∂U

†
eq

∂J

)2

(97)
where ωb =

√
Ch,

Λ(σ) =

{
16
9π if σ � 1
1
πσ if σ � 1

and

σ =
n′2ι+ n′3
n2ι+ n3

νeff = Max(1, σ2)
DΩ

2ω2
b

Here Feq has been replaced by Feq since the integration over the resonant response function
δ(n ·Ω) enforces Feq to be function of JR only, i.e. a function of the actions that lay on
the resonant surface. Note also that the entropy production rate goes like the square of
the gradient of the thermodynamic potential, as required.

The entropy production rate Eq.(97) allows identifying 2 subregimes: when νeff ≤ ωd,
it is proportional to the collision frequency νeff - this is called the “ν regime”. When
νeff ≥ ωd, the entropy production rate is rather proportional to 1/ν - not surprisingly
this defines the “1/ν regime”.

A similar procedure can be followed for the entropy production rate in the collisional
case Eq.(87). Here the objective is to compute a covariant form of n′ ·∂JU †eq. The function
Ueq must be a function Ueq of the actions on the primary resonant surface only J = JR.
Using the relation J = JR + nI2, it appears that

Ueq(J) = Ueq(J− nI2(J)) ' Ueq(J)− I2(J) (n · ∇JUeq(J)) (98)

One then has

n′ · ∂Ueq
∂J

= n′ · ∂Ueq
∂J
−
(

n · ∂Ueq
∂J

)(
n′ · ∂I2

∂J

)
= n′ · ∂Ueq

∂J
− σn · ∂Ueq

∂J

where the expression Eq.(93) of I2(J) has been used. This leads to the following expression
of the entropy production rate

Ṡres

[
Ueq, ∂JU

†
eq

]
=
π

2

1

T 2
0

∫
dγFeq(J)δ(n′ ·Ω)h′2

(
(n′ − σn) · ∂U

†
eq

∂J

)2

(99)

35This relation is expediently demonstrated by computing n′2−σn2 and n′3−σn3 and using nd = n′2n3−n2n
′
3

and σ =
n′2ι+n

′
3

n2ι+n3
.
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I Entropy production of a secondary perturba-

tion: alternative calculation

This appendix shows that a more precise calculation can be done for the entropy produc-
tion due to a secondary perturbation in the case σ � 1, i.e. relaxing the assumption of
deeply trapped particles. Let us now reconsider the derivation of the collision operator
Eq.(83), and stops at the second line

C[F ′]0 = CDΩΩb
∂

∂HΩ

[
Jb

∂F ′0
∂HΩ

]
In principle, it is not possible to use the same recipe as for deeply trapped particles, i.e.
moving Ωb inside the partial derivative in HΩ, since Ωb is a function of HΩ in the general
case. However, for the special case of a function F ′0 proportional 1−K, it appears that

C[F̃ ′]0 = −νeffF ′0

where it is reminded that

νeff =
DΩ

2ω2
b

This result holds because

Ωb =
1

C

∂HΩ

∂Jb

This is a general property of Hamiltonian systems (recall that the Hamiltonian is H =
HeqR + 1

CHΩ), which can also be verified directly from Eq.(75,76). It then appears that
the solution Eq.(84) still holds, in the form

F ′0 = −h
′

2

nd
∂Feq
∂Jd

ωd − iνeff
(1−K) (100)

It is in fact an exact solution of the Fokker-Planck equation in the limit ωd → 0, and an
acceptable one when K ≤ 1 if ωd 6= 0.

The expression of the entropy production rate Eq.(89) is the same. However the
integration over the phase space must be changed. Indeed the expression Eq.(88) dγ =
dS θbdθb2 λm must be changed in

dγ = dSdJb = dSdK

∫ +θb

−θb

dθ2

2π

1√
K − sin2

(
θ2
2

)
where the expression of Jb Eq.(75 has been used36. Hence the expression of Λ(σ) Eq.(90)
becomes

Λ(σ) =

∫ 1

0
dK(1−K)

∫ +θb

−θb

dθ2

2π

1√
K − sin2

(
θ2
2

)
36One must be careful that both signs of Jb must be included, which is contained in both branches in the

loop integral in θ2. This introduces a factor 2 that is balanced by factor 1/2 that comes out of the square root
derivative.
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The integrals can be permuted to yield the following sequence of steps

Λ(σ) =

∫ π

−π

dξ

2π

∫ 1

sin2( ξ2)
dK

1−K√
K − sin2

(
ξ
2

)
=

2

π

∫ π
2

0
du

∫ 1

sin2 u
dK

(
1− sin2 u√
K − sin2 u

−
√
K − sin2 u

)

