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Abstract

Gyrokinetics is a self-consistent kinetic model of magnetised plasmas that applies to
dynamical systems characterised by typical frequencies lower than the cyclotron frequency.
Any gyrokinetic theory proceeds in two steps. The first one is the derivation of a gyroki-
netic Vlasov equation for each charged species. This is done by building a new adiabatic
invariant of motion, the magnetic moment, associated with a virtual particle, the gyro-
centre, slightly shifted from the particle guiding-centre. It relies on a near-identity change
of variables in a 8D extended phase space. This change of variables is not unique. Several
options are discussed in this lecture note. The second part is the derivation of particle
charge and current densities that enter the Maxwell equations, knowing the gyrocentre
distribution functions. It appears that a magnetised plasma behaves as a medium that
is both electrically polarised and magnetised. The resulting model encompasses one ki-
netic equation per species and the Maxwell equations. It can be used to address any
self-consistent electromagnetic problem in magnetised plasmas, in particular instabilities
and turbulent transport.

Sections labelled with a star “*” can be skipped in a first reading. Notations can be
found in Appendix A.

1 Introduction

This note aims at deriving a theory of low frequency electromagnetic fluctuations in a mag-
netised plasma. Let us remind that 3 invariants of motion can be built in a magnetised
plasma under stringent conditions. These invariants are the particle energy if the field is
static, magnetic moment for a strong enough magnetic field, and canonical momentum
whenever the configuration is left invariant by a rotational symmetry. However dynamical
invariance breaks down in presence of fluctuations. This is a consequence of symmetry
losses. For instance time variations invalidates energy conservation. A loss of axisymme-
try in a tokamak implies that the kinetic toroidal momentum is no longer an invariant
of motion. Also the particle magnetic moment is no longer an invariant whenever field
perturbations oscillate on time scales commensurate with the cyclotron period. Losses of
invariants of motion imply that particle trajectories are generically chaotic. Predicting
properties of a chaotic dynamics is a formidable task since the dynamics dimensionality is
intrinsically 6D in the phase space. Fortunately, some simplification is possible since most
MHD instabilities, or micro-instabilities that drive turbulence in laboratory magnetic con-
figurations, are characterised by frequencies that are lower than the cyclotron frequency.
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A new invariant of motion, close to the magnetic moment, can then be constructed, hence
reducing the number of degrees of freedom. Nevertheless the other coordinates must also
be modified in this process. This new set of coordinates describes the motion of a virtual
particle called gyrocentre, combined with a distorted cyclotron motion (see Fig.1). The
change of coordinates, from guiding-centre to gyrocentre, is called a gyrocentre transform.
A gyrocentre stays close to the guiding-centre position, provided the amplitude of fluctu-
ations is small, say of the order of the expansion parameter εB (defined in subsection 2.3)
that is used to derive the guiding-centre equations of motion. This assumption is fulfilled
in most practical cases1. Technically speaking, this means that a near identity change
of variables, conjugate or not, must be performed. It turns out that powerful methods
were developed in celestial mechanics to perform effectively near identity changes of vari-
ables, at all orders in the expansion parameter. Kinetic equations that rule the particle
distribution functions can be computed based on this new set of variables.

However the task is not over. Indeed solving kinetic equations provides all necessary
information on moments, i.e. density, fluid velocity and temperature, and transport equa-
tions, but it does not ensure self-consistency, i.e. coherence of the Maxwell equations
with the plasma response to the electromagnetic field. More precisely, electromagnetic
fluctuations must be solutions of the Maxwell equations, with charge and currents densi-
ties that depend on the electromagnetic field itself via the particle distribution functions.
Here a major difficulty emerges. Maxwell equations live in the physical space, not in the
space of gyrocentre coordinates. Hence a second part of the gyrokinetic theory consists
in relating the charge and current densities in the physical space to the moments of the
gyrocentre distribution function. It turns out they differ via terms that can be seen as
polarisation and magnetisation terms. This second step is conveniently achieved by using
a variational method. The gyrokinetic theory was initiated by Frieman and Chen in 1982
[1], and was then largely expanded and improved upon. This lecture note derives from an
extensive overview on gyrokinetics [2], and the papers [3, 4] for the specific “Hamiltonian
approach”. Readers interested in advanced issues should read them in depth. Numerical
implementation and results of simulations are not addressed in this note, but some details
can be found in the review [5].

2 Choice of coordinates and ordering

2.1 Canonical coordinates

The simplest2 set of Hamiltonian canonical (conjugate) variables is the set of position/momentum
z = (x,p). The equations of equilibrium motion expressed in canonical variables bear the
Hamiltonian form

dx

dt
=

∂heq
∂p

dp

dt
= −∂heq

∂x
(1)

1Exceptions exist however like turbulence in the edge of a magnetic configuration, where the turbulence
intensity is high, or large amplitude MHD instabilities.

2An alternate set of Hamiltonian canonical variables can be built, which is suitable to a toroidal magnetic
configuration. The first set of variables are ma

ea
µ (m the mass, e the charge and µ the magnetic moment), and the

gyroangle ς - these two variables are conjugate. Using Boozer coordinates, a canonical poloidal momentum is
defined that is conjugate to the poloidal angle. Finally the toroidal angle is conjugate to the canonical toroidal
momentum. If 3 invariants of the equilibrium motion can be found, and trajectories are bounded, a set of
angle/action variables can be constructed. This procedure [6] is not detailed here.
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Figure 1: Schematic trajectory separated in a guiding-centre X and cyclotron motion ρ, taken circular.
In presence of a perturbed electromagnetic field, the magnetic moment is no longer an (adiabatic)
invariant of motion. To recover an invariant of motion, the guiding-centre position is slightly shifted
to become a “gyrocentre”. The particle position x is the sum of the gyrocentre position X̄ and a
gyrovector ρ̄. The later is the sum of a circular cyclotron motion plus a deformation due to higher
harmonics and also a mean part responsible for plasma polarisation and magnetisation effects.

where heq(x,p) is the unperturbed Hamiltonian3. A convenient simplification is the
use of an extended set of conjugate variables, by adding a pair of conjugate variables(
x0 = t, p0 = −E

)
, where E is the particle energy4. The new Hamiltonian is heq(z) =

heq (x,p)− E, where z = (xµ, pµ) with µ = (0, 1, 2, 3), xµ are contravariant components,
and pµ are covariant components5. The new flow “time” (similar to a curvilinear coordi-
nate for the orbit in extended phase-space) is noted τ , and the motion is constrained to
take place on the manifold E = heq (x,p). The equilibrium evolution equations for the
new variables (x0, p0) are

dx0

dτ
=

∂heq
∂p0

= −∂heq
∂E

= 1

dp0

dτ
= −∂heq

∂x0
= −∂heq

∂t
= 0

The first equation imposes that the coordinate t coincides with τ , up to an initial condition.
The last equation is the expected time evolution of the Hamiltonian dh

dt = ∂h
∂t , which states

that energy is conserved for an Hamiltonian that is time independent. Hence this extended
set of conjugate variables verifies the same canonical Hamilton equations as Eq.(1), but
applied to 8 conjugate variables, and with t replaced by τ . An alternative expression of
the Hamiltonian equations of motion is

dz

dτ
= J · ∂h

∂z

3Notations are such that small letters are used for fields in the (x,p) space. Capital letters are used for the
guiding-centre space, and over-lined capital letters for gyrocentres. See details in Appendix A

4This extension is useful for treating a time-dependent electromagnetic field Aµ. Indeed the variation of
energy, dE/dt = eavµ∂tA

µ, then appears naturally as part of Hamilton’s equations in the extended set of
conjugate variables.

5Although the notations are similar to those of relativity, relativistic effects are not addressed here.
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where J is called “symplectic” matrix. For a set of canonical variables, the symplectic
matrix reads

J =

(
0 I
−I 0

)
where I is the N = 4 identity matrix6.

2.2 Non-canonical coordinates

Let us consider a toroidal equilibrium magnetic configuration. A set of guiding-centre
coordinates can be constructed if the magnetic field is strong enough. This represents a
first change of coordinates from the canonical set of position/momentum z = (x,p) to a
new set of guiding-centre variables Z. The latter is usually built as a set of non canonical
variables, for instance (X, u‖, µ, ς), where X is the position of the guiding-centre, u‖ its
parallel velocity, µ the magnetic moment and ς the gyroangle (or cyclotron angle). This set
of 6 coordinates can be split into a reduced set of “slow” guiding-centre coordinates, noted
Z∗ = (X, u‖, µ), and the gyroangle ς. “Slow” means that these coordinates characterise
the part of the motion that evolves on time scales much longer than a cyclotron period,
in contrast with the gyroangle ς, dubbed here “fast” coordinate. The corresponding
extended set of variables is Z =

(
X, u‖, µ, ς, E, t

)
. For such non-conjugate variables, the

symplectic matrix contains many more non zero elements. The calculation of J is an
important part of the derivation of gyrokinetic equations. The matrix J appears in the
equations of motion (as shown in appendix B),

dZ
dτ

= J · ∂H
∂Z

and in the Vlasov equation (as shown in subsection 3.4). Each element Jµν is in fact a
Poisson bracket {Zµ,Zν}7. The best procedure to compute these elements is to devise a
least action principle for the equations of motion, and find its extremum with respect to
all variations near the actual particle trajectory (see note on particle trajectories). This
procedure is detailed in section 3.

It is useful to familiarize oneself with the concepts of phase-space Lagrangian, Lagrange
matrix ω and Poisson matrix J , and variational formulation in non-canonical coordinates.
Appendix B is a introduction to these concepts, and a simple example which does not
involve cyclotron motion, nor magnetic field, nor extended phase-space.

2.3 Ordering

Let us recall that the usual small parameter for the guiding-centre theory is εB = ρc/LB,
where ρc is the particle gyroradius and LB is the magnetic field scale length. The per-
turbed electromagnetic electric and vector potentials (φ̃, Ã) are characterised by typical
amplitude, pulsation ω and wave number k. The latter is split into wave numbers k‖ and
k⊥, where k‖ is the wave number projected along the unperturbed magnetic field, while
k⊥ is the modulus of the perpendicular wave number. This procedure is adopted for all
vector fields, in particular the vector potential that is split in a parallel and perpendicu-
lar components (Ã‖, Ã⊥). Gyrokinetics relies on the assumption of a pulsation ω much

6A variant of the phase space extension is to use non conjugate variables (t,+E) – note the plus sign. The
identity matrix is then replaced by the Minkowski space metric diag(−1, 1, 1, 1).

7Poisson brackets are conveniently defined by using the original set of conjugate variables {f, g}z = ∂f
∂x ·

∂g
∂p −

∂f
∂p ·

∂g
∂x . The label z can be omitted as long as it designates a set of canonical variables since a Poisson

bracket can be shown to be invariant under a change of conjugate of variables. However the use of a Poisson
bracket becomes trickier whenever non-conjugate variables are used - in this case it is better to keep the index to
designate the set of variables that is being used to compute the bracket. The knowledge of the Poisson brackets
{Zµ,Zν} as functions of the variables Zµ allows the computation of any Poisson bracket of two functions F(Z)
and G(Z) since {F ,G}Z = ∂ZµF {Zµ,Zν} ∂ZνG.
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smaller than the cyclotron frequency Ωc = eaBeq/m – this is mandatory to build a new
magnetic moment that is an adiabatic invariant of motion, – hence

εω =
ω

Ωc
� 1

Regarding the ordering on wave numbers, let us remind first that a major objective of
the gyrokinetic theory is to avoid an assumption of large field scale length λ⊥ ∼ 1/k⊥
compared with a Larmor radius ρc. This is to be contrasted with the guiding-centre
theory where the scale of the equilibrium magnetic field is assumed much larger than a
gyroradius. Two dimensionless numbers are introduced to characterise the perpendicular
and parallel wave numbers. The first one ε⊥ = k⊥ρc is the perpendicular wave number
normalised to the gyroradius. The second one ε‖ = k‖vT /ω, is a parallel transit frequency

built with a thermal velocity vT =
√
Teq/ma (Teq the species temperature, m the particle

mass) normalised to the frequency. Two emblematic limit cases can be identified8:

• Small scale kinetic turbulence is characterised by perpendicular wavelength of the
order of the gyroradius ρc, i.e.

ε⊥ = k⊥ρc ∼ 1

This ordering is called “gyroBohm” scaling. Resonant wave-particle interaction is
optimum when a longitudinal Landau resonance takes place ω ∼ k‖u‖, and u‖ ∼ vT .
This implies ε‖ ∼ 1, and

k‖

k⊥
∼ εω � 1

Hence parallel wave numbers are small compared to their perpendicular counterpart,
a feature that is well verified experimentally and numerically. This is a so-called
“flute-like” structure of fluctuations, referring to flute modes, i.e. perturbations
that are aligned with the mean magnetic field (k‖ = 0).

• MHD instabilities and turbulence in the hydrodynamic limit. The hydrodynamic
approach is appropriate whenever ε‖ � 1, so that Landau resonances per se are
avoided9. The perpendicular wavelength of MHD instabilities is usually larger than
the gyroradius, so that ε⊥ � 1 as well.

The scaling of the perturbation amplitude requires some care. Let φ̃ and Ã‖ denote the
perturbed electric and parallel vector potentials - we ignore for now the perpendicular
component of the vector potential 10. We want to build a dimensionless small parameter
to characterise the amplitude of the perturbed field. This can be done by defining a
parameter εδ that measures the perturbed Hamiltonian h̃ = ea(φ̃− u‖Ã‖) (see subsection
3.1 for the justification of this structure of the perturbed Hamiltonian), normalised to
the unperturbed temperature Teq. An electromagnetic perturbation such that the electric
component φ̃ of the perturbed Hamiltonian is of the same order of magnitude as its
magnetic component v‖Ã‖ satisfies

eaφ̃

Teq
∼
eavT Ã‖

Teq
∼ εδ

8This classification is indicative. The reader should not take it too seriously: numerous flavours and variants
exist that depart from these orderings. Strictly speaking, one could add a third limit case that is a neoclassical
collisional equilibrium ω ∼ 0, k‖qR0 ∼ 1. This one obeys ε⊥ → 0, which corresponds to the drift-kinetic limit.
In other words a gyrokinetic theory is not requested to compute collisional transport, though nothing opposes
using it.

9This does not forbid however closure schemes where Landau damping is mimicked via appropriate additional
terms in fluid equations.

10Unperturbed fields are labelled with an index “eq”, while perturbed fields are written with a tilde.
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Other choices are possible. For instance an electrostatic perturbation is such that Ã‖ = 0.
A Boltzmann response11, also called adiabatic response, then implies

F̃

Feq
∼ H̃

Teq
∼ εδ

where F̃ is the perturbed distribution function. In the turbulence case, another path is to
use a “critical balance” argument, which assumes that all terms in the Vlasov drift-kinetic
equation (written in guiding-centre variables) are of the same order of magnitude once a
statistical equilibrium is reached. In the electrostatic case, this implies12

∂F
∂t ∼ u‖∇‖F ∼ vE · ∇F ∼ eaE‖

ma
∂F
∂u‖

where

vE =
E×B

B2

is the electric drift velocity. The first equality reproduces the argument based on the
longitudinal Landau resonance. The electric drift velocity can be split in unperturbed and
perturbed parts. The unperturbed piece scales as a diamagnetic velocity Teq/eaBeqLp,
where Lp is a plasma gradient length. Equating ṽE · ∇Feq with vE,eq · ∇F̃ yields the
relation

F̃

Feq
∼ ε⊥

eaφ̃

Teq

If a scaling F̃ /Feq ∼ εδ � 1 is imposed, and a “gyroBohm”gyrokinetic turbulence con-
sidered ε⊥ ∼ 1, the ordering of the mode amplitude is found consistent with our previous
result

eaφ̃

Teq
∼ εδ (2)

The next step is to establish a link between εδ and the other dimensionless parameters
εB, ε‖, ε⊥. The analysis is restricted to the “gyroBohm” framework ε⊥ ∼ 1 . In this regime,

the scaling Eq.(2) is consistent with eaφ̃/Teq ∼ εδ. It is also consistent with the electro-
neutrality condition in the same limit. In addition, the perturbed drift velocity is such
that |ṽE | /vT ∼ εδ. Let us bring the parallel vector potential Ã‖ ' φ̃/vT back in the game.

It is responsible for a perturbed perpendicular magnetic field B̃⊥ ' k⊥Ã‖, thus such that

B̃⊥/Beq ∼ εδ. The critical balance condition also imposes that ṽE · ∇Feq ∼ vE,eq · ∇F̃ ,
i.e. εδ ∼ ρc/Lp, which is close to the expansion parameter for the guiding-centre theory
εB = ρc/LB, since the plasma gradient length Lp, magnetic field variation scale LB and
plasma size a are all commensurate. The parameter ρc/a is traditionally noted ρ∗. A
“gyroBohm” scaling is therefore consistent with ε⊥ ∼ 1 and εδ ∼ ρ∗. Still pursuing with

a critical balance model, equating ∂F̃
∂t with ṽE · ∇Feq yields εω ∼ ρ∗. Hence one arrives

to a quite simple “gyroBohm” ordering

ω
Ωc

∼ λ⊥
λ‖

∼ F̃
Feq

∼ H̃
Teq

∼ ρ∗

11A Boltzmann response should be understood as a special case where the distribution is the one expected for
a local thermodynamical equilibrium, i.e. F = C exp(−H/Teq), where C is a constant. An adiabatic transform

is such that whenever the Hamiltonian changes from Heq to an new Hamiltonian H = Heq + H̃, the new
distribution function remains given by F = C exp(−H/Teq) at all times. A Taylor development at first order

in the perturbed Hamiltonian yields F̃ /Feq = −H̃/Teq.
12The form of the Vlasov equation is not demonstrated here, as it is rather intuitive - its precise structure

will be given as one of the main outcomes of the gyrokinetic model. Critical balance is not always satisfied. It
is however a reasonable working hypothesis for turbulence.
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Figure 2: Schematic 3D view of the contour lines of the perturbed Hamiltonian, and corresponding
“gyroBohm” scaling on the perpendicular and parallel wavelengths.

where λ⊥ ∼ 1/k⊥ and λ‖ ∼ 1/k‖ are perpendicular and parallel wavelengths (see Figs. 2
and 3). This scaling goes together with λ⊥ ∼ ρc and13 λ‖ ∼ a. Again it is stressed that
this scaling holds for turbulence problems (not all in fact), but not for MHD instabilities,
nor for collisional transport. The main results in this lecture note do not rely on this
specific ordering.

Finally the perpendicular component of the vector potential is mainly responsible for
a compressional component of the magnetic field B̃‖ = e‖ · ∇ × Ã⊥. It will be seen that
it scales as βεδ, where β is the ratio of kinetic to magnetic pressure. Hence at low values
of β, the perturbed electromagnetic field can be represented by two scalar fields only, the
electric potential and the parallel projection of the vector potential. It is called “(φ,A‖)
representation”. At higher values of β, the compressional component of the magnetic field
must be kept - this limit is dubbed “(φ,A‖, B‖) representation”.

3 The gyrokinetic Vlasov equation

3.1 Breakdown of dynamical invariance

Let us remind a few results regarding the guiding-centre description of a charged particle
motion in a strong magnetic field. The particle position is decomposed as the sum of a
guiding-centre position X and a cyclotron displacement ρ (see Fig.4). The displacement
vector ρ can be expanded in powers of the small parameter εB, i.e. ρ = ρ0 +ρ1, where ρ0

is a circular cyclotron displacement while ρ1 is responsible for plasma polarisation effects.
The latter effect can be incorporated in the gyrocentre transform as long as the mean field
is small enough14. To avoid unnecessary complications, this option is adopted here, even
if in practice the mean electric field is not that small. So in the following ρ1 = 0. Hence

13In toroidal fusion devices, an additional dimensionless number is the inverse aspect ratio, which allows a
distinction between the plasma minor and major radius a and R0.

14Strictly speaking there is also a contribution that comes from magnetic field gradient and line curvature -
this tiny effect is ignored as well.
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a guiding-centre is a virtual particle localised at the centre of the cyclotron motion

x = X + ρ0(X, µ, ς) (3)

The particle velocity reads
v = Ẋ + ρ̇0(X, µ, ς) (4)

where Ẋ is the guiding-centre velocity and ρ̇0 = −Ωc(X)e‖ × ρ0 the cyclotron velocity
(dots denote time derivative). The simplest version of cyclotron motion is adopted here

ρ0(X, µ, ς) = ρc (cos ς e1 − sin ς e2)

ρ̇0(X, µ, ς) = v⊥ (− sin ς e1 − cos ς e2) (5)

where e1 (X) , e2 (X) are two unit vectors locally orthogonal to the unperturbed magnetic
field Beq, such that e1 × e2 = e‖. Here, ς is the cyclotron phase15, v⊥ =

√
2µBeq(X)/ma

is the modulus of the cyclotron velocity (µ is the magnetic moment), Ωc = eaBeq(X)/m is
the cyclotron angular frequency, and ρc = mav⊥/eaBeq is the gyroradius. Note that both
Ωc and ρc take the sign of e. Eqs. (3) and (4) can be applied to change variables from the
extended set of particle coordinates z to the extended set of guiding-centre coordinates
Z = (Z∗, ς) described in subsection 2.2. Here we have noted the 7 slow guiding-centre
coordinates as Z∗ = (X, u‖, µ, E, t). Any dynamical function of Z can be expanded as a
periodic function of ς, with coefficients that depend on Z∗. The operation that consists
in transforming a function of z in a function of guiding-centre coordinates Z is called a
guiding-centre transform.
The equilibrium electromagnetic field is inhomogeneous, but assumed static to simplify

the analysis. Deriving the guiding-centre equations of motion is still challenging, but
can be done efficiently by using a principle of least action. This procedure is detailed in
Appendix C. To summarize, the equilibrium Lagrangian Leq = p · ẋ−Heq is transformed
into a guiding-centre Lagrangian, which, up to the zeroth order in εB, is written as

Leq

(
Z, Ż

)
= eaA

∗
eq · Ẋ +

ma

ea
µς̇ −Heq

(
X, u‖, µ

)
(6)

where the Hamiltonian is

Heq

(
X, u‖, µ

)
=

1

2
mau

2
‖ + µBeq (X) + eaφeq (X)

and φeq is the unperturbed electric potential. The modified vector potential is

A∗eq
(
X, u‖

)
= Aeq (X) +

ma

ea
u‖e‖ (X)

The principle of least action yields the Poisson brackets associated with the guiding-centre
coordinates Eq.(112) in Appendix C, and the equations of motion Eqs.(113)-(116). Since
the Lagrangian does not depend on ς, the corresponding Euler-Lagrange equation yields

∂Leq
∂ς

=
d

dt

(
∂Leq
∂ς̇

)
=
ma

ea
µ̇ = 0

Hence the adiabatic invariance of the magnetic moment µ is recovered.

Let us now introduce a perturbation of the electromagnetic field. The total vector and
electric potentials read

A (x, t) = Aeq (x) + Ã (x, t)

φ (x, t) = φeq (x) + φ̃ (x, t)

15The convention in the gyrokinetic literature is that ς is defined as the angle from ρ0 to e1 for ions, and
from ρ0 to −e1 for electrons.
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Figure 3: Schematic effect of perturbed electro-magnetic field on a guiding-centre velocities. Left:
contour lines of the perturbed electric potential. A guiding-centre is submitted to an E × B drift
velocity that is tangent to the contour lines as a result of its expression vE = B×∇φ

B2 , i.e. normal to
the magnetic field and the potential gradient ∇φ. Right: unperturbed field line (here a straight line)
that is deformed by a perturbed magnetic field δB. A guiding-centre with a parallel velocity u‖ along

the field lines acquires a velocity transverse to the initial field line vδB ∼ δB
B u‖. GyroBohm scaling

corresponds to |vE |vT
∼ vδB

vT
∼ ρ∗. This picture applies as well to gyrocentres.

The perturbed vector potential is separated in components parallel and perpendicular to
the unperturbed magnetic field

Ã(x, t) = Ã‖(x, t)e‖(x) + Ã⊥(x, t)

The perturbed fields (Ã, φ̃) are of order 1 in the expansion parameter εδ once properly
normalised, so will be sometimes noted (A1, φ1). The Lagrangian in the original phase
space z = (x,v) reads

L (z, ż, t) = (eaA(x, t) +mav) · ẋ− h(x,v, t) (7)

where h = 1
2mv

2 + eaφ(x, t) is the “Hamiltonian”16. This Lagrangian can be as well
written in guiding-centre coordinates

L
(
Z, Ż, t

)
= eaA

∗
eq

(
X, u‖

)
· Ẋ +

ma

ea
µς̇ −Heq

(
X, u‖, µ

)
+ eaÃ(X + ρ0, t) ·

(
Ẋ + ρ̇0

)
− eaφ̃(X + ρ0, t) (8)

The structure of the new Lagrangian Eq.(8) is deeply modified. Thus all Poisson brackets
should be recalculated. However this difficult task can be circumvented with the following
trick. Let us go back to the initial Lagrangian Eq.(7) and introduce the shifted velocity

v′(x,v, t) = v +
ea
ma

Ã(x, t)

16The name “Hamiltonian” is a bit stretched as Hamilton arrived after Lagrange, but appears to be convenient

9



The new Lagrangian reads

L (z, ż, t) =
(
eaAeq(x, t) +mav

′) · ẋ− h∗(x,v′, t)
where the new Hamiltonian is

h∗(x,v′, t) =
1

2
mav

′2 + eaφeq(x, t) + ea

(
φ̃(x, t)− v′ · Ã(x, t)

)
+

1

2

e2
a

ma
Ã2(x, t) (9)

What is the gain? It appears that the coefficient of ẋ in the Lagrangian is the same as

Figure 4: Decomposition of a charged particle motion into a guiding-centre position X and a cyclotron
motion ρ. Strictly speaking, the cyclotron motion can be itself be separated into a periodic component,
restricted here to a circular gyration ρ0, and a mean value, neglected here.

the one computed without the perturbed field. The immediate consequence is the identity
of the Poisson brackets with those computed for the unperturbed system. Hence when
moving to gyrocentre coordinates, the Poisson brackets remain the same. Let us note
however that the new Hamiltonian h∗ is now second order in the expansion parameter
εδ. This adds some complexity to the problem at hand, but is the price to pay for not
modifying the Poisson brackets. The shifted velocity v′ can be decomposed in parallel
and perpendicular components to the equilibrium magnetic field. The perpendicular com-
ponent participates in the cyclotron motion. When moving to guiding-centre coordinates,
the velocity reads

Ẋ = p‖e‖(X) + Ẋ⊥

where p‖ is proportional to the parallel momentum17

p‖ (Z) = u‖ +
ea
ma

Ã‖(X + ρ0, t)

The total Lagrangian can be recast as

L
(
Z, Ż, t

)
= eaA

∗ · Ẋ +
ma

ea
µς̇ −

(
H∗eq + H̃

)
(10)

17The parallel momentum is in fact map‖. p‖ scales as a velocity, which may be disconcerting given the
notation. However this in line with the fact that most codes compute a parallel “velocity”, whereas it is in fact
a momentum. This notation is not universal. There is no use of the variable p‖ per se in the approach [2],
where p‖ designates in fact mau‖ (but the variable p̄‖ that is built later on is the same). In the references [3, 4],
p‖ is noted pz, and p‖ = mau‖ .
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The new generalised vector potential reads

A∗
(
X, p‖

)
= A∗eq + Ã‖e‖ = Aeq (X) +

ma

ea
p‖e‖ (X)

The unperturbed and perturbed Hamiltonians read

H∗eq
(
X, p‖, µ

)
=

1

2
map

2
‖ + µBeq (X) + eaφeq (X)

and

H̃
(
X, p‖, µ, ς, t

)
= eaφ̃(X + ρ0, t)− eap‖Ã‖(X + ρ0, t)

− ea

(
Ẋ⊥ + ρ̇0

)
· Ã⊥(X + ρ0, t) +

1

2

e2
a

ma
Ã2(X + ρ0, t) (11)

The structure of the Lagrangian Eq.(10) is very similar to the unperturbed one Eq.(6) :
the “symplectic” part (the bit proportional to Ẋ) of the Lagrangian remains structurally
the same, but the Hamiltonian Heq is replaced by H = H∗eq + H̃. Note that this is not
the sole strategy: the perturbed vector potential could be inserted in the “symplectic”
part of the Lagrangian, i.e. added to Aeq, hence leading to another definition of the
velocity p‖ and Hamiltonian H. The latter approach is called “symplectic”, while the
former is dubbed “Hamiltonian”. A more systematic derivation will be given in section
5. In the Hamiltonian approach, the symplectic part of the Lagrangian is left unchanged
compared with the standard guiding-centre description. Therefore the Poisson brackets
are the same, and the Jacobian as well. Hence the trajectory equations are the same with
Heq replaced by H = H∗eq + H̃. Since the equilibrium Hamiltonian has been redefined,
we also redefine Heq = H∗eq − E (instead of Heq − E). The Hamiltonian perturbation is
small, i.e. first order in an expansion parameter εδ � 1, opening the path to a pertur-
bative approach in εδ. As seen in section 2.3, the expansion parameter εδ characterises
the perturbed Hamiltonian normalised to the equilibrium one, itself of the order of the
plasma temperature Teq, hence εδ ∼ H̃/Teq.

