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Abstract

This note addresses some properties of confining magnetic configurations. In a first
step, it is shown that confinement is ensured if the field lines lie on surfaces, called mag-
netic (or flux) surfaces. These surfaces have to be tori in accordance with the hairy ball
theorem. The existence of magnetic flux surfaces is granted when the configuration is ax-
isymmetric. When it is not, flux surfaces can still exist under some reasonable conditions.
A set of curvilinear flux coordinates can then be built, that reflect the structure of the
magnetic field. The second step consists in calculating the force exerted on the plasma.
The condition of force balance leads to a constraint on the magnetic field called the Grad-
Shafranov equation. The equation prescribes the magnetic field, for given pressure and
current profiles. Examples of solutions of the Grad-Shafranov are given. It is also shown
that a vertical magnetic field is needed to ensure an equilibrium.

Warning: hasty readers may skip sections with a star.

1 Introduction

The choice of coordinates in a magnetised plasma is essential. The notion of field lines
allows understanding this point. Field lines are defined as curves that are tangent to
the magnetic field at every point. Conversely the magnetic field is a continuous vector
tangent field associated with a set of field lines. When the magnetic field is intense, charged
particles follow closely field lines, at least for some time - hence the name magnetic guide
field1. Magnetic field lines can therefore be seen as geodesics. As in general relativity,
it is appealing to define a set of coordinates well adapted to describe these geodesics.
A logical next step is to derive an equation that constrains the magnetic topology, here
the Grad-Shafranov equation, for given sources which appear to be the thermal pressure
and current density profiles. Good confinement properties of a magnetic field are shown
to imply that field lines are winded on magnetic flux surfaces, or flux surfaces in short,
which are tori. Flux surfaces and field lines offer a powerful way to construct a set
of coordinates that spouse the magnetic topology. These are called flux coordinates.
Flux coordinates reflect the structure of the magnetic field, and thus embed some basic
properties of the field, like magnetic fluxes, hence their name. This simplifies calculations
and more importantly allows a deep understanding of the physics at play. This matters for

1This is a proxy - in fact charged particles drift away from curved field lines. However drift velocities scale
as the inverse of the field, hence vanish at high field.
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instance to devise equilibrium magnetic configurations with good confinement properties.
Differential geometry appears as a powerful mathematical tool to define and handle flux
coordinates2.

Figure 1: System of toroidal coordinates in an axisymmetric configuration.

2 Structure of the equilibrium magnetic field in

a tokamak

One way of ensuring charged particle confinement is to enforce field lines to lie on bounded
surfaces. These surfaces, when they exist, are called magnetic flux surfaces (or flux
surfaces)[1, 2]3. Flux surfaces have to be tori thanks to the “hairy ball” theorem [3].
A casual version of this theorem is the following. Field lines can be seen as “hair”. Hair
cannot be combed on a sphere without a field singularity (at the poles), whereas they
can be combed smoothly on a torus. [3] The ‘hairy ball” (or “hedgehog”) theorem can be
formulated in a slightly more precise fashion. Under reasonable conditions (e.g. magnetic
field smoothness on the invariant manifold, no singularity), a compact manifold in a 3D
phase space is a 2-dimensional torus. While the “reasonable” conditions of smoothness
can be granted, the key aspect is the compactness, which requires that field lines are
bounded. This is the hard part of the demonstration, which is addressed in the next
sections.

2.1 Existence of flux surfaces

A toroidal system of coordinates (ρ, θ, ζ) is chosen, anticipating that field lines are winded
on tori in a well suited confining magnetic configuration. The surface ρ(x) = cte is a

2A reader not familiar with curvilinear coordinates may read first the appendix A.
3This condition is sufficient but certainly not necessary. One could think of a finite volume ergodised by a

set of field lines, surrounded by flux surfaces. This system could be still called confining while not satisfying the
condition of flux surface existence. However a set of flux surfaces is optimal in terms of confinement, admitting
that particles follow closely field lines. It is also stressed that the existence of magnetic surfaces does not ensure
perfect confinement, because of a slow transport process called Arnold diffusion.
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torus, hence a coordinate that characterises the distance to the torus internal axis, while
θ and ζ are poloidal and toroidal angles. A configuration is said axisymmetric if it is
left invariant by a rotation around a symmetry axis (labelled by the coordinate Z) - see
example on Fig.1. However the most general case is not axisymmetric - an emblematic
example is the stellarator (see Fig.2)4. The angles (θ, ζ) are not necessarily geometric
angles5. The notation ϕ is used when the toroidal angle is geometric and oriented in the
conventional trigonometric direction. It must be stressed again that the winding of field
lines on toroidal flux surfaces, is by no means granted. Nevertheless nothing prevents the
use of an arbitrary set of toroidal coordinates. The vector potential can be written as

A = χ(x)∇θ − ψ(x)∇ζ +∇GA

where χ, ψ and GA are functions of x = (ρ, θ, ζ). The functions χ and ψ get a physical
interpretation by using the Gauss flux theorem that relates the contour integral of the
vector potential to the flux of the magnetic fields. More precisely if Ψ is the flux of the
magnetic field across a closed curve that lies on the torus ρ = cte and turns around the
vertical axis (contour C at constant ρ and θ), and χ the magnetic flux trough a curve that
turns around the axis of the torus ρ = cte in a “poloidal” plane ζ = cte (contour C′ at
constant ρ and ζ) , then6

Ψ (ρ, θ) = −2π

∫
C
dζψ(x) (1)

χ (ρ, ζ) = 2π

∫
C′
dθχ(x) (2)

Ψ and χ are called “poloidal” and “toroidal” magnetic fluxes7. The magnetic field B =
∇×A bears the following Clebsch representation [1]

B = ∇χ×∇θ +∇ζ ×∇ψ (3)

It is always possible to choose the radial coordinate ρ as ψ (or respectively χ). The
relation Eq.(1) (resp. Eq.(2)) then implies that ρ is minus the poloidal flux normalised
to 2π (resp. the toroidal flux normalised to 2π). In some special cases, a scalar field may
be a function of ρ only, i.e. does not depend on the poloidal and toroidal angles. Such a
field is called a”flux function”. By definition, field lines are such that B× d` = 0, where
d` is a length element along the field line. This condition can be expressed as

dρ

B · ∇ρ
=

dθ

B · ∇θ
=

dζ

B · ∇ζ

Choosing without loss of generality the radial coordinate as the normalised toroidal flux,
ρ = χ, one gets the two following equations

dθ

dζ
=
dψ

dχ
(4)

dχ

dζ
= −dψ

dθ
(5)

This set of equations is a set Hamiltonian equations where ψ(χ, θ, ζ) plays the role of the
Hamiltonian and ζ the role of time [5, 3]. This corresponds to a dynamical system with

4Note however that the modulus of the magnetic field can be axisymmetric in a stellarator
5A geometric angle θ, measured in radian, is defined as the ratio of the length of a circular arc to the radius

of the circle. This does not imply that the curves ρ = cte are circles. Any periodic function of the geometric
angle is also an angle. A similar definition applies to the angle ζ.

6The toroidal length element is (∇ρ×∇θ)√gdζ, while a poloidal length element is (∇ζ ×∇ρ)
√
gdθ. See

Appendix A for details.
7Note there is some piece of arbitrariness in these definitions. For instance, if the toroidal geometric angle

is taken as the orientation direction for the contour C, then Ψ is the poloidal flux (without a minus).
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Figure 2: Example of an non-axisymmetric configuration, here a quasi-helically symmetric stellarator
(from [4]).

1.5 degree of freedom (a couple of conjugate variables plus time). The solution of these
equations is generically characterised by field lines that ergodise a large fraction of the
accessible volume. Obviously this means no confinement.

However if the system is axisymmetric, then the function ψ does not depend on ζ.

Figure 3: Helical field lines in an axisymmetric configuration.

This is equivalent to a 2D dynamical system where the “Hamiltonian” ψ is an invariant
of motion. In this case field lines (trajectories) lie on surfaces of constant ψ, and are
helices (see Fig.3). These surfaces are magnetic flux surfaces, and are tori in accordance
with the hairy ball theorem. The coordinates (ρ, ζ, θ) are called “flux coordinates” as
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long as the coordinate ρ is a function of ψ, i.e. a label of flux surface. The special case of
axisymmetric configurations is detailed in the next section.

Figure 4: Straight and non straight field line coordinates in an axisymmetric configuration.

