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Abstract – This paper aims to benchmark the 

threshold voltage extraction at cryogenic temperature. It 

presents two DC and for the first time one RF methods 

to extract the threshold voltage down to 4.2K for channel 

lengths down to 28 nm. Measurements are performed on 

CMOS transistors integrated in 28nm Fully Depleted 

Silicon-On-Insulator (FDSOI). First, two methods based 

on DC measurement are explained: the constant-current 

and the second derivative technique. Besides, the gate-

channel capacitance derivative method based on RF 

measurements is presented. Finally, we discuss and 

compare the advantages and limits of these different 

methods. 

Keywords – Threshold voltage extraction, FDSOI, 

CryoCMOS, cryogenic RF measurements 

I. INTRODUCTION 

Nowadays, with the development of electronics for 

aerospace or the control and read-out in quantum computing  

[1][2], many different circuits are designed to work at 

cryogenic temperature such as Low Noise Amplifiers (LNA) 

[3], or Voltage-Controlled Oscillators (VCO) [4]. The 

threshold voltage is a key parameter to design circuits with 

CMOS transistors. This voltage physically corresponds to 

the transition from weak inversion, where the inversion 

charge is exponentially dependant on the gate voltage VGS, 

to strong inversion regime, where the inversion charge 

varies linearly with VGS [5]. The transistor geometry induces 

variation in the threshold voltage: small transistors are 

subject to short channel effects and Drain Induced Barrier 

Lowering (DIBL) [5]. This transition voltage depends on the 

measurement temperature: at low temperature, it shifts to 

higher absolute values with a sensitivity around 0.5 to 

1mV/K [6][7]. Whereas for bulk MOSFETs, the shift is 

explained by the temperature dependence of the Fermi level 

in the silicon channel, in FDSOI it is mainly due to the 

Fermi-Dirac distribution [5]. Therefore, it is important to 

define an accurate and physical extraction of the threshold 

voltage valid down to deep cryogenic temperature. FDSOI 

circuits appear as a very promising choice for cryogenic 

applications, thanks to their high electrostatic integrity, their 

low variability and the threshold voltage control through the 

back gate [6][8–10]. Here, we study the extraction of the 

threshold voltage of CMOS transistors fabricated in 28nm 

FDSOI UTBB technology from STMicroelectronics [11]. 

We analyse, test and compare three different extraction 

methods using DC and RF measurements down to 4.2K. 

II. EXPERIMENTS 

We measured short and long  NMOS transistors 

connected on common source configuration, fabricated in 

28nm FDSOI technology, with an equivalent oxide 

thickness EOT of 1.1 nm [6]. Measurements were performed 

on a Lakeshore EMTTP4 cryogenic probe station between 

300K and 4.2K. The whole set-up is presented in [12] along 

with the measurement protocol. We performed both DC and 

RF measurements on the same devices, using RF probes in 

Ground-Signal-Ground (GSG) configuration and bias tees.  

There are many different methods to extract the 

threshold voltage with DC measurement [13].  This  paper 

focuses on the constant current method [14] and on the 

second derivative technique [15] because they correspond to 

the threshold voltage condition Cinv=Cox in FDSOI 

transistors, with ��� =  ���
	��

 and Cinv  the derivative of the 

inversion charge with respect to the surface potential 

[16][17].   

a. CONSTANT-CURRENT METHOD 
 

The constant-current method is often used in industry 

due to its straightforward application. The threshold voltage 

is extracted by taking the gate voltage for which a given 

fixed drain current level is reached. This critical drain 

current value is usually arbitrarily chosen in moderate 

inversion. Here as a first approximation, we chose [14]:  
 


�,
���	,���� =  ��
� � ×  10�� [�]         (1) 

 

However, if this value is independent of the temperature, 

it will not guarantee the same Vth condition within the 

temperature range [18]. In ref. [18], the author proposed to 
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use instead a Temperature-dependent criterion, to ensure a 

constant inversion charge Qinv at inversion: 


�,
���	,� =  � �
���� ." 
�,
���	,����       (2) 

 

where T is the temperature in K. Figure 1 presents the 
�($%) 

curves for different temperatures, and the corresponding 

Id,const,T criteria.  
 

  
 

  
Figure 1. DC drain current versus gate voltage. The dotted lines correspond 

to the constant current value and to the threshold voltage at 300K. The 

extraction points of the threshold voltage are marked with a cross. (a) For 

device of L=300nm and W=20μm. (b) For device of L=28nm and 

W=20μm.  

The limits of this method are the choice of the initial 

constant drain current Id,const,300K and the fact that the formula 

(2) is only accurate in the ohmic regime. According to [13], 

Id,const,300K is different depending on the condition chosen to 

determine the threshold voltage. For the small device on 

figure 1 (b), the curves at 4K exhibit a lower Vth than the 

one at 50K or 100K. This is due to Subthreshold behaviour 

which exhibits tunnelling through defects [19].  

b. SECOND DERIVATIVE METHOD 

The second derivative method consists in deriving twice 

the drain current with respect to the gate voltage. This 

method can be understood by considering an ideal transistor. 