However, a disturbing feature of the Lagrangian Eq.(10) is the dependence of the
new Hamiltonian on the gyroangle ς, which implies that the magnetic moment is no
longer an invariant of motion. This is most unfortunate since a breakdown of dynamical
invariance usually implies an onset of chaos, and therefore a loss of confinement in the
context of fusion devices. There is nevertheless one case where an adiabatic invariant can
be rebuilt efficiently, which is the case where the typical time scale of the Hamiltonian
perturbation is much longer than the cyclotron period, provided the amplitude of the
perturbed Hamiltonian is small enough. To recover an adiabatic invariant, we impose a
change of coordinates such that the new Hamiltonian does not depend on the gyroangle,
or more exactly its gyrocentre counterpart. This is a situation of interest in laboratory
devices, where many instabilities evolve slowly compared with a cyclotron time scale.
Because the new Hamiltonian does not depend on the gyroangle, it allows treating the
Vlasov/Maxwell system as a 4D dimensional problem parametrized by the new adiabatic
invariant. This invariant is now going to be built, proceeding step by step.

3.2 Building a new adiabatic invariant

Solving the Maxwell equations requires distribution functions expressed in the initial set
of variables (x,p) since they involve charge and current densities of “true” particles, not
virtual guiding-centres. Moreover, it is desirable to build new variables, called “gyrocen-
tres”, close to guiding-centres, and such that the modified magnetic moment remains an
adiabatic invariant of motion. The corresponding coordinates can be quite far from the
original set (x,p). It is therefore important to keep track of this double change of vari-
ables. The choice of gyrocentre variables is in fact quite broad. However not all choices
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Figure 5: Sequence of transforms from particle to guiding-centres, then to gyrocentres. A complete
gyrokinetic theory must provide the two corresponding changes of variables, to move back and forth
from one representation to the others.

are suitable to compute the charge and current densities. The optimum procedure can
then be summarised as follows. It appears that useful coordinates in presence of the
perturbed field are the non conjugate guiding-centre variables Z = (X, p‖, µ, ς), where X
is the guiding-centre position, p‖ its parallel momentum (constructed from u‖ by adding

eaÃ‖/ma), µ the magnetic moment and ς the gyroangle. The distribution function of
guiding-centres is solution of a Vlasov equation, as shown by Littlejohn [7] (see also a
previous note on trajectories). However this set of variables is not good enough because,
as mentioned above, the magnetic moment is not conserved, a consequence of the de-
pendence of the perturbed electromagnetic field on the gyroangle ς. It is then desirable
to build a set of gyrocentre coordinates, noted Z̄ = (ς̄ , µ̄, X̄, p̄‖), such that µ̄ is an in-
variant of motion. In the extended phase space, these two changes of variables are first
a transform from the particle coordinates, noted z = (t,−E,x,p), to the guiding-centre
coordinates Z = (X, p‖, µ, ς, t, E), and second a transform from Z to the gyrocentre coor-
dinates Z̄ = (X̄, p̄‖, µ̄, ς̄ , t̄, Ē) (see Fig. 5). It will be shown in the next section that charge
and current densities in real space can be suitably calculated knowing the distribution
function expressed with this set of gyrocentre coordinates. A systematic way to take this
step is to use a principle of least action, as for guiding-centre variables. This is a rather
technical methodology that will be detailed in the section 5. For the moment, we show
that the gyrocentre distribution function is solution of a Vlasov equation expressed in
non-canonical variables.

In the Hamiltonian approach, the new set of variables Z̄ is related to the old set Z
by using a near identity transform that is called a contact transformation [8, 9]

Z = Z̄ − εδ
{
S1, Z̄

}
Z̄ + o(ε2δ) (12)

where { , }Z̄ is the Poisson bracket written in the new variables Z̄, and S1 is a generating
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function. It can be shown that this change of variables preserve the structure of the
Poisson brackets. In other words, the Lagrangian is the same in both sets of coordinates
Z and Z̄, i.e.

{F,G}Z̄ =
ea
ma

(
∂F

∂ς̄

∂G

∂µ̄
− ∂F

∂µ̄

∂G

∂ς̄

)
+

1

ma

B∗

B∗||
·
(
∂F

∂X̄

∂G

∂p̄‖
− ∂F

∂p̄‖

∂G

∂X̄

)
−

e‖

eaB∗||
·
(
∂F

∂X̄
× ∂G

∂X̄

)
+
∂F

∂Ē

∂G

∂t̄
− ∂F

∂t̄

∂G

∂Ē
(13)

where

B∗
(
X̄, p̄‖

)
= ∇×A∗

(
X̄, p̄‖

)
= Beq

(
X̄
)

+
map̄‖

ea
∇× e‖

and

B∗||
(
X̄, p̄‖

)
= e‖ ·B∗

(
X̄, p̄‖

)
= Beq

(
X̄
)

+
map̄‖

ea
e‖ · ∇ × e‖

is the Jacobian of the guiding-centre transform (by convention e‖ is calculated at X̄ and
all gradients are derivative with respect to X̄). The Poisson structure of the change of
variables Eq.(12), that involves a Poisson bracket, is easy to demonstrate when using con-
jugate variables (see Appendix D). It was shown by Cary [10] that it remains valid for non
conjugate variables. This transform is essential in gyrokinetic theory, in its Hamiltonian
version [11, 12, 13]. A general demonstration that applies to all changes of variables (i.e.
not only Hamiltonian) can be found in the overview [2] - a summary is given in Appendix
H. At first order in εδ, the near identity change of variables Eq.(12) can as well be written

Z̄ = Z + εδ {S1,Z}Z + o(ε2δ) (14)

Hence the gyrocentre change of variables can be seen as a translation, where the shift is
the Poisson bracket {S1,Z}Z . The following relation holds18

H̄(Z̄) = H(Z) (15)

A Taylor development of H(Z) in Eq.(15) implies that at lowest order in εδ

H̄eq
(
Z̄
)

= Heq(Z)

The next order in εδ provides the evolution equation of the generating function

−{Heq, S1}Z̄ = H1(Z̄)− H̄1(Z̄) (16)

which is written in gyrocentre coordinates Z̄ exclusively. Let us now recall our initial
purpose: the new Hamiltonian should be independent of the new gyroangle ς̄, assuming
that all typical frequencies of the perturbed Hamiltonian are smaller than the cyclotron
pulsation by at least a factor εδ. Let us remind that the perturbed Hamiltonian is supposed
to exhibit low frequencies compared with the cyclotron frequency Ωc. This is the key
assumption of gyrokinetic theory. The left hand side of Eq.(16) reads

−{Heq, S1}Z̄ =
∂S1

∂t̄
+ Ωc

∂S1

∂ς̄
+ p̄‖

(
e‖ · ∇

)
S1 +

(
˙̄X⊥ · ∇

)
S1

18This a consequence of the independence of the generating function on the extended time τ .
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Figure 6: Gyroaverage operator applied to a field φ(x) in two limits. On the left, case of a field with
a typical variation scale λ that is much larger than a gyroradius ρc, λ � ρc. The asymptotic limit
is obtained via a Taylor development of φ (X + ρ0), followed by an average over the gyrophase. The
gyroaverage operator is close to J [φ] ∼ φ (X) + 1

4ρ
2
c∇2
⊥φ (X) + o (ρc/λ)4. An average of the field over

4 points on the cyclotron circle leads to a finite difference discretisation of the same operator. The
right panel corresponds to the opposite limit of a scale length much smaller than a gyroradius λ� ρc.
A simple case corresponds to a periodic variation of the field. The gyroaverage operator consists in
multiplying the field by a Bessel function of argument k⊥ρc in the Fourier space (see Appendix E).
Hence the gyroaverage field tends to zero like

√
λ/ρc in the limit of small wavelengths. A similar

operation can be defined on gyrocentres.

Because of the gyrokinetic ordering, the second term, related to the cyclotron motion, is
ε−1
ω ∼ ε−1

δ larger than the others. This property allows restricting the left hand side of
Eq.(16) to a derivative in ς̄ only, i.e.

Ωc

(
Z̄∗
) ∂S1

∂ς̄
= H1(Z̄)− H̄1(Z̄) (17)

The average of Eq.(17) over the gyroangle ς̄, a solubility constraint, provides the new
Hamiltonian

H̄1(Z̄∗) =
〈
H1(Z̄)

〉
ς̄

where the bracket 〈 〉ς̄ indicates an average over the gyroangle associated with the gyro-
centre

〈H1〉ς̄ (Z̄∗) =

∫ 2π

0

dς̄

2π
H1(Z̄∗, ς̄)

An explicit form of the generating function is therefore

S1

(
Z̄∗, ς̄

)
=

1

Ωc

(
Z̄∗
) ∫ ς̄

dς̄ ′
(
H1(Z̄∗, ς̄ ′)− H̄1(Z̄∗)

)
It appears to be a periodic function of ς̄ with zero mean. Here Z̄∗ designates the slow
gyrocentre coordinates Z̄∗ = (X̄, p̄‖, µ̄, t̄, Ē), and Z̄ = (Z̄∗, ς̄) is the full set of gyro-
centre coordinates. The average over a gyroangle is called “gyroaverage”. Let us insist
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on the mixed nature of the integrand H1(Z̄), an Hamiltonian originally expressed in
guiding-centre variables Z, but calculated with gyrocentre variables Z̄. The perturbed
Hamiltonian Eq.(11) reads at order 1

H1(X̄, p̄‖, µ̄, ς̄ , t) = eaφ̃
(
X̄ + ρ0(X̄, µ̄, ς̄), t

)
− eap‖Ã‖

(
X̄ + ρ0(X̄, µ̄, ς̄), t

)
− ea

(
˙̄X⊥ + ρ̇0(X̄, µ̄, ς̄)

)
· Ã⊥

(
X + ρ0(X̄, µ̄, ς̄), t

)
(18)

The gyroaverage over ς̄ is an average over a circular cyclotron motion (ρ0, ρ̇0)(X̄, µ̄, ς̄)
centred on the gyrocentre position and velocity , noted19

H̄1(Z̄∗) = J [H1](Z̄∗) =
〈
H1(X̄, p̄‖, µ̄, ς̄)

〉
ς̄

A similar operation will be needed in guiding-centre variables, i.e.

H̄1(Z∗) = J [H1](Z∗) =
〈
H1(X, p‖, µ, ς)

〉
ς

Here the average is performed over a circular cyclotron motion (ρ0, ρ̇0)(X, µ, ς) centred
on the guiding-centre position. A gyroaveraged field is roughly speaking the field “felt”
by a gyrocentre (or guiding-centre), a virtual particle that moves slowly compared with
the cyclotron motion. If the scale length of the perturbed field is much larger than the
gyroradius, the gyroaverage field is close to the field itself. On the contrary, if the field
exhibits fast spatial scales compared with the gyroradius, its gyroaverage tends to zero, as
a result of a summation over plus and minus values during a cyclotron motion (see Fig. 6).

The variable µ̄ is an invariant of motion since the new Hamiltonian does not depend
on its conjugate variable20 ς̄ . Hence the objective is met: the new Hamiltonian does
not depend on the gyrocentre gyroangle ς̄, which immediately imposes that µ̄ is an invari-
ant of motion. It must be stressed here that no information is lost here: the gyrocentre
transform that changes the coordinates Z to Z̄ is fully defined by Eq.(12) - there is no
reduction of dimensionality, even if the new Hamiltonian is the gyroaverage of the old
one. Once the generating function S1 is known, the change of variables Eq.(12) is fully
determined.

At this stage, we have computed a first order Hamiltonian H̄1 that does not depend
on the gyroangle. However we saw that the perturbed Hamiltonian is in fact of second
order in εδ. Hence the calculation should be done at second order, a formidable task that
will handled later on (an impatient reader may give a look at the Appendix G). Let us
note moreover that most gyrokinetic codes solve the equations of motion at first order
in εδ. So at this point, we will just admit that there exists a second order Hamiltonian
H̄2(Z∗) that will not be detailed for now.

3.3 Plasma polarisation

It is useful to clarify the relationship between particle, guiding-centre and gyrocentre
positions. The link between the particle and the guiding-centre position is given by
Eq.(3). The relationship between the gyrocentre and guiding-centre coordinates imposes
that

x = X + ρ0(X, µ, ς) = X̄ + ρ̄(X̄, p̄‖, µ̄, ς̄)

where ρ̄ can be expanded as

ρ̄(Z̄) = ρ̄0(Z̄) + ρ̄1(Z̄)

19We use a bracket [ ] to isolate the argument of the gyroaverage operator, thus avoiding ambiguities. It
should be differentiated from the notation [ , ] that is used for Lagrange brackets.

20This is a direct consequence of the equation of motion dµ̄
dt = − ea

ma
∂H̄
∂ς̄ .
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with ρ̄0(Z̄) = ρ0(Z̄), and
ρ̄1(Z̄) = −{S1,X + ρ0}Z̄

It appears that ρ̄ does not average out to zero when expressed in the gyroangle ς̄. Indeed
the average of {S1,X + ρ0}Z̄ has no reason to vanish, and indeed it does not. The
gyroaverage of the cyclotron deformation ρ̄1 is equal to

〈ρ̄1〉ς̄ (Z̄∗) = −
∫

dς̄

2π

{
S1, X̄ + ρ0

}
Using the expression Eq.(17) of the generating function S1, one gets

〈ρ̄1〉ς̄ (Z̄∗) = − 1

B(X̄)

∂

∂µ̄

∫
dς̄

2π
ρ0(Z̄∗, ς̄)

{
H1(Z̄∗, ς̄)− J [H1](Z̄∗)

}
This quantity can be explicitly calculated in the special case where only the electric
potential and the parallel components of the vector potential are considered (φ̃, Ã‖ repre-
sentation). It is then equal to

〈ρ1〉ς̄ (Z̄∗) = − ma

e2
aB

2(X̄)

∂J [H1]

∂X̄⊥
(19)

In the long wavelength electrostatic limit, a simple expression is found

〈ρ1〉ς̄ (Z̄∗) =
ma

eaB2(X̄)
E⊥(X̄⊥) (20)

The distortion 〈ρ1〉ς̄ corresponds to a mean displacement of the gyrocentre compared with
the particle position, and is thus assimilable to an electric dipole responsible for plasma
polarisation effects [14] (see section D.6 and Fig.7). Indeed, the polarisation field P(x) is
the sum over the unperturbed distribution of gyrocentres of this displacement times the
particle charge e, calculated at the particle position in the physical space

P(x) ' Neqma

B2
eq(x)

E⊥(x)

The medium permittivity is then εpol '
∑

species
Neqma
B2
eq

.

3.4 Gyrokinetic Vlasov equation

Let us start from the original set of coordinates z = (x,p). The distribution function of
particles is some function f(z, t) solution of the Vlasov equation

∂f

∂t
− {h, f}z = 0

which can be written in the extended phase space as

{h, f}z = 0

where h and f are the Hamiltonian and the particle distribution function both in the 8D
extended phase space. The change of coordinates from the original set z to the new set
Z = (X, u‖, µ, ς, t, E) preserves the structure of the Vlasov equation [7], which thus reads

{H,F}Z = 0

with f(z) = F(Z) and h(z) = H(Z). After this first step, the Vlasov equation should be
written in the gyrocentre phase space. The gyrocentre distribution function is related to
the old distribution function via the relation

F̄(Z̄) = F(Z) (21)
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Figure 7: Schematic construction of the gyrocentre position from the particle position. The displace-
ment between the particle position and the gyrocentre is the sum of a cyclotron motion ρ0 and a
smaller component ρ1. The later contains a part that oscillates with the gyroangle (not shown on the
figure) and a mean part 〈ρ1〉ς̄ that is responsible for plasma polarisation. This displacement results
from the distortion of the cyclotron motion under the effect of the electromagnetic field.

where the gyrocentre coordinates Z̄ are functions of the guiding-centre coordinates Z -
this relationship is requested to be invertible. The meaning of this definition is not as
intuitive as it seems, in particular because the functions F̄(Z̄) and F(Z) are expressed by
using two different set of variables (see discussion in Appendix D). It is useful to express
the distribution functions F and F̄ with the same set of variables. An appropriate choice
for the section to come on the Maxwell equation is the set of guiding-centre coordinates
Z. Let us note first that at the requested order, Eq.(16) can be written as well in the
guiding-centre coordinates

−{Heq, S1}Z = H1(Z∗, ς)− H̄1(Z∗)

Using again the relation Z̄ = Z + εδ {S1,Z} and a Taylor development on F̄ , one gets
the relation

F(Z∗, ς) = F̄(Z∗, ς) + F ′eq(Z∗)
(
H1(Z∗, ς)− H̄1(Z∗)

)
+ o

(
ε2δ
)

(22)

where Feq(Z∗) is the solution of the unperturbed Vlasov equation, hence does not depend
on the gyroangle ς21, and

F ′eq(Z∗) =
1

Beq(X)

∂Feq(Z∗)
∂µ

An inspection of the solution at zeroth order in ε implies that F̄eq(Z̄
∗
) = Feq(Z∗). Fields

in Eq.(22) that do not depend on the cyclotron angle are highlighted by their dependence
on Z∗. It is quite important to understand the difference between the relations Eq.(21)
and Eq.(22). In Eq.(21), the guiding-centre distribution function calculated at Z is equal
to the gyrocentre distribution computed at Z̄. In Eq.(22), both distribution functions are
calculated at the same guiding-centre position Z. The difference between F and F̄ comes

21A consequence of the independence of the unperturbed Hamiltonian on ς.
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from the displacement between the guiding-centre and the gyrocentre. As discussed in
section 3.3, this displacement is responsible for a plasma electric polarisation and mag-
netisation, and it is therefore essential to keep it fully (see Fig. 8).

The Poisson bracket {H,F} is left invariant by a gyrocentre change of coordinates
(see Appendix D), so that {H,F}Z = 0 implies the compact, but essential, result{

H̄, F̄
}
Z̄ = 0

The symplectic part of the Lagrangian that rules the particle action is the same in the
new and old set of variables within the context of the “Hamiltonian” approach - hence
the Poisson bracket bears the same expression in the variables Z and Z̄ (and obviously
in the variables Z and Z̄). It is useful for numerical applications to write the Vlasov
equation as an evolution equation in time t in the conventional 6D phase space. Since
the gyrocentre Hamiltonian does not depend on the gyroangle ς̄, the distribution function
does not depend on ς̄ either. In other words the distribution function of gyrocentres
depends on slow variables Z∗ only. Let us recall that another consequence of ∂ς̄H̄ = 0
is the invariance of the magnetic moment µ̄. Hence the gyrocentre distribution functions
depends only on 4 dynamical variables (X̄, p̄‖), and time t, while µ̄ plays the role of a
parameter. The gyrokinetic Vlasov equation reads22

∂F̄

∂t
−
{
H̄, F̄

}
Z̄

= 0 (23)

A more explicit form is

∂

∂t

(
B∗||F̄

)
+

∂

∂X̄
·
(
B∗||F̄

dX̄

dt

)
+

∂

∂p̄‖

(
B∗||F̄

dp̄‖

dt

)
= 0

where

dX̄

dt
= −

{
H̄, X̄

}
=

1

ma

dH̄

dp‖

B∗

B∗||
+

1

eaB∗||
e‖ ×∇H̄ (24)

ma

dp̄‖

dt
= −

{
H̄,map̄‖

}
= −

(
B∗

B∗||
· ∇

)
H̄ (25)

Here the Hamiltonian is23

H̄(Z̄∗) =
1

2
map̄

2
‖ + µBeq(X̄) + eaφeq(X̄) + J [H1]

(
X̄, p̄‖, µ̄, t

)
+ H̄2(Z̄∗)

where

J [H1](X̄, p̄‖, µ̄, t) =

∫
dς̄

2π

{
eaφ̃

(
X̄ + ρ0(X̄, µ̄, ς̄), t

)
− eap‖Ã‖

(
X̄ + ρ0(X̄, µ̄, ς̄), t

)
−ea

(
˙̄X⊥ + ρ̇0(X̄, µ̄, ς̄)

)
· Ã⊥

(
X + ρ0(X̄, µ̄, ς̄), t

)}
The gyrocentre equations motion Eqs.(24,25) contains the information on the unperturbed
motion (guiding-centre - see note on trajectories), plus the effect of the perturbed elec-
tromagnetic field. The r.h.s. of Eq.(24) covers both the perturbed E × B electric drift
and magnetic flutter, as described in Fig.3. Equation Eq.(25) yields the parallel force,

22Strictly speaking, time should be noted t̄ in the equations below. However t̄ = t since the generating
function does not depend on the energy. Hence we will simplify the notations by changing safely t̄ in t.

23The full gyrocentre Hamiltonian is formally kept here, i.e. second order, whereas the derivation is so far
first order. This does not do any harm as these equations are conservative for any Hamiltonian. We will see
that a more rigorous derivation, consistent with the symplectic derivation, actually brings naturally this second
order term.
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essentially the effect of the perturbed parallel electric field. Note that the force does not
contain an induction term ∂tÃ‖, as would be expected from the traditional equations of
motion in presence of an electromagnetic field. This is a consequence of the Hamiltonian
approach adopted here. This important point will be discussed in detail in section 5.2.

In summary, a gyrokinetic kinetic equation has been derived that rules the distribution
function of gyrocentres F̄(X̄, p̄‖, µ̄, t), where µ̄ is an invariant of motion. This distribution
function is related to the distribution function expressed in guiding-centres coordinates
F(X, p‖, µ, ς, t), using the relation F̄(Z̄) = F(Z), or equivalently Eq.(22). It then remains
to express the charge and current densities as moments of the gyrocentre distribution
function F̄(X̄, p̄‖, µ̄, t).

Figure 8: Rationale of a first order gyrokinetic approach. The guiding-centre distribution function F
in the corresponding set of variables Z is equal to the new gyrocentre distribution F̄ expressed in the
gyrocentre variables Z̄. The gyrocentre and guiding-centre coordinates are shifted by a displacement
{S1,Z}Z . The old and new distribution functions F and F̄ can be expressed at first order in the
same set of coordinates Z.

4 Maxwell equations

Solving the Maxwell equations is a delicate step in gyrokinetics. Indeed the Gauss and
Ampère equations involve charge and current densities in the physical space, whereas the
gyrokinetic Vlasov equation provides the distribution function in the gyrocentre coordi-
nate space, and therefore yields moments that will be called “charge and current densities
of gyrocentres”. There is no reason why gyrocentre and particle charge and current den-
sities should coincide, and in fact, they do not (see Fig.9). There are two distinct reasons
for this difference.

First a plasma can be seen as a collection of gyrocentres (which play the role of free
charges) in a medium that is both polarised and magnetised [14]. Indeed the cyclotron
motion is deformed under the effect of an electric field in presence of a strong magnetic field
(see section 3.3). This deformation contains a mean displacement between the guiding-
centre and gyrocentre positions, and an oscillating part (see Fig. 10). This charge shift is
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assimilated to an electric dipole that produces a polarisation field. At long wavelengths,
the displacement 〈ρ̄1〉ς̄ given by Eq.(20) is equal to (ma/eaB

2
eq)E⊥ for each species (m is

the particle mass, and E⊥ the transverse electric field). It corresponds to a polarisation
field [14]

P =
∑
species

Neqea 〈ρ̄1〉ς̄ =
∑
species

Neqma

B2
eq

E⊥

where Neq is the equilibrium density for a given species and

εpol =
∑
species

Neqma

B2
eq

is an effective permittivity, which is larger than the vacuum permittivity ε0 in most mag-
netised fusion plasmas. The time derivative of the corresponding polarisation field is
the polarisation current ∂P

∂t . Magnetisation comes from the current produced by the cy-
clotron motion. The particle behaves as a small magnet centred on the gyrocentre, with
a magnetic moment [14]

m =
1

2
ea 〈ρ0 × ρ̇0〉ς̄ = −µ̄e‖

Assuming a Maxwellian distribution functions of gyrocentres, the linearised magnetisation
field is (see Fig.11)

M = −
∑
species

NeqTeq
B2

B

This mechanism is responsible for a plasma diamagnetic response, since the magnetisation
is opposed to the external field B. The order magnitude of the ratio µ0M/B is the plasma
beta parameter, defined as24

β = −
∑
species

µ0NeqTeq
B2
eq

The corresponding diamagnetic current is J = ∇ ×M. Polarisation and magnetisation
effects are additive, so that the total current is

J = Jgy +
∂P

∂t
+∇×M

where Jgy is the current carried by gyrocentres25.

The other reason that explains the difference between particle and gyrocentre charge
and current densities has to do with particle counting. A density is a number of particles
divided by a volume calculated in the limit of vanishing volume size. In an inhomogeneous
plasma, densities of particles and gyrocentres differ because some particles have their gy-
rocentre counterpart outside the volume, and vice-versa, as illustrated in Fig.12. These
are called finite Larmor radius (FLR) effects. The same effect occurs to the current density.

These delicate points are detailed in the next section. We use here a straightforward
approach that consists in moving back from the gyrocentre to the guiding-centre phase
space. In this approach, the Vlasov equation is solved in gyrocentre coordinates. The
resulting distribution function is subsequently expressed in guiding-centre coordinates,
using Eq.(22). This step is readily followed by a (pull-back) transform to the physical

24Strictly speaking a factor 2 should be incorporated in the definition of β, as it usually defined as the ratio
of the kinetic to magnetic pressures. As a general rule, numerical factors will be avoided in the definition of the
dimensionless parameters.

25These effects are already present for guiding-centres alone (just replace µ̄ by µ for instance). The expression
of the current is related to the so-called Spitzer paradox: the guiding-centre current is very different from the
“true” current - the difference is due to the magnetisation.
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space to solve the Maxwell equations (see Fig.13). The advantage of this approach is that
the expression of second order gyrocentre Hamiltonian is not needed. The last section will
be dedicated to another approach where one moves directly from the gyrocentre to the
physical space. The latter requires an explicit computation of the second order gyrocentre
Hamiltonian, a difficult step that is postponed for now.