2.2 Flux coordinates in axisymmetric configurations

The function ψ is the poloidal magnetic flux normalised to −2π. The radial coordinate ρ
is chosen as ρ = ψ. The set of angle coordinates (θ, ζ) can be related to any other set of
angle variables (θ′, ζ ′) via relations of the form

θ′ = θ + θ̃ (ψ, θ, ζ)

ζ ′ = ζ + ζ̃ (ψ, θ, ζ)

where θ̃ and ζ̃ are 2π-periodic functions in (θ, ζ) with zero mean. In the special axisym-
metical case, the toroidal angle ζ can be chosen as minus the toroidal geometric angle ϕ,
and ζ ′ = ζ. The function θ̃ depends on (ψ, θ) only. The expression of the magnetic field
Eq.(3) imposes that

B · ∇ζ
B · ∇θ

=
∂χ

∂ψ
(ψ, θ) = qθ(ψ, θ)

where the function qθ measures the local pitch angle of field lines. The function qθ can be
split as

qθ(ψ, θ) = q(ψ) + q̃(ψ, θ)

where

q(ψ) =
1

2π

∫ 2π

0
dθqθ(ψ, θ)

and q̃(ψ, θ) is a modulation, i.e. a 2π-periodic function with zero mean. Defining the
angle θ′ (ψ, θ) via the equation

∂θ′

∂θ

∣∣∣∣
ψ

= 1 +
q̃(ψ, θ)

q(ψ)

5



Figure 5: Poloidal magnetic flux in an
axisymmetric configuration.

Figure 6: Toroidal magnetic flux in
an axisymmetric configuration.

it appears that the new poloidal angle θ′ is such that

B · ∇ζ
B · ∇θ′

= q(ψ)

Hence the safety factor depends on the poloidal flux only with this choice of angles, so
that a field line appears as straight in a plane (ζ, θ′) (see Fig.4) - hence the name straight
field line coordinates, which are a special choice of flux coordinates. The function q(ψ) is
called safety factor, and its inverse rotational transform (sometimes with a 2π prefactor).
An immediate consequence is that χ depends on ψ only, and is the toroidal magnetic
flux normalised to 2π - geometric definitions of the poloidal and toroidal fluxes are shown
on Fig.5 and Fig.6. To simplify the notation, this special set of ordinates will still be
noted (θ, ζ), i.e. prime are removed. The expression of the vector potential is particularly
agreeable in this set of coordinates

A = χ(ψ)∇θ − ψ∇ζ

up to a gauge function, and the magnetic field is

B = ∇χ×∇θ +∇ζ ×∇ψ (6)

From now on, the notations (θ, ζ) will correspond to this particular choice of coordinates,
called straight field line coordinates because of the constancy of the safety factor on a
magnetic flux surface, i.e. the equation of a field line is ζ = q(ψ)θ + ζ0, where ϕ0 is
the value of the toroidal angle at θ = 0. Usually the poloidal angle is set to zero in
the equatorial plane, which fully determines the angle θ. It is sometimes convenient to
replace θ with a coordinate α = ζ − q(ψ)θ 8. In the system of coordinates (ψ, α, ζ), the
equation of a field line is ψ = cte and α = ζ − q(ψ)θ = cte. In other words, a field line is
fully determined by the values of α and ψ. Obviously this implies that B · ∇ψ = 0, and
B · ∇α = 0. A compact Clebsch formulation of the field is

B = ∇α×∇ψ

3 Magnetostatic equilibrium

3.1 Force balance equation

We admit here that flux surfaces exist, labelled by the radial coordinate ρ. This property
was shown for axisymmetric configurations, and it will be seen that it holds for non-
axisymmetric configurations under some reasonable assumptions. The full determination

8N.B.: the coordinate α is not an angle unless q is an integer
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of the magnetic field requires the determination of the flux function ψ(ρ, θ, ζ) 9. The equi-
librium field is chosen up-down symmetrical from now on. Some physical considerations
other than the Maxwell equations have to be accounted for in order to constrain ψ. The
MHD force balance equation reads [6, 7]

ρm (∂t + V · ∇)V = −∇P + J×B + ρmν∇2V (7)

where ρm is the mass density, V the fluid velocity, P the pressure, ν the kinematic
viscosity (supposed constant to simplify the notations). This equation can be understood
as a Navier-Stokes equation that incorporates the Lorentz magnetic force J × B. For a
hot plasma immersed in a strong magnetic field, the viscous force is small against the
other terms, unless some singularity of the flow appears. If the Mach number is small the
inertial force (V · ∇)V is also small against the pressure gradient. In a steady situation,
this means that the plasma equilibrium is ruled by the force balance equation

F = J×B−∇P = 0 (8)

where F is the force exerted on the plasma. The current density J is divergence-free
∇ · J = 0 (a consequence of charge conservation), and is tightly linked to the magnetic
field via the Ampère equation

∇×B = µ0J (9)

Moreover there is no current normal to the flux surface due to the constraint B · ∇P = 0,
which results from the projection of the magnetostatic force balance equation along the
magnetic field. Indeed B·∇P = 0 imposes that the pressure is a flux function, i.e. depends
on ρ only. Thus each flux surface is an isobar. Moreover the perpendicular component of
the current

J⊥ =
B×∇P
B2

(10)

satisfies J⊥ · ∇ρ = 0. Hence the current density J is locally tangent to a flux surface.
The current J⊥, related to the pressure gradient, is said “diamagnetic” since its poloidal
component produces a field that counteracts the toroidal magnetic field, as shown in Fig.7.

3.2 Field line bending and curvature

The force exerted on the plasma Eq.(8) can be written in an alternative form using the
Ampère equation Eq.(9)

F = −∇
(
P +

B2

2µ0

)
+

1

µ0
(B · ∇)B

This expression gives some insight in the nature of the electromagnetic forces. The quan-
tity B2

2µ0
acts as the thermal pressure P , and is accordingly called magnetic pressure - it

is also the density of magnetic energy. The force (B · ∇)B is somewhat more difficult to
grasp. It can be written

1

µ0
(B · ∇)B =

B2

µ0
κ+

[(
e‖ · ∇

)( B2

2µ0

)]
e‖

where κ = (e‖∇·)e‖ is the field line curvature. The second term can be regrouped with
the gradient of the magnetic pressure, so that the total force reads in fact

F = −∇⊥
(
P +

B2

2µ0

)
+
B2

µ0
κ

where the perpendicular gradient is defined as ∇⊥ = ∇ − e‖
(
e‖ · ∇

)
, and the property(

e‖ · ∇
)
P = 0 has been used. Two conclusions can be drawn:

9It could be χ(ρ, θ, ζ) as well - it will be seen that the knowledge of one gives the other one - this is already
clear for an axisymmetric configuration since χ is a function of ψ.
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Figure 7: Balance between pressure and Lorentz forces (poloidal projection).

• The steady state condition F = 0, gives a useful relationship

κ =
µ0∇⊥P
B2

+
∇⊥B
B

that relates the field line curvature with the perpendicular gradient of kinetic and
magnetic pressures.

• Let us assume that the plasma is submitted to a small displacement ξ directed along
the normal to the field line, opposite to the curvature κ (see Fig. 8). The projection

of the force B2

µ0
κ along ξ is negative, hence opposes to the displacement. This implies

that this component of the force opposes field line bending.

Figure 8: Field line bending and normal component of the Lorentz force.

3.3 Tensorial expression of the force balance equation

Since the magnetic field is divergence free, the force can be rewritten in a tensorial form10

F k =
∂T ik

∂Xi
= 0 (11)

10Reminder: the Xis are cartesian coordinates
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where the symmetrical tensor T ik is the sum of the Maxwell stress and pressure stress
tensors

T ik = −
(
P +

B2

2µ0

)
δik +

BiBk

µ0

The pressure P has to be replaced by a thermal stress tensor in presence of pressure
anisotropies. This expression also provides the matching condition across a surface that
separates two parts of the plasma, or the plasma from the vacuum. Indeed the force on
the surface that encloses a finite volume is

FS = −
∮
dS

(
P +

B2

2µ0

)
+

∮
(dS ·B)B

Continuity is ensured if P + B2

2µ0
and n ·B are continuous across the surface, where n is

the vector normal to the surface.

4 Axisymmetric configurations

Axisymmetry simplifies considerably the determination of the equilibrium magnetic field.
As seen in section 2.2, it derives from a vector potential A = χ∇θ − ψ∇ζ where the
toroidal flux function χ is a function of ψ only, and θ is a straight field line poloidal angle.
It also appears that the magnetic field can be related to the poloidal current that flows
across a major radius that lies on a flux surface. The force balance equation then leads
to a differential equation that rules ψ(x), the Grad-Shafranov equation.