=
2

π

∫ π
2

0
du

[
2
(
1− sin2 u

)√
K − sin2 u− 2

3

(
K − sin2 u

)3/2]1

sin2 u

=
8

3π

∫ π
2

0
du cos3 u

=
16

9π

J Stochastic regime

J.1 Onset of Hamiltonian chaos

We consider the case where Ωb is of the same order of magnitude as ndΩd. Then all
Hamiltonian harmonics nb must be accounted for in the Hamiltonian expansion Eq.(79),
that is repeated here for completion

H̃ ′ =
+∞∑

nb=−∞
H ′nbe

i(nbαb+ndαd)

where nd = n′2n3−n2n
′
3. The analysis is restricted to deeply trapped particles within the

primary perturbation, so that

H ′nb = −h
′

2
Jnb(σθb) (101)

Whenever the parameter σ is large against 1, i.e. σ � 1, the asymptotic form of the
Bessel functions is used

Jnb(σθb) '
√

2

πσθb
cos
(
σθb − nb

π

2
− π

4

)
(102)

Each perturbation H ′nb is associated with a resonant surface

ωnb(Jb, Jd) = nbΩb + ndΩd = 0

As seen many times now, trajectories for a single harmonic (nb, nd) are bound to lie on
an island. More precisely, the displacement Λ near the resonant surface in the action
coordinates (Jb, Jd) is such that J = JR+Λ(nbêb+ndêd) where ωnb(JR) = 0. Trajectories
must stay on the island prescribed by the invariant of motion HΛ defined as

HΛ =
1

2
CΛΛ2 +H ′nb cos(ζ)

where ζ = nbαb + ndαd, H
′
nb

is given by Eq.(101) and the Hamiltonian curvature CΛ is

CΛ = nb
∂ω

∂Jb

∣∣∣∣
J=JR

+ nd
∂ω

∂Jd

∣∣∣∣
J=JR

An extra complication comes from the dependence on the perturbed Hamiltonian com-
ponent H ′nb on the action Λ. As above, we consider two extreme cases: σ � 1, where the
Bessel function is approximated by 1 and thus H ′nb ' −h

′/2. In the opposite case where
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σ � 1, the asymptotic form of the Bessel function Eq.(102) is used. A Taylor expansion
yields the relation

σθb = σθb(JR) +KΛΛ

where

KΛ = nb
∂(σθb)

∂Jb

∣∣∣∣
J=JR

+ nd
∂(σθb)

∂Jd

∣∣∣∣
J=JR

is homogeneous to the inverse of an action, and characterises the degree of variation of
the perturbed Hamiltonian across the resonant surface. Hence the Hamiltonian Fourier
harmonic reads

H ′nb = −h
′

2

√
2

πσθb
cos (KΛ(Λ− Λ0))

where

Λ0 = − 1

KΛ

[
(σθb(JR))− nb

π

2
− π

4

]
' − 1

KΛ
(σθb)(JR)

The quantity Λ0 has no reason to vanish and can be seen as a shift of the resonant surface
in the Λ direction. This shift is quite the same for all resonant surfaces because of the
weak dependence of Λ0 on the resonant index nb. The constant shift Λ0 will thus be
ignored in the following since it does not affect the threshold for stochasticity. We now
focus our intention on the dynamics for a given value of nb, say nb = 0 - thus the label nb is
dropped to lighten notations. As done previously, a reformulation of the island invariant
of motion in term of the frequency ω = CΛΛ makes life easier

Hω =
1

2
ω2 − ω2

I cos(τω) cos(ζ)

where Hω = CΛHΛ is a normalised Hamiltonian, τ = KΛ
CΛ

is a time that characterises the
dependence of the perturbed Hamiltonian on Λ, and

ωI =

[
CΛ

√
2

πσθb
h′
]1/2

(103)

The equations of motion with this set of conventions read

dζ

dt
=

∂Hω

∂ω
= ω + ω2

I τ sin(τω) cos(ζ) (104)

dω

dt
= −∂Hω

∂ζ
= −ω2

I cos(τω) sin(ζ) (105)

A key parameter is the product ωIτ = ωII
ωI

, where ωII is a frequency that characterises
the motion on the structures that emerge in the phase space due to the dependence of
the perturbed Hamiltonian on the action (the cos(τω) prefactor)

ωII = KΛh
′ = τω2

I

Depending on the value of ωIτ , two regimes can be identified [31]

• When τωI = ωII
ωI
≤ S0, where S0 is a number to be determined, the surfaces Hω = cte

reproduce the classical shape of a cat’s eye, Fig.26. The integer nb varies while
nd is fixed, so that the distance between resonant surfaces is Ωb. The island size
(in frequency) is 4ωI . The Chirikov parameter is SI = 4ωI

Ωb
and trajectories are

stochastic whenever SI ≥ Sc, where Sc is a number of order 1. This limit is called
“weak perturbation regime”.