Figure 9: Schematics of a self-consistent gyrokinetic model. The electromagnetic field produces an
Hamiltonian that is written in gyrocentre coordinates to solve the gyrokinetic equations. The resulting
distribution function is used to compute particle charge and current densities, which are then inserted
in the Maxwell equations in the physical space to produce an updated electromagnetic field.

4.1 Preamble: field action principle

Before presenting the electromagnetic action in its full beauty, let us remind how an action
principle works for a scalar field. The idea is the same as for computing the equations
of motion of a particle. Let us consider a field φ that depends on the 4 coordinates
xµ = (t,x). A field action is a functional of the field and its derivatives, and reads

A =

∫ t2

t1

dt

∫ x2

x1

d3x L (φ, ∂µφ) (26)

where L is the field Lagrangian, and the notation ∂µφ means ∂φ
∂xµ . The equations that

rule the field φ are obtained by expressing that A is an extremum for variations of the
field δφ(xµ) such that δφ = 0 at the boundary of the integration volume (in a 4D space).
An integration by parts provides readily the following expression of the action variation

δA =

∫ t2

t1

dt

∫ x2

x1

d3x

[
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
δφ

+

∫ t2

t1

dt

∫ x2

x1

d3x ∂µ

(
∂L

∂(∂µφ)
δφ

)
The last term vanishes. Indeed, it is the integral of the divergence of a “current”
Jµ = ∂L

∂(∂µφ)δφ. The Gauss-Ostrogradsky theorem implies that it is equal to the cur-

rent calculated at the surface that bounds the integration volume. Since δφ = 0 on this
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surface, this piece can just be ignored. It will be seen however that it has its utility when
using the Noether’s theorem to derive the law of energy conservation. Imposing that
δA = 0 for all variations of δφ, one gets the field equations

∂L
∂φ

= ∂µ

(
∂L

∂(∂µφ)

)
These equations are called Euler-Lagrangian field equations, and are generalisations of
the Lagrangian equations that rule the motion of a particle. An example for a simple 1D
case is illustrated on Fig.14. The action for the electromagnetic field works on the same
principle, but with a scalar field φ replaced by a 4-field (φ,A), where φ and A are the
electric and vector potentials.

Figure 10: The displacement vector between a charged particle position x and its gyrocentre X̄
is the sum of a cyclotron motion ρ0(X̄, µ̄, ς̄) and a lowest order component ρ̄1(X̄, p̄‖, µ̄, ς̄). In the
electrostatic case, the mean part of the later 〈ρ̄1〉 (X̄, µ̄) is co-linear with the perpendicular electric
field E⊥, and roughly of the order of ma

B2
eq(x)

E(x). This behaviour is responsible for a polarisation field

P '
∑

speciesNeqea 〈ρ̄1〉ς̄ =
∑

species
Neqma
B2
eq

E⊥.

4.2 Electromagnetic action principle

The theory of electromagnetic fields [15] states that the field-particle action A is a sum
of an action of the electromagnetic field Aem

Aem =
1

2

∫
dt d3x

(
ε0E

2 (x, t)− 1

µ0
B2 (x, t)

)
(27)

and a action Afp that rules field-particle interactions

Afp =
∑
species

∫
d3xdt {J (x, t) ·A (x, t)− % (x, t)φ (x, t)} (28)

where E = −∂A
∂t − ∇φ is the electric field, and B = ∇ ×A the magnetic field. Zeroing

the functional derivatives of the action A = Aem + Afp with respect to (φ,A) leads to
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the Maxwell equations, more precisely

δA
δφ = 0 → ∇ ·E = %

ε0

δA
δA = 0 → 1

µ0
∇×B = J + ε0

∂E
∂t (29)

The charge and current densities are functional derivatives of the field-particle functional,

Figure 11: A particle that moves fast on a circle, a cyclotron motion, behaves as a small magnet
with amplitude µ̄, with a direction opposite to the magnetic field. This process is responsible for
diamagnetism in a magnetised plasma.

i.e. formally

% =
δAfp
δφ

J =
δAfp
δA

(30)

Let us stress that these derivatives can be performed only if the field-particle action Afp
is of the form Eq.(28). It will be seen in the following that the action Afp, once expressed
as a function of the gyrocentre distribution function, rather involves operators that apply
on the electric and vector potentials. A major difficulty is to reshape it as an action of
the form Eq.(28). From a physical standpoint, this is equivalent to compute charge and
current densities (%(x, t),J(x, t)) in the physical 3D space of particle positions, knowing
the distribution of guiding centres (resp. gyrocentres), known as a function of guiding-
centre X (resp. gyrocentre X̄) positions. This point is essential. It is easily verified that
the wave-particle action can be replaced by

Afp = −
∑
species

∫
dγf(z)h(z) (31)

Using the expression of the particle Hamiltonian

h (x,p, t) =
1

2ma
[p− eaA (x, t)]2 + eaφ (x, t)

where
dγ = d3xd3pdtdE δ (E − heq(x,p)) (32)
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is the volume element in the particle extended phase space. Maxwell equations found in
this way are consistent with the classical expressions of the charge and current densities

% (x, t) = ea

∫
d3pf (x,p, t)

J (x, t) = ea

∫
d3pf (x,p) v (x,p, t)

Quite interestingly, if all possible variations of the distribution functions are constrained
to be of the form δf = {S, f} [12, 13] (for an overview, see [2] and references therein)26,
the action principle allows recovering the Vlasov equation in the extended phase space27

{h, f}z = 0

The action Eq.(31) can be written in the set of guiding-centre or gyrocentre coordinates
Z or Z̄, e.g.

Afp = −
∑
species

∫
dΓF(Z)H(Z) = −

∑
species

∫
dΓ̄F̄(Z̄)H̄(Z̄) (33)

where dΓ (resp. dΓ̄) is the volume element in the guiding-centre (resp. gyrocentre) phase
space. The difficulty now appears quite clearly. As said, the Maxwell equations are
retrieved from the action principle in the physical space x. On the other hand solving a
gyrokinetic Vlasov equation provides F̄(Z̄), hence a function that lives in the gyrocentre
phase space.

So far, the action principle applies to the full electromagnetic field. Since the equilib-
rium magnetic field is supposed given, it is used from now on to compute the perturbed
electromagnetic field, including the unperturbed electric field. The unperturbed electric
potential is treated on the same ground as the perturbed one. A shifted velocity v′ is
introduced, that was already used to compute the gyrocentre equations of motion. In-
deed the velocity v is a dynamical variable, i.e. a function of (x,p, t). It can be split in
unperturbed veq (x,p) and perturbed v1 (x,p, t) components

veq (x,p) =
1

ma
(p− eaAeq(x))

v1 (x,p, t) = − ea
ma

Ã(x, t)

It then appears readily that veq = v − v1 is the same as v′28. The new Hamiltonian
becomes h∗ as given by Eq.(9). The field-particle Lagrangian has to be computed at
second order in ε2δ . It can be recast as

Afp = −
∑
species

∫
dγf1(z)h1(z)

+
1

2

∑
species

∫
dγ Feq(x,p)

e2
a

ma
Ã2(x, t) (34)

The volume element dγ is the same as Eq.(32) with heq replaced by h∗eq. The 1st order
perturbed Hamiltonian is

h1(x,p, t) = eaφ̃(x, t)− eaveq(x,p) · Ã(x, t)

26This can be roughly understood as follows. For any canonical change of variables z̄ = z + {S, z} with small
S, the variation δf = f(z̄)− f(z) ' ∂f

∂z · (z̄− z) is equal to δf = {S, f}z.
27This is a consequence of the identity

∫
dγ {S, f}h =

∫
dγS {f, h} up to a divergence term that will be

discussed in the section on energy conservation. Hence δAfp = 0 for any S implies Eq.(33)
28Note however that v′ was calculated in the (x,v) variables, while veq is a function of (x,p). The notations

will be therefore kept different
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Figure 12: Calculation of the particle density knowing the distribution of gyrocentres. When counting
particles in a box, some particles have their gyrocentres outside the box, while the opposite may also
appear. When the plasma is inhomogeneous, this leads to differences between the densities of particles
and gyrocentres. A detailed calculation leads to a particle density in accordance with Eq.(49).

The reader may be somewhat disconcerted by the second line of Eq.(34), which is dubbed
“skin depth action”, reason being that it represents physically a plasma skin depth effect29.
Its appearance is a direct consequence of the Hamiltonian approach that is chosen here,
i.e. the fact that the velocity is a dynamical variable, hence a function of (x,p, t), not a
coordinate. This skin depth action deserves some comments. Let us note first the pre-
factor 1/2. It must be recalled that the current is derived as a functional derivative of
the action with respect to Ã. However, if the current is itself proportional to the vector
potential, a factor 1/2 must be introduced since the functional derivative of

∫
d3xdtÃ2 is

2Ã, not Ã. Forgetting the pre-factor 1/2 would lead to a current that is twice too large.
We will meet again this subtle point when treating the polarisation/magnetisation terms.
It occurs whenever the proportionality of the plasma response to the field is made explicit.
Second, integrating the skin depth functional over the momenta p seems attractive. This
is not a smart move since it will be seen that unperturbed distribution function that is
considered as given is the guiding-centre equilibrium distribution function. Hence the
unperturbed density Neq is a density of guiding-centres, not of particles.

A contribution f2h
∗
eq was omitted here. It does not play any role in the calculation

of the perturbed field. This term represents physically a transport equation that rules
the long time scale evolution of the distribution function. It is of course included in the

29The plasma skin depth is the penetration length of a high frequency wave that propagates into a collisionless
plasma. The skin depth is defined as de =

√
me/µ0Neqe2

a, where Neq is the equilibrium density, or alternatively
as de = c/ωpe, where ωpe is the plasma frequency, and c the speed of light. The corresponding current can be

recast as −Ã‖/µ0d
2
e.
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gyrokinetic equation, and can be added at the very end in the full action principle for
completion.

Figure 13: Strategy of 1st order gyrokinetic theory. The Vlasov equation is solved in gyrocentre
coordinates. It is then expressed in guiding-centre coordinates, followed by a pull-back to the physical
space to solve the Maxwell equations. Polarisation effects are contained in the difference between
F (Z) and F̄ (Z)

4.3 Variational principle in guiding-centre variables

The advantage of a variational approach is that the integrand of the field-particle La-
grangian Eq.(34) lives naturally in the extended phase space. The set of coordinates Z is
chosen here as an extended set of non conjugate guiding-centre coordinates Z = (Z∗, ς),
where Z∗ is a group of 7 “slow” guiding-centre coordinates, conveniently chosen here as
Z∗ = (X, p‖, µ, E, t) , while ς is the “fast” gyroangle. Here p‖ is the parallel component of
the guiding-centre velocity. The energy coordinate E is eliminated via a straightforward
integration over the Kronecker delta function δ (E −Heq(Z)). The element of volume
integration in the phase space is now dΓ = dΓ∗ dς2π , where30

Γ∗ = d3Xdtd3V

is a 5D guiding-centre phase space volume element and

d3V =
2π

ma
B∗||dp‖dµ

is the element of volume in the guiding-centre velocity space. The unperturbed distribu-
tion function of guiding-centres, noted Feq, depends on the slow variables Z∗ only, since
it must be solution of the Vlasov equation {Heq,Feq} = 0.

The action Eq.(34) keeps the same form with z replaced by Z, and dγ replaced by dΓ.
The unperturbed particle velocity reads

veq = p‖e‖ + Ẋ⊥ + ρ̇0

30B∗||(X, p‖) is the Jacobian of the guiding-centre set of coordinates, hence its appearance in the velocity

element of integration d3V.
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Hence the functional Afp can be split in two parts, a “skin depth” contribution, which
reads for one species

Askin = − e2
a

2ma

∫
dΓ Feq(Z∗)Ã2(X + ρ0, t) (35)

and a modified field-particle functional expressed as an integral in the extended phase
space

Apart = −
∫
dΓ F1 (Z)H1 (Z) (36)

where the order 1 perturbed Hamiltonian H1 is

H1 = eaφ̃(X + ρ0, t)− eap‖Ã‖(X + ρ0, t)

− ea

(
Ẋ⊥ + ρ̇0

)
· Ã⊥(X + ρ0, t)

Here the cyclotron motion (ρ0, ρ̇0) is expressed as a function of guiding-centre coordinates
(X, µ, ς)31. The total functional thus reads

A = Aem +Askin +Apart (37)

Figure 14: Extremum of the the action A =
∫ t2
t1
dtL (φ, ∂tφ) where the Lagrangian L (φ, ∂tφ) =

1
2 (∂tφ)2− 1

2φ
2. The Euler-Lagrange equation is ∂ttφ+φ = 0. The solution that satisfies the boundary

conditions φ = 0, ∂tφ = φ0 at t = t1 is φ(t) = φ0 sin(t− t1). It is plotted in red for the special choice
t1 = 0 and t2 = 2π. The action is A = 0 for this solution. A neighbouring function is shown in blue
that bears the same values at t = 0 and t2 = 2π, in this peculiar example φ(t) = φ0 sin t(1 + ε sin(t)).
The corresponding action is non zero, namely A = π

8 ε
2φ2

0.

The functional Apart must now be detailed. Since it is written in guiding-centre coordi-
nates, the gyrocentre distribution function must be expressed in the same set of variables.
This is done by using the relationship Eq.(22) between F and F̄ in the guiding-centre

31There no dependence on the parallel momentum p‖ since ρ0 is restricted here to a circular cyclotron motion
that depends on (X, µ, ς) ony.
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phase space. One has to be extra-careful at this step. Charge and current densities are
computed by finding an extremum of the action at constant distribution function. How-
ever Eq.(22) contains terms, related to plasma polarisation and magnetisation, that are
proportional to the field. When building the action, the contribution must be multi-
plying by a factor 1/2 to counter-balance the factor 2 that pops-out when calculating
the extremum32. The new action is a functional that involves the perturbed gyrocentre
distribution function F̄1, namely

Apart = −
∫
dΓF̄1(Z∗)H1(Z)

− 1

2

∫
dΓF ′eq(Z∗)

[
H1(Z)− H̄1(Z∗)

]
H1(Z) (38)

This expression differs from a naive translation of the particle functional Eq.(36) to a
functional in the guiding-centre phase space that would only be the first part in the r.h.s.
of Eq.(38). The second line of Eq.(38) involves the difference between the perturbed
Hamiltonian and its gyroaverage H1(Z) − H̄1(Z∗). It is responsible for polarisation
and magnetisation contributions that play an important role in the field dynamics. An
alternative expression to Eq.(38), expressed in “slow” guiding-centre coordinates, is

Apart = −
∫
dΓ∗F̄1(Z∗)J [H1](Z∗)

− 1

2

∫
dΓ∗F ′eq(Z∗)

[
J [H2

1]− (J [H1])2
]

(Z∗) (39)

where the relation dΓ = dΓ∗ dς2π has been used, and the gyroaverage operator in guiding-
centre variables J is defined by Eq.(19). A similar treatment can be done for the skin
depth functional Askin Eq.(35). This leads to the alternative expression

Askin = −
∑
species

e2
a

2ma

∫
dΓ∗ Feq (Z∗)J [Ã2](Z∗) (40)

The functionals Eq.(39) and Eq.(40) are still not fully tractable. Indeed the electric and
vector potentials appear via their gyroaverage, i.e. operators. These operators must be
inverted to find the extremum of these functionals with respect to (φ̃, Ã). There are several
ways to proceed. If the gyroaverage operator is known as a differential operator, typically
via an expansion in gyroradius, then an integration by parts provides the requested form.
This is an efficient procedure when the expansion is stopped at low order: typically second
order in Larmor radius, so that operators are Laplacians. It becomes rapidly cumbersome
when moving to higher orders. A second approach consists in using the definition Eq.(19)
of the gyroaverage operator J , and build the adjoint operator. The latter approach will
be adopted here. Both techniques are equivalent and consists in deriving charge and
current densities, knowing their gyroaverage. Hence a last technical step is needed before
properly expressing the Maxwell equations. We will proceed here step by step, starting
with the (φ,A‖) representation.

4.4 The (φ,A‖) representation

4.4.1 Current and charge densities in the (φ,A‖) representation

An extremum of the functional Eq.(37) cannot be found easily, because test fields that
appear in the functionals Eqs.(39,40) are gyroaveraged. In other words, the functionals

32A simple example is given by the action A =
∫
d3x%φ. The charge density % is given by a functional

derivative with respect to φ. Suppose now that the charge density is proportional to the potential (adiabatic
response), i.e. ρ = εφ, then a simple replacement would give A =

∫
d3xεφ2. A functional derivative yields

a wrong answer, that is a charge density that is twice the right number. Hence the correct answer is A =
1/2

∫
d3xεφ2.
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Figure 15: Potential felt by a gyrocentre - example
of a potential φ(x) = cos(kx) and x = ρc sin(ς) with
kρc = 2.

Figure 16: Fourier transform in ζ of the potential φ.
Values of the discrete Fourier spectrum are shown in
blue circles. The blue solid line shows the function
J0(kρc).

Eqs.(39,40) live in the guiding-centre space, whereas a functional must be expressed in
the physical space to compute its extremum. To do this, the perturbed Hamiltonian must
be scrutinised. A staged approach is adopted here, to avoid excessive technicalities. The
analysis is restricted first to a perturbed field that derives from an electric potential φ̃ and
a vector potential Ã‖e‖ aligned with the equilibrium magnetic field. The perpendicular
component of the vector potential is neglected in this first step. This approximation
allows treating a large variety of physical problems, including turbulent transport due to
electrostatic drift waves (zero plasma β), or shear Alfvén waves (low values of β � 1).
In fact many gyrokinetic codes operate in this framework. The parallel component of the
perturbed magnetic field is discarded in this approximation, which becomes questionable
for increasing values of the plasma β. In particular this framework is not appropriate to
address large scale MHD modes such as interchange or kink modes. The corresponding
perturbed Hamiltonian is calculated from Eq.(11) and reads

H1 (Z) = eaφ̃ (X + ρ0(X, µ, ς), t)− eap‖Ã‖ (X + ρ0(X, µ, ς), t)

Its gyroaverage is
J [H1] = eaJ [φ̃]− eap‖J [Ã‖]

For any field Λ(x, t) that depends on the physical space coordinates x and time t, the
gyroaverage operator reads

J [Λ] (Z∗) =

∫ 2π

0

dς

2π
Λ (X + ρ0 (X, µ, ς) , t)

As discussed earlier, a gyroaverage potential is the potential “felt” by a gyrocentre, a
virtual particle. A simple example is shown in Fig.15 and Fig.16. The functional Eq.(39)
is the sum of 3 contributions, which can be translated to the physical space (details can
be found in Appendix D.4)

Apart = −
∫
dγ∗

1

B∗||(z
∗)
J t
[
B∗||F̄1

]
(z∗)H1(z∗)

− 1

2

∫
dγ∗

1

B∗||(z
∗)
J t
[
B∗||F

′
eq

]
(z∗)H2

1(z∗)

+
1

2

∫
dγ∗

1

B∗||(z
∗)
J t
[
B∗||F

′
eqJ [H1]

]
(z∗)H1(z∗) (41)
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Similarly the functional Eq.(40) can be rewritten as

Askin = − e2
a

2ma

∫
dγ∗

1

B∗||(z
∗)
J t
[
B∗||Feq

]
(z∗)Ã2

‖(x, t) (42)

where z∗ designates the hybrid set of variables
(
x, t, p‖, µ

)
, which mixes position coordi-

nates in the physical space and guiding-centre velocity coordinates. The corresponding
volume element is

dγ∗ = d3xdtd3V

The operator J t is defined for any field Λ(X, t, p‖, µ) as

J t[Λ]
(
x, t, p‖, µ

)
=

∫ 2π

0

dς

2π
Λ
(
x− ρ0 (x, µ, ς) , t, p‖, µ

)
(43)

The operator J t hence transforms a function of the guiding-centre position coordinates
in a function that depends on the particle position in the physical space, but also on the
guiding-centre velocity coordinates p‖ and µ (see Fig.17). Its structure is very close to
the gyroaverage operator.

Let us insist on the hybrid character of this formulation. All functions involved in the
l.h.s. of Eqs.(41,42) depend on z∗ =

(
x, t, p‖, µ

)
. This is the result that was looked after:

the functional lives in the physical space, so that an extremum can be properly computed,
but the distribution function is the one that is known, i.e. the gyrocentre distribution
function, with X̄ replaced by x, and (p̄‖, µ̄) replaced by (p‖, µ). A step further can be
taken by noting that the Jacobian B∗|| and the unperturbed distribution function Feq vary
slowly in space, so that

1

B∗||
J t
[
B∗||F

′
eq

]
= F ′eq + o(ε2B)

In this limit the functional bears a compact form

Apart = −
∫
dγ∗J t[F̄1](z∗)H1(z∗)

− 1

2

∫
dγ∗ F ′eq(z∗)

(
H1 − J t [J [H1]]

)
(z∗)H1(z∗) (44)

Askin = − e2
a

2ma

∫
dγ∗J t[Feq](z∗)Ã2

‖(x, t)

The operator J t is in this limit the adjoint of the gyroaverage operator J . Their ex-
pressions in the Fourier space are the same, reason why the combination J tJ is often
replaced in the literature by J 2 - this confusion will be avoided33. After integration over
the velocity variables (p‖, µ), the functional Apart appears as an integral over d3xdt of
fields that depend on (x, t). Hence an extremum can be found in the physical space and
charge and current densities become available.

4.4.2 Gyrokinetic Vlasov equation in the (φ,A‖) representation

The Vlasov gyrokinetic equation is given by Eq.(24) where the equations of motion are
set by Eqs.(24,25) with

J [H̃] = eaJ [φ̃]− eap̄‖J [Ã‖]

33This would actually obscure the meaning of this “double average” procedure. One operator represents the
gyroaverage operation of a field, i.e. of a field “seen” by a gyrocentre. The second step consists in moving back
to the physical space.
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Figure 17: Construction of a particle density from a gyrocentre distribution F̄ computed at the
guiding-centre position X = x − ρ0. The density at one point x is a sum of contributions from
guiding-centres X located on a cyclotron circle centred on the particle position.

and
1

ma

dH̄

dp̄‖
= p̄‖ −

ea
ma
J [Ã‖]

(
X̄, p̄‖, µ̄, t

)
The new effective field B∗ is given by the relation

B∗
(
X̄, p̄‖

)
= Beq

(
X̄
)

+
map̄‖

ea
∇× e‖

and B∗|| is the Jacobian of the gyrocentre coordinate transform

B∗||
(
X̄, p̄‖

)
= Beq

(
X̄
)

+
map̄‖

ea
e‖ ·

(
∇× e‖

)
The Jacobian B∗|| plays a central role here. The gyrokinetic derivation ensures that the
flow in incompressible in the gyrocentre phase space, i.e.

∂B∗||

∂t
+

∂

∂X̄
·
(
B∗||

dX̄

dt

)
+

∂

∂p̄‖

(
B∗||

dp̄‖

dt

)
= 0

so that the Vlasov equation can be written as well in an advective form

∂F̄

∂t
+
dX̄

dt
· ∂F̄
∂X̄

+
dp̄‖

dt

∂F̄

∂p̄‖
= 0

Both conservative and advective forms of the Vlasov equation are useful depending on
the purpose, and also the numerical scheme chosen to solve this equation. Let us stress
that this is a 4D equation parametrised by the magnetic moment µ̄.
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4.4.3 Poisson and Ampère equations in the (φ,A‖) representation

These equations allow solving the gyrokinetic Vlasov equation. The gyrokinetic model
becomes self-consistent by solving the Poisson equation

−ε0∇2φ̃ =
∑
species

ea

∫
d3VJ t

[
F̄1

]
+

∑
species

ea

∫
d3VF ′eq

(
H1 − J t [J [H1]]

)
(45)

and the Ampère equation

− 1

µ0
∇2
⊥Ã‖ +

∑
species

Neqe
2
a

ma
Ã‖ =

∑
species

ea

∫
d3Vp‖J t

[
F̄1

]
+

∑
species

ea

∫
d3VF ′eqp‖

(
H1 − J t [J [H1]]

)
(46)

where

Neq (x) =

∫
d3VFeq(z∗)

is the unperturbed guiding-centre density, and d3V = 2π
ma
B∗||dp‖dµ. The electric and

vector potentials φ̃ and Ã‖ live in the physical space, i.e. depend on (x, t), while all
functions in the integrands depend on (x, t, p‖, µ). Some further simplifications met in
the literature are the following. Let us impose an equilibrium distribution function of
guiding-centres that is a Maxwellian

Feq(X, p‖, µ) = Neq(X)

(
ma

2πTeq(X)

)3/2

exp

{
−
m(p‖ − V‖eq(X))2

2Teq(X)
− µBeq(X)

Teq(X)

}
(47)

where the unperturbed field Beq, density Neq, parallel velocity V‖eq and temperature Teq
depend on X only. The function F ′eq then becomes

1

Beq

∂Feq
∂µ

= −Feq
Teq

(48)

The second common approximation consists in developing the gyroaverage operator at
second order in the gyroradius (see Appendix D). The Poisson equation becomes

−ε0∇2φ̃−
∑
species

∇ ·
(
Neqma

B2
eq

∇⊥φ̃
)

=
∑
species

ea

∫
d3VJ t

[
F̄1

]
(49)

and the Ampère equation

− 1

µ0
∇2
⊥Ã‖ +

∑
species

Neqe
2
a

ma
Ã‖ +

∑
species

∇ ·
(
NeqTeq
B2
eq

∇⊥Ã‖
)

=
∑
species

ea

∫
d3Vp‖J t

[
F̄1

]
(50)

The ratio of permittivities (
∑

speciesNeqm/B
2
eq)/ε0 is dominated by the ion contribution.

It can also be reformulated as ρ2
i /λ

2
D, where ρi is the ion thermal gyroradius, and λD

the Debye length. In fusion magnetised plasmas, this number is much greater than one.
Hence in most practical cases Neqmi/B

2
eq is much larger than ε0 so that the first term in
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the l.h.s of Eq.(49) can be neglected. This is equivalent to consider an electrically quasi-
neutral plasma. The physical meaning of the second term in Eq.(49) is a polarisation term
associated with the cyclotron motion of charged particles around their gyrocentres. The
mechanism has been commented above and is described in Fig.10. The r.h.s. of Eq.(49)
is a density of particles constructed from the distribution of gyrocentres, as illustrated in
Fig.17. It incorporates finite Larmor radius (FLR) effects. As explained in the introduc-
tion of section 4, another way to understand this term is to count particles in a box to
compute their density.

The Ampère equation Eq.(50) deserves some attention too. The second term is in
essence a skin depth effect - when balanced with the first term (Laplacian), exponential
solutions are found, with a decay length equal to the skin depth de. This effect is re-
sponsible for the weak penetration of a pulsating magnetic field in a collisionless plasma
(see Fig.18). However this description holds only for some range of frequencies. In par-
ticular, a low frequency field penetrates very well in a plasma (fortunately for magnetic
fusion). This means that a compensating current develops in the r.h.s. of Eq.(50). This
phenomenon is called “magnetic cancellation” and is source of numerical difficulties when
solving this equation. The third term in the l.h.s. is a magnetisation term. Indeed, it
was seen that from the stand point of a guiding-centre, the gyrating particle produces a
magnetic moment −µe‖. The perturbed vector potential Ã‖ produces a transverse mag-
netic field that bends field lines, and therefore changes slightly −µe‖. The magnetisation

increment is −µ∇ × (Ã‖e‖)/Beq at the particle level, and −β/µ0∇ × (Ã‖e‖) after inte-
gration over the equilibrium distribution function and summation over all species, where
β is the beta parameter defined in Eq.(26) - see Fig.(19). This increment is responsible
for a diamagnetic modification of the Ampère equation. Its amplitude goes like the total
β, which measures the diamagnetism in a magnetised plasma. Finally the gyroaverage
operator that appears in the r.h.s. of Eq.(50) (gyrocentre current) contains the finite
Larmor radius (FLR) effects on the current, similar to those found for the charge density.