4.1 Alternative expression of the magnetic field

Let us apply the Gauss flux theorem on the magnetic field∮
C
B · dx = µ0

∫∫
S
J · dS

where the contour C that bounds the surface S is a circle of major radius R that lies on a
flux surface ψ = cte 11. The right hand side is the current that flows through the contour
C, and depends on ψ only. Moreover the divergence-free condition on the current density
imposes that J · dS does not depend on a peculiar choice of the contour C, provided it
lies on the flux surface. The contour integral

∮
C B ·dx is therefore equal to a flux function

I that depends on ψ only (see Fig. 9). A mixed co- and contravariant expression of the
field, frequently found in the literature, is therefore

B = I(ψ)∇ζ +∇ζ ×∇ψ (12)

The magnetic field is thus the sum of a toroidal component BT = I(ψ)∇ζ and a poloidal
field Bp = ∇ζ×∇ψ. The intensity of the poloidal field is usually smaller than its toroidal
counterpart. The total field intensity decreases with major radius since |∇ζ| = 1/R, hence
the denomination “low field side” (by convention the equatorial plane on the low field side
is often chosen as the origin of the poloidal angles θ = 0 ). The current I(ψ) is related to
the Jacobian of the coordinate systems (ψ, θ, ζ) via the relation

√
g = [(∇ζ ×∇ψ) · ∇θ]−1 =

1

B · ∇θ
=
qR2

I

11a choice made possible by the assumption of axi-symmetry.
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Figure 9: The flux of current across a circle that lies on a flux surface does not depend on the choice
of its location. The poloidal current density Jp is tangent to the flux surface, so that its flux across
the surface vanishes. The current is divergence free, which implies that its flux across one circle has
to be equal to its flux across another circle.

4.2 Grad-Shafranov equation

The perpendicular diamagnetic current can be recast as

J⊥ =
dP

dψ

B

B2
×∇ψ =

dP

dψ

(
I
B

B2
−R2∇ζ

)
so that the current density becomes

µ0J = KB− µ0
dP

dψ
R2∇ζ

where K is a function of (ψ, θ). The second part of this expression is divergence-free.
Hence the condition ∇ · J = 0 imposes that B · ∇K = 0, i.e. K is a function of ψ
only (Fig.10). This function is identified as K = − dI

dψ by using the Ampère equation
∇×B = µ0J. Hence the expression

µ0J = − dI
dψ

B− µ0
dP

dψ
R2∇ζ (13)

This expression of the current calls for some comments. The first part of the current
is “paramagnetic” since its poloidal component produces a field in the same direction as
the toroidal field. The second part is the toroidal component of the diamagnetic current.
Quite clearly, the parallel current density

J‖ = − dI
dψ

B − µ0
I

B

dP

dψ

is not constant on a flux surface. The paramagnetic component goes like B while the
diamagnetic piece goes like 1/B. This structure comes from the compressibility of the
perpendicular diamagnetic current, which must be balanced by a parallel current, called
Pfirsch-Schlueter current, which ensures an overall diverge-free current, i.e.

B · ∇
(
J‖

B

)
+∇ · J⊥ = 0

10



Figure 10: Current density in an axisymmetric configuration.

The projection of Eq.(13) on the toroidal covariant vector eζ = R2∇ζ yields the toroidal
current

µ0Jζ = µ0R
2 (J · ∇ζ) = −I dI

dψ
− µ0R

2dP

dψ
(14)

Using the identity ∇ζ · ∇ ×B = −∇ · (∇ζ ×B)12, one finds

∇2
∗ψ = R2∇ ·

(
1

R2
∇ψ
)

= −I dI
dψ
− µ0R

2dP

dψ
(15)

where ∇2
∗ψ is a conventional notation for the modified Laplacian that appears in the l.h.s

of this equation. This is the Grad-Shafranov equation, which gives the field ψ(x) for
given pressure P (ψ) and current I(ψ) profiles, plus a boundary condition. The boundary
condition can be given by the value of ψ on a flux surface (fixed boundary), or by matching
the solution with an external solution consistent with the current that flows in the poloidal
coils. If the matching is handled on the separatrix (the last flux surface with closed field
lines), and if it is admitted that no current flows in the outer region, it is then convenient
to write the field as B = ∇υ (υ for “vacuum”), where υ is a scalar field such that ∇2υ = 0.
This field is itself matched with the field produced by the coils. Matching conditions on
the separatrix are satisfied if P + B2

2µ0
and n ·B are continuous across the separatrix, where

n is the vector normal to the surface.

4.3 Grad-Shafranov equation in curvilinear coordinates*

The Grad-Shafranov equation Eq.(15) is covariant, so that any set of coordinates can be
used. The contour lines of ψ in a poloidal plane give the shape of the flux surfaces. The
set of cylindrical coordinates (R, ζ, Z) is the easiest one to handle. The effective Laplacian
then reads

∇2
∗ψ = R

∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2

The cylindrical set of coordinates (R, ζ, Z) is not always the most suited to a given prob-
lem. In some cases the straight field lines set of coordinates (ρ, θ, ζ) is more appropriate.

12This comes from the more general identity ∇ · (a× b) = b · ∇ × a− a · ∇ × b.
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The subset (R,Z) must then be replaced by the new set (ρ, θ). The coordinate ζ is or-
thogonal to any set (ρ, θ), and can be treated separately. To keep on handling a direct
set of coordinates (positive signature), it is convenient to reorder the cylindrical coordi-
nates as (R,Z, ζ), which is direct provided that ζ is chosen anti-trigonometric. The subset
(R,Z) behaves as a set of two Cartesian coordinates. A 2D problem is then isolated by
determining the metric tensor associated with the change of variables (R,Z) → (ρ, θ).
The distance element is

ds2 = dR2 + dZ2 +R2dζ2 = gikdξ
idξk

The elements of the reduced metric 2D tensor

gik =

(
gρρ gρθ
gρθ gθθ

)
can be calculated by using the expressions of R(ρ, θ) and Z(ρ, θ) and calculating their
partial derivatives. The other coefficients satisfy gζϕ = R2, and gζρ = gζθ = 0. The
metric tensor is easily inverted by isolating the (2, 2) submatrix to give

gik =
1

J

(
gθθ −gρθ
−gρθ gρρ

)
where J = gρρgθθ − g2

ρθ is the determinant of the submatrix. Moreover gζζ = 1/R2,

and gζρ = gζθ = 0. The Jacobian is
√
g = J1/2R. Using the covariant expression of

divergence and gradient operators (see Appendix A), the Grad-Shafranov equation can
then be written as

R2

√
g

dψ

dρ

[
∂

∂ρ

(
gθθ√
g

dψ

dρ

)
− ∂

∂θ

(
gθρ√
g

dψ

dρ

)]
= −I dI

dρ
−R2µ0

dP

dρ

Figure 11: Shape of flux surfaces for a Solov’ev equilibrium. Parameters are α = 6, γ = 0.5, R0 = 1.
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4.4 Solving the Grad-Shafranov equation

The Grad-Shafranov equation is usually solved numerically. Analytical solutions are found
in some special cases that deserve being commented. Analytical solutions are useful
for many applications, like trajectories computation, stability calculations or transport
solvers. Moreover they are mandatory to verify equilibrium numerical solutions. Two
main lines can be identified. A first strategy consists in solving the Grad-Shafranov in
Cartesian coordinates (R,Z) for a class of pressure and current profiles. This provides
the poloidal flux ψ(R,Z), and therefore the field. Poloidal cross-sections of the flux
surfaces are the contour lines of ψ(R,Z). Therefore the shape of the flux surfaces is the
outcome of the calculation. The second approach consists in imposing the geometry of flux
surfaces via a change of coordinates (R,Z)→ (ρ, θ), where ρ is a flux label. This change of
coordinates is parametrized by a set of flux functions that prescribe the shape. The Grad-
Shafranov equation is then solved in curvilinear coordinates by using standard procedures
of differential geometry. Solving the Grad-Shafranov equation fixes the shaping functions.
In that case, geometry imposes the magnetic field.

Solov’ev equilibria [8, 9] are a first instance of exact global solutions of the Grad-
Shafranov equation. If the functions I dIdψ and dP

dψ are chosen as suitable functions of R
and Z, it is possible to construct exact solutions ψ(R,Z) of Eq.(15). A simple example
is given in Appendix B and in Fig.11. The main advantage of the family of Solov’ev
equilibria is that it allows a large variety of shapes, and more importantly null point of
the poloidal field (X-point). Hence it is possible to calculate equilibria close to those
encountered in modern tokamaks.

Another important class of solutions are Miller equilibria [10], after ideas developed by
Mercier and Luc [11]. In an earlier work Mercier studied the topology of the magnetic field
in non axisymmetric configurations near the magnetic axis, which has deep implications
on the various paths to design a stellarator [12]. These are local solutions of the Grad-
Shafranov equation, i.e. valid in the vicinity of a reference flux surface. Their main
advantage is that the pressure gradient and the safety factor can be changed without
changing the shape of the reference flux surface. This is quite useful for parametric
studies of the effect of the geometry at fixed gradients. This is why Miller equilibria are
widely used in turbulence local codes. The basic principles are described in Appendix C.
Solutions can be found for D-shape flux surfaces [10]

R = R0 + ∆(ρ) + ρ cos
{
ϑ+

[
sin−1 δ(ρ)

]
sinϑ

}
Z = ρκ(ρ) sinϑ (16)

where the functions κ(ρ) and δ(ρ) describe the ellipticity and triangularity of the flux
surfaces, and ∆(ρ) is a Shafranov shift (Fig.12). This description allows highly shaped
flux surfaces. Explicit calculations are available when (R,Z) → (ρ, ϑ) are written as
Fourier series in ϑ [13]. The drawback of Miller equilibria is also their advantage: they
are not global solutions of the Grad-Shafranov equation.