• In the opposite case τωI = ωII
ωI
≥ S0, the surfaces Hω = cte exhibit a more complex

shape, with multiple lobes. The broadening and increasing complexity of the set
of iso-Hω lines is illustrated on Fig.26. This figure allows a physical interpretation
of the frequency ωII , which in fact is the inverse of the time needed by a particle
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to explore a secondary island (or lobe). The whole size of this set of lobes is no
longer the island width 4ωI , but rather 2τω2

I = 2ωII so that the Chirikov parameter

becomes SII = 2
τω2

I
Ωb

= 2ωIIΩb
. Stochasticity occurs whenever SII ≥ Sc, admitting

that the critical number for transition to stochasticity is the same in the weak and
strong perturbation regime. This limit is called “strong perturbation regime”.

The critical value S0 of τωI can now be computed. It determines the transition from
weak to strong perturbation regimes, and is defined by the condition SII = SI , hence
S0 = 2. Let us note the relationship

SII =
τωI
S0

SI = 2
τω2

I

Ωb

This relationship shows that the stochasticity condition SI ≥ 1 implies that SII ≥ 1 in
the strong perturbation regime since the latter is conditioned to τωI ≥ 2. The time τ
depends on the amplitude h of the primary perturbation via the frequencies (Ωb,Ωd), while
the frequency ωI depends on the amplitude h′ of the secondary perturbation. Hence the
condition τωI = 2 defines a critical value of h′ that depends on h and other geometrical
and plasma parameters.

Figure 25: Contour lines of the Hamiltonian Hω(ω, ζ) = 1
2ω

2 − ω2
I cos(τω) cos(ζ). Parameters are

ωI = 1, and ωIτ = 0.

J.2 Entropy production rate in the the stochastic regime

Computing the transport in the phase space in the stochastic regime is a difficult task. Let
us start with the simplest approach, i.e. the case where the Chirikov overlap parameter
is high enough for the quasi-linear theory to applies. Based on the discussion above, the
diffusion coefficient reads

Dij = π
+∞∑

nb=−∞

∣∣H ′nb∣∣2 ninjδ(nbΩb + ndΩd)

where the index i can label the direction b or d, and

H ′nb = −h
′

2
Jnb (σθb)
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Figure 26: Contour lines of the Hamiltonian Hω(ω, ζ) = 1
2ω

2 − ω2
I cos(τω) cos(ζ). Parameters are

ωI = 1, and ωIτ = 8.

The entropy production rate as given by Eq.(20) reads

Ṡres

(
Ueq, ∂JU

†
eq

)
=

π

2T 2
0

+∞∑
nb=−∞

∫
dγFeq

∣∣H ′nb∣∣2
δ (nbΩb + ndΩd)

(
nb
∂U†eq
∂Jb

+ nd
∂U†eq
∂Jd

)∣∣∣∣∣
2

J=JR

The pre-factor 1/2 was introduced to deal with the function U†eq only in the functional Sres.
Let us note that δ (nbΩb + ndΩd) = 1/Ωbδ (nb + n∗) where n∗ = ndΩd/Ωb and Ωb > 0.
Moreover it was seen in the section on quasilinear theory that various processes lead to a
broadening of the resonance function, i.e. the Kronecker delta function can be replaced
by

δ (nb − n∗)→
1

π

∆nb

(nb − n∗)2 + ∆n2
b

If the resonance broadening width ∆nb is large enough against 1, the summation over the
index nb can be replaced by a continuous integral

∫ +∞
−∞ dnb. One gets

Ṡres

(
Ueq, ∂JU

†
eq

)
=

π

2T 2
0

∫
dγFeq

∣∣H ′n∗∣∣2 1

Ωb

(
n∗
∂U†eq
∂Jb

+ nd
∂U†eq
∂Jd

)∣∣∣∣∣
2

J=JR

Let us remember that

• if σ � 1, then H ′n∗ = −h′

2 , and ωI =
√
CΛh′ (the island size is equal to 4ωI)

• if σ � 1, then

H ′n∗ = −h
′

2

√
2

πσθb
cos (ωτ)

and

ωI =

[
CΛ

√
2

πσθb
h′
]1/2

67



Combining these various ingredients, the entropy production bears the form

Ṡres

(
Ueq, ∂JU

†
eq

)
=

1

T 2
0

π

8

∫
dγFeq

ω4
I

Ωb
cos2 (ωτ) Ξ(J)

(
∂U†eq
∂ω

)2

where dγ = dSdω/ |CΛ|, and dS is the element of integration along the nb = 0 resonant
surface, and

∂U†eq
∂ω

=
1

CΛ

(
nb
∂U†eq
∂Jb

+ nd
∂U†eq
∂Jd

)∣∣∣∣∣
J=JR

measures the departure from thermodynamic equilibrium. The latter expression is a
consequence of the relation J = JR + Λ(nbêb + ndêd) and ω = CΛΛ. It reflects a diffusion
that occurs mainly along the direction ω, i.e. across resonant surfaces. The form factor
Ξ(J) accounts for various corrections that are discussed below. In the simplest case, Ξ(J)
= 1.