Figure 18: Illustration of the plasma skin depth effect. The amplitude Ã‖ of a high frequency
electromagnetic wave that comes from the left decays exponentially when entering the plasma at
x = 0. The decay length is the collisionless skin depth de.
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4.5 The (φ,A‖, B‖) representation*.

The (φ,A‖) representation bears many advantages. However limitations are met for high

values of β. The perturbed perpendicular wave vector Ã⊥ must then be accounted for.
Since a gauge choice is always possible, only one component of Ã⊥ can be considered,
or any scalar related to Ã⊥. An attractive choice, motivated by the theory of MHD
instabilities, is to compute the projection B̃‖ of the perturbed magnetic field along its
unperturbed component. The calculations are lengthy and cumbersome. The analysis
is restricted to the case k⊥ρc = o(1). This is a rather restrictive assumption since it
appears that B̃‖ impacts strongly large scale MHD modes [16], but it is the price to get
something practical. Hence this section addresses the gyrokinetic equations that govern
turbulence and small scale MHD modes. In this limit Feq and its derivative F ′eq are large
scale functions, so that the gyroaverage operator applied on these functions is just the
identity. We will also see that the perturbed Hamiltonian is explicit in B̃‖ in this case.

4.5.1 Perturbed Hamiltonian and functional in the (φ,A‖, B‖) represen-
tation

The perpendicular component of the vector potential is now added. The gyroaverage
Hamiltonian reads (see Appendix E)34

J [H̃] = eaJ [φ̃]− eap‖J [Ã‖] + µB[e‖ · ∇ × Ã⊥]− eaẊ⊥ · J [Ã⊥] +
e2
a

2ma
J [Ã2]

The two last terms are of second order in εB ∼ εδ35. Therefore the perturbed Hamiltonian
is at first order

J [H1] = eaJ [φ̃]− eap‖J [Ã‖] + µB[e‖ · ∇ × Ã⊥] (51)

The last term of Eq.(51) calls for some comments. The operator B is defined in the Fourier
space by multiplying the Fourier component k of the perpendicular potential vector Ã⊥
by 2J1 (k⊥ρc) /k⊥ρc, where J1 is the Bessel function of index 1, k⊥ the modulus of the
perpendicular wave number, and ρc =

√
2µ/eaΩc the gyroradius (see Appendix E). The

operator J consists in a similar operation, where the field Fourier component is multiplied
by J0 (k⊥ρc). Both operators J and B come near identity when k⊥ρc → 0. The scalar
e‖ ·∇×Ã⊥ is close to the parallel component of the perturbed magnetic field B̃‖ for small
scale fluctuations, more precisely

B̃‖ = e‖ · B̃ = e‖ · ∇ × Ã⊥ + Ã‖
µ0J‖eq

Beq
(52)

The quantity µ0J‖eq/Beq is of the order of the inverse of the plasma size, while gradients
of perturbed quantities scale as an inverse of fluctuation scale length. For small scale
perturbations (i.e. turbulent, but not global MHD modes) the second term in the r.h.s.
of Eq.(52) can be neglected against the first term, so that B̃‖ = e‖ · ∇ × Ã⊥ + o(Beqε

2
δ).

The field B̃‖ also coincides with the 1st order perturbation of the magnetic field36. Hence
the physical meaning of the last term in the perturbed Hamiltonian Eq.(51) is clear :
it corresponds to a contribution µB̃‖ to the Hamiltonian that modifies its unperturbed
counterpart µBeq. As such, it can be seen as a perturbation of the magnetisation field M
(see Appendix F). This approximation will not be used for now, to keep some generality.

34The reader should be warned that J [H̃] is not the gyrocentre Hamiltonian H̄ - this is only true at first
order in εδ.

35The perpendicular velocity ˙̄X⊥ is of order εB compared with the parallel velocity. Assuming εB ∼ εδ, it

appears that the piece ˙̄X⊥ · J [Ã⊥] is second order compared with the 3 first terms and can be neglected in a
first order calculation.

36Indeed B2 = (Beq + B̃)2 = Beq(1 + 2B̃‖/Beq + o(ε2δ)) and therefore B = Beq + B̃‖ + o(ε2δBeq)
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It is further discussed in the section F.4 and will be used to derive the Maxwell equations
in section 4.5.3. The total functional reads

A = Aem +Apart +Askin

where

Aem =
1

2

∫
d3x dt

(
ε0Ẽ

2(x, t)− 1

µ0
B̃2(x, t)

)
(53)

Apart = −
∑
species

∫
dΓ∗F̄1(Z∗)J [H1](Z∗)

− 1

2

∑
species

∫
dΓ∗F ′eq(Z∗)

{
J [H2

1]− (J [H1])2
}

(Z∗)

Askin = −
∑
species

e2
a

2ma

∫
dΓ∗ Feq (Z∗)J [Ã2](Z∗) (54)

Figure 19: Diamagnetic effect associated with a perpendicular perturbation of the magnetic field. A
perturbed parallel potential vector Ã‖ produces a perturbed field δB⊥ = ∇×(Ã‖e‖) ' −e‖×∇Ã‖ that
is essentially perpendicular to the equilibrium field Beq. Field line bending is responsible for a change
of direction of the magnetic moment associated with the cyclotron motion of a charged particle, equal
to −µ̄δB⊥/Beq. The corresponding change of magnetisation density is −

∫
d3V̄F̄eqµ̄δB⊥/Beq. For a

Maxwellian distribution function, the perturbed magnetisation density is δM⊥ = −(NeqTeq/B
2
eq)δB⊥,

which opposes to δB⊥. The ratio µ0δM⊥/δB⊥ is of the order of the beta parameter given by Eq.(26).
This effect can be seen as a diamagnetic effect on the perturbed perpendicular magnetic field.

4.5.2 Skin depth term and magnetisation

The derivation is the same as for the representation (φ,A‖) (see details in Appendix
F). The unperturbed guiding-centre distribution function is again supposed Maxwellian
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Eq.(47). The function F ′eq is then given by Eq.(48). The second term of the functional A,
physically related to the adiabatic response of particles, and defined for each species as

Aad = −
∫
dΓ∗F ′eq(Z∗)J [H2

1](Z∗)

raises some difficulty due to the presence of the perpendicular vector potential. A detailed
calculation can be found in Appendix F where the following identity is demonstrated

Aad =
e2
a

2

∫
dγ∗

Feq(x, p‖, µ)

Teq(x)

(
φ̃2(x, t)− 2p‖φ̃(x, t)Ã‖(x, t)

)
+

e2
a

2ma

∫
d3xdt Neq(x)Ã2(x, t)

in the limit where the Jacobian B∗|| and the equilibrium distribution function Feq exhibit
large scales compared with the gyroradius. The last term of this functional compen-
sates the skin depth term in the functional of the electromagnetic field Afield. The total
functional reads

A =
ε0
2

∫
d3xdt Ẽ2(x, t)− 1

2µ0

∫
d3xdt B̃2(x, t)

+
∑
species

e2
a

2

∫
dγ∗

Feq(x, p‖, µ)

Teq(x)

(
φ̃2(x, t)− 2p‖Ã‖(x, t)φ̃(x, t)

)
− 1

2

∑
species

∫
dΓ∗
Feq
Teq

(J [H1])2(Z∗)−
∑
species

∫
dΓ∗F̄1(Z∗)J [H1](Z∗)

The last line represents the interaction between particles and the electromagnetic field.

4.5.3 Maxwell equations in the (φ,A‖, B‖) representation

The calculation of the charge and current densities in (φ,A‖, B‖) representation is some-
what technical. It is detailed in the Appendix F. Expressions of the charge and current
densities become much simpler under some reasonable assumptions. In most calculation
of instabilities, the current density current carried by ions is small compared with the
electron current. Conversely, finite Larmor radius effects, which are important for ions,
can usually be neglected for electrons since their gyroradius is often much smaller than
wavelengths of interest. This suppress “cross-terms”, i.e. terms involving the vector po-
tential in the charge density, or involving the electric potential in the current density. The
Poisson and Ampère equations become∑

species

∫
d3V

Feqe
2
a

Teq

(
1− J tJ

)
[φ̃] =

∑
species

∫
d3VeaJ t[F̄1]

+
∑
species

∫
d3V

Feqea
Teq

µJ tB[B̃‖] (55)

− 1

µ0
∇2
⊥Ã‖ +

∑
species

∫
d3V

Feqe
2
a

ma
J tJ [Ã‖] =

∑
species

ea

∫
d3Vp‖J t[F̄1] (56)

Up to a cross-term in the Poisson equation that involves B̃‖, the equations over (φ̃, Ã‖)

are the same as without B̃‖. Since B̃‖ is itself known as a function of the perturbed

gyrocentre distribution function and the perturbed potential φ̃ (see below), this means
that Eqs.(55,56) are two decoupled equations that rule separately φ̃ and Ã‖.
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The compressional component B̃‖ is given by the equation

1

µ0
B̃‖ +

∑
species

∫
d3V

Feqe

Teq
µ2BtB[B̃‖] = −

∑
species

∫
d3VµBt[F̄1 +

ea
Teq
J [φ̃]] (57)

The equations Eqs.(55,56,57) are close to those given in [17]. In fact the choice of
Maxwellian distribution functions allows an explicit integration of the gyroaverage op-
erators over the velocity space - details can be found in the Appendix F.6. The equation
Eq.(57) is reminiscent of the MHD constraint BeqB̃‖ + µ0P̃⊥ = 0, which can be derived
using fluid equations, thus a different path, but similar assumptions. A simple physical ex-
planation can be offered for this equation. When submitted to a perturbed perpendicular
vector potential, gyrocentres produce a perturbed magnetisation field

M̃ = −
∫
d3VµBt[F̄1 +

Feqea
Teq
J [φ̃]]e‖

Eq.(57) is equivalent to state that B̃‖ = µ0M̃ (see figure 20). This formulation is reason-
ably accurate for low β plasmas and short wavelengths, but should not be used for some
classes of long wavelength instabilities. It is autonomous in the sense that the knowledge
of the perturbed electric potential φ̃ and the gyrocentre distribution function yields the
value of B̃‖. Another advantage is that no Laplacian operator needs be inverted.

Figure 20: When submitted to a perturbed perpendicular vector potential, gyrocentres produce a
perturbed magnetisation field M̃ = M̃e‖. In first approximation the compressional component of the

magnetic field B̃‖ is proportional to the perturbed magnetisation B̃‖ = µ0M̃ , which yields an explicit

expression of B̃‖ versus a moment of the gyrocentre distribution function.

5 Gyrokinetic theory - a general formulation*

The theory above suffers from some drawbacks. It is restricted to canonical changes of
variables of the form Eq.(12), i.e. to the so-called Hamiltonian version of the gyrokinetic
theory. Moreover the gyrocentre Hamiltonian was calculated at first order only, which
may appear somewhat artificial whenever a full-F model is to be built. In the previous
approach, a full-F model can be reconstructed by defining the full F distribution function
as the sum of the unperturbed distribution function, allowed to vary slowly, and the
first order perturbed distribution function, that evolves on fast time scales. Moreover it
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appears that polarisation effects requires a second order theory when fully expressed in
gyrocentre coordinates. In fact it is possible to build an action principle which does not
need a reconstruction of the full distribution function. However it requires handling an
Hamiltonian at second order in εδ. Hence a theory is needed that is valid at second order
in the ordering parameter, and handles non canonically conjugate variables [2, 3, 4]. This
is a rather formidable task, which necessitates some know-how in differential geometry.
This part is not indispensable in a first reading.

5.1 Canonical change of variables at second order

As mentioned before, one has to move at some point to the hybrid set of variables (x, p‖, µ).
The expression Eq.(11) shows that the Hamiltonian is second order in the parameter εδ.
Hence the gyrocentre coordinates must be built at second order in the order parameter. It
is stressed here that solving the problem at second order in εδ is challenging when allowing
all possible choices of coordinates. So it is wise to focus first the analysis on canonical
changes of variables of the form Eq.(12) (“Hamiltonian approach”), but at all orders.
Then we will see that the calculation can be generalised to arbitrary changes of variables.
Near identity changes of canonical coordinates at all orders were studied extensively in
the context of celestial mechanics. These are generalisations at all order of Eq.(12), hence
of the form

Z = Z̄ −
{
S, Z̄

}
Z̄ (58)

where S is a generating function. Both S and the Hamiltonian are expanded in Fourier
series

S(Z̄) =
+∞∑
n=0

Sn(Z̄)εnδ

H(Z) =
+∞∑
n=0

Hn(Z)εnδ

H̄(Z̄) =
+∞∑
n=0

H̄(Z̄)εnδ

A powerful approach to calculate the generating function is based on the Deprit theory
[9, 18], detailed in Appendix G. Some of these works were devised for conjugate variables,
but can be extended to non conjugate variables by using the change of variables Eq.(58).
So “canonical change of variables” must be understood in this spirit. The second order
Hamiltonian is found to be of the form

H̄2 = J [H2]− 1

2
J
[{
S1,H1 + H̄1

}]
where the generating function S1 is given by the equation Eq.(17). A refined calculation
(see Appendix G) provides the following expression

H̄2 = 〈H2〉 −
1

2Beq

∂

∂µ̄

〈
(H1 − J [H1])2

〉
+

1

2Ωc

〈
e‖

eaB∗||
·

(
∂

∂X̄

(
ma

eaBeq(X̄)

∫ ς

dς ′H̃1

)
× ∂H̃1

∂X̄

)〉
(59)

The last term of Eq.(59) is sometimes dubbed “ponderomotive”37. It is quite small in
practical cases (see Appendix G). It can actually be neglected rigorously if the sub-
ordering εω ∼ ε2δ holds [3, 4]. If it is ignored, the second order Hamiltonian reduces

37A ponderomotive force is the average force exerted by an oscillating field on a particle. It can be understood
with a simple example. Consider a particle submitted to a 1D electric field perturbation E (no B field), its
position x(t) is solution of the equation maẍ = eE(x) cos(ωt). The position x can be decomposed in an average
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to

H̄2 = J [H2]− 1

2Beq

∂

∂µ̄

(
J [H2

1]− (J [H1])2
)

(60)

Introducing this gyrocentre Hamiltonian in the field-particle action Eq.(33) leads to the
expression

Afp = −
∑
species

∫
dΓ̄
(
F̄0(Z̄)H̄2(Z̄) + F̄1(Z̄)H̄1(Z̄) + F̄2(Z̄)H̄0(Z̄)

)
The term that involves F̄2 is multiplied by H̄0, which is a function of the invariants
of motion. Hence it addresses only the mean part of the distribution function, that is
its average over the unperturbed periodic motion of particles. This piece evolves on a
transport time scale, i.e. terms of order ε3δ , and is part of the Vlasov equation. It does
not participate in the determination of the Maxwell equations, except for the mean flow.
It is left apart from now on. An integration by part yields

Afp = −
∑
species

∫
dΓ̄

(
F̄0J [H2] +

1

2Beq

∂

∂µ̄
F̄0

(
J [H2

1]− (J [H1])2
)

+ F̄1J [H1]

)
(61)

This functional is the same as Eq.(39) obtained previously in the first order theory, keeping
in mind that the term F̄0J [H2] is the skin depth term that was included in the field action.
In other words the Maxwell equations are the same in this approach. Also there is no test
field here - the functional should be made extremum with all variations of the electric and
magnetic potentials - hence the extra factor 1

2 in Eq.(61) that was not apparent in Eq.(39).

It is quite remarkable that the polarisation term, proportional to (J [H2
1]− (J [H1])2),

comes here from the second order Hamiltonian. One may wonder why. The answer lies
in the expression of the mean displacement of the gyrocentre with respect to the particle
position Eq.(19). This displacement produces contributions which are second order in
the expansion parameter εδ, and hence belong to the category of ponderomotive forces.
A feeling of this important point can be grasped by noting that in the limit of long
wavelengths, the Hamiltonian H̄1(X̄ + ρ0 + ρ̄1) “seen” by a guiding centre can be Taylor
developed to give an average difference with H1(X̄ + ρ0) equal to

〈ρ̄1〉ς̄ ·
∂H1(X̄)

∂X̄⊥
= − ma

e2
aB

2
eq(X̄)

[
∂H1

∂X̄⊥

]2

(62)

This is also what is found when developing the second term in the r.h.s. of Eq.(60). In first
order gyrokinetic theory, it is incorporated in the difference between the guiding-centre
and gyrocentre distribution functions when moving back to the guiding-centre phase space.
The polarisation effects are therefore contained in the difference between F (Z) and F̄(Z).
Differences between the two approaches are illustrated by Fig.13 and Fig.21.

The last step consists in moving back to the physical space. This is done via a change of
variables from the gyrocentre position variables X̄ to the particle position x = X̄ + ρ̄. An
apparent difficulty is the occurrence of ρ̄ which is in principle not just a simple cyclotron
motion. In particular it contains the polarisation physics via ρ̄1. However the polarisation
shift ρ̄1 introduces higher order corrections. This is consistent with our previous remark:
in this approach, polarisation effects are included in the second order gyrocentre Hamil-
tonian and do not need further treatment - otherwise that would mean double counting.

value x̄ and and a variation x̃(t). The field can be Taylor development around x̄, E(x) = E(x̄) + x̃ ∂xE|x=x̄.

Obviously x̃(t) = − eE(x̄)
maω2 cos(ωt), so that the average force is − e2a

2maω2E(x̄) ∂xE|x=x̄. The effect of a strong

magnetic guide field can be mimicked by imposing ω = eaB/ma, thus giving a force − 1
2
ma
B2 E(x̄) ∂xE|x=x̄,

similar to Eq.(62), since it corresponds to an effective potential − 1
4
ma
B2

[
dφ
dx̄

]2
.
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This means that in fact the change of variables is just x = X̄ + ρ0, i.e. similar to the one
for a guiding-centre. Performing this change of variables provide the same action as the
one found previously by pulling back the distribution function from the gyrocentre to the
guiding-centre position space.

Hence the expected result is recovered by using a second order Hamiltonian theory.
However this does not tell us how this should be managed when a non-canonical change
of variables is needed at second order in εδ. Hence the Deprit performance must repeated
in the non-canonical case. This is done in Appendix H.

Figure 21: Strategy of a gyrokinetic theory using a second order gyrocentre Hamiltonian. The
Vlasov equation is solved in gyrocentre coordinates with no separation of perturbed and unperturbed
distribution functions. This procedure requires a second order Hamiltonian. A pull-back from the
gyrocentre space to the physical space is then done to solve the Maxwell equations. Polarisation
effects are included in the second order Hamiltonian.

5.2 Non canonical change of variables

Calculations in the non canonical case are treacherous (see Appendix H). The result
is shown here for the (φ,A‖) representation. The parallel velocity is then given by the
expression

p̄‖ = u‖ +
ea
ma

(
Ã‖ (X + ρ0(X, µ, ς))− εsJ [Ã‖](X, µ)

)
where εs = 0 in the Hamiltonian case and εs = 1 in the symplectic case. For the Hamil-
tonian case εs = 0, the velocity p̄‖ coincides with p‖. The situation is quite different in
the symplectic case since the symplectic parallel “velocity” p̄‖ comes near the guiding-

centre velocity u‖ for long wavelength fields J [Ã‖] ∼ Ã‖. The equations of motion of the
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Hamiltonian Symplectic
Skin depth term yes no

Induction in parallel force no yes
p̄‖ = u‖ at long wavelengths no yes

Jacobian depends on perturbed field no yes

Table 1: Some properties of the “Hamiltonian” and “Symplectic” gyrokinetic models

gyrocentre are38

dX̄

dt
= p̄‖b

∗ +
e‖

eaB∗||
×∇

(
µ̄Beq + eaJ [φ̃]

)
ma

dp̄‖

dt
= −b∗ ·

[
∇
(
µ̄Beq + eaJ [φ̃]

)
+ ea

∂J [Ã‖]

∂t
e‖

]

where b∗ = B∗/B∗||. The vector B∗ is given by the relation

B∗ = Beq +
map̄‖

ea
∇× e‖ +∇×

(
J [Ã‖]e‖

)
and

B∗|| = e‖ ·B∗ = Beq +
map̄‖

ea
e‖ · ∇ × e‖ + e‖ · ∇ × J [Ã‖]e‖

6 Energy conservation*

Since an Hamiltonian dynamics underlies any gyrokinetic theory, an energy conservation
theorem is expected to hold. There are various ways to construct an energy balance
equation. The most elegant, but technical, approach is based on the Noether’s theorem
combined with a generalised action principle [11, 12, 13, 19]. It can be used to build
both energy and momentum conservation equations. Its use is restricted here to energy
conservation, which appears to be a consequence of the field Lagrangian invariance under
time translation. Energy conservation is useful to identify populations responsible for
kinetic instabilities by computing the energy transfer between particles and field. It is
also useful for code verification.

6.1 Preamble: field action and Noether’s theorem

Before deriving a gyrokinetic equation of energy conservation, it is probably useful to start
with an example based on the simplified action used in section 4.1. Let us note first that
the Lagrangian in Eq.(26) does not to depend explicitly on time - only via the field and its
derivatives. As a consequence, the field φ solution of the Euler-Lagrange equations must
remain the same if time is translated by some small amount δt. Such a dynamical system
is said to be invariant under time translation symmetry. The idea behind the Noether’s
theorem is to make use of this type of symmetry invariance. It can be formalised as follows
in the specific case of time translation. Introducing a new time variable t̄ = t + δt and
a field φ̄ such that φ̄(t̄) = φ(t), the invariance under time translation symmetry implies
that the action

Ā =

∫ t̄2

t̄1

dt̄

∫ x̄2

x̄1

d3x̄ L
(
φ̄, ∂µ̄φ̄

)
38Since the vector potential is directed along the unperturbed magnetic field, the corresponding inductive

electric field does not contribute to the E ×B drift
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must be equal to the action A. Hence the variation δA = Ā − A must vanish. It can be
calculated explicitly for a small time variation δt. Since φ̄(t̄) = φ(t̄− δt) , it appears that
δφ = φ̄(t̄) − φ(t̄) = −∂t̄φ(t̄)δt. This relation allows the computation Ā as a functional
of φ. Note in particular that once this operation is done, (x̄, t̄) are dummy variables in
the integral Ā and can be replaced by (x, t). One has to be careful that the integral time
bounds are changed since t̄1 = t1 + δt and t̄2 = t2 + δt. Hence the variation δA contains
two contributions: one due to the changes in integration bounds, noted δAbound, and the
other one due to the field variation δφ = −∂t̄φ(t̄)δt in the “bulk” of the integral. This
variation is noted δAbulk. Obviously

δAbound = δt

∫ x2

x1

d3x (L2 − L1) =

∫ t2

t1

dt

∫ x2

x1

d3x ∂tL (φ, ∂µφ)

where L1 (resp. L2) is the Lagrangian calculated with the field φ solution of the Euler-
Lagrange equations and computed at time t = t1 (resp. t = t2). The variation δAbulk
due to the field variation δφ is calculated by using the action variation Eq.(27). The first
part vanishes since φ is solution of the Euler-Lagrange equations. Hence only the current
divergence term contributes, so that

δAbulk = −δt
∫ t2

t1

dt

∫ x2

x1

d3x ∂µ

(
∂L

∂(∂µφ)
∂tφ

)
The sum of these two contributions δAbound + δAbulk must vanish whatever the choice
of the integral lower and upper bounds (t1, t2,x1,x2). This constraint provides a local
conservation law

∂tE + ∂αΓαE = 0

where the index α runs from 1 to 3,

E = L − ∂L
∂(∂tφ)

∂tφ

is the energy density, and

ΓαE =
∂L

∂(∂αφ)
∂tφ

is an energy flux. An example is shown on Fig.22. When applied to the action in absence
of charge and current densities, it can be verified that the energy density is Eem = ε0

2 E2 +
1

2µ0
B2, and the energy flux is the Poynting flux E×B

µ0
. This recipe should now be applied

to the gyrokinetic field action.

6.2 Noether’s theorem in gyrokinetics

6.2.1 Variation of the gyrokinetic Lagrangian

Keeping in mind that the right variables are (t,x), we use the version of the action
A = Afield + Apart that is split in field and particle functionals Eqs.(27, 33). These are
repeated here to better grasp the structure

Aem =
1

2

∫
dt d3x

(
ε0E

2 (x, t)− 1

µ0
B2 (x, t)

)
Afp = −

∑
species

∫
dΓ̄F̄(Z̄)H̄(Z̄)

Let us remind that the Maxwell equations are obtained by finding an extremum with
respect to variations of the electric and vector potential δφ and δA.

δAem =

∫
dt d3x

[
ε0(∇ ·E)δφ+

(
ε0
∂E

∂t
− 1

µ0
∇×B

)
· δA

]
+

∫
dt d3x

[
−ε0

∂

∂t
(δA ·E) +∇ ·

(
B× δA
µ0

− ε0Eδφ
)]
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Figure 22: The example Fig.14 is reconsidered. The action is A =
∫ t2
t1
dtL (φ, ∂tφ) where the La-

grangian L (φ, ∂tφ) = 1
2 (∂tφ)2 − 1

2φ
2. The action calculated for the solution φ(t) = φ0 sin(t − t1) is

A(t) = 1
4φ

2
0 sin(t2− t1). It is left invariant by a time shift δt. The considered solution is plotted in red

for the choice t1 = 0 and t2 = 2π. The function φ̄(t) shown in blue is defined as φ̄(t+ δt) = φ(t). The
shift of the time bounds (t1, t2) provides a first contribution to the action variation. The difference
φ̄(t) − φ(t) ' −∂φ

∂t δt provides a second contribution. The total variation must cancel whatever the
choice of (t1, t2). In this particular case, it provides the energy conservation equation ∂tE = 0, where
E = 1

2(∂tφ)2 + 1
2φ

2.

Adding the charged particle functional Afp Eq.(28) and computing the extremum of
the full electromagnetic action with respect to (δφ, δA) provides the Maxwell equations
Eqs.(29). The functional Afp can be rewritten as a functional of the gyrocentre distribu-
tion function. Using the recipes described in the previous sections provide the gyrokinetic
Maxwell equations discussed previously.