Finally another way to define an equilibrium is to define the correspondence between
the set of coordinates (R,Z) and the set (ρ, ϑ) as an expansion in a small parameter ε,
where ε is an inverse aspect ration a/R0 (a the plasma size). The normalised pressure µ0P

B2

scales as ε2 and the current flux I as B0R0

(
1 + o(ε2)

)
, where B0 is a reference field, and

R0 a reference major radius. A convenient expansion, sometimes called the “Culham”
equilibrium [14], is

R = R0 + ερ cosϑ+ ε2∆(ρ) +
∑
m

εmSm(ρ) cos (mϑ) + ε3L(ρ) cosϑ

Z = ερ sinϑ+
∑
m≥1

εmSm(ρ) sin (mϑ)− ε3L(ρ) sinϑ

where L(ρ) is an adjustment needed to define a proper safety factor, and hence to build
a system of straight field line coordinates (θ, ϕ). The function ∆(ρ) describes the radial
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Figure 12: D-shape flux surfaces with Shafranov shift, elongation and triangularity as described by
Eq.(16). Left panel: effect of the Shafranov shift ∆(ρ). Right panel: shaping parameters for a single
flux surface with minor radius a - κ = b/a is the elongation, δ is the triangularity. Parameters are
R0/a = 2.8, ∆(a)/a = 0.3, a = 1m, κ = b/a = 2.5, δ = 0.5.

shift of flux surfaces, and is called “Shafranov shift” [15]. The other functions Sm(ρ) are
used to define the geometry of the flux surfaces. The simplest case Sm = 0 corresponds to
shifted circular flux surfaces [15] and is treated in Appendix D - see Fig.13. In most cases,
the analysis is restricted to m = 1 and m = 2. The function E(ρ) = S1(ρ) describes the
ellipticity of the flux surfaces, while T (ρ) = S2(ρ) is related to their triangularity. The
Grad-Shafranov equation can be solved order by order in ε. One important property is that
Sm(ρ) is found to vary as ρm. Hence the triangularity and higher order shaping functions
fade away when getting close to the magnetic axis. One drawback of this expansion is
that it does not allow defining a separatrix with a null point of the poloidal field due
to the ordering. On the other hand, the advantage of this expansion is that it provides
a global solution of the Grad-Shafranov equation. Hence it has proved quite useful for
MHD stability [14] calculation and transport solvers [16]. A set of circular concentric flux
surfaces ∆ = 0, Sm = 0 is not a solution of the Grad-Shafranov solution. Nevertheless it
is often used as a proxy that allows tractable analytic calculations.

Figure 13: Shifted circular flux surfaces.
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5 Non-axisymmetric configurations

The existence of flux surfaces is simpler to demonstrate when the configuration is ax-
isymmetric. Axisymmetry also grants a compact form of the magnetic field, leading to a
tractable form of the force balance equation. It appears that some of these results still
hold in non-axisymmetric configurations under some reasonable assumptions related to
the regularity of the pressure field.

5.1 Representation of the magnetic field

The equations of field lines Eq.(4,5) exhibit an Hamiltonian structure, where the poloidal
flux plays the role of an Hamiltonian, and the toroidal angle replaces the time. In the case
of an axisymmetric configuration, the Hamiltonian is obviously an invariant of motion,
which suffices to demonstrate the existence of magnetic field lines. The argument is not
valid for a non axisymmetric configuration. However an alternative argument, proposed
by Boozer [2], and based on the force balance equation, can be used to infer the existence
of flux surfaces. If the magnetostatic force balance equation is fulfilled, i.e. J × B =
∇P , where J is the current density, then the pressure P is a dynamical invariant since
(B · ∇)P = 0. Assuming that the pressure is a smooth function P (x), and that isobar
surfaces are bounded, this grants the existence of invariant (isobar) tori by virtue of the
“hairy ball” theorem, already mentioned 13. This can be understood as follows. Let us
start from the Clebsch expression of the magnetic field Eq.(3). Pressure is chosen as the
radial coordinate, i.e. ρ = P , a label of flux surface since (B ·∇)P = 0. The flux functions
χ and ψ are functions of the set of flux coordinates (ρ, ϑ, ζ). The Clebsch representation
Eq.(3) combined with the condition (B · ∇)ρ = 0 implies

B =
∂χ

∂ρ
∇ρ×∇ϑ+

∂ψ

∂ρ
∇ζ ×∇ρ

and the constraint
∂χ

∂ζ
+
∂ψ

∂ϑ
= 0 (17)

The functions χ and ψ can be decomposed as a mean over the angles ϑ and ζ and a
modulation

χ(ρ, ϑ, ζ) = χ̄(ρ) + χ̃(ρ, ϑ, ζ)

ψ(ρ, ϑ, ζ) = ψ̄(ρ) + ψ̃(ρ, ϑ, ζ)

The constraint Eq.(17) can be incorporated in the expressions of fluxes as

∂χ

∂ρ
(ρ, ϑ, ζ) =

dχ̄

dρ
(ρ) +

∂λ

∂ϑ
(ρ, ϑ, ζ)

∂ψ

∂ρ
(ρ, ϑ, ζ) =

dψ̄

dρ
(ρ)− ∂λ

∂ζ
(ρ, ϑ, ζ)

where λ is a periodic function of ϑ and ζ with zero mean. The Clebsch representation of
the magnetic field Eq.(17) then becomes B = ∇χ̄×∇θ +∇ζ ×∇ψ̄, where

θ = ϑ+
1
dχ̄
dρ

λ(ρ, ϑ, ζ)

is a straight field line poloidal angle. The bars on the new toroidal and poloidal fluxes
χ̄ and ψ̄ are now removed to simplify the notations, so that the final structure of the
magnetic field is

B = ∇χ×∇θ +∇ζ ×∇ψ (18)

13If field lines are spatially bounded, then the invariant manifold associated with the field lines Hamiltonian
dynamics Eq.(4,5) is compact. The ‘hairy ball” or “hedgehog” theorem can then be applied, i.e. a compact
manifold in a 3D phase space has to be a 2-dimensional torus.
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where χ and ψ are flux functions that depend on ρ only. Defining the safety factor q(ρ)
(inverse of the rotational transform) as q = dχ

dψ , it appears that the Clebsch structure

B = ∇ (ζ − qθ)×∇ψ

that was found for axisymmetric configurations also holds for a non axisymmetric field.
The derivation above calls for some comments. It relies on the condition (B ·∇)P = 0,

and the implicit assumption that the pressure field exhibits some nice properties of conti-
nuity and smoothness (differentiability). Besides isobar surfaces should be bounded. Let
us choose a set of straight field line coordinates (ρ, θ, ζ). The pressure can be decomposed
as a Fourier series

P =
∑
mn

Pmne
i(mθ+nζ)

It is easy to find the expression of the pressure gradient along the field (B · ∇)P by using
the expression of the field Eq.(18) and a set of flux coordinates (ρ, θ, ζ)

(B · ∇)P = i(B · ∇ζ)
∑

m6=0,n 6=0

(
n+

m

q(ρ)

)
Pmne

i(mθ+nζ)

The condition (B · ∇)P = 0 imposes that the pressure P is a function of ρ, i.e. a
flux function as expected, up to an infinite sum of Kronecker delta functions centred
on n + m/q(ρ). The flux surfaces which satisfy n + m/q(ρ) = 0 are called resonant
surfaces 14. One may expect that any singularity δ (n+m/q(ρ)) will be regularised after
some time by dissipative processes (e.g. viscous dissipation that was neglected in the
force balance equation), thus imposing after a relaxation time that the pressure is a
flux function. However any force F, even small, that will appear in the force balance
equation (e.g. thermal noise) will induce singularities in the pressure field via the equation
(B · ∇)P = B · F. The usual argument that is put forward is that dissipative processes,
and/or instabilities localised on resonant surfaces, will wipe out these singularities over a
fast time scale. In other words, the plasma should self-organize15. We will assume in this
section that this is indeed the case.