A special case occurs when only deeply trapped particles matter, so that Ωb → ωb does
not depend on the action Jb

37. Nevertheless it yields a useful order of magnitude. In this
limit the curvature reads

CΛ ' n2
d

∂2Ωd

∂J2
d

Also, from Eq.(77) Jb = λmθ
2
b/4 → 0, it can reasonably be assumed that U†eq does not

depend on θb. In this case

∂U†eq
∂ω

' 1

CΛ
nd
∂U†eq
∂Jd

∣∣∣∣∣
J=JR

Keeping up with this approximation. The covariant form reads

Ṡres

(
Ueq, ∂JU

†
eq

)
=

1

T 2
0

π

8

∫
dγFeq(J)

h′2

Ωb
cos2 (ωτ) Ξ(J)

(
(n′ − σn) · ∂U

†
eq

∂J

)2

The expression above bears the advantage of simplicity, and is correct in the limit
σ � 1, with τ = 0 and Ξ(J) = 1. However it overestimates transport coefficients in the
case σ � 1 since it assumes that quasi-linear theory always apply. The next step is to
analyse separately the weak and strong perturbation regimes:

• In the weak perturbation regime τωI = ωII
ωI
≤ 2, the usual quasi-linear limit is

recovered, i.e. Ξ(J) = 1. The diffusion coefficient in the frequency space reads
Dω ∼ πω4

I/Ωb. It can be understood as follows. The equation of motion Eq.(105) is
dtω = −ω2

I sin ζ. It implies that ω moves by ωI whenever ζ changes by π. In presence
of two perturbations ζ changes sign every half-period π/ωb. A simple random walk
argument yields Dω ∼ πω4

I/ωb.

• In the strong perturbation regime ωIτ = ωII/ωI ≥ S0, the quasi-linear formula
cannot be applied. Since dtζ scales as ω2

I τ = ωII , the phase changes by π after a
time τeff ' π/ωII . The diffusion coefficient is therefore Dω ∼ πω2

I/τ . The ratio of
the diffusion coefficient to the quasilinear reference value is of the order of Ωb/(τω

2
I ),

up to a constant that should be determined numerically. Here we decided to write
the form factor as

Ξ(J) =
Sst
2

Ωb

τω2
I

=
Sst
SII

In this formulation the form factor is the inverse ratio of the Chirikov overlap pa-
rameter in the strong perturbation regime SII to some reference value Sst, which for

37This assumption is highly questionable. As mentioned above, stochasticity occurs if the bounce frequency
Ωb is low enough. This situation actually occurs more easily for barely trapped/passing particles for which
Ωb → 0
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consistency must be chosen larger than Sc. Indeed the transition between the two
diffusive regimes occurs when SII = Sst, which obviously must be above the stochas-
ticity threshold, otherwise some contradiction occurs. Hence the diffusion coefficient
in the strong perturbation is always smaller than the quasilinear value. It seems
strange that the strong perturbation regime produces a diffusion coefficient that is
smaller than the one found in the weak perturbation regime. But this is fact remi-
niscent of the discussion on the Dupree time and renormalisation procedure, where
the correlation time turns out to decrease with the quasilinear diffusion coefficient.
The choice proposed in [31] is Sst = 2.

The reshaped expression of the entropy production rate is therefore

Ṡres

(
Ueq, ∂JU

†
eq

)
=

1

T 2
0

π

8

∫
dγFeq

ω4
I

Ωb
min

(
1,
Sst
SII

)(
∂U†eq
∂ω

)2

An alternative to the function min (1, Sst/SII) is a Lorentzian 1
1+SII/Sst

, which can be
justified on the basis of a non linear resonance broadening theory mentioned in the section
on the quasi-linear theory.

This expression can now be written in a covariant form

Ṡres

(
Ueq, ∂JU

†
eq

)
=

1

T 2
0

π

8

∫
dγFeq

h′2

Ωb
Λ(J)

(
(n′ − σn) · ∂U

†
eq

∂J

)2

where the form factor Λ(J) is such that

• if σ � 1, then Λ(J) = 1

• if σ � 1, then

Λ(J) =
2

πσθb
min

(
1,
Sst
SII

)
' 2

πσθb

1

1 + SII
Sst

where

SII = 2

√
2

πσθb

KΛh
′

Ωb
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