The gyrokinetic Vlasov equation is obtained via an extremum with a gauge function
δS such that δF̄ =

{
δS, F̄

}
that results from a change of variable Z̄ = Z + {δS,Z}. It

is useful to make use of the Jacobi identity, a property of Poisson brackets, which states
that {

δS, F̄
}
H̄+

{
H̄, δS

}
F̄ +

{
F̄ , H̄

}
δS = 0

so that

δAfp = −
∑
species

∫
dΓ̄
{
H̄, F̄

}
δS +

∑
species

∫
dΓ̄
{
H̄, δS

}
F̄

Using the relations
{
H̄, δS

}
= ˙̄Z∂Z̄δS and ∂Z̄( ˙̄ZF) = 0, and ignoring the partial deriva-

tive in parallel gyrocentre momentum that does not contribute to the Noether’s current,
one finds

δAfp = −
∑
species

∫
dΓ̄
{
H̄, F̄

}
δS +

∑
species

∫
dΓ̄

[
∂

∂t̄

(
F̄δS

)
+

∂

∂X̄

(
˙̄XF̄δS

)]

The Euler-Lagrange equation is the gyrokinetic Vlasov equation
{
H̄, F̄

}
= 0, and the

gauge current is ˙̄XF̄δS.
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6.2.2 Noether’s energy and flux

The recipe described in section 6.1 is now applied to the gyrokinetic Lagrangian. The
Noether’s field variations are

δφ = −∂φ
∂t δt δA = −∂A

∂t δt δS = −Eδt

The last relation is justified by the change of variable Z̄ = Z + {δS,Z}, and therefore
δt = {δS, t} = −∂EδS. We start with the electromagnetic action Eq.(63). The boundary
contribution is

δAem,bound =
1

2
δt

∫
dt d3x

∂

∂t

[
ε0E

2 − 1

µ0
B2

]
Regarding the bulk contribution, it was seen that only the Noether’s current contributes
since the field is solution of the Euler-Lagrange equations. Using E = −∂tA − ∇φ, the
bulk action variation is

δAem,bulk = δt

∫
dt d3x

∂

∂t

[
−ε0E2 − ε0E · ∇φ

]
−

∫
dt d3x∇ ·

[
E×B

µ0
+
∇φ×B

µ0
− ε0E

∂φ

∂t

]
Terms can be reorganised by using the relationships

∇ · (∇φ×B) = −(∇×B) · ∇φ

∇ ·
(

E
∂φ

∂t

)
= (∇ ·E)

∂φ

∂t
+ E · ∂∇φ

∂t

In addition, since the field is solution of the Maxwell equations, and also ∂t%+∇ · J = 0,
one gets finally

δAem = −δt
∫
dt d3x

∂

∂t

[
ε0E

2

2
+

B2

2µ0
− %φ

]
− δt

∫
dt d3x∇ ·

[
E×B

µ0
− Jφ

]
A similar calculation shows that the variation of the field-particle interaction action is

δAfp = −δt
∑
species

∫
dΓ̄

[
∂

∂t̄

(
F̄E

)
+

∂

∂X̄
·
(

˙̄XF̄E
)]

6.2.3 Energy in the physical space

We are now facing the same problem as usual : moving the action written in the gyrocentre
position space back to the physical space. However the task is much simpler now. Indeed
there is no operator to invert here. Hence the dummy variable X̄ can just be replaced by
x. To illustrate this point, we proceed step by step. Let us note that

dt̄

∫
d3X̄... = dt

∫
d3x

∫
d3X̄δ(x− X̄)δ(t− t̄)...

It is reminded that

dΓ̄ = dt̄ d3X̄ dp̄‖ dµ̄ dς dE B∗||(X̄, p̄‖)δ(E − H̄)

So that finally

δAfp = −δt
∑
species

∫
dt d3x

∫
d3X̄d3V̄

[
∂

∂t

(
F̄H̄

)
+

∂

∂X̄
·
(

˙̄XF̄H̄
)]
δ(X̄− x)
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where d3V̄ = 2π
ma
B∗||dp̄‖dµ̄. So finally the energy conservation that is looked for is

∂E

∂t
+∇ · ΓE = 0

where

E =
ε0
2

E2(x, t) +
1

2µ0
B2(x, t)− %(x, t)φ(x, t)

+
∑
species

∫
d3V̄

(
F̄H̄

)
(x, µ̄, p̄‖, t)

is the energy density, and

ΓE =
1

µ0
(E(x, t)×B(x, t))− J(x, t)φ(x, t)

+
∑
species

∫
d3V̄

(
˙̄XF̄H̄

)
(x, µ̄, p̄‖, t) (63)

the energy flux. The contribution of −ρφ can be reworked to be regrouped with the
particle energy. Indeed, the following identity can be shown (see Appendix I)∫

dt d3x %(x, t)φ(x, t) =
∑
species

ea

∫
dt d3x d3V̄ F̄(x, µ̄, p̄‖, t)J [φ](x, µ̄, t) (64)

A similar operation can be done for the current. This transformation allows recovering
the energy conservation law derived in [13].

6.3 Global energy conservation

6.3.1 Expression of the total energy

The local law of energy conservation is elegant, but difficult to use in practice. Building
a global version, i.e., an equation over the volume integrated energy, is rewarding. The
analysis is further simplified by assuming a vacuum permittivity ε0 that is much smaller
than the polarisation permittivity. In this limit, the plasma is quasi-neutral, i.e. % = 0.
The electric energy term ε0E

2/2 can then be neglected. The analysis is restricted to the
perturbed electromagnetic field - this is not mandatory, but consistent with a given guide
magnetic field. The electromagnetic energy is the classical one

Eem =
1

2µ0

∫
d3x B̃2(x, t)

The particle energy is

Epart =
∑
species

∫
d3x

∫
d3V̄F̄H̄

where H̄ = H̄eq + H̄1 + H̄2. The second order Hamiltonian is given by Eq.(60). Each
order of the Hamiltonian reads

H̄eq =
ma

2
p̄2
‖ + µ̄Beq

H̄1 = J [H1]

H̄2 =
e2
a

2ma
J [Ã2]− 1

2Beq

∂

∂µ̄

(
J [H2

1]− (J [H1])2
)
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The particle energy for ons species only then reads

Epart =

∫
d3xdt

∫
d3V̄F̄H̄eq

+

∫
d3xdt

∫
d3V̄F̄J [H1]

+
1

2

∫
d3xdt

∫
d3V̄F ′eq

(
J [H2

1]− (J [H1])2
)

+

∫
d3xdt

∫
d3V̄Feq

e2
a

2ma
J [Ã2]

Since (p̄‖, µ̄) are dummy variables in the integral above, they can be safely replaced by

(p‖, µ). The element of integration in the velocity space then becomes d3V = 2π
ma
B∗||dp‖dµ.

Hence the total energy is

E =

∫
d3x

B̃2

2µ0

+

∫
d3x d3VF̄H̄eq

+
∑
species

∫
d3x d3VF̄J [H1]

+
1

2

∑
species

d3x

∫
d3VF ′eq

(
J [H2

1]− (J [H1])2
)

+
∑
species

∫
d3x d3VFeq

e2
a

2ma
J [Ã2] (65)

This result calls for some comments. First, the energy contains clearly a vacuum field
energy (the 1st line of Eq.(65)), a kinetic energy term (the 2nd line). However the physical
nature of the 3 other contributions is less clear. For instance, the two last ones apparently
belong to the category “field energy” since they involve the electric and potential vectors
squared, and still they come from the “particle energy” contribution. In fact the 4th line
corresponds to polarisation and magnetisation field energy that one would be tempted to
include in the electromagnetic energy. Same remark for the skin-depth term (5th line).
Finally the status of the field-particle interaction term (3rd line of Eq.(65)) is the only
one that remains fuzzy at this point.

Second, the sign of the field energy is not well defined. Obviously a positive energy
is preferable. For instance the polarisation term (4th line) is usually negative39. The
same difficulty occurs with the field-particle interaction term (3rd line), whose sign is
undetermined. To make some progress, it it necessary to scrutinise the Maxwell equations
to enable a clear separation between kinetic and field energy densities.

6.3.2 Revisiting the kinetic and field energies

The Maxwell equations in the gyrokinetic framework are derived by having the action A =
Afield +Apart +Askin, given by Eqs.(53,54,54), extremum with respect to (φ̃, Ã). Hence
the electromagnetic potentials (φ̃, Ã) are given by linear operators applied to charge and
current densities. This is just the consequence of the linearity of the Maxwell equations

39The term J [H2
1] − (J [H1])2 can be written

〈(
H1 − 〈H1〉ζ

)2
〉
ζ

and is thus positive. Most equilibrium

distribution function verifies F ′eq < 0, so that the overall integral is negative. Note that the term Ã2
⊥ in the last

line is balanced by an equivalent term in the J [H2
1] contribution to the polarisation functional (the third line)

so that the polarisation energy does not depend explicitly on Ã⊥.
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that relate fields to sources, i.e. charge and current densities. An extra condition is
obtained by integrating the Maxwell equations over (x, t). The following identity is derived

∑
species

∫
d3x d3VF̄J [H1] = −

∫
d3x

B̃2

µ0

−
∑
species

∫
d3x d3VF ′eq

(
J [H2

1]− (J [H1])2
)

−
∑
species

∫
d3x d3VFeq

e2
a

ma
J [Ã2] (66)

Combining Eqs.(65,66) yields the conservation equation ∂tE = 0, with

E =

∫
d3x d3VF̄H̄eq +

1

2

∑
species

∫
d3x d3V F̄1J [H1] (67)

This relation is identical to the one derived in [20]. Note also that it can be derived
directly from the gyrokinetic Vlasov equation (see Appendix I). Eq.(67) can then be used
to eliminate the field-particle contribution F̄1J [H1], whose sign is undetermined, in the
expression of the energy Eq.(65). The latter then becomes

E = −
∫

d3x
B̃2

2µ0
+

∫
d3x d3VF̄H̄eq

− 1

2

∑
species

d3x

∫
d3VF ′eq

(
J [H2

1]− (J [H1])2
)

−
∑
species

1

2

∫
d3x d3VFeq

e2
a

ma
J [Ã2] (68)

It appears that unfortunately the magnetic energy appears with a negative sign, and so
does the skin depth term. An overall positive sign of the energy is demonstrated as follows.
Let us remark first that ∫

d3x
B̃2

µ0
=

∫
d3x J̃ · Ã

assuming B̃ × Ã = 0 at the boundary of the integration volume. Next step follows the
same chain of transformations performed to compute the integral of %φ (see Appendix I)∫

d3x J̃ · Ã =
∑
species

ea

∫
dt d3x d3V F̄

(
p‖J [Ã‖]− µB[B̃‖]

)
−
∑
species

∫
d3x d3V F̄eq

e2
a

ma
J [Ã2]

This relationship is approximate and is valid under the same conditions as the calculations
done in the (φ,A‖, B‖) representation. Rearranging various terms, it appears that the
energy can be split in 2 components E = Ekin + Efield, where Ekin is a particle kinetic
energy defined as

Ekin =
∑
species

∫
d3x d3V F̄

{
1

2
ma

(
p‖ −

ea
ma
J [Ã‖]

)2

+ µ
(
Beq + B[B̃‖]

)}

and Efield is a “field energy”, itself split in two parts, that is

Efield = Eem + Epol
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where

Eem =

∫
d3x

B̃2

2µ0

is the electromagnetic field energy (neglecting the vacuum electric energy), and

Epol = − 1

2

∑
species

∫
d3x d3V F ′eq

(
J [H2

1]− (J [H1])2
)

+
1

2

∑
species

∫
d3x d3VFeq

e2
a

ma
J [Ã2

⊥]

+
1

2

∑
species

∫
d3x d3VFeq

e2
a

ma

{
J [Ã2

‖]− (J [Ã‖])
2
}

is the “field polarisation-magnetisation” energy, which is always positive40. This expres-
sion is consistent with [21] in the long wavelength limit of the (φ,A‖) representation.
Hence a meaningful energy conservation constraint is found

∂

∂t
(Ekin + Efield) = 0 (69)

A close inspection of Eq.(68) is rewarding. As mentioned, the first term Eem correspond
to the classical definition of the energy of the electromagnetic field in the vacuum. The
second one Epol is more intriguing. In the electrostatic limit Ã = 0, long wavelength limit
J = 1− 1

4ρ
2
c∇2
⊥ and for a Maxwellian distribution function, the field energy can be recast

as

Efield =
∑
species

∫
d3x

Neqma

B2
eq

|∇⊥φ|2

This is the energy associated with the polarisation field P = εpolE⊥
41. In the (φ,A‖)

electromagnetic case, an additional energy term appears. Assuming an unshifted large
scale Maxwellian 42, it is of the form

Efield =
∑
species

∫
d3x

Neqma

B2
eq

|∇⊥φ|2 +

∫
d3x

1

µ0

1 +
∑
species

µ0NeqTeq
B2
eq

∣∣∣∇⊥Ã∣∣∣2
In the fully electromagnetic case, the energy Epol contains also compressional magnetic
terms that involve B̃‖. Its full expression is complex and beyond the scope of this overview.

6.4 Exchange power

It is interesting to analyse the energy budget from the stand point of the electromagnetic
field. Ignoring the influx of energy in the volume of interest associated with the Poynting
vector, the electromagnetic energy balance equation reads

∂Eem
∂t

= −
∫
d3x J̃ · Ẽ (70)

40Note that for a Maxwellian distribution function, the term in Ã2
⊥ is balanced by an equivalent term in the

J [H2
1] contribution to the “adiabatic” functional so that the polarisation energy does not depend explicitly on

Ã⊥. On the other hand, quadratic terms in Ã‖ add up.
41It corresponds to the classical definition D = ε0E + P, where P is the polarisation field [14]. It is recalled

that the polarisation permittivity is εpol = ρm/B
2
eq, with ρm =

∑
speciesNeqm the mass density, which is roughly

c2/v2
A larger than ε0, where c is the speed of light and vA =

(
B2
eq/µ0ρm

)1/2
the Alfvén velocity.

42Unshifted means here no equilibrium current so that cross terms proportional to φ̃Ã‖ vanish in the
polarisation-magnetisation term.
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Figure 23: Particle/field energy exchange. Upper panel: particles and electromagnetic field exchange
energy via the product J̃ · Ẽ. Lower panel: in the guiding-centre stand point, the kinetic energy is
associated with guiding-centres - the polarisation and magnetisation terms enter the electromagnetic
energy via the polarised and magnetisation fields.

where

Eem =

∫
d3x

(
ε0
2

Ẽ2 +
1

2µ0
B̃2

)
is the total classical electromagnetic energy. This equation can be worked out by using
the expression of the electric field

Ẽ = −∂Ã

∂t
−∇φ̃ (71)

and the charge conservation equation

∂%̃

∂t
+∇ · J̃ = 0

The new balance equation is

∂

∂t

∫
d3x

(
ε0Ẽ

2

2
− B̃2

2µ0

)
=

∫
d3x

(
∂%̃

∂t
φ̃− ∂J̃

∂t
· Ã

)
up to a surface term that was set to zero 43. Using the definition of the charge and current
densities Eqs.(30), it becomes

∂

∂t

∫ d3x

(
ε0Ẽ

2

2
− B̃2

2µ0

)
−
∑
species

∫
d3x d3VFeq

e2
a

2ma
J [Ã2]

 =
∑
species

∫
dΓ

∂F1

∂t
H1

43This term corresponds to a flux of energy J̃φ̃, i.e. a flux of electric potential energy carried by particles,
which plays a role similar to the Poynting flux, but for particles, as seen in the energy flux Eq.(63).
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The guiding-centre and gyrocentre distribution functions F1 and F̄1 are related by Eq.(22).
The first term in the latter equation gives rise to the polarisation field energy. When
combined with Eqs.(140,141), derived in Appendix I, it appears that the conservation
equation ∂tE = 0 is recovered, with the total energy E given by Eq.(68). As a consequence,
energy conservation law Eq.(69) is also fully recovered. Hence this implies that

∂

∂t
(Ekin + Epol) =

∫
d3x J̃ · Ẽ (72)

It is satisfactory to find a variation of the electromagnetic energy consistent with its
kinetic counterpart. But the real assets are Eqs.(70, 72), which enable diagnosing the
power exchange between fields and particles. In particular, when detailed for each species,
and even per class of energy, it offers a deep insight in the nature of particles that drive
or damp instabilities. It is also interesting to see the polarisation term can be handled in
two different ways. On the one hand Eq.(72) clearly indicates that the polarisation term
belongs to the particle realm - it comes in fact to a shift of the guiding-centre motion
under the effect of the electromagnetic field. On the other hand Eq.(70) suggests that is
can be as well included in the field energy via the polarisation field. Both approaches are
sound, but this freedom is sometimes source of confusion (see Fig.23).

7 Conclusion

Gyrokinetic theory is commonly considered as technical, and sometimes abstract. Nev-
ertheless it uncovers substantial physical outcomes and prominent features that can be
summarized as follows. The first objective of the gyrokinetic theory is to modify the mag-
netic moment so that it remains an invariant of motion. This is possible as long as as the
typical frequencies of electromagnetic perturbations are low compared with the cyclotron
frequency. Also the amplitude of fluctuations must be small compared to the equilibrium
fields. No constraint on spatial scales is requested, which allows applying the model to
small scale turbulence in magnetised plasmas. Beyond its usefulness for tractable ana-
lytic calculations, gyrokinetic theory is motivated by one key fact: developing and using
6D kinetic codes is a difficult task given the available computers. 6D codes are barely
emerging, and mostly for ions. Gyrokinetic theory thus offers a path to computational
modelling of turbulence. The first step in gyrokinetics, namely the reinstatement of the
magnetic moment as an invariant of motion, can be seen as a change of variables, from
guiding-centre coordinates to the coordinates of a virtual particle, localised nearby the
guiding-centre, and called gyrocentre. The starting point is a first change of coordinates,
from the “true” particle coordinates to guiding-centre coordinates, a well documented
step. Hence a double change of coordinates must be managed.

Not all choices of gyrocentre variables are convenient for the second part of gyrokinetic
theory, namely the resolution of the Maxwell equations. Indeed Maxwell equations relate
the electric and magnetic vector fields E(x, t),B(x, t) to charge and current densities.
This step requires the computation of charge and current densities as function of the
spatial coordinates x of charged particles in the physical space, and time t. In practice,
this requirement enforces the use of non conjugate coordinates, namely 3 positions of
gyrocentres, the magnetic moment, a generalised parallel velocity, and a gyroangle - the
later does not appear explicitly in the final equations. A change of variables from guiding-
centre to gyrocentres coordinates requires some care. Also equations of motion are not the
same depending on the choice of generalised parallel velocity. Some are more convenient
than others for a subsequent use of the gyrocentre distribution function to compute charge
and current densities. Two options were addressed, most commonly mentioned in the
literature as “Hamiltonian” and “Symplectic” approaches. In both cases, the Maxwell
equations bear a more complex form than their original version, due to the emergence of
polarisation and magnetisation fields. This comes physically from the spatial shift between

50



gyrocentre and particle positions. As in any polarisable medium, the modification of the
distance between gyrocentres and particles under the effect of an electromagnetic field
introduces a polarisation vector field P. Similarly, the magnetic moment can be seen as
a magnet intensity associated with the cyclotron motion of the charged particle around
its gyrocentre. A collection of particles is therefore characterised by a magnetisation
vector field M. Gyrokinetic Maxwell equations are then similar to those used in classical
electromagnetism in continuum media [22, 14]. This formulation involves vector fields
D,H instead of E,B, and such that D = ε0E + P, and B = µ0(H + M). The equations
of motion are better expressed using scalar fields, like the electric potential, the parallel
component of the vector potential, and the perturbed magnetic field modulus. First reason
is the Hamiltonian nature of gyrokinetic theory, hence better derived using electric and
vector potentials. On the other hand, a E,B representation is closer to the traditional
MHD description. These considerations explain the intricate aspect of the gyrokinetic
Maxwell equations.

The Hamiltonian path is the easiest change of coordinates. It is described in details
in the present note. In this case the generalised parallel velocity is close to the parallel
canonical momentum. The price to pay however is the appearance in the Ampère equation
of a skin depth term, whose amplitude is large, and balances partially the parallel current
density. This “magnetic cancellation” raises difficulties in the computation, and has been
subject of a number of discussions, and ways to circumvent it. The other path is called
“Symplectic” formulation, and involves a gyrocentre parallel velocity close to the particle
velocity. The force that appears in the equation of motion of the parallel momentum
it the electric parallel electric field, instead of the perturbed Hamiltonian. No magnetic
cancellation in this case, and the equations of motion actually look close to the usual ones
in the E,B representation. Difficulty here is the inductive part of the electric field, which
involves the time derivative of the vector potential. This means handling time derivatives
in the right hand side of the equations of motion, usually not a good idea in terms of
numerical stability. Recent developments suggest the use of hybrid formulations, that
combine Hamiltonian and Symplectic approaches [23, 24]. A summary of characteristics
for each scheme is given in Table 1.

Ordering is also an issue in gyrokinetic theory. Most results can be understood with
a first order theory, where the ordering parameter is the amplitude of the perturbed
fields normalised to their unperturbed values. However global codes compute the full
distribution function, so that a second order theory turns out attractive. As before, this
requires two ingredients: changes of non conjugate variables, and reformulation of Maxwell
equations, both at second order. This a formidable task, that is most easily done by using
Lie transform methods, and a principle of action extremum. This is still an evolving field
of research. Only the main points have been sketched here.

As a last word, it must be understood that gyrokinetic theory is mostly a mathematical
tool, in essence a change of variables, but physics guided all along. It remains a necessary
step for computation, but also allows a deeper understanding of the physics of magnetised
plasmas. It would be illusory to ask more to theory than it can deliver. However, it remains
a powerful mean to address many issues related to stability and turbulent transport in
plasma physics.
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APPENDICES

A Notations

Coordinates Hamiltonian Distribution function

Conjugate variables z = (x,p) h, heq, h̃ f, feq, f̃
Extended z = (t,−E,x,p) h, heq f

Guiding-centre Z = (X, u‖, µ, ς) H,Heq, H̃ F, Feq, F̃
Extended Z = (X, u‖, µ, ς, E, t) H,Heq,H1,H2 F ,Feq,F1,F2

Gyrocentres Z̄ = (X̄, p̄‖, µ̄, ς̄) H̄ F̄
Extended Z̄ = (X̄, p̄‖, µ̄, ς̄ , E, t) H̄ F̄

Table 2: Notations and conventions - hamiltonian and distribution functions.

Coordinates Volume element
Conjugate variables z = (x,p) d3x d3p

Extended z = (t,−E,x,p) dγ = d3x d3p dt dE δ(E − heq)
Guiding-centre Z = (X, u‖, µ, ς) B∗|| d

3X du‖ dµ dς

Extended Z = (X, u‖, µ, ς, E, t) dΓ = B∗|| d
3X du‖ dµ dς dE dt δ(E −Heq)

Gyrocentres Z̄ = (X̄, p̄‖, µ̄, ς̄) B∗|| d
3X̄ dp̄‖ dµ̄ dς̄

Extended Z̄ = (X̄, p̄‖, µ̄, ς̄ , E, t) dΓ̄ = B∗|| d
3X̄ dp̄‖ dµ̄ dς̄ dĒ dt̄ δ(Ē − H̄eq)

Hybrid (x, p‖, µ) d3V = 2π
ma

B∗|| dp‖ dµ

Table 3: Notations and conventions - volume element.

B From canonical to non-canonical phase-space

B.1 Poisson brackets for non-canonical variables

We start from a 6D phase-space and a set of canonical variables z = (q,p). In this
section, for simplicity, we do not extend the phase-space to include time and energy, but
the formulation straightforwardly generalises to an 8D extended phase-space.

Compared to the Lagrangian formalism, the Hamiltonian formalism in canonical vari-
ables z = (q,p) has the advantage of providing straightforward equations of motion in
the form of a Poisson bracket,

dzµ

dt
= {zµ, H} (73)

where {f, g} = ∂qf · ∂pg − ∂pf · ∂qg This is easy to check, since
{
qi, H

}
= ∂H/∂pi and{

pi, H
}

= −∂H/∂qi. However this simple form (73) is a priori limited to canonical vari-
ables. Contrarily, the Lagrangian formalism is also valid for non-canonical variables, but
the relationship between Euler-Lagrange equations and Poisson brackets may be hidden
and very tricky to uncover. In section we detail how a Poisson-bracket-based form of
Hamilton’s equations can be recovered for non-canonical variables.

It is useful to define a phase-space Lagrangian,

L(z, ż, t) = p · q̇−H(q,p, t) (74)
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This phase-space Lagrangian equals in value the configuration-space Lagrangian (which
depends on q and q̇ but not explicitly on p and ṗ), but lives in a phase-space with twice
higher dimension. The advantage of the phase-space Lagrangian is that Euler-Lagrange
equations directly yield Hamilton’s equations of motion,

dp

dt
=

d

dt

(
∂L

∂q̇

)
=
∂L

∂q
= −∂H

∂q
(75)

0 =
d

dt

(
∂L

∂ṗ

)
=
∂L

∂p
=
dq

dt
− ∂H

∂p
(76)

whereas Euler-Lagrange equations applied to the configuration-space Lagrangian yield
only Eq. (75). Therefore, this can be seen as an alternative Hamiltonian formulation,
based on a Lagrangian.

We now consider a change of variables from canonical variables z to non-canonical
variables Z. Note that, when expressed in the canonical variables z, the phase-space
Lagrangian L does not depend on ṗ, but we will see that for non-canonical variables Z,
L may in general depend on all 12 components of Z and Ż. To express L in terms of Z,
we need to express the functions qi(Z) and pi(Z). Here we assume that the change of

variables is time-independent for simplicity44. Then, q̇i = (∂qi/∂Zµ)Żµ, and

L(Z, Ż, t) = ΓµŻµ −H(Z, Ż, t) (77)

where Γµ is a covariant 6-vector,

Γµ(Z) = p · ∂q

∂Zµ
(78)

The first part in Eq. (77) is said to be symplectic because it is linear in Żµ. Then Euler-
Lagrange equations yield

dΓν
dt

=
d

dt

(
∂L

∂Żν

)
=

∂L

∂Zν
=
∂Γµ
∂Zν

Żµ − ∂H

∂Zν
(79)

which can be rearranged as

∂H

∂Zν
=
∂Γµ
∂Zν

Żµ − dΓν
dt

(80)

=
∂Γµ
∂Zν

Żµ − ∂Γν
∂Zµ

Żµ (81)

= ωµνŻµ (82)

where we have introduced the Lagrange matrix

ωµν =
∂Γµ
∂Zν

− ∂Γν
∂Zµ

(83)

Assuming that the Lagrange matrix ω is invertible, we define its inverse J , which is called
as the Poisson matrix45. Then the equations of motion write simply as

Żµ = Jµν
∂H

∂Zν
(84)

Therefore, the equations of motion can finally be expressed in terms of a Poisson bracket,

dZµ

dt
= {Zµ, H} (85)

44If the change of variables is time-dependant, then qi(Z, t) and there is an extra term pi∂tq
i in the Lagrangian.

45An alternative method to calculate the Poisson matrix J , without calculating and inverting the Lagrange
matrix ω, is to use the relationship J = P · σ · P−1. Here P and σ are matrices defined by P νµ = ∂Zν/∂zµ and

σ =

(
03 I3
−I3 03

)
, where 03 is the 3x3 zero matrix, and I3 is the 3x3 identity matrix.
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albeit with a generalisation of Poisson brackets to non-canonical variables,

{F,G} =
∂F

∂Zµ
Jµν

∂G

∂Zν
(86)

Note that Jµν = {Zµ, Zν} is an immediate consequence of the latter definition.

B.2 A simple example

Let us illustrate the concepts described in subsection B.1 with a simple example, which
does not involve cyclotron motion, nor magnetic field, nor extended phase-space. We
consider a particle of mass m and charge e in a prescribed electric field φ(q, t). We work
in Cartesian coordinates q = (x, y, z) and start from canonical variables z = (q,p) with
p = (px, py, pz) = maq̇. Since the configuration-space Lagrangian is maq̇

2/2 − eaφ, the
phase-space Lagrangian is

L(z, ż, t) = p · q̇−H(q,p, t) (87)

with

H(q,p, t) =
p2

2ma
+ eaφ(q, t) (88)

Let us now change variables from z to non-canonical Z = (x, y, z, p⊥, α, pz) where p⊥ and
α are such that px = p⊥ cosα and py = p⊥ sinα. At this point we advice the reader to
work through the following steps as an exercise:

1. Calculate the 6 components of the covariant vector Γµ = p · ∂q
∂Zµ in terms of Z.

2. Calculate the Lagrange matrix ωµν =
∂Γµ
∂Zν −

∂Γν
∂Zµ . Since this is an anti-symmetric

tensor, only 15 components need to be calculated. In this simple example, only 4
components are non-trivial.