5.2 Structure of the current density*

As noticed by Boozer [2], the current density behaves with respect to the magnetic field
in the same way as the magnetic field with respect to the vector potential. Indeed it is
divergence-free ∇ · J = 0 and is the curl of the magnetic field µ0J = ∇ × B (Ampère
equation). Moreover the force balance equation imposes that the current lies on flux
surfaces J · ∇ρ = 0 (see section 3.1). Hence the current density can be written in a
Clebsch form similar to the magnetic field16

µ0J = ∇G ×∇θ +∇I ×∇ζ

where G and I are functions of the set of straight field line coordinates (ρ, θ, ζ). Following
closely the methodology described in the previous section, the constraint J · ∇ρ = 0 is
used to find an equivalent form of the current density

µ0J =
∂G
∂ρ
∇ρ×∇θ +

∂I
∂ρ
∇ρ×∇ζ

14A flux surface does not necessarily exists in the plasma since it requires that the safety factor is equal to a
rational number −m/n that may be out of the range of accessible values of the function q(ρ).

15Other ways exist that grant the existence of flux surfaces. For instance stellarators are known to exhibit
flux surfaces even without plasma. These surfaces are probed with electron beams.

16The notations G and I are inverted compared with Boozer’s conventions.
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together with the constraint
∂G
∂ζ
− ∂I
∂θ

= 0

The current flux functions G and I can be decomposed as sums of means G(ρ) and I(ρ)
and modulations, constrained by Eq.(19). This can be formulated in a convenient form

∂G
∂ρ

(ρ, θ, ζ) =
dG(ρ)

dρ
+
∂ν

∂ϑ
(ρ, θ, ζ)

∂I
∂ρ

(ρ, θ, ζ) =
dI(ρ)

dρ
+
∂ν

∂ζ
(ρ, θ, ζ)

where ν(ρ, θ, ζ) is a periodic function in θ and ζ with zero mean. The current density
becomes

µ0J = ∇G×∇θ +∇I ×∇ζ −∇ν ×∇ρ

This relation provides the covariant expression of the magnetic field

B = G(ρ)∇θ + I(ρ)∇ζ − ν(ρ, θ, ζ)∇ρ+∇H(ρ, θ, ζ) (19)

where H is a gauge function. Of course one would like to manipulate 3 flux functions
and not 4. This is done by changing the system of coordinates, i.e. by changing (θ, ζ) in
another set (θ′, ζ ′). As noticed by Boozer, the magnetic field is invariant by any change
of the form

θ = θ′ + ι(ρ)ζ̃
(
ρ, θ′, ζ ′

)
ζ = ζ ′ + ζ̃

(
ρ, θ′, ζ ′

)
where ι(ρ) = 1/q(ρ). Since this change of coordinates leaves invariant the combination
ζ ′− qθ′ = ζ − qθ. The structure of the field Eq.(19) remains the same with (θ, ζ) replaced
by (θ′, ζ ′) , but with new functions ν ′ and G′B such that

ν ′ = ν +

(
ι
dG

dρ
+
dI

dρ

)
ζ̃

H ′ = H + (ιG+ I) ζ̃

Hence ν ′ or H ′ can be set to zero via a suitable choice of ζ̃. It must be stressed that
even if the toroidal angle ζ would be chosen as the geometric angle in the first place,
the new toroidal angle is usually not a geometric angle any more. The choice ν ′ = 0
corresponds to Hamada coordinates, while H ′ = 0 determines the Boozer coordinates.
Both have their interest for instance in the context of the Hamiltonian formulation of
trajectory equations (Boozer coordinates) or neoclassical transport (Hamada coordinates).
it appears that the Grad-Shafranov equation can be written in an elegant form when using
Boozer/Hamada coordinates. This form is particular compact when choosing Hamada
coordinates - moreover the Jacobian then appears to be a flux function. More details can
be found in Appendix E or in references [1, 2, 17].

5.3 Force exerted on the plasma*

The force balance equation Eq.(7) reads ρm (∂t + V · ∇)V = F, where F = −∇P +J×B
is the force exerted on the plasma when the viscous force is neglected. The force has no
component along the field lines, i.e. B · F = 0. Thus it can be decomposed as [18]

F = Fρ∇ρ+ F∧
B

B2
×∇ρ
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Both the magnetic field and the current density can be expressed in a covariant/contravariant
form J = Jie

i = J iei, B = Bie
i = Biei, with Bρ = B · ∇ρ = 0 since the magnetic field is

tangent to a flux surface. The force covariant components then read

Fρ =
√
g
(
JθBζ − JζBθ

)
− dP

dρ

F∧ = −Jρ

The field structure Eq.(18) imposes that

Bθ =
1
√
g

dψ

dρ

Bζ =
1
√
g

dχ

dρ

The contravariant components of the current density are computed from the Ampère’s
equation, using the expression of a curl operator in curvilinear coordinates Eq.(20). After
a bit of algebra, the force components can be written in the following form

Fρ =
1

µ0

(
(B · ∇)Bρ −Bθ ∂Bθ

∂ρ
−Bζ ∂Bζ

∂ρ

)
− dP

dρ

F∧ = − 1

µ0
√
g

(
∂Bθ
∂ζ
−
∂Bζ
∂θ

)
It is reminded that the covariant components of the field are related to the contravariant
components via the relation

Bi = giθB
θ + giζB

ζ

Since the force must vanish , F∧ = −Jρ = −J · ∇ρ = 0, which imposes that the current
is tangent to flux surfaces, a result that was already obtained in the special axisymmetric
case. At this point, it is useful to express force Fρ component in the special axisymmetric
case. The condition F∧ = 0 imposes that Bζ = I(ρ) depends on ρ only, a result that was
also already found. The component Fρ is found to be

Fρ = − 1

µ0
√
g

dψ

dρ

[
∂

∂ρ

(
gθθ√
g

dψ

dρ

)
− ∂

∂θ

(
gθρ√
g

dψ

dρ

)]
− 1

µ0R2
I
dI

dρ
− dP

dρ

The condition Fρ = 0 appears to be equivalent to the Grad-Shafranov equation Eq.(15),
using the covariant expression of the divergence of a vector ∇ ·V (see Appendix A), with
Vρ = 1

R2
dψ
dρ , Vθ = Vζ = 0 and gρρ = R2 gθθ

g , gθρ = −R2 gθρ
g . Hence the condition of force

balance is equivalent to the Grad-Shafranov equation. It provides a powerful method to
calculate the equilibrium of a magnetic configuration that is not axisymmetric [18, 19].

6 Variational principle and virial theorem

6.1 Energy principle and related variational methods

The Grad-Shafranov equation is not easy to solve, and its analogue in non-axisymmetric
configurations is even more challenging. This is why it is sometimes replaced by a vari-
ational principle, which allows using a projection on a basis of functions and a suitable
truncature. One common form is based on the plasma energy

W =

∫
d3x

(
B2

2µ0
+

P

ς − 1

)
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Figure 14: Deformation of a flux surface that conserves the toroidal magnetic flux while keeping

P (ρ)
(
dV
dρ

)ς
constant.

where ς is the adiabatic index17. This definition of the plasma energy is not the most
general that could be thought of. It does not include the energy density associated with
the electric field, and reduces the energy density of the plasma to its thermal energy P

ς−1 ,
in principle valid when the plasma can be described as a perfect gas. Let us assume that
flux surfaces exist, and labelled by a flux coordinate ρ. The position on a flux surface
is a vector x (ρ, θ, ζ), where (θ, ζ) are poloidal and toroidal angles. The force balance
equation is equivalent to minimizing W with respect to any virtual displacement of the
magnetic field and pressure that is consistent with the equations of ideal MHD, i.e. that
preserves the magnetic fluxes, and under the constraint of an adiabatic transform that

keeps P (ρ)
(
dV
dρ

)ς
constant (see Fig. 14), where

dV
dρ

=

∫∫
ρ

dθdζ

J

is the differential volume element (dV is the volume element between the flux surfaces ρ
and ρ + dρ). The transform must be done for a given plasma surface. In other words, if
ξ labels the displacement of flux surfaces, which therefore become x (ρ, θ, ϕ) + ξ after a
transformation as described above, the variation of energy is

δW =

∫
d3x (∇P − J×B) · ξ

The demonstration is given in Appendix F. If δW exhibits an extremum with respect
to the displacement ξ then J × B = ∇P . Quite interestingly, this property does not
depend on the precise value of the adiabatic index ς. Hence a “Lagrangian” version of
this principle can be devised by choosing ς = 0

L =

∫
d3x

(
B2

2µ0
− P

)
17The traditional notation γ is avoided here as it is also the usual notation for an instability growth rate.
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Variations must then be done at constant pressure P (ρ) when changing the shape of the
flux surfaces. This variational approach has proved efficient to compute equilibria in stel-
larators [18, 19], and in particular to design optimised non-axisymmetric configurations.
The above theorem applies when the last closed flux surface is prescribed. The energy

principle can be extended to match with a vacuum field Bυ by adding −
∫
d3x B2

υ
2µ0

to W.

Figure 15: A vertical field combined with the plasma current balances the radial force due to thermal
and magnetic forces.