In an ideal transistor, the drain current is equal to zero for 

$% < $	(, and becomes proportional to $% for $% > $	(. 

Under these assumptions, the first derivative of the drain 

current with respect to the gate voltage is a Heaviside 

function θ(Vg-Vth). Therefore, the second derivative is 

infinite when $% = $	(. With a real transistor, this second 

derivative will not be infinite but it will reach a maximum at 

$% = $	(, as it can be seen in Figure 2.  

 

 
Figure 2. Derivative of the DC transconductance *+ with respect to the gate 

voltage versus gate voltage. The dotted lines correspond to gate voltage 

when dgm/dVg is maximum (i.e. to Vth) (a) For device of L=300nm and 

W=20μm. (b) For device of L=28nm and W=20μm. 

Figure 2 (b) shows the limitations of this extraction 

method related to the measurement noise, which is amplified 

by the second derivative. In the short transistors, there are 

fewer carriers and the recombination centres are less active. 

Indeed, it leads to inaccurate value of threshold voltage. 

According to the measurement, the uncertainty is ±0.01V for 

the large transistor and ±0.05V for the small one.  

c. RF EXTRACTION METHOD 

Mathematically, the transition point between the weak 

inversion regime, where Qinv is exponentially dependent of 

Vg, and the strong inversion regime, where Qinv is linear with 

Vg,  is given by the maximum of second derivative of Qinv 

with respect to Vg [16]. It is equal to the maximum of the 

first derivative of the gate-to-channel capacitance CGC with 

respect to $%: 
 

max/% 0�12345
�/61

7 =  max/% 0�869
�/6

7      (3) 

 

In RF measurements, this capacitance is evaluated by the 

gate capacitance �%%, given as follows:   
 

�%% = �%� + �%� = ;+(<==)
>?@         (4) 

 

Where A is the frequency and B   is the input admittance 

on the transistor gate [20] measured with the Vector 

Network Analyser (VNA). The gate capacitance (Cgg) is 

mainly due to the channel capacitance (Cgc) contribution and 

increases with the inversion charge. The gate capacitance 

and its derivative with respect to gate voltage are presented 

in Figure 3.
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Figure 3. (a) and (b) Gate capacitance averaged between 1 to 5 GHz versus the gate voltage. (c) and (d) Derivative of the gate capacitance with respect to the 

gate voltage. The dotted lines correspond to gate voltage when dCgg/dVg is maximum (i.e. to Vth). (a) and (c) For device of L=300nm and W=20μm. (b) and 

(d) For device of L=28nm and W=20μm.

The limits of this method is the measurement noise 

introduced by the first derivative. The advantages regarding 

the other extraction techniques are two-fold: it is 

independent of series resistance and of transport properties 

of the channel carriers. The second advantage is the 

accuracy of this method. The errors bar is ±0.01V for all 

measured transistors and temperature. It is low compared to 

the DC methods, as shown in Figure 4. and 5. Even if there 

are parasitic capacitance contributions, the transition 

between weak and strong inversion leads to a net change in 

the capacitance value (Figure 2 (b)) and to a precise 

maximum for the derived capacitance (Figure 2 (d)). Thus, 

the threshold voltage can also be performed on very small 

gate area with a good accuracy. 

III. RESULTS AND DISCUSSION 

As shown in Figure 4. and Table 1. for relatively long 

devices, we see that all the methods present a similar 

variation of the threshold voltage with respect to the 

temperature decrease, differing only by a shift smaller than 

80mV. On the other hand, for small devices (Fig.5 and Table 

2), the CC method diverges from the other ones below 50K. 

The second derivative and the RF capacitance methods 

present similar variation.  

The temperature sensitivity of Vth is 0.3-0.4mV/K from 

300K to 100K. Below 100K the threshold voltage tends to 

saturates as reported for other technologies [7].  

The shift between Vth values given by the different 

methods can be explained as RF capacitance method is 

purely based on a charge variation, whereas the DC ones are 

mediated by the current.  

   
Figure 4. Threshold voltage extracted by different methods as a function of 

temperature (Vd=100mV and VBG=0V). For device of L=300nm and 

W=20μm 
 

  

Table 1. Threshold voltage values for different extraction methods and different 

temperature. (CC = Constant Current method with temperature correction, 

SD = Second Derivative method and RF capa. = gate capacitance channel derivative 

method). For device of L=300nm and W=20μm 
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Figure 5. Threshold voltage extracted by different methods as a function of 

temperature (Vd=100mV and VBG=0V). For device of L=28nm and 

W=20μm. 

   

  

Table 2. Threshold voltage values for different extraction methods and different 

temperature. (CC = Constant Current method with temperature correction, 

SD = Second Derivative method and RF capa. = gate capacitance channel derivative 

method). For device of L=28nm and W=20μm 

IV. CONCLUSION 

In this work, we presented three different methods under 

interest at low temperature to extract the threshold voltage. 

We highlighted that the RF extraction method is the most 

performant one at cryogenic temperature because it is 

insensitive to the series resistance, still valid at cryogenic 

temperature and can be performed on every transistor sizes.  
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