3. Calculate the Poisson matrix J by inverting ω.

4. Express the new (generalised) Poisson brackets {f, g} = (∂f/∂Zµ)Jµν(∂g/∂Zν).

5. Express H in terms of Z.

6. Deduce from that the equations of motion Żµ = {Zµ, H}

Solution:

1. One finds Γ1 = p⊥ cosα, Γ2 = p⊥ sinα, Γ3 = pz, and Γ4 = Γ5 = Γ6 = 0.

2. The only non-zero elements of the Lagrange matrix are

ω4 1 = −ω1 4 = cosα ω4 2 = −ω2 4 = sinα

ω5 1 = −ω1 5 = −p⊥ sinα ω5 2 = −ω2 5 = p⊥ cosα

ω6 3 = −ω3 6 = 1

3. The only non-zero elements of the Poisson matrix are

J1 4 = −J4 1 = cosα J2 4 = −J4 2 = sinα

J1 5 = −J5 1 = − sinα/p⊥ J2 5 = −J5 2 = cosα/p⊥

J3 6 = −J6 3 = 1

4. One immediately obtains

{F,G} =

(
∂F

∂x

∂G

∂p⊥
− ∂F

∂p⊥

∂G

∂x

)
cosα +

(
∂F

∂y

∂G

∂p⊥
− ∂F

∂p⊥

∂G

∂y

)
sinα

−
(
∂F

∂x

∂G

∂α
− ∂F

∂α

∂G

∂x

)
sinα

p⊥
+

(
∂F

∂y

∂G

∂α
− ∂F

∂α

∂G

∂y

)
cosα

p⊥

+

(
∂F

∂z

∂G

∂pz
− ∂F

∂pz

∂G

∂z

)
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5. From H(z) = p2/(2ma) + eaφ(q, t) we obtain H(Z) = p2
⊥/(2ma) + p2

z/(2ma) +
eaφ(q, t).

6. From Ż1 =
{
Z1, H

}
= {x,H}, and the derivatives ∂H

∂p⊥
= p⊥/ma and ∂H

∂α = 0, we
obtain ẋ = (p⊥/ma) cosα. Similarly, we obtain the 5 other equations of motion. To
summarize,

ẋ =
p⊥
ma

cosα

ẏ =
p⊥
ma

sinα

ż =
pz
ma

˙p⊥ = −ea cosα
∂φ

∂x
− ea sinα

∂φ

∂y

α̇ = ea
sinα

p⊥

∂φ

∂x
− ea

cosα

p⊥

∂φ

∂y

ṗz = −ea
∂φ

∂z

It is straightforward to check that these are equivalent to the equations of motion
obtained in canonical variables, q̇ = p/ma and ṗ = −ea∂φ/∂q.

C Guiding-center Lagrangian and Poisson brack-

ets

C.1 Guiding-center Lagrangian

Let us derive the equilibrium Lagrangian in guiding-centre coordinates, to the zeroth
order46. Here we work in the 6-dimensional (non-extended) phase-space.

We start in non-canonical position/velocity variables z = (x,v), where the Lagrangian
is

Leq(x,v) =
1

2
mav

2 + ea Aeq · v − eaφeq (89)

simply because the Euler-Lagrange then yields the correct Newton equation with the
electric and Lorentz forces. We recall that the equilibrium electromagnetic field is assumed
static to simplify the analysis at this point. Therefore, in the latter expression, Aeq =
Aeq(x) and φeq = φeq(x).

By definition the conjugate to x is

p(x,v) =
∂Leq
∂v

= ea Aeq(x) + mav (90)

The Legendre transformation yields an alternative expression for the Lagrangian,

Leq(x,v) = [ea Aeq(x) + mav] · ẋ − Heq [x,p(x,v)] (91)

with the equilibrium Hamiltonian

Heq(x,p) =
1

2
mav(x,p)2 + eaφeq(x) (92)

The goal now is to obtain the Lagrangian as a function of Z = (X, u‖, µ, ς). The term
Aeq(x) can be expressed in terms of Aeq(X) and its derivatives by a Taylor expansion

46The method of Lie transforms is much more systematic, and can be used to derive the Lagrangian in an
arbitrary set of coordinates, to an arbitrary order. This method was used by Littlejohn to obtain the guiding-
centre Lagrangian to higher order [7].
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with respect to the small parameter εB = ρc/LB. Similarly, the relationship between v
and u‖ and µ can be expressed as a Taylor series. The main difficulty is to ensure that, in
the Lagrangian, all terms up to the order (εB)0 – with respect to mav

2 – are kept (and we
wish to keep as few higher order terms as possible in order to keep expressions simple).

We will make use of two sets of right-handed orthonormal basis vectors : the gyroangle-
independent set (e1, e2, e‖), as introduced in subsection 3.1, and the gyroangle-dependant
set (â, e‖, ĉ), which is defined by â = ρ0/ρc and ĉ = â × e‖. Note that all these basis
vectors depend on x.

By using the relationships x = X + ρ0 and v = u‖e‖ + v⊥(µ) ĉ +O(εB), we perform
the transformation to the new coordinates (X, u‖, ζ, µ). This yields

Leq =

[
1

εB
ea Aeq(X) + ea ρ0 ·∇Aeq + mau‖e‖ + mav⊥ĉ + O(εB)

]
·
[
Ẋ + ρ̇0

]
−
[
eaφeq(X) + εBρ0 ·∇φeq +

1

2
mv2 + O(ε2B)

]
(93)

where factors εB have been artificially introduced in front of some terms in order to keep
track of the ordering of each term. Note that the first term is of order −1 compared to,
for example, mav⊥, because eaAeq/(mav⊥) ∼ eaLBBeq/(mav⊥) ∼ ε−1

B . Note also that ρ̇0

is of the same order as Ẋ because of the fast cyclotron frequency.
Let us now decompose the Lagrangian into terms of successive order in εB,

Leq ≡
1

εB
L−1 + L0 + εBL1 + . . .− (H0 + εBH1 + . . .) (94)

with

L−1 = ea Aeq ·
[
Ẋ + ρ̇0

]
(95)

L0 = ea(ρ0 ·∇)Aeq ·
[
Ẋ + ρ̇0

]
+
(
mau‖e‖ + mav⊥ĉ

)
·
[
Ẋ + ρ̇0

]
(96)

and

H0 = eaφeq +
1

2
mav

2
⊥ +

1

2
mau

2
‖ (97)

The Lagrangian is only defined up to an arbitrary exact differential. It simplifies by
adding the total time derivative of the scalar S = S0 + εBS1 + . . . such that

S0 = −ea Aeq(X) · ρ0 (98)

S1 = −ea
2
ρ0 ·∇Aeq(X) · ρ0 (99)

Since Ȧeq = (Ẋ ·∇)Aeq, the derivatives Ṡ0 and Ṡ1 include terms of the general form
[(V1 ·∇)Aeq]V2, where V1 and V2 are two vectors. It is useful to note that

[(V1 ·∇)Aeq] ·V2 − [(V2 ·∇)Aeq] ·V1 = (Beq ×V1) ·V2 (100)

The derivative Ṡ0 can be written as

dS0

dt
= − 1

εB
ea Aeq · ρ̇0 − ea [(Ẋ ·∇)Aeq] · ρ0 (101)

= − 1

εB
ea Aeq · ρ̇0 − ea [(ρ0 ·∇)Aeq] · Ẋ + ea (Beq × ρ0) · Ẋ (102)

= − 1

εB
ea Aeq · ρ̇0 − ea [(ρ0 ·∇)Aeq] · Ẋ−mav⊥ĉ · Ẋ (103)
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The latter expression of Ṡ0 comprises a term of order −1 which simplifies L−1, and two
terms of order 0 which simplify L0. Similarly, the derivative Ṡ1 is such that

εB
dS1

dt
= −ea

2
[(ρ0 ·∇)Aeq] · ρ̇0 −

ea
2

[(ρ̇0 ·∇)Aeq] · ρ0 − εB
ea
2

[(ρ0 ·∇)(Ẋ ·Aeq)] · ρ0

(104)

= −ea [(ρ0 ·∇)Aeq] · ρ̇0 +
ea
2

(Beq × ρ0) · ρ̇0 + O(εB) (105)

= −ea [(ρ0 ·∇)Aeq] · ρ̇0 −
mav⊥

2
ĉ · ρ̇0 + O(εB) (106)

Therefore, εBṠ1 comprises two terms of order 0 which simplifies L0, and one term of order
1 which we neglect.

Finally, we substitute ρ̇0 = ρc ζ̇ĉ + O(εB), mav⊥ρc = 2(ma/ea)µ. Then the new
lagrangian (after adding Ṡ) writes

Leq =

[
1

εB
ea Aeq + mau‖e‖

]
· Ẋ +

ma

ea
µ ζ̇ −

[
eaφeq +

1

2
mau

2
‖ +

1

2
mav

2
⊥

]
+ O(εB)

(107)
where all quantitites are evaluated at X.

Note that we have assumed that φeq is of higher order than Aeq · X. Alternatively,
one can construct a new guiding-center Lagrangian under the assumption that φeq and
Aeq ·X are of the same order [25].

C.2 Guiding-center Poisson brackets

In this subsection we apply the procedure described in appendix B.1 to the unperturbed
Lagrangian in guiding-center variables to obtain guiding-center Poisson brackets (and
check that we recover the expected guiding-center equations of motion).

We work in non-extended phase-space Z =
(
X, u‖, µ, ς

)
. We rewrite the Lagrangian

obtained in Eq. (107), keeping only terms up to the zeroth order in εB,

Leq = ea A∗eq · Ẋ +
ma

ea
µ ζ̇ − Heq (108)

where A∗eq = Aeq + (ma/ea)u‖e‖ and

Heq = eaφeq +
1

2
mau

2
‖ + µBeq (109)

Since Eq. (108) is already in the form of Eq. (77), it only remains to identify the compo-
nents of Γµ =

(
eaA

∗
eq, 0, 0,maµ/ea

)
,

Calculating the components of the Lagrange matrix, ωµν =
∂Γµ
∂Zν −

∂Γν
∂Zµ , is straightfor-

ward. Defining B∗eq = ∇×A∗eq, one obtains the Lagrange matrix,

ωµν =



0 eaB
∗
eq

3 −eaB∗eq2 −mae
1
‖ 0 0

−eaB∗eq3 0 eaB
∗
eq

1 −mae
2
‖ 0 0

eaB
∗
eq

2 −eaB∗eq1 0 −mae
3
‖ 0 0

mae
1
‖ mae

2
‖ mae

3
‖ 0 0 0

0 0 0 0 0 ma
ea

0 0 0 0 −ma
ea

0


(110)

This matrix can be inverted by blocks (a 4x4 block, a 2x2 block, and two zero-valued
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blocks). This procedure yields the Poisson matrix,

Jµν =



0 − 1
ea

e3‖
B∗||

1
ea

e2‖
B∗||

− 1
ma

B∗eq
1

B∗||
0 0

1
ea

e3‖
B∗||

0 − 1
ea

e1‖
B∗||

1
ma

B∗eq
2

B∗||
0 0

− 1
ea

e2‖
B∗||

1
ea

e1‖
B∗||

0 1
ma

B∗eq
3

B∗||
0 0

− 1
ma

B∗eq
1

B∗||
− 1
ma

B∗eq
2

B∗||
− 1
ma

B∗eq
3

B∗||
0 0 0

0 0 0 0 0 − ea
ma

0 0 0 0 ea
ma

0



(111)

where B∗|| = e‖ ·B∗eq.
This yields the expression of the equilibrium guiding-center Poisson brackets,

{F,G}Z =
ea
ma

(
∂F

∂ς

∂G

∂µ
− ∂F

∂µ

∂G

∂ς

)
+

B∗eq

mB∗||
·
(
∂F

∂X

∂G

∂u‖
− ∂F

∂u‖

∂G

∂X

)
−

e‖

eaB∗||
·
(
∂F

∂X
× ∂G

∂X

)
(112)

which can be used to compute the guiding-center equations of motion,

Ẋ = u‖
B∗eq

B∗||
+

e‖

eaB∗||
× [ea∇φeq + µ∇Beq] (113)

u̇‖ =
B∗eq

maB∗||
× [ea∇φeq + µ∇Beq] (114)

µ̇ = − ea
ma

∂Heq

∂ς
= 0 (115)

ς̇ =
eaBeq
ma

= ωc (116)

Note that Eq. (113) includes not only the E × B drift (of the form e‖ ×∇φeq) and the
∇B drift, but also the curvature drift, although in this form it is slightly hidden in the
term u‖B

∗
eq/B

∗
||. Indeed, a Taylor expansion at the lowest order in εB yields

B∗eq

B∗||
≈ e‖ +

mau‖

eaBeq

[
∇× e‖

]
⊥

= e‖ −
mau‖

eaBeq
e‖ ×

[
1

2
∇e2
‖ − (e‖ ·∇)e‖

]
⊥

= e‖ +
mau‖

eaBeq
e‖ ×∇‖e‖

D Some useful relations

D.1 Contact transformation

We derive here the change of variables that correspond to a contact transformation in the
simple case where z is a set of conjugate variables (x,p). The new coordinates are (x̄, p̄).
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The old and new Hamiltonians H and H̄ read

H (x,p, τ) = Heq(p) + εδH1 (x,p, τ)

H̄ (x̄, p̄, τ) = H̄eq (x̄, p̄, τ) + εδH̄1 (x̄, p̄, τ)

Since the amplitude of the perturbed Hamiltonian is small, the change of coordinates can
be anticipated to be a near-identity transform. The change of canonical coordinates is
performed with a methodology based on a least action principle [8, 9], i.e., the action
integrals are made equal up to a generating function,∫

p · dx =

∫
p̄ · dx̄−

∫
dS

The generating function S is a function of both new and old variables, for instance

S (x̄, p̄, x̄, p̄) = εδS1(x, p̄) + (x− x̄) · p̄

Identification of various terms in front of the differential elements dx and dp̄ provides the
requested near identity transform

pi = p̄i − εδ
∂S1(x, p̄)

∂xi
+ o(ε2δ)

x̄i = xi − εδ
∂S1(x, p̄)

∂p̄i
+ o(ε2δ)

This relationship provides the expression of (x̄,p), a mix of old and new variables, versus
(x, p̄). Moreover one has the relation

H̄(x̄, p̄) = H(x,p) (117)

which related the new Hamiltonian to the previous one47. One difficulty comes from the
mix of new and old variables - a relationship between old and new variables would be
easier to handle. This difficulty is easily overcome since at requested order

pi = p̄i − εδ
∂S1(x̄, p̄)

∂x̄i
+ o(ε2δ)

xi = x̄i + εδ
∂S1(x̄, p̄)

∂p̄i
+ o(ε2δ) (118)

Note that this relation can be written in a compact form as

z = z̄− εδ {S1, z̄}z̄ + o(ε2δ)

where { , }z̄ is the Poisson bracket written in the new variables z̄ = (x̄, p̄), i.e.

{F,G}z̄ =
∂F

∂x̄
· ∂G
∂p̄
− ∂F

∂p̄
· ∂G
∂x̄

=
∂F

∂z̄
· J · ∂G

∂z̄

D.2 Invariance of Poisson bracket

Poisson brackets are invariant under a change of variables. The sequence of operations
that demonstrate this property is the following

{H,F}Z =
∂H
∂Zk

Jkl
∂F
∂Z l

=
∂H̄
∂Z̄ i

(
∂Z̄ i

∂Zk
Jkl

∂Z̄j

∂Z l

)
∂F̄
∂Z̄j

=
∂H̄
∂Z̄ i

J̄ij
∂F̄
∂Z̄j

=
{
H̄, F̄

}
Z̄

47The index i = 0 yields the usual evolution equation for the generating function εδ
∂S1(x,p̄,t)

∂t = H(x,p, t) −
H̄(x̄, p̄, t), where (x̄,p) are functions of (x, p̄), and are now restricted to the usual position and momentum
coordinates. The order 0 imposes H̄eq(x̄, p̄) = Heq(x,p).
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The identity ∂Z̄i
∂Zk J

kl ∂Z̄j
∂Zl = J̄ij results from the rules of change of variables for a tensor.

The new tensor J̄ij bears the properties of a Poisson bracket for a change of variables of
the form Z = Z̄ −

{
S1, Z̄

}
Z̄ .

D.3 Push-forward and pull-back operators

The operator T that transforms Z in Z̄ is called a push-forward operator, Z̄ = TZ -
here T = I + {S, •}, I being the identity operator. A “push-forward” operator leads
to new coordinates Z̄ from the old ones Z. One can then define a space of functions
that operate on Z variables, and a space of functions that act on the Z̄ variables. The
function F is derived from F̄ via a pull-back operator T ∗ , i.e. F = T ∗F̄ . It transforms a
function that acts in the space of the gyrocentre coordinates into a function that lives in
the initial guiding-centre space. Hence the relation F̄(Z̄) = F(Z) can as well be written
as T ∗F̄(Z) = F(Z) = F̄(TZ) (see Fig.24).

Figure 24: Change of variables Z̄ = TZ and its inverse Z = T−1Z̄. The function F lives in the
space of functions that depend on Z, and its counter part leaves in the space of functions that depend
on Z̄. They are related by the relationship F̄(Z̄) = F(Z). The function F is the image of F̄ via a
pull-back operator T ∗, i.e. F = T ∗F̄ . Inversely F̄ is constructed from F via a push-forward operator
that is the inverse of T , i.e. F̄ = [T ∗]−1F - inspired from [2].

D.4 Pull-back of the gyroaverage operator

This section details the transformation of the functional

Apart = −
∫
dΓ∗F̄1(Z∗)J [H1](Z∗)

− 1

2

∫
dΓ∗F ′eq(Z∗)J [H2

1](Z∗)

+
1

2

∫
dΓ∗F ′eq(Z∗)(J [H1])2(Z∗) (119)
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in a functional that lives in the physical space. The functional is split in 3 contributions
Apart = A1 +A2 +A3, each term corresponds to one line of the r.h.s. in Eq.(119).

The first term is transformed as follows

A1 = −
∫
d3Xdtdp‖dµB

∗
||(Z

∗)F̄1(Z∗)J [H1](Z∗)

−
∫
d3Xdtdp‖dµ

∫ 2π

0

dς

2π

[
B∗||F̄1

]
(X, t, p‖, µ)H1(X + ρ0(X, µ, ς), t, p‖, µ)

= −
∫
d3xdtdp‖dµ

∫ 2π

0

dς

2π

[
B∗||F̄1

]
(x− ρ0(x, µ, ς), t, p‖, µ)H1(x, t, p‖, µ)

= −
∫
d3xdtd3V

1

B∗||
J t
{
B∗||F̄1

}(
x, t, p‖, µ

)
H1

(
x, t, p‖, µ

)
= −

∫
dγ∗

1

B∗||
J t
{
B∗||F̄1

}
(z∗)H1 (z∗) (120)

where the operator J t is defined as

J t[Λ]
(
x, t, p‖, µ

)
=

∫ 2π

0

dς

2π
Λ
(
x− ρ, t, p‖, µ

)
The second term is transformed a bit differently

A2 = −1

2

∫
dΓ∗F ′eq(Z∗)J [H2

1](Z∗)

= −1

2

∫
d3Xdtdp‖dµ

∫ 2π

0

dς

2π

[
B∗||F̄1

]
(X, t, p‖, µ)H2

1(X + ρ0(X, µ, ς), t, p‖, µ)

= −1

2

∫
d3xdtdp‖dµ

∫ 2π

0

dς

2π

[
B∗||F̄1

]
(x− ρ0(x, µ, ς), t, p‖, µ)H2

1(x, t, p‖, µ)

= −1

2

∫
dγ∗

1

B∗||
J t
[
B∗||F

′
eq

]
(z∗)H2

1(z∗)

The last term follows the same path

A3 =
1

2

∫
dΓ∗F ′eq(Z∗)J [H1](Z∗)J [H1](Z∗)

=
1

2

∫
d3Xdtdp‖dµ

∫ 2π

0

dς

2π

[
B∗||F

′
eqJ [H1]

]
(X, t, p‖, µ)

H1(X + ρ0(X, µ, ς), t, p‖, µ)

=
1

2

∫
d3xdtdp‖dµH1(x, t, p‖, µ)∫ 2π

0

dς

2π

[
B∗||F

′
eqJ [H1]

]
(X− ρ0(x, µ, ς), t, p‖, µ)

=
1

2

∫
dγ∗

1

B∗||(z
∗)
J t
[
B∗||F

′
eqJ [H1]

]
(z∗)H1(z∗)
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D.5 Long wavelength expansion of the gyroaverage opera-
tor

This derivation does not raise special difficulties though somewhat cumbersome. Here are
some details:

J t
[
F ′eqJ [H1]

]
(X) =

∫
dς

2π

dς ′

2π
F ′eq(x− ρ′)H1(x + ρ− ρ′)

=

∫
dς

2π

dς ′

2π

[
F ′eq(x)− ρ′ · ∇F ′eq

∣∣
x

+
1

2
ρ′ · ∇

(
ρ′ · ∇F ′eq

)∣∣
x

]
[
H1(x) +

(
ρ− ρ′

)
· ∇H1

∣∣
x

+
1

2

(
ρ− ρ′

)
· ∇
[(
ρ− ρ′

)
· ∇H1

∣∣
x

]]
=

(
F ′eq(x) +

1

4
ρ2
c∇2
⊥F ′eq(x)

)
H1(x)

+
1

2
∇ ·
[
ρ2
cF ′eq(x)∇⊥H1(x)

]
where the vectors ρ and ρ′ are the cyclotron displacements that correspond respectively
to the cyclotron angles ς and ς ′. The properties

∫
dς
2πρiρj =

∫
dς′

2π ρ
′
iρ
′
j = 1

2ρ
2
cδij ,

∫
dς
2πρi =∫

dς′

2π ρ
′
j = 0 have been used, where i, j are labels of directions perpendicular to the field,

and ρ2
c = 2µ

eaΩc(x) . The square of the gyroradius ρ2
c has been permuted with the operator

∇ since its derivative is of order εB compared with the perturbed field derivatives. The
last term is a polarisation term since for a Maxwellian distribution function, the following

identity holds
∫
d3V 1

2ρ
2
cF ′eq =

Neq(x)ma
e2aB

2(x)
.

D.6 From guiding-centre to gyrocentre coordinates

The change of variables in the Hamiltonian approach is given by Eq.(14), i.e. is of the
form Z̄ = Z + G1, with G1 = {S1,Z}Z . The components of G1 can be made explicit by
using the expression of the Poisson bracket in guiding-centre coordinates

{F,G}Z =
ea
ma

(
∂F

∂ς

∂G

∂µ
− ∂F

∂µ

∂G

∂ς

)
+

1

ma

B∗

B∗||
·
(
∂F

∂X

∂G

∂p‖
− ∂F

∂p‖

∂G

∂X

)
−

e‖

eaB∗||
·
(
∂F

∂X
× ∂G

∂X

)
where

B∗ = ∇×A∗ = Beq +
map‖

ea
∇× e‖

and
B∗|| = e‖ ·B∗ = Beq +

map‖

ea
e‖ · ∇ × e‖
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is the Jacobian of the guiding-centre transform. The following expressions are then found

GX
1 = {S1,X}Z = − 1

ma

∂S1

∂p‖
e‖ −

e‖

eaB∗||
× ∂S1

∂X

G
p‖
1 =

{
S1, p‖

}
Z =

1

ma

B∗

B∗||
· ∂S1

∂X

Gµ1 = {S1, µ}Z =
ea
ma

∂S1

∂ς

Gς1 = {S1, ς}Z = − ea
ma

∂S1

∂µ

Since S1 is a periodic function of ς with zero mean, these displacements are all periodic
functions of ς. However, whenever one calculates the particle position vs the gyrocentre
coordinates, expressed in guiding-centre coordinates,

x = X + ρ (X, µ, ς) = X̄−GX
1

(
Z̄
)
− ∂ρ

∂X
·GX

1

(
Z̄
)
− ∂ρ

∂µ
Gµ1
(
Z̄
)
− ∂ρ

∂ς
Gς1
(
Z̄
)

terms with a finite gyroaverage mean (average over the gyroangle ς̄) appear due to the de-
pendences of G1 on ς̄ (at given (µ̄, X̄, p̄‖)). The resulting mean displacement is responsible
for the medium polarisation.