6.2 Virial theorem

The virial theorem consists in multiplying the tensorial form of the force balance equation
Eq.(11) by a displacement vector ξ and integrate over a suitable volume V. This is the
usual procedure to build the weak variational form associated with a differential equation.
The resulting functional exhibits an extremum when varying the displacement ξ. This
extremum provides a solution of the force balance equation. It provides a convenient
way to resolve numerically the equilibrium magnetic configuration by expanding ξ on a
suitable set of basis functions18. The original version of the virial theorem corresponds to
a displacement ξ = Xiê

i = Xiêi, and êi = êi are the Cartesian unit vectors. Using the
relation

∂

∂Xi

(
XkT

ik
)

= T kk +Xk
∂

∂Xi
T ik

18In this case the solution is an approximate one due to the troncature. The variational aspect grants it is
optimal for a given set of basis functions.
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and noting that the last term vanishes, an integration over the volume V yields∫
V
d3x

(
3P +

B2

2µ0

)
=

∫
∂V

(dS · ξ)

(
P +

B2

2µ0

)
− 1

µ0

∫
∂V

(dS ·B) (ξ ·B)

where ∂V is the surface that encloses the volume V, and dS a surface element on ∂V. The
right hand side vanishes if the surface ∂V is located far away from the plasma since the
pressure is then null and the magnetic field decreases as the cubic power of the distance
(for a dipolar field - multipolar components decay even faster). Hence an external force
must be exerted to maintain the plasma. Some geometrical considerations show that
this force is horizontal. It comes from both the pressure gradient and electromagnetic
forces. A modified version of the virial theorem can be devised to determine this force.
The displacement vector is now chosen to lie in a poloidal plane ξ = XêX + Y êY . This
displacement is radial since ξ = RêR, where R is the major radius, and êR = ∇R is
the unit vector in the conventional set of cylindrical coordinates (R,Z, ϕ). This allows
calculating a moment of the radial force

< RFR > V =

∫
V
d3xξk

∂

∂Xi
T ik

where the bracket indicates an average over the volume V. The integral over the volume
of Eq.(20) yields the covariant expression

< RFR > V =

∫
V
d3x

(
2P +

B2
Z

2µ0

)
−

∫
∂V

(dS · ξ)

(
P +

B2

2µ0

)
where the property dS ·B = 0 has been used since ∂V is a flux surface. Inside the plasma,
the flux surfaces shift radially to ensure the force balance equation < RFR >= 0. This is
nothing else than the Shafranov shift. Outside the separatrix, an external radial force is
needed to maintain the plasma. This force is due to three causes [20, 21]:

• a force due to pressure. This force is analogous to the one felt by an inflated tire,
which expands. It is sometimes called ”tire tube force”.

• an electromagnetic force due to the plasma current and the poloidal field. A current
filament tends to expand under the Lorentz force associated to the current and the
magnetic field it produces. This force is called the ”hoop force”.

• an electromagnetic force due to the Lorentz force that results from the toroidal
magnetic field and the poloidal current that flows in the plasma - this current can
be diamagnetic or paramagnetic. The toroidal field is inversely proportional to the
major radius. A net force results from the imbalance between the jump of magnetic
field on high and low field sides. It is called ”1/R force”.

This radial force is compensated in a tokamak by a vertical magnetic field, such that
the Lorentz force due to the vertical field and the toroidal plasma current balances the
expanding forces (Fig.15).

Appendices
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A Curvilinear coordinates: definition and prop-

erties

A.1 Curvilinear coordinates

A position vector is noted x. Cartesian coordinates provide the usual framework to
characterize a vector, namely x = Xiêi, where Xi = Xi are the Cartesian coordinates,
and the êi = êi is a set of orthonormal basis vectors19. The gradient of a differentiable
function f(Xi) is defined as ∇f = ∂f

∂Xi ê
i, or put it differently df = ∇f · dx. Curvilinear

coordinates are defined as a set
(
ξ1, ξ2, ξ3

)
that can be mapped on the set of Cartesian

coordinates (X1, X2, X3), i.e. each coordinate ξi is a well defined and invertible function
of the Xi’s - invertible means that the Xi’s are well behaved functions of the xi’s. The
coordinates ξi are vector fields, noted ξi(x). The subspace ξi(x) = cte is a surface. The
coordinate gradient ∇ξi is a vector normal to this surface since dξi = ∇ξi · dx (Fig.16)).
Hence the set

(
∇ξ1,∇ξ2,∇ξ3

)
form a basis provided the Jacobian is non zero. One can

define a dual basis by using the cross-products of the vectors ∇ξi. Any vector field B(x)
can then be written as

B = Biei = Bie
i

where

ei = ∇ξi = ∂ξi

∂x ; ei = ∂x
∂ξi

= εijk
√
g
(
∇ξj ×∇ξk

)
where

√
g =

∣∣(∇ξ1 ×∇ξ2
)
· ∇ξ3

∣∣−1
is the Jacobian of the set of coordinates

(
ξ1, ξ2, ξ3

)
.

The ei (respectively ei) are the covariant (resp. contravariant vectors)20, and satisfy the
property ei · ek = δki . The latter property reflects the derivative chain rule

∂ξi
∂Xj

· ∂X
j

∂ξk
= δki

If the contravariant vectors ei = ∇ξi are known, a matrix inversion provides the covariant
vectors ei = ∂x/∂ξi. Obviously Bi = B · ei and Bi = B · ei. The norm of a vector
field is B = |B| = (BiB

i)1/2. The vectors ei or ei are usually not orthogonal, and not
normal. Nevertheless, in some special cases (e.g. cylindrical or spherical coordinates),
they do form a set of orthogonal vectors. In this case it is convenient to normalise them
and thus build a convenient orthonormal basis. They are then noted with an arrow, to
make a distinction with co- or contra-variant vectors and defined as êi = ei/ |ei|. An
important property is êi = êi, so that co- or contra-variant notations do not matter any
more. Obviously Cartesian coordinates is a special case of a set of orthogonal vectors.

A.2 Metric tensor

An elementary distance element is

ds2 = gikdξ
idξk = gikdξidξk

where the metric elements are

gik = ei · ek = ∂x
∂ξi
· ∂x
∂ξk

; gik = ei · ek = ∇ξi · ∇ξk

The metric matrix gik is in fact a tensor, as it changes from one system of coordinates to
another one via usual chain rules for changes of variables. The tensor gik is the inverse
of the tensor gik. With the conventions above,

√
g is the determinant of the matrix gik.

Hence
√
g = det (gik) =

1

det (gik)

The change from co- to contra- coordinates read Bi = gikBk and Bi = gikB
k.

19Doubled indices are summed throughout this note.
20The index is upward when the component is contravariant, otherwise covariant
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Figure 16: Surface ξ(ξ) = cte and its normal vector ∇ξ.

A.3 Most common expressions of vectorial operators in curvi-
linear coordinates

The knowledge of the metric tensor gives access to explicit expression of most vectorial
operators, which are reminded below. Divergence of a vector B

∇ ·B =
1
√
g

∂

∂ξi
(√
gBi

)
Curl of a vector B

(∇×B)i =
1
√
g
εijk

∂Bk
∂ξj

Components of a scalar gradient

(∇φ)i = gik
∂φ

∂ξk

Laplacian of a scalar

∇2φ =
1
√
g

∂

∂ξi

(
√
ggik

∂φ

∂ξk

)
The element of volume is dV = d3x =

√
gdξ1dξ2dξ3. The integration element on the

surface ξi = cte is dSi = εijk
√
gdξjdξk. This is consistent with the Green-Ostrogradsky

theorem ∫
V
dV∇ ·B =

∮
∂V
dS ·B

where V is a volume and ∂V the surface that encloses it. The element of length is given
by the relation dx = dξiei, which is consistent with the Gauss theorem∫

S
dS · ∇ ×B =

∮
∂S
dx ·B

where S is a surface and ∂S the curve that bounds it
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A.4 Flux surface average

Let us choose a set of curvilinear coordinates (ρ, θ, ζ), periodic in θ and ζ. A surface
average of a function f(ρ, θ, ζ) is defined as the variation of the volume integral of f
between two nearby surfaces ρ and ρ+ δρ

〈f〉ρ =
δ
∫
ρ d

3xf

δ
∫
ρ d

3x
=

∫
ρ dθdζ

√
gf∫

ρ dθdζ
√
g

In the special case of a magnetic field of the form Eq.(6) in an axisymmetric configuration,
the magnetic surface average, defined as the average of a function in between two nearby
magnetic surfaces ψ and ψ + δψ, becomes

〈f〉ψ =

∫
ψ

dθ
B·∇θf∫

ψ
dθ

B·∇θ

B Solov’ev equilibrium

Solov’ev equilibria are exact global solutions of the Grad-Shafranov equation [8]. Let us
remind its form

∇2
∗ψ = −I dI

dψ
− µ0R

2dP

dψ

where

∇2
∗ψ = R2∇ ·

(
1

R2
∇ψ
)

= R
∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2

and let us assume that
µ0

dP
dψ = −A

I dIdψ = γ
1+α2R

2
0A

where A, γ < 1, R0 and α are constant parameters. A particular solution of Eq.(20) is
then

ψ =
A

2 (1 + α2)

{(
R2 − γR2

0

)
Z2 +

α2

4

(
R2 −R2

0

)2}
The level curves of the function ψ(R,Z) are cross sections of flux surfaces in a poloidal
plane. Near the magnetic axis R = R0, Z = 0 , i.e. where x = R−R0

R0
� 1 and z = R

R0
� 1,

a Taylor development of Eq.(20) at order 3 in x ∼ z ∼ ε yields

[x+ ∆(x, z)]2 +
1− γ
α2

z2 = x2
ψ + o(ε4)

where x2
ψ = 2ψ

AR4
0

(
1
α2 + 1

)
is a flux label, and

∆(x, z) =
1

2
x2 +

1

α2
z2

Near the axis magnetic axis x = z = 0, flux surfaces are ellipses with ellipticity α√
1−γ .

The horizontal displacement ∆(x, z) is a Shafranov shift (see following section). The
separatrix is determined by the ”X-points” such that |∇ψ = 0| (null poloidal magnetic
field), i.e. ∂ψ

∂R = ∂ψ
∂Z = 0. Using the general expression of ψ Eq.(20) two X-points exist

such that RX =
√
γR0 and ZX = ±

√
1−γ

2 αR0. Generalisations of this simple example to

more sophisticated equilibria have been developed, which allow a broad variety of surface
shapes [22].

24



C Miller equilibrium

Finding a global solution of the Grad-Shafranov equation is difficult for arbitrary pressure
and current profiles. However it is relatively easy to build a local solution near a flux
surface with prescribed shape and poloidal magnetic field [11, 10]. Let us consider a given
flux surface with a poloidal flux ψ0. The surface cross section, a poloidal curve labelled C,
can be described by a curvilinear abscissa `. The position xp on this curve is prescribed
by a vertical and horizontal positions i.e. xp(`) = Rs(`)êR + Zs(`)êZ . Near the reference
flux surface, the vertical and horizontal coordinates can be written in the form

R(`, ρ) = Rs(`) + ρ cosϑ(`)

Z(`, ρ) = Zs(`) + ρ sinϑ(`)

where ρ is a flux label that measures the distance to the reference flux surface, and ϑ(`)
is a poloidal angle to be defined. Let us define ê` as the unit tangent vector associated
with the curve C, then

dxp
d`

= ê` =
dRs
d`

êR +
dZs
d`

êZ

The condition |ê`|2 = 1 imposes that dRs
d` and dZs

d` must be cosine and sine functions of
an angle. There is some flexibility on the choice of the angle origin. Anticipating that
derivatives of Z and R with respect to ρ and ` will be needed to compute the metric
tensor, a suitable choice is

dRs
d`

= − sinϑ(`)

dZs
d`

= cosϑ(`)

so that ê` = − sinϑ(`)êR + cosϑ(`)êZ . The derivative of the tangent vector with respect
to ` is dê`

d` = − 1
Rc(`)

êρ, where êρ = cosϑ(`)êR + sinϑ(`)êZ is a unit vector normal to the

curve C and Rc is the curvature radius. This imposes that dϑ
d` = 1

Rc(`)
. Note that with

these conventions the coordinate system (ρ, `, ζ) is direct. These relations give the needed
partial derivatives (

dR
dZ

)
=

(
cosϑ −J sinϑ
sinϑ J cosϑ

)(
dρ
d`

)
where J(ρ, `) = 1+ ρ

Rc(`)
is the matrix determinant. A matrix inversion provide the reverse

relationship (
dρ
d`

)
=

(
cosϑ sinϑ

− sinϑ
J

cosϑ
J

)(
dR
dZ

)
This result can be summarised as ∇ρ = êρ, ∇` = 1

J ê` and ∇ζ = 1
R êζ . The 3D Jacobian

is
√
g = JR.

We now solve the Grad-Shafranov equation,

∇2
∗ψ = R2∇ ·

(
1

R2
∇ψ
)

= −I dI
dψ
− µ0R

2dP

dψ

The effective Laplacian ∇2
∗ψ can be reformulated as

∇2
∗ψ =

R2

√
g

∂

∂xi

(√
g

R2
gik

∂ψ

∂xk

)
where it is reminded that the metric elements satisfy gik = ∇ξi · ∇ξk, so that

gik =

(
|∇ρ|2 ∇ρ · ∇`
∇ρ · ∇` |∇`|2

)
=

(
1 0
0 1

J2

)
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The Grad-Shafranov equation then reads

R

J

∂

∂ρ

(
J

R

∂ψ

∂ρ

)
+
R

J

∂

∂`

(
1

JR

∂ψ

∂`

)
= −I dI

dψ
− µ0R

2dP

dψ

The poloidal flux can be expanded near the reference flux surface as

ψ = ψ0 + ψ1(`)ρ+ ψ2(`)ρ2 + o(ρ3)

The poloidal field reads

Bp = ∇ζ ×∇ψ = − 1

R

∂ψ

∂`
êρ +

1

R

∂ψ

∂ρ
ê`

On the reference flux surface ρ = 0, the poloidal field is tangent to the curve C, as expected,
i.e. Bps = 1

Rs(`)
ψ1(`)ê`. Let us call Bps the norm of Bps, then ψ1(`) = Bps(`)Rs(`). The

poloidal field is supposed to be given on the reference flux surface, as well as its shape.
Thus this constraint fully determines ψ1. The next order flux contribution ψ2 is prescribed
by the Grad-Shafranov equation, by taking the limit ρ→ 0. A straightforward calculation
yields

ψ2 =
1

2

{
Bps

(
cosϑ− Rs

Rc

)
− I dI

dψ

∣∣∣∣
ψ=ψ0

− µ0R
2
s

dP

dψ

∣∣∣∣
ψ=ψ0

}
This fully determines the solution to the Grad-Shafranov equation in the vicinity of the
reference flux surface ψ = ψ0. It is entirely determined by the gradients of pressure P and
current I on the reference flux surface, its geometry and the poloidal magnetic field on
this surface. The great advantage of the Miller equilibrium is that the magnetic shear and
pressure gradient can be changed without changing the shape of the flux surface. This is
why it is commonly used in local turbulence or MHD numerical simulations.

Figure 17: Torus with circular cross-section.

D Configuration of shifted circular flux surfaces

An approximate equilibrium can be computed when the geometry of flux surfaces is close
to circular [15]. Before deciding of the shape of flux surfaces, some remarks on the
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choice of coordinates is necessary. A reasonable starting point is the set of cylindrical
coordinates (R, ζ, Z). The subset of coordinates (R,Z) is to be replaced by a new set of
flux coordinates (ρ, ϑ), where ρ is a label of flux surface, and ϑ a poloidal angle - here
the conventional geometrical angle. The coordinate ζ is orthogonal to any set (ρ, ϑ), so
that it can be treated separately. To keep on handling a direct set of coordinates (positive
signature), it is convenient to reorder the cylindrical coordinates as (R,Zζ), which is direct
if ζ is anti-trigonometric, so that the subset (R,Z) behaves as Cartesian coordinates. This
is not mandatory, but makes life easier. The equation of a circle centred on R = R0 is
Z = ρ cosϑ, R−R0 = ρ sinϑ. However concentric circular flux surfaces are not consistent
with the Grad-Shafranov equation, because of the thermal and electromagnetic forces that
push the plasma outward. Because of these forces, flux surfaces are shifted horizontally.
A minimal update is to prescribe flux surfaces of the form (Fig.17)

R = R0 + ∆(ρ) + ρ cosϑ

Z = ρ sinϑ

where ρ is the radius of each circular flux surface (ρ = 0 is the magnetic axis), and R0 the
major radius of the magnetic axis. The length ∆(ρ) measures the horizontal displacement
of the centres of flux surfaces with respect to the magnetic axis. This displacement is
called “Shafranov” shift and is due to forces exerted by kinetic and magnetic pressures.
The inverse aspect ratio ε = a/R0 is assumed to be small parameter ε� 1, where a is the
plasma minor radius. It is anticipated that the Shafranov shift normalised to a scales as
ε2. The magnetic field is written as Eq.(12)

B = I(ρ)∇ζ +∇ζ ×∇ψ

where
dψ

dρ
= bθ(ρ)R0

and B0 is the magnetic field at the magnetic axis. The cylindrical set of coordinates
(R,Z, ζ) is associated with a well defined set of orthonormal vectors21

êR = ∇R êZ = ∇Z êζ = R∇ζ

A covariant expression of the field is obtained in the following way. The elements (dR, dZ)
are related to (dρ, dϑ) via the matrix relation(

dR
dZ

)
=

(
cosϑ+ d∆

dρ −ρ sinϑ

sinϑ ρ cosϑ

)(
dρ
dϑ

)
Its determinant is J(ρ, ϑ) = ρ

(
1 + d∆

dρ cosϑ
)