E Gyroaverage of the perturbed Hamiltonian

This section provides practical expressions for the gyroaverage of the perturbed Hamilto-
nian. From Eq.(11), the Hamiltonian associated with a perturbed electromagnetic field
reads

H̃
(
X, p‖, µ, ς, t

)
= eaφ̃(X + ρ0, t)− eap‖Ã‖(X + ρ0, t)

− ea

(
Ẋ⊥ + ρ̇0

)
· Ã⊥(X + ρ0, t) +

1

2

ea
ma

Ã2(X + ρ0, t)

The gyroaverage of H̃(Z∗, ς) is

J [H̃](Z∗) =

∫
dς

2π
H̃(Z∗, ς)

where Z∗ = (X, p‖, µ, t, E). The perturbed electric and vector potentials can be expanded
in Fourier series

φ̃ (x, t) =

∫
d3k

(2π)3
φ̃ (k, t) eik·x

and

Ã (x, t) =

∫
d3k

(2π)3
Ã (k, t) eik·x

The cyclotron motion displacement and velocity read

ρ0(t) = ρc (cos ς e1 − sin ς e2)

ρ̇0(t) = v⊥ (− sin ς e1 − cos ς e2)

where e1 (X) , e2 (X) are two unit vectors locally orthogonal to the magnetic field B (X, t).
The wave vector k can be decomposed on the local basis e‖, e1, e2, i.e.

k = k‖e‖ + k1e1 + k2e2
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where all quantities, components and vectors, depend on the guiding-centre position X.
Using x = X + ρ0, it appears readily that

J [φ̃] (Z∗) =

∫
d3k

(2π)3
φ̃ (k, t) eik·X

∫ 2π

0

dς

2π
eik·ρ0

and

J [Ã‖] (Z∗) =

∫
d3k

(2π)3
Ã‖ (k, t) eik·X

∫ 2π

0

dς

2π
eik·ρ0

The components of the wave vector can be written

k1 = k⊥ sin(ϕk) ; k2 = −k⊥ cos(ϕk)

where k⊥ = (k2
1 + k2

2)1/2 is usually called “perpendicular wave number”, and ϕk is the
wave number phase. It then appears that k · ρ0 = k⊥ρc sin(ς + ϕk), and

J [φ̃] (Z∗) =

∫
d3k

(2π)3
J0 (k⊥ρc) φ̃ (k, t) eik·X

and

J [Ã‖] (Z∗) =

∫
d3k

(2π)3
J0 (k⊥ρc) Ã‖ (k, t) eik·X

where J0 is the Bessel function of index 0. Though approximate, this is a quite convenient
explicit expression of the gyroaverage operator, since it consists in a simple multiplication
by J0 (k⊥ρc) in the Fourier space. This is why the operator J is sometimes noted J0. We
move now to the piece that contains the perpendicular vector potential〈(

Ẋ⊥ + ρ̇0

)
· Ã⊥(X + ρ0, t)

〉
ς

=
〈
Ẋ⊥ · Ã⊥(X + ρ0, t)

〉
ς

+
〈
ρ̇0 · Ã⊥(X + ρ0, t)

〉
ς

The first term in the r.h.s. is gyro-averaged like the electric and parallel vector potentials.
The second bit is more delicate to handle. Let us detail it

ea

〈
ρ̇0 · Ã⊥(X + ρ0, t)

〉
ς

= −eav⊥
∫

d3k

(2π)3
eik·X

∫ 2π

0

dς

2π
{sin ςA1k + cos ςA2k}

ei(k1ρc cos ς−sin ςk2ρc)

= −eaΩc

∫
d3k

(2π)3
eik·X

{
iA1k

∂

∂k2
− iA2k

∂

∂k1

}∫ 2π

0

dς

2π

ei(k1ρc cos ς−sin ςk2ρc)

= −eaΩc

∫
d3k

(2π)3
eik·X

{
iA1k

∂

∂k2
− iA2k

∂

∂k1

}
J0 (k⊥ρc)

= −eaΩcρ
2
c

∫
d3k

(2π)3
eik·X {−ik2A1k + ik1A2k}

J1 (k⊥ρc)

k⊥ρc

= −µ
∫

d3k

(2π)3
eik·X

(
e‖ · ∇ × Ã⊥

)
k

2J1 (k⊥ρc)

k⊥ρc

= −µB
[
B̃‖

]
where (Ak1, Ak2) are the two components of the vector Ak in the vector basis (e1, e2).
The scalar e‖ · ∇ × Ã⊥ is the parallel component of the perturbed magnetic field, noted

B̃‖, and B is the operator which consists in multiplying the Fourier component of the field
by 2J1 (k⊥ρc) /(k⊥ρc). Let us note that 2J1(x)/x approaches 1 when the argument x gets
close to 0. Hence the operator B is the identity for perturbations with scale lengths much
larger than the gyroradius, as does J . Nevertheless its structure differs significantly from
J applied on a scalar field. So finally the gyroaverage of the perturbed Hamiltonian reads

J [H̃] = eaJ [φ̃]− eap‖J [Ã‖] + µB[B̃‖]− eaẊ⊥ · J [Ã⊥] +
e2
a

2ma
J [Ã2]
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The two last terms are of second order in the expansion parameter.
Finally, the same methodology can be used to estimate of the polarisation shift in the
(φ̃, Ã‖) representation

〈ρ̄1〉ς̄ = − 1

B(X̄)

∂

∂µ̄

∫
dς̄

2π
ρ0 {H1 − J [H1]}

Since J [H1] does not depend on the gyroangle, only H1 contributes. The Fourier expan-
sion above gives

H1

(
Z̄
)

=

∫
d3k

(2π)3
H̃1

(
k, p̄‖, t

)
eik·(X̄+ρ0)

where it has been used that H̃1 does not depend on µ̄ in the (φ̃, Ã‖) other than via the
gyromotion. Hence

〈ρ̄1〉ς̄ = − 1

B(X̄)

∂

∂µ̄

∫
d3k

(2π)3
H1

(
k, p̄‖, t

) ∫ dς̄

2π
ρ0e

ik·(X̄+ρ0)

= i
1

B(X̄)

∫
d3k

(2π)3
eik·X̄H1

(
k, p̄‖, t

) ∂

∂µ̄

∂

∂k
J0(k⊥ρc)

= −i ma

e2
aB

2(X̄)

k⊥
k⊥

∫
d3k

(2π)3
eik·X̄H1

(
k, p̄‖, t

) 1

ρc

∂

∂ρc
(ρcJ1(k⊥ρc))

= −i ma

e2
aB

2(X̄)
k⊥

∫
d3k

(2π)3
eik·X̄H1

(
k, p̄‖, t

)
J0(k⊥ρc)

where it has been used that ∂
∂µ̄ = ma

e2aBeq(X̄)
∂

ρc∂ρc
, and also J ′0(x) = −J1(x), d

dx (xJ1(x)) =

xJ0(x). It appears finally that

〈ρ1〉ς̄ = − ma

e2
aB

2
eq(X̄)

∂J [H1]

∂X̄⊥

F Charge and current densities in the (φ,A‖, B‖)

representation

F.1 Calculation of the particle functional

The objective here is to write the functional

Aad = −1

2

∫
dΓ∗F ′eq(Z∗)J [H2

1](Z∗)

in the hybrid position space. It reads

Aad = −1

2

∫
d3Xdtd3V F ′eq(X, p‖, µ)H2

1(X + ρ0(X, µ, ς), t, p‖, µ)

or equivalently

Aad = −1

2

∫
d3xdtd3V

dς

2π

[
B∗||F

′
eq

]
(x− ρ0(X, µ, ς), p‖, µ)H2

1(x, t, p‖, µ)

where
H1(x, t, p‖, µ) = eaφ̃(x, t)− eap‖Ã‖(x, t)− eaρ̇0(X, µ, ς) · Ã⊥(x, t)

The unperturbed field
[
B∗||F

′
eq

]
(x−ρ0(X, µ, ς), p‖, µ) can be replaced by

[
B∗||F

′
eq

]
(x, p‖, µ)

assuming that F ′eq is a distribution function that evolves spatially on an equilibrium
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scale Lp, so that a Taylor development in ρ0/Lp leads to higher order corrections -same
argument for the Jacobian B∗||. Using the relations∫

d3VF ′eq(x, p‖, µ)p2
‖ =

Teq(x)

ma∫
d3VF ′eq(x, p‖, µ)ρ̇0(X, µ, ς) = 0∫
d3VF ′eq(x, p‖, µ)ρ̇0iρ̇0j(X, µ, ς) =

Teq(x)

ma
δij

one gets

Aad =
1

2
e2
a

∫
dγ∗

Feq(x, p‖, µ)

Teq(x)

{
φ̃2(x, t)− 2p‖φ̃(x, t)Ã‖(x, t)

}
+

1

2

e2
a

ma

∫
d3xdt Neq(x)Ã2(x, t)

F.2 Writing the action in the hybrid set of coordinates
(x, t, p‖, µ)

The action A Eq.(55) lives in the guiding-centre space, which means that a change of
variables must be performed to write the various contributions in the hybrid set of co-
ordinates (x, t, p‖, µ). The terms J [φ̃] and J [Ã] are treated in the same way as in the
(φ,A‖) representation. The operator B requires some care. Assuming that the perturbed
field is null at infinity, it appears that48

−
∫
dΓ∗Ḡ1µB[e‖ · ∇ × Ã⊥] =

∫
d3xdt

(
∇× M̃

)
· Ã⊥

where Ḡ1 is the “non-adiabatic” part of the perturbed distribution function49

Ḡ1 = F̄1 +
Feq
Teq
J [H1]

M̃e‖ is a perturbed magnetisation field

M̃ = −
∫
d3VµBt[Ḡ1]e‖

and the operator Bt satisfies the property∫
dΓ∗F (Z∗)B[g (z∗)] =

∫
dγ∗Bt[F (Z∗)]g (z∗) (121)

So Bt is the adjoint of B in the sense of Eq.(121). It holds if the Jacobian of the guiding-
centre transform exhibits large spatial scale only. A consequence of the Parseval theorem
applied on Eq.(121) is that Bt operates in the Fourier space as B, i.e. by multiplying the
target field by 2J1 (k⊥ρc) /k⊥ρc and then moving back to the real space. In that sense
Bt is the same as B. However the notation Bt will be kept to mark the difference with B

48This result is obtained the identity ∇ · (A×B) = B · ∇ ×A−A · ∇ ×B for any couple of vectors (A,B).
The integration of the divergence operator over the volume introduces a surface term that cancels if one of the
vectors (or both) (A,B) vanishes on the surface. This assumption is retained here.

49The reader should be warned that there exists different definitions of an adiabatic response, in particular
in the MHD context
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since its mathematical meaning is different. An explicit expression of the magnetisation
amplitude M̃ = e‖ · M̃ versus the perturbed distribution function F1 is

M̃ = −
∫
d3VµBt[F̄1]

−
∫
d3V

Feqe

Teq
µBtJ [φ̃− p‖Ã‖]

−
∫
d3V

Feqe

Teq
µ2BtB[e‖ · ∇ × Ã⊥]

F.3 Charge and current densities - general expressions

Once the appropriate change of variables has been done, the functional A Eq.(55) can be
used to find the charge and current densities. It can be made explicit in he physical space
as

A =
ε0
2

∫
d3xdt Ẽ2(x, t)− 1

2µ0

∫
d3xdt B̃2(x, t)

+
1

2

∑
species

e2
a

∫
d3xdtd3V

Feq(x, p‖, µ)

Teq(x)

{
φ̃2(x, t)− 2p‖Ã‖(x, t)φ̃(x, t)

}
− 1

2

∑
species

∫
d3xdtd3V

Feq(x)

Teq(x)

[
eaJ [φ̃] (z∗)− eap‖J [Ã‖] (z∗)

+ 2µB[e‖ · ∇ × Ã⊥] (z∗)
] [
eaJ [φ̃] (z∗)− eap‖J [Ã‖] (z∗)

]
−

∑
species

∫
d3xdtd3VF̄1 (z∗)

[
eaJ [φ̃] (z∗)− eap‖J [Ã‖] (z∗)

]
+

∑
species

∫
d3xdt

(
∇× M̃

)
· Ã⊥

The extremum in φ̃ provides the charge density for each species

%̃ = ea

∫
d3VJ t[F̄1]

− ea

∫
d3V

Feqe

Teq

{
φ̃− J tJ [φ̃]

}
+ ea

∫
d3V

Feqe

Teq
p‖

(
Ã‖ − J tJ [Ã‖]

)
+ ea

∫
d3V

Feq
Teq

µJ tB[e‖ · ∇ × Ã⊥] (122)

which holds as long as the Maxwellian equilibrium distribution function exhibits large
spatial scales compared with fluctuations. The perturbed current for each species is given
by the extremum of the action in Ã and reads

J̃ = ea

∫
d3VJ t[F̄1]p‖e‖

− ea

∫
d3V

Feqe

Teq
p‖

(
φ̃− J tJ [φ̃]

)
e‖

− ea

∫
d3V

Feqea
ma
J tJ [Ã‖]e‖

+ ea

∫
d3V

Feq
Teq

µp‖J tB[e‖ · ∇ × Ã⊥]e‖

+
(
∇× M̃

)
⊥

(123)
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where it has been used that the average of p2
‖ over a Maxwellian is Teq/m. Eqs.(122,123)

should be used to ensure the field coherence via the Maxwell equations, which become

∇ · Ẽ =
∑
species

%̃

ε0

∇× B̃ = µ0

∑
species

J̃

in the low frequency limit.

F.4 Some simplifications

The equations above are hardly tractable. Additional simplifications, consistent with
the gyrokinetic ordering, are often used and discussed in this section. Since the vector
potential is Ã = Ã‖e‖ + Ã⊥, the perturbed magnetic field reads

B̃ = ∇Ã‖ × e‖ + Ã‖∇× e‖ +∇× Ã⊥

The vector ∇× e‖ can be written as

∇× e‖ =
µ0J‖eq

Beq
e‖ + τ

where τ = e‖ × κ, κ the field line curvature and J‖eq the total unperturbed current. As
discussed before, its norm scales as the inverse of a macroscopic length, while the norms
of ∇Ã‖ and ∇× Ã⊥ scale as Ã‖ divided by a perturbation length scale. For turbulence,

this scale length is typically an ion gyroradius, so that the term Ã‖∇×e‖ can be neglected

since one order lower. It is thus recovered that B̃‖ = e‖ · ∇× Ã⊥. The perturbed parallel
current reads50

µ0

∑
species

J̃‖ = e‖ · ∇ × B̃ = −∇2
⊥Ã‖ +∇ ·

((
∇× Ã⊥

)
× e‖

)
The last term of this identity can be ignored as well51. The Ampère equation then reduces
to ∇2

⊥Ã‖ = −µ0J̃‖. At this level of approximation, the perturbed magnetic field reads

B̃ = ∇Ã‖ × e‖ + B̃‖e‖

and the perpendicular current J̃⊥ = ∇ × B̃‖e‖. After identification with the perpendic-

ular component of the current in Eq.(123), the compact relation B̃‖ = µ0
∑

species M̃ is

50We use here the identity e‖ · ∇ × B̃ = ∇ ·
(
B̃× e‖

)
+ B̃ · ∇ × e‖ - the last term can be ignored for small

scale perturbations. The “perpendicular gradient” of a scalar Ã‖ is defined as ∇⊥Ã‖ = ∇Ã‖ − e‖(e‖ · ∇)Ã‖ =

e‖ × (∇Ã‖ × e‖), and consequently the “perpendicular” Laplacian is ∇2
⊥ = ∇ · ∇⊥.

51Let us remind that the magnetic field can be written in Clebsh form Beq = ∇α × ∇ψ, where α and
ψ are two suitable scalar fields. A system of coordinates (α,ψ, `) is then chosen, where ` is the curvilinear
abscissa along the unperturbed field lines. Hence the third contravariant vector is ∇` = e‖, and the Jacobian

[(∇α×∇ψ) · ∇`]−1
is unity. The perpendicular potential vector is

Ã⊥ = Aψ∇ψ +Aα∇α

A bit of algebra shows that (
∇× Ã⊥

)
× e‖ =

∂Aψ
∂`
∇ψ +

∂Aα
∂`
∇α

Perturbations of the field tend to be aligned with the equilibrium field, so that parallel gradients (the operator
∂`) are εB smaller than transverse gradients (the operator ∇⊥). This allows neglecting this term against the
perpendicular Laplacian of the perturbed parallel potential vector.

68



obtained. Finally, because the Debye length is smaller that the gyroradius in most mag-
netised plasmas of interest, the Gauss’s law is reduced to a charge neutrality condition∑

species %̃ = 0. So the final set of equations to be solved is

∑
species

∫
d3V

Feqe
2
a

Teq

(
1− J tJ

)
[φ̃] =

∑
species

∫
d3VeaJ t[F̄1]

+
∑
species

∫
d3V

Feqe
2
a

Teq
p‖
(
1− J tJ

)
[Ã‖]

+
∑
species

∫
d3V

Feqea
Teq

µJ tB[B̃‖] (124)

− 1

µ0
∇2
⊥Ã‖ +

∑
species

∫
d3V

Feqe
2
a

ma
J tJ [Ã‖] =

∑
species

ea

∫
d3VJ t[F̄1]p‖

−
∑
species

∫
d3V

Feqe
2
a

Teq
p‖

(
φ̃− J tJ [φ̃]

)
+

∑
species

∫
d3V

Feqea
Teq

µp‖J tB[B̃‖] (125)

1

µ0
B̃‖ +

∑
species

∫
d3V

Feqea
Teq

µ2BtB[B̃‖] = −
∑
species

∫
d3VµBt[F̄1]

−
∑
species

∫
d3V

Feqea
Teq

µBtJ [φ̃− p‖Ã‖](126)

These equations must be complemented by a solution of the gyrokinetic Vlasov equa-
tion. The equations of motion are the same as Eqs.(24,25), but with a new gyroaverage
Hamiltonian52

J [H̃] = eaJ [φ̃]− eap‖J [Ã‖] + µB[B̃‖] (127)

F.5 A few more simplifications

The second term in the l.h.s. of Eq.(126) is of the order of the plasma β, and is therefore
quite small. The first term of the r.h.s. is close to P̃⊥/Beq, where P̃⊥ is the gyroaveraged
perpendicular pressure defined as the average of µBeq over the perturbed gyroaveraged
distribution function Bt[F̄1]. Eq.(126) is then close to the usual MHD approximation
BeqB̃‖ + µ0P̃⊥ = 0. Here the 2nd line of the r.h.s. of Eq.(57) is neglected on the basis of

low β values. It turns out that when this relation holds, part of the effects due to B̃‖ can
be recovered by replacing the ∇B magnetic drift by a curvature drift53

vD =
(
map

2
‖ + µBeq

) 1

eaB∗||
e‖ × κ

52We again anticipate that 2nd order term should be kept to ensure some coherence with the symplectic
approach - see below.

53This can be verified as follows. Still in the spirit of ideal MHD, let us look at the perturbed Hamiltonian
in the low wavelength limit H̃ = eaφ̃ − eap‖Ã‖ + µB̃‖ and assume that the ideal MHD constraint applies,

i.e. null parallel electric field −∂tÃ‖ − (e‖ · ∇)φ̃ = 0. The perturbed Hamiltonian can be recast as H̃ =

ea
dχ̃
dt − eavD · ∇χ̃ + µB̃‖, where d

dt = ∂
∂t + p‖e‖ · ∇ + vD · ∇ is a Lagrangian (or material) derivative, and

χ(X, t) =
∫ t
dt′φ(X, t′) is the primitive in time of the electric potential, so that Ã‖ = −(e‖ · ∇)χ̃. In first

approximation, and in agreement with the MHD fluid pressure equation, the pressure perturbation is just given
by the advection of the equilibrium pressure by the E×B electric drift, i.e. P̃⊥ = − 1

B∗||

(
e‖ ×∇χ̃

)
·∇Peq. Using
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The relation BeqB̃‖+µ0P̃⊥ = 0 is quite convenient, since it relates the compressional com-

ponent of the magnetic field B̃‖ to the perturbed pressure, which can be calculated easily
from the perturbed distribution function. Besides, a further step consists in modifying
the magnetic drift velocity and ignoring all contributions from the parallel compressibility
of the field. Needless to say that this is a rather blunt approximation, which is in fact
justified only for small scale modes (e.g. ballooning modes).

Some extra bold steps can be crossed. A number of terms in the charge and current
densities are proportional to p‖(1 − J tJ ). They vanish if the unperturbed distribution
function is unshifted or if finite Larmor radius (FLR) effects are neglected. It would
be unreasonable to ignore finite Larmor radius (FLR) effects on the ion species, since
their gyroradius is commensurate with turbulence wavelengths. However it is quite licit
to neglect the current carried by ion species in most practical cases (except fast ions
though). Conversely the current density carried by electrons cannot be neglected, by
electron finite Larmor radius (FLR) effects are negligible in practical situations since the
electron gyroradius is much smaller than fluctuations wavelengths. These approximations
lead to simplified, but tractable, Poisson and Ampère equations∑

species

∫
d3V

Feqe
2
a

Teq

(
1− J tJ

)
[φ̃] =

∑
species

ea

∫
d3VJ t[F̄1]

+
∑
species

ea

∫
d3V

Feq
Teq

µJ tB[B̃‖]

− 1

µ0
∇2
⊥Ã‖ +

∑
species

∫
d3V

Feqe
2
a

ma
J tJ [Ã‖] =

∑
species

ea

∫
d3Vp‖J t[F̄1]

to be completed with an equation over the compressional component of field

1

µ0
B̃‖ +

∑
species

∫
d3V

Feqea
Teq

µ2BtB[B̃‖] = −
∑
species

∫
d3VµBt[F̄1]

−
∑
species

∫
d3V

Feqea
Teq

µBtJ [φ̃] (129)

F.6 Explicit expressions of gyroaverage operators

The choice of Maxwellian distribution functions allows performing analytic integration
over the velocity space. It was shown in Appendix E that the gyroaverage operator J
consists in multiplying the Fourier transform of the field by J0(k⊥ρc) and the operator B
does a similar operation, but with a multiplication by 2J1(k⊥ρc)

k⊥ρc
. It then appears that the

average over a Maxwellian of the operators J tJ , J tB and BtB are explicit, thanks to the
relationships

2

∫ +∞

0
dvve−v

2
J2

0 (av) = Γ0(b)

2

∫ +∞

0
dvv3e−v

2
J2

0 (av) = Γ0(b)− b (Γ0(b)− Γ1(b))

B̃‖ = −µ0P̃⊥/Beq the perturbed Hamitonian becomes

H̃ = ea
dχ̃

dt
− eavD · ∇χ̃− µ

µ0

BeqB∗||

(
e‖ ×∇Peq

)
· ∇χ̃ (128)

The first piece dχ̃
dt can be incorporated in the adiabatic response of the perturbed distribution and will not be

discussed further. Using the expression of the field line curvature κ =
∇⊥Beq
Beq

+
µ0∇⊥Peq
B2
eq

, it appears that the

two last term of the Hamiltonian can be regrouped as the advection of χ̃ by a modified magnetic drift velocity
where the ∇B drift piece is replaced by the curvature.
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2

∫ +∞

0
dvv3e−v

2
J2

1 (av) = b (Γ0(b)− Γ1(b))

where a =
√

2k⊥ρT , b = a2

2 = k2
⊥ρ

2
T , ρT =

√
maTeq
eB is the thermal gyroradius and Γν(b) =

Iν(b)e−b, Iν the modified Bessel function of index ν. The following identities can then be
derived

1

Neq

∫
d3VFeqJ tJ = Γ0(b)

1

Neq

∫
d3VFeq

(
µBeq
Teq

)2

BtB = 2 (Γ0(b)− Γ1(b))

1

Neq

∫
d3VFeq

(
µBeq
Teq

)
BtJ = Γ0(b)− Γ1(b)

These relations have to be understood as operations in the Fourier space. For electrons,
b� 1, and Γ0 ∼ 1, Γ1 ∼ 0. The Maxwell equations then become∑

species

Neqe
2
a

Teq
(1− Γ0) [φ̃] =

∑
species

ea

∫
d3VJ t[F̄1]

+
∑
species

Neqe

Beq
(Γ0 − Γ1) [B̃‖]

− 1

µ0
∇2
⊥Ã‖ +

∑
species

Neqe
2
a

ma
Γ0[Ã‖] =

∑
species

ea

∫
d3Vp‖J t[F̄1]

B̃‖

Beq
= −

∑
species

∫
d3V

2µ0NeqTeq
B2
eq

1

Beq
(Γ0 − Γ1) [B̃‖]

− µ0

B2
eq

∑
species

∫
d3VµBeqBt[F̄1]

−
∑
species

µ0NeqTeq
B2
eq

ea
Teq

(Γ0 − Γ1) [φ̃]

where the last equation has been normalised to show explicitly the dependence on the
parameter

µ0NeqTeq
B2
eq

that scales like the plasma β.

G Near identity canonical change of variables

We start first with the second order theory in the Hamiltonian case. Near identity canon-
ical changes of coordinates at all orders were studied extensively in the context of celestial
mechanics. A powerful approach is based on Deprit series, which can be summarised as
follows. We call here “canonical change of variables” a relationship between old and new
variables of the form which bears the same structure as the one for canonical variables
(see Appendix D.1)

Z = Z̄ −
{
S, Z̄

}
Z̄

where the generating function S can be expanded as a series in εδ

S(Z̄) =
+∞∑
n=0

Sn(Z̄)εnδ
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All calculations are run in gyrocentre variables. As in the first order theory, the old
Hamiltonian H(Z) is related to the new one H̄(Z̄) via the relation H(Z) = H̄(Z̄). The
Hamiltonians can also be expanded in εδ, e.g.

H(Z) =
+∞∑
n=0

Hn(Z)εnδ

H̄(Z̄) =

+∞∑
n=0

H̄(Z̄)εnδ

Equating H(Z) with H̄(Z̄) order by order, one finds

H̄0(Z̄) = H0(Z̄)

H̄1(Z̄) = H1(Z̄)− {S1,H0}Z̄
H̄2(Z̄) = H2(Z̄)− {S1,H1}Z̄ +

1

2
{S1, {S1,H0}}Z̄ − {S2,H0}Z̄

The order 0 is the same as before. Requesting that the new Hamiltonian of order 1 does
not depend on the gyroangle implies that H̄1 = 〈H1〉54. As shown in section 3.2, this
operation is a gyroaverage over a cyclotron circular motion, so that

H̄1(Z̄∗) = J [H1](Z̄∗)

Hence the generating function S1 is given by the equation

{S1,H0}Z̄ = H̃1(Z̄) (130)

where
H̃1(Z̄) = H1(Z̄∗, ς̄)− J [H1](Z̄∗)

This is the same as Eq.(16) derived in section 3.2. The expression Eq.(13) of the Poisson
bracket leads to the Lagrangian derivative Eq.(17), which can also be written

{S1,H0}Z̄ = {S1,H0}c + {S1,H0}Z̄∗

where

{S1,H0}c = Ωc
∂S1

∂ς̄

is the Poisson bracket that corresponds to the cyclotron motion and

{S1,H0}Z̄∗ =
∂S1

∂t
+ p̄‖(e‖ · ∇)S1 + ( ˙̄X⊥ · ∇)S1

is the Lagrangian derivative along unperturbed gyrocentre trajectories. This “slow” La-
grangian derivative is of order εω compared with the first one. Hence the solution Eq.(17)
is recovered from Eq.(130) at lowest order

∂S1

∂ς̄
=

1

Ωc
H̃+ o(εω) (131)

In the traditional “gyroBohm” ordering, one has εω ∼ εδ. However this level of accuracy
is insufficient for a second order calculation is one chooses an ordering55. One solution,
advocated by Tronko and Chandre [4], consists in choosing the ordering, namelyεω ∼ ε2δ .
Another solution is to estimate the error that is made when restricting the Poisson bracket

54The average is on the gyrocentre gyroangle ς̄. Since all calculations are run in gyrocentre coordinates, the
subscript ς̄ is omitted for clarity in the averages.

55N.B.:The solution of Eq.(130) is explicit when using angle/action variables. If all functions are expanded

as Fourier series in α, e.g. H̃1 =
∑

n H̃1,ne
in·α, then S1,n =

H̃1,n

in·Ω
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to the cyclotron motion. Hence, we do not use for now a specific solution S1 until the
ordering is clarified, i.e. we keep Eq.(130) in its full generality. The equation that rules
S2 is

{S2,H0}Z̄ = H̃2 − {S1,H1}Z̄ +
1

2
{S1, {S1,H0}Z̄}Z̄

where H̃2 = H2 − J [H2] and {S2,H0}Z̄ = Ωc
∂S2
∂ς̄ + o(εω), and all Poisson brackets are

calculated with the new gyrocentre variables Z̄ . A solubility constraint is obtained by
averaging this equation over ς̄. It provides the expression of the second order Hamiltonian

H̄2 = 〈H2〉 − 〈{S1,H1}Z̄〉+
1

2

〈
{S1, {S1,H0}Z̄}Z̄

〉
where 〈H〉 =

∫
dς̄
2πH for any function H(Z̄)56. Using〈

{S1, {S1,H0}Z̄}Z̄
〉

=
〈{
S1,H1 − H̄1

}
Z̄
〉

leads to the following expression

H̄2 = 〈H2〉 −
1

2

〈{
S1,H1 + H̄1

}
Z̄
〉

Let us now assess the order of magnitude of the various terms. The second order Hamil-
tonians H2 and H̄2 scale as ε2δTeq. Poisson brackets that appear in the second term of the
r.h.s. of Eq.( 132) are of the form

{S1,H1}Z̄ = {S1,H1}c + {S1,H1}Z̄∗

where the cyclotron part is

{S1,H1}c =
ea
ma

(
∂S1

∂ς̄

∂H1

∂µ̄
− ∂S1

∂µ̄

∂H1

∂ς̄

)
and the gyrocentre contribution is

{S1,H1}Z̄∗ =
1

ma

B∗

B∗||
·
(
∂S1

∂X̄

∂H1

∂p̄‖
− ∂S1

∂p̄‖

∂H1

∂X̄

)
−

e‖

eaB∗||
·
(
∂S1

∂X̄
× ∂H1

∂X̄

)
(132)

The Poisson bracket
{
S1, H̄1

}
is decomposed in the same way. After an integration by

part, the average of the cyclotron part of the Poisson bracket is recast as〈{
S1,H1 + H̄1

}
c

〉
=

ea
ma

∂

∂µ̄

〈
∂S1

∂ς̄

(
H1 + H̄1

)〉
It appears that the lowest order solution S1 Eq.(131) is sufficient to find the ε2δTeq term,
i.e. 〈{

S1,H1 + H̄1

}
c

〉
=

1

Beq

∂

∂µ̄

〈
H̃2

1

〉
where the property

〈
H̃2

1

〉
=
〈(
H2

1 − H̄2
1

)〉
has been used. The bracket

{
S1,H1 + H̄1

}
Z̄∗

,

given by Eq.(132), does not raise special difficulty. The first term, which involves parallel
gradients of fluctuations provides a term of order ε3δTeq, which does not contribute. The
last term has the right scaling ε2δTeq

{
S1,H1 + H̄1

}
Z̄∗

= − 1

2Beq

〈
e‖

eaB∗||
·

(
∂S1

∂X̄
×
∂
(
H1 + H̄1

)
∂X̄

)〉
+ o(εω)

56Let us recall that 〈H〉ς̄ is also the gyroaverage of H(Z̄) noted J [H]. Both notations are used.
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Now because it is the lowest order expression of S1 that should be used in this expression,
which is a periodic function of ς̄, the contribution of the term H̄1 vanishes because H̄1

does not depend on ς̄ and S1 is periodic in ς̄ with zero mean. For the same reason, H1

can be replaced by H̃1. Hence the final expression of the second order Hamiltonian is

H̄2 =
〈
H̃2

〉
− 1

2Beq

∂

∂µ̄

〈
H̃2

1

〉
− 1

2

〈{
S1, H̃1

}
Z̄∗

〉
(133)

where {
S1, H̃1

}
Z̄∗

= −

〈
e‖

eaB∗||
·

(
∂S1

∂X̄
× ∂H̃1

∂X̄

)〉
and S1 is given by Eq.(131). The last term of Eq.(133) cannot be neglected in principle.
However it is in practice a small term. This can be understood as follows. Indeed following
the recipe of Appendix E, H̃1 can be developed in the Fourier space

H̃1 =
+∞∑

n1=−∞

∫
d3k

(2π)3
Jn1 (k⊥ρc) H̃1k

(
µ̄, p̄‖, t

)
eik·X̄+in1(ς̄+ϕk)

Using the relation ∂S1
∂ς̄ = 1

Ωc
H̃ provides a similar expansion for the generating function

S1 =
+∞∑

n1=−∞

1

in1Ωc

∫
d3k

(2π)3
Jn1 (k⊥ρc) H̃1k

(
µ̄, p̄‖, t

)
eik·X̄+in1(ς̄+ϕk)

This gives the following identity

{
S1, H̃1

}
Z̄∗

= −
+∞∑

n1=−∞,n1 6=0

1

in1Ωc

∫
d3k

(2π)3

d3k′

(2π)3
Jn1 (k⊥ρc) Jn1

(
k′⊥ρc

)
e‖

eaB∗||
·
(
k × k′

)
H̃1kH̃∗1k′e

i[(k−k′)·X̄+n1(ϕk−ϕk′ )] (134)

This sum is non null, and of order 2 in ε2δ . It is sometimes called “ponderomotive”
force. However, it is expected to be small in practical cases. Indeed for small value of its
argument k⊥ρc, the Bessel function of index n varies as (k⊥ρc)

n and is small because the
sum involves only n1 6= 0 terms. Same for Jn1 (k′⊥ρc). In the limit of large arguments,
Jn1 (k⊥ρc) and Jn1 (k′⊥ρc) are oscillating functions of their argument - the integral over
the wave numbers k and k′ concentrate most of the contribution to the line k = k′ for
which the cross-product is small.

H Non canonical gyrokinetic transform

H.1 Action principle for gyrocentre equations of motion

We start first with a change of non canonical coordinates at first order in the perturbed
field, before moving to a generalisation at all orders. Let us remember that the equations
of motion of a particle guiding-centre satisfy a principle of minimum action Apart =

∫
Ldt.

This formulation can be recast as an action principle that uses the 1-form γ = (mav +
eaA) · dx − Hdt. This form can be written in guiding-centre coordinates. It is noted
Γ, in accordance with the conventions adopted throughout the paper, and depends on
(X, u‖, µ, ς, t, E)57. The objective is to derive a new gyrocentre form Γ̄ such that the
new magnetic moment µ̄ is a invariant of motion. The form Γ contains unperturbed and

57We choose here the non canonical variables t and E since the whole section is dedicated to non canonical
variables
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perturbed parts, i.e. Γ = Γ0+εδΓ1. The unperturbed part is the one derived by Littlejohn
[7]

Γ0 = eaA
∗
eq · dX +

ma

ea
µdς −H0dt

where58

H0 =
1

2
mau

2
‖ + µBeq (X) + eaφeq (X)

and the symplectic vector potential is

A∗eq (X) = Aeq (X) +
mau‖

ea
e‖ (X)

The perturbed part is

Γ1 = eaÃ(X + ρ, t) · d (X + ρ)− eaφ̃(X + ρ, t)dt

Terms can be regrouped to yield the total form

Γ = ea

(
A∗eq + Ã

)
· dX + eaÃ ·

∂ρ

∂µ
dµ+

(
ma

ea
µ+ eaÃ ·

∂ρ

∂ς

)
dς −Hdt (135)

where H = H0 + H1 and H1 = eaφ̃(X + ρ, t). Hence the covariant components of the
form Γ1 are59

Γ1,α = eaÃgc,α ; Γ1,µ = eaÃgc · ∂ρ∂µ ; Γ1,ς = eaÃgc · ∂ρ∂ς ; Γ1,t = −eaφ̃gc

where Ãgc and φ̃gc are the vector and electric potentials written in guiding-centre coordi-
nates, i.e.

Ãgc (X, µ, ς) = Ã (X + ρ)

φ̃gc (X, µ, ς) = φ̃a (X + ρ)

Eq.(135) clearly shows that µ is no longer an invariant of motion in presence of a perturbed
electromagnetic field. The objective remains to build a new invariant of motion. Formally
the form Γ can be written as Γ = ΓidZ i in the extended phase space, where Γ is now a
1-form that lives in the 8D extended phase space. The aim of the gyrocentre transform
is to find a set of variables Z̄ i = (X̄, p̄‖, µ̄, ς̄) such that the new Hamiltonian does not
depend on the gyroangle ς̄. The new form is Γ̄ = Γ̄idZ̄ i, with some flexibility on the
choice of Γ̄i. The two forms Γ and Γ̄ may differ by the differential of a scalar function
S, i.e. Γ̄idZ̄ i = ΓidZ i − dS, or formally Γ = Γ̄ + dS. This is sometimes called a “gauge
transformation” - instead of generating function - we will use indifferently both names.
The forms Γ and Γ̄ and the function S are expanded in εδ

Γ(Z) =

+∞∑
n=0

Γn(Z)εnδ

Γ̄(Z̄) =

+∞∑
n=0

Γ̄n(Z̄)εnδ

S(Z) =
+∞∑
n=0

Sn(Z)εnδ

From the expression above, it appears that Γn = 0, for n ≥ 2. As mentioned in a previous
section for the distribution functions F and F̄ , the two forms Γ and Γ̄ cannot be compared

58To simplify we assume that the equilibrium quantities do not depend on time. In fact, slow variations are
allowed.

59Greek indices indicate spatial coordinates.
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directly, since one is a function of Z, while the other one is a function Z̄. Two compare
Γ and Γ̄, one has to apply rules for change of variables. The coordinate transform from
Z to Z̄ is a push-forward transform, that will be noted T , i.e.

Z̄ = TZ

The operator that transform a function Γ̄(Z̄) to Γ(Z) is called a pull-back operator T ∗,
i.e.

Γ̄ = T ∗Γ

For a scalar function, e.g. the Hamiltonian (or the distribution function), one has H(Z) =
H̄(Z̄), and therefore

H̄(TZ) = H(Z) =
[
T ∗H̄

]
(Z̄)

H.2 First order theory

Let us now consider a first order change of variables

Z̄ i = Z i + εδG
i
1(Z)

Using

Γi(Z) = Γi(Z̄)− εδGj1
∂Γi
∂Zj

(Z̄)

dZ i = dZ̄ i − εδ
∂Gi1
∂Zj

(Z̄j)dZ̄j

Equating the various orders, one finds at lowest order

Γ̄0 = Γ0 + dS0

The next order yields

Γ̄1i = Γ1i −Gj1
∂Γ0i

∂Zj
− Γ0j

∂Gj1
∂Z i

+
∂S1

∂Z i

The term −Γ0j
∂Gj1
∂Zi can be written as − ∂

∂Zi

(
Γ0jG

j
1

)
+Gj1

∂Γ0j

∂Zi . The first term can be incor-

porated in the gauge function S (the name remains unchanged to avoid a multiplication
of notations), so that finally

Γ̄1 = Γ1 − L1Γ0 + dS1

where L1Γ0 is called a Lie derivative [26, 27, 28, 2] of the form Γ0 and is defined as

(L1Γ0)i = Gj1

{
∂Γ0i

∂Zj
− ∂Γ0j

∂Z i

}
= Gj1ω0,ji = G1 · ω

where ω0,ji is the Lagrange brackets associated with the form Γ0. Hence one arrives to
the equation

G1 · ω = Γ1 − Γ̄1 + dS1

Let us introduce the Poisson brackets J ij0 =
{
Z i,Zj

}
0
. The elements J ij0 are Poisson

brackets and are the components of a tensor. Its inverse is also a tensor, the elements
of which are Lagrange brackets ω0,jk. Hence Poisson and Lagrange brackets satisfy the

relationship J ij0 ω0,jk = δik. This provides an explicit expression of the displacement G1

Gi1 =
{
S1,Z i

}
0

+
(
Γ1j − Γ̄1j

)
J ji0

Since Z̄ i = Z i+Gi1, and H̄(Z̄) = H(Z), one has H̄1(Z) = H1(Z)−Gi1 ∂H0

∂Zi
or equivalently

K̄1(Z) = K1(Z)− {S1,H0}0
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where K1 = H1 − Ż i0Γ1i is an effective Hamiltonian, and K̄1 = H̄1 − ˙̄Z
i

0Γ̄1i its gyrocentre
counterpart60. We now impose that the new effective Hamiltonian is independent of the
gyroangle. In the gyrokinetic ordering

{S1,H0}0 = Ωc
∂S1

∂ς
+ o(εδ)

This imposes a constraint on K̄1

K̄1(Z) = J [K1(Z)]

and the expression of the generating function S1

S1 =
1

Ωc

∫ ς

dς ′ (K1 − J [K1(Z)])

H.3 “Hamiltonian” and “symplectic” approaches

We are now in position to derive the various expressions found in the literature. From
the form Eq.(135) it appears a suitable choice of the gyrocentre form is61

Γ̄ = ea

(
A∗eq + εsJ [Ã]

)
· dX̄ +

ma

ea
µ̄dς̄ − H̄dt

where H̄ = H0+H̄1, and H̄1 has yet to be determined, and εs = 0 or 1 is a switch, of which
the meaning is given below. Using Eq.(136), the effective Hamiltonian K1 = H1 − Ż i0Γ1i

can be written62

K1 = eaφ̃gc − ea
(
Ẋ + ρ̇

)
· Ãgc

The perturbed gyrocentre form is Γ̄1 = eaεsJ [Ã] · dX̄, so that the corresponding vector
field Γ̄1α is defined by

Γ̄1α = eaεsJ [Ã]α

The case εs = 0 corresponds to Γ̄1α = 0. It is called “Hamiltonian” since the symplectic
part of the form vanishes. In this case K̄1 = H̄1. Another choice consists in setting εs = 1,
such that Γ̄1 = eaJ [Ã] · dX̄. In this case, Γ̄1α = eaJ [Ã]α, and it is called “symplectic”
because the symplectic part of the perturbed form, i.e. J [Ã] · dX̄ is finite. The effective
Hamiltonian reads

K̄1 = H̄1 + eaẊ · J [Ãgc]

Since K̄1 = J [K1], one arrives to an explicit expression of the gyrocentre Hamiltonian

H̄1 = eaJ [φ̃gc]− eaJ
[(

Ẋ + ρ̇
)
· Ãgc

]
+ εseaẊ · J [Ãgc]

The displacement G1 is given by the relation

Gi1 =
{
S1,Z i

}
0

+ eaÃgc ·
{
X + ρ,Z i

}
0
− εseaJ [Ãgc] ·

{
X,Z i

}
0

(136)

60The velocity Żi0 must be understood here as Żi0 = −
{
H0,Zi

}
, i.e. the velocity of the unperturbed motion,

hence the index 0 - in the same way ˙̄Z
i

0 = −
{
H0, Z̄i

}
61The full vector potential is implemented here in the symplectic part when εS = 1. An alternative is to only

take a part of it, .e.g. Ã‖, and put the rest in the Hamiltonian.
62The reader should be warned that notations have been changed compared with the rest of the document.

The perturbed Hamiltonian is H1 = eaφ̃, i.e. the electric potential only, whereas the perturbed Hamiltonian

at order one was until now eaφ̃ − ea
(
Ẋ + ρ̇

)
· Ã(X + ρ), i.e. closer to the field K1. Also in the Hamiltonian

approach, a second order Hamiltonian
e2a

2ma
Ã2 pops in, whereas in the present approach there is no perturbed

Hamiltonian H2 nor form Γ2.
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The structure of the Poisson bracket in the guiding centre extended phase space is re-
minded

{F ,G}gc =
ea
ma

(
∂F
∂ς

∂G
∂µ
− ∂F
∂µ

∂G
∂ς

)
+

1

ma

B∗

B∗||
·
(
∂F
∂X

∂G
∂u‖
− ∂F
∂u‖

∂G
∂X

)
−

e‖

eaB∗||
·
(
∂F
∂X
× ∂G
∂X

)
+

(
∂F
∂E

∂G
∂t
− ∂F

∂t

∂G
∂E

)
(137)

The spatial and parallel velocity components of the displacement G1 play an important
role in the theory. Their expressions can be obtained by combining Eq.(136) and Eq.(137)
[27]

GX
1 = − 1

ma

∂S1

∂u‖

B∗

B∗||
−

e‖

eaB∗||
×∇S1

−
e‖

eaB∗||
×
(
Ãgc − εsJ [Ãgc]

)
G
p‖
1 =

(
e‖ · ∇

)
S1 +

ea
ma

(
Ãgc,‖ − εsJ [Ãgc,‖]

)
The other components yield the modifications of the magnetic moment, and gyroangle.
It is reminded here that the parallel gradient of fluctuations is smaller and introduces an
extra εδ so that the relationship between the new gyrocentre parallel “velocity” and the
guiding-centre velocity is given by the relationship

p̄‖ = u‖ +
ea
ma

(
Ãgc,‖ − εsJ [Ãgc,‖]

)
It appears that the relation between p̄‖ and u‖ is p̄‖ = u‖ + ea

ma
Ãgc,‖ in the Hamiltonian

case. Hence the gyrocentre velocity p̄‖ coincides with the “Hamiltonian velocity” p̄‖ used
in this note. This approach provides a rigorous derivation of the gyrocentre parallel
velocity. In the symplectic approach, the gyrocentre parallel velocity is different, related
to p‖ via the relation

p̄‖ = u‖ +
ea
ma

(
Ãgc,‖ − J [Ãgc,‖]

)
H.4 Arbitrary order

This scheme is extended to arbitrary order by writing the push-forward operator T , defined
as Z̄ = TZ, as a product of successive transforms of increasing order, i.e.

T =

∞∏
n=0

Tn = ...TnTn−1...T2T1T0

where Tn = exp (εnδGn). It then appears that the pullback operator T ∗, that transform
the function Γ̄(Z̄) into a function Γ(Z) is

T ∗ = T ∗1 T ∗2 ...T ∗n−1T ∗n ...

where T ∗n = exp(εnδLn), and Ln is the Lie derivative associated with Gn. Note that the
succession of T ∗n moves in opposite order compared with the Tn. Since we need to express
the new form Γ̄ as a function of the old one Γ, and therefore the inverse pullback operator
T ∗−1, which reads

T ∗−1 = ...T ∗−1
n T ∗−1

n−1 ...T
∗−1

2 T ∗−1
1
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where T ∗−1
n = exp {−εnδLn}. When applied to the form Γ = T ∗Γ̄, this yields the following

relations [26, 27, 28, 2]

Γ̄0 = Γ0 + dS0

Γ̄1 = Γ1 − L1Γ0 + dS1

Γ̄2 = Γ2 − L1Γ1 +

(
1

2
L2

1 − L2

)
Γ0 + dS2

where LnΓp = Gn · ωp. The pullback operator acts on a scalar in a way similar to its
action on a form, but with the Lie derivative defined as Ln = Gin

∂
∂Zi instead of a scalar

product with Lagrange brackets. Hence the new Hamiltonian H̄ = T ∗−1H verifies the
following sequence

H̄0 = H0

H̄1 = H1 − L1H0

H̄2 = H2 − L1H1 +

(
1

2
L2

1 − L2

)
H0

These relations allow to solve the problem at all orders, at least formally.

H.5 Equations of motion

It must be realised that the guiding-centre Poisson bracket must be modified to account
for the modification of the symplectic form by the perturbed vector potential Ã in the
symplectic case. The new effective magnetic field and Jacobian of the transform become63

B∗ = ∇×A∗ = Beq +
map̄‖

ea
∇× e‖ + εs∇×J [Ãgc]

and

B∗|| = e‖ ·B∗ = Beq +
map̄‖

ea
e‖ · ∇ × e‖ + εse‖ · ∇ × J [Ãgc]

where the index “eq” is used for unperturbed quantities, and e‖ remains equal to Beq/Beq.
The gyrocentre Poisson bracket in the phase space takes the form64

{F ,G}gc =
ea
ma

(
∂F
∂ς̄

∂G
∂µ̄∗
− ∂F
∂µ̄∗

∂G
∂ς̄

)
+

1

ma

B∗

B∗||
·
(
∇̄∗F ∂G

∂p̄‖
− ∂F
∂p̄‖
∇̄∗G

)
−

e‖

eaB∗||
·
(
∇̄∗F × ∇̄∗G

)
+

(
∂F
∂E

∂G
∂t
− ∂F

∂t

∂G
∂E

)
(138)

where

∇̄∗F = ∇̄F − εsea

∂J
[
Ãgc

]
∂t

∂F
∂E
− ea
ma

∂J
[
Ãgc

]
∂µ̄

∂F
∂ς̄


∂F
∂µ̄∗

=
∂F
∂µ̄
− εseae‖ ·

∂J
[
Ãgc

]
∂t

×
∂J

[
Ãgc

]
∂µ

 ∂F
∂E

63Note that p̄‖ replaces u‖ in B∗ and the Jacobian B∗|| since Γ̄0(Z̄) = Γ0(Z̄). Same remark for the Hamiltonian

H̄0, equal to H0 with u‖ replaced by p̄‖.
64The Poisson bracket is the inverse of the tensor ω0 + ω1, where ω1 = eaJ

[
Ãgc

]
. At first order, the inverse

of this matrix is J0 − J0ω1J0, where J0 = ω−1
0 is the zeroth order Poisson bracket

{
Zi,Zj

}
0
.
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and ∇̄F = ∂F
∂X̄

. The trajectory equations are given by the equations

dX̄

dt
= −

{
H̄, X̄

}
=

1

ma

dH̄

dp̄‖

B∗

B∗||
+

1

eaB∗||
e‖ ×

(
∇H̄ + εs

∂J [Ãgc]

∂t

)

ma

dp̄‖

dt
= −

{
H̄,map̄‖

}
= −B∗

B∗||
·

(
∇H̄ + εs

∂J [Ãgc]

∂t

)
where H̄ = H̄0 + εδH̄1 + ε2δH̄2, with

H̄0 =
1

2
map̄

2
‖ + µ̄Beq(X̄) + eaφeq(X̄)

H̄1 = eaJ [φ̃gc]− (1− εs) eap̄‖J [Ãgc,‖]− eaJ
[(

Ẋ⊥ + ρ̇
)
· Ãgc,⊥

]
The calculation of the second order Hamiltonian H̄2 is quite cumbersome, and can be
found in the overview by Brizard and Hahm [2]65. We give here the expression in the
(φ̃, Ã‖) representation

H̄2 =
e2
a

2ma
J [Ã2

gc,‖]− εs
e2
a

2ma

(
J [Ãgc,‖]

)2

− e2
a

2Ωc

∮
dς

2π

{∫ ς

dς ′ψ̃, ψ̃

}
(139)

where
ψ̃ = φ̃gc − (1− εs) p̄‖Ãgc,‖

The expression Eq.(59) is recovered in the “Hamiltonian” case εs = 0 - more precisely the

first line of Eq.(139) corresponds to
〈
H̃2

〉
in Eq.(59), while the second line is identical to

the sum of the two last terms. These equations of motion coincide with Eqs.(24,25) when
εs = 0.

65The derivation of the general expression of the Hamiltonian H̄2 is given in Brizard and Hahm page 446 and
reproduced here in extenso

H̄2 = −1

2
〈{S1, {S1,H0}}〉

−
〈
∆Γ1i

{
Zi,K1

}〉
− 1

2

〈
∆Γ1iJ

ij
0

{
Γ1j + Γ̄1j ,H0

}〉
− 1

2

〈
∆Γ1i

{
Zi, ˙̄Z

i

0

}(
Γ1j + Γ̄1j

)〉
where ∆Γ1i = Γ1i − Γ̄1i, brackets are average over the gyroangle. The first line can easily be shown to be
identical to the “ponderomotive” force with the same calculation done for the Hamiltonian theory at second
order. Obtaining the term in Ã2

gc,‖ is a bit trickier. The second line is readily shown to be equal to

−
〈
∆Γ1i

{
Zi,K1

}〉
= − e2

a

ma

〈(
Ãgc,‖ − εsJ

[
Ãgc,‖

]){
`G,map‖

} ∂ψ̃
∂p‖

〉

=
e2
a

ma

(
J
[
Ã2
gc,‖

]
− εs

(
J
[
Ãgc,‖

])2
)

where `G is the position of the guiding-centre along the field line. The third line is easily shown to be equal to
zero, while the last term reads

−1

2

〈
∆Γ1i

{
Zi, ˙̄Z

i

0

}(
Γ1j + Γ̄1j

)〉
= − e2

a

2ma

〈(
Ãgc,‖ − εsJ

[
Ãgc,‖

]){
`G,map‖

}(
Ãgc,‖ + εsJ

[
Ãgc,‖

])〉
= − e2

a

2ma

(
J
[
Ã2
gc,‖

]
− εs

(
J
[
Ãgc,‖

])2
)

Combining the two results yield the result that was looked for.
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I Useful relations for the derivation of energy con-

servation

I.1 Fast derivation of a global law of energy conservation

In this derivation, time plays a special role. Hence time dependences are left explicit to
get useful conservation equations. We leave for a while the extended phase space. Let us
multiply the gyrokinetic Vlasov equation Eq.(23) by H̄, integrate over the phase space,
and sum over all species. The resulting equation is∑

species

∫
dΓ̄

∂

∂t
F̄(Z̄, t)H̄(Z̄, t) = 0

where dΓ̄ =
B∗||
ma

d3X̄ dp̄‖ dµ̄ dς is the element of volume in the gyrocentre phase space66.

The gyrocentre variables Z̄ are dummy variables in this integral. We can therefore re-
place them safely by guiding-centre variables Z = (X, p‖, µ). The Hamiltonian is split
in unperturbed and first order perturbed components H̄(Z∗, t) = H̄eq(Z∗, t) + H̄1(Z∗, t).
Defining a “particle energy” as67

Epart =
∑
species

∫
dΓ∗F̄(Z∗, t)H̄eq(Z∗)

and using the relationship H̄1(Z∗, t) = J [H1](Z∗, t), this equation is reformulated as

∂

∂t

∑
species

∫
dΓ∗F̄(Z∗, t)H̄eq(Z∗) +

∑
species

∫
dΓ∗

∂

∂t
F̄1(Z∗, t)J [H1](Z∗, t) = 0 (140)

where dΓ∗ =
B∗||
ma

d3X 2π dp‖ dµ. The Maxwell equations in the gyrokinetic framework
are derived by having the action A = Afield + Apart + Askin, given by Eqs.(53,54,54),
extremum with respect to (φ̃, Ã). Hence the electromagnetic potentials (φ̃, Ã) are given
by linear operators applied to charge and current densities. This is just the consequence
of the linearity of the Maxwell equations that relate fields to sources, i.e. charge and
current densities. A consequence is the following property, where one moves from the
guiding-centre coordinates Z∗ = (X, p‖, µ) to the “hybrid” set z∗ = (x, p‖, µ)∫

dΓ∗
∂

∂t
F̄1(Z∗, t)J [H1](Z∗, t) =

∫
dγ∗

∂

∂t
J t[F̄1](z∗, t)H1(z∗, t)

=
1

2

∂

∂t

∫
dγ∗J t[F̄1](z∗, t)H1(z∗, t)

=
1

2

∂

∂t

∫
dΓ∗F̄1(Z∗, t)J [H1(Z∗, t)] (141)

Combining yields Eqs.(140, 141, 66) yields the conservation equation Eq.(67).

66This identity is readily derived by noting that
∫
dΓ {F,G}Z = 0 for any functions F and G of Z̄ and also

using H̄
{
H̄, F̄

}
Z

= 1
2

{
H̄2, F̄

}
.

67We will see that it differs significantly from the usual kinetic energy - hence this weird name.
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I.2 Calculation of field-particle actions

The action that corresponds to the potential-charge density interaction
∫
dt d3x%φ can be

reworked as follows∫
dt d3x %(x, t)φ(x, t) =

∑
species

ea

∫
dt d3x d3p f(x,p, t)φ(x, t)

=
∑
species

ea

∫
dZ̄ F̄(Z̄)φ(X̄ + ρ̄(X̄, µ̄, ς̄), t)

=
∑
species

ea

∫
dZ F̄(Z)φ(X + ρ0(X, µ, ς), t)

=
∑
species

ea

∫
dt d3x d3V F̄(x, µ, p‖, t)J [φ](x, µ, t)

where ρ̄ has been replaced by ρ0 since the polarisation shift introduces higher corrections
in the action. Similarly, the magnetic part of the field-particle action

∫
d3x J̃ · Ã can be

reworked as follows∫
d3x J̃(x, t) · Ã(x, t) =

∑
species

ea

∫
dt d3x d3p f(x,p, t)v(x,p, t) · Ã(x, t)

=
∑
species

ea

∫
dZ̄ F̄(X̄, µ̄, p̄‖)(

˙̄X⊥(X̄, µ̄, p̄‖) + ˙̄ρ(X̄, µ̄, ς̄) + p‖e‖

)
· Ã(X̄ + ρ̄(X̄, µ̄, ς̄), t)

−
∑
species

∫
dZ̄ F̄eq(X̄, µ̄, p̄‖)

e2
a

ma
Ã2(X̄ + ρ̄(X̄, µ̄, ς̄), t)

=
∑
species

ea

∫
dZ F̄(X, µ, p‖)(

J
[
ρ̇0(X, µ, ς) · Ã⊥(X + ρ0(X, µ, ς), t)

]
+ p‖J [Ã‖](X, µ)

)
−
∑
species

∫
dZ F̄eq(X, µ, p‖)

e2
a

ma
J [Ã2](X, µ, t)

=
∑
species

ea

∫
dt d3x d3V F̄

(
p‖J [Ã‖]− µB[B̃‖]

)
−
∑
species

∫
d3x d3V F̄eq

e2
a

ma
J [Ã2]

The term ˙̄X⊥ · Ã is second order in εB, hence is multiplied by F̄eq. This terms disappears
through the average over time, since it is linear in Ã.
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