. This matrix is readily inverted in(
dρ
dϑ

)
=

1

J(ρ, ϑ)

(
ρ cosϑ ρ sinϑ

− sinϑ cosϑ+ d∆
dρ

)(
dR
dZ

)
The Jacobian of the system of flux coordinates (ρ, ϑ, ζ) is therefore

√
g = [(∇ρ×∇ϑ) · ∇ζ]−1 =

JR. These relations yield the vectors ∇ρ, ∇ϑ, and therefore a relationship between ∇ζ
and ∇ρ×∇ϑ. An alternative expression of the magnetic field is then derived

B = I(ρ)
ρ

R0

[
1 +

(
d∆

dρ
− ρ

R0
+ o

(
ε2
))

cosϑ

]
∇ρ×∇ϑ+∇ζ ×∇ψ

The geometrical angle ϑ is not a straight field line coordinate since

B · ∇ϑ
B · ∇ζ

=
bθ(ρ)

I(ρ)

R2
0

ρ

[
1−

(
d∆

dρ
− ρ

R0
+ o

(
ε2
))

cosϑ

]
21This set differs generally speaking from the co- or contra-variant basis vectors, which are usually not normal,

nor orthogonal.
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is a function of ρ and ϑ. It is convenient to replace ϑ with a straight field line coordinate
θ such that B·∇ζ

B·∇θ = q(ρ), with q(ρ) the safety factor. The geometrical angle ϑ is related
to the intrinsic poloidal angle θ via the near identity relation

θ = ϑ− δ(ρ, ϑ) + o
(
ε2
)

where the function δ is

δ(ρ, ϑ) = −
(
d∆

dρ
− ρ

R0

)
sinϑ

This provides a link between the “poloidal” field bθ(ρ) and the current I(ρ), namely

bθ(ρ) = I(ρ)
ρ

qR2
0

The magnetic field can be then written in the expected covariant form

B = ∇χ×∇θ +∇ζ ×∇ψ

where dχ/dψ = q(ρ). The Jacobian of the new system of coordinates (ρ, θ, ζ) is
√
g =

ρR2/R0.
The Grad-Shafranov equation involves the effective Laplacian

∇2
∗ψ = R2∇ ·

(
1

R2
∇ψ
)

=
R2

√
g

∂

∂xi

(√
g

R2
gik

∂ψ

∂xk

)
The metric tensor associated with the set of variables (ρ, θ, ζ) is formally derived by using
the identity gik = ∂x

∂ξi
· ∂x
∂ξk

and gik = ∇ξi · ∇ξk where ξi = (ρ, θ, ζ). It can also be done

by calculating the distance Eq.(16) - gik can also be computed by inverting gik. The
change of variables from (R,Z) to (ρ, θ) is given by Eqs.(20), whereϑ = θ + δ(ρ, θ), and

δ(ρ, θ) = −
(
d∆
dρ −

ρ
R0

)
sin θ + o(ε2). After a little bit of algebra, one gets

gik =

 1 + 2d∆
dρ cos θ ρ2 ∂δ

∂ρ − ρ
d∆
dρ sin θ 0

ρ2 ∂δ
∂ρ − ρ

d∆
dρ sin θ ρ2

(
1 + 2∂δ∂θ

)
0

0 0 R2


where all coefficients are computed up to a o(ε2). The determinant g matches wit the
Jacobian

√
g = ρR2/R0 that was already calculated. The matrix is easily inverted by

isolating the (2, 2) submatrix to give

gik =


1− 2d∆

dρ cos θ 1
ρ

[
d
dρ

(
ρd∆
dρ

)
− ρ

R0

]
sin θ

1
ρ

[
d
dρ

(
ρd∆
dρ

)
− ρ

R0

]
sin θ 1

ρ2

[
1 + 2

(
d∆
dρ −

ρ
R0

)
cos θ

]
0

0 0 1
R2


This provides a new expression of the effective Laplacian

∇2
∗ψ =

1

ρ

d

dρ

[
ρ |∇ρ|2 dψ

dρ

]
+

∂

∂θ

[
(∇θ · ∇ρ)

dψ

dρ

]
where the relations gρρ = |∇ρ|2 and gρθ = ∇θ · ∇ρ have been used, and

|∇ρ|2 = 1− 2
d∆

dρ
cos θ

ρ∇θ · ∇ρ =

[
d

dρ

(
ρ
d∆

dρ

)
− ρ

R0

]
sin θ
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The Grad-Shafranov equation

∇2
∗ψ = −I dI

dψ
− µ0R

2dP

dψ

can then be solved order per order in ρ
R0

. At lowest order

bθ
ρ

d

dρ

(
ρ
dbθ
dρ

)
= − I

R2
0

dI

dρ
− µ0

dP

dρ

At order 1 in ρ/R0, the follow equation is obtained

d

dρ

(
ρb2θ

d∆

dρ

)
= − ρ

R0
b2θ + 2µ0

ρ2

R0

dP

dρ

which provides the radial derivative of the Shafranov shift

d∆

dρ
= − ρ

R0

(
βp(ρ) +

li(ρ)

2

)
βp(ρ) = − 2µ0

ρ2b2θ

∫ ρ

0
dρρ2dP

dρ

li(ρ) =
2

ρ2b2θ

∫ ρ

0
dρρb2θ

As expected the Shafranov shift is related to the thermal and magnetic pressures. The
quantity li(ρ) is the internal inductance of the flux surface r. Indeed, noting that the
volume element is approximately dV = 2πR02πρdρ, the definition above appears to be

the volume integral of the density of poloidal magnetic energy
b2θ

2µ0
, normalised to the

magnetic energy at the surface. The quantity βp(ρ) is called poloidal β and measures the
ratio of the thermal pressure to the density of poloidal magnetic energy.

E Boozer and Hamada coordinates

Some more details are given here on two special choices of coordinates, called Boozer and
Hamada coordinates, after their inventors. This section is highly inspired from textbook
[1] and review articles [2, 17]. interested readers should consult them for getting more
details 22. The contravariant expression of the magnetic field is23

B = G∇θ + I∇ζ +K∇ψ +∇H (20)

where the “currents” I and G depend on ψ only, and K, H depend on (ψ, θ, ζ). Boozer
coordinates correspond to the choice H = 0, while Hamada coordinates are such that
K = 0. The Lorentz force can be calculated by using the Clebsh form of the magnetic
field Eq.(6)

B = ∇χ×∇θ +∇ζ ×∇ψ (21)

The final result reads

µ0J×B =
1
√
g

[
q
∂K

∂ζ
+
∂K

∂θ
− dG

dψ
− q dI

dψ

]
22It is recalled here that the notations used in tokamak and stellarator communities are usually different.

The notation ψ dubs the poloidal flux in tokamaks, while it often designates the toroidal flux in stellarators.
Also the currents I and G are permuted. It is also reminded that stellarator experts prefer to use the rotational
transform ι rather than the safety factor q - both are related via the relation ι = 1/q.

23Here we choose ψ, the poloidal flux, as a radial coordinate ρ, i.e. ρ = ψ. To mark the difference, the
notation −ν is replaced by K.
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where 1/
√
g = (∇ψ×∇θ) ·∇ζ. The force balance equation Eq.(7) then bears a convenient

form

q
∂K

∂ζ
+
∂K

∂θ
− dG

dψ
− q dI

dψ
=
√
gµ0

dP

dψ
(22)

Note that this equation does not depend on the gauge function H. If Hamada coordinates
are chosen, K = 0. It then appear that the Jacobian

√
g depends on ψ only, is a flux

function. The Grad-Shafranov equation becomes particularly simple

dG

dψ
+ q

dI

dψ
= −µ0

dP

dψ

dV
dψ

(23)

where V is the volume enclosed by a magnetic surface normalised to 4π2, i.e. dVdψ =
√
g.

Handling the force balance equation Eq.(22) is somewhat less straightforward when
using Boozer coordinates H = 0,K 6= 0. Let us note that an average of Eq.(22) over the
angles θ and ζ provides a solvability constraint Eq.(23) (with a different meaning though
since the coordinates are different) that can be used to yield the equation

q
∂K

∂ζ
+
∂K

∂θ
= µ0

dP

dψ

(
√
g − dV

dψ

)
(24)

The Jacobian is readily obtained by multiplying Eq.(20) by Eq.(21). This procedure yields

√
g =

Iq +G

B2

The equation Eq.(24) hence provides the function K vs the current I,G and pressure
P . Let us stress however that this equation is singular on resonant surfaces. Some
regularisation is therefore needed either by setting locally a zero pressure gradient, or
introducing some dissipation.

F Variational energy principle

This appendix aims at calculating the variation of the energy

W =

∫
d3x

(
B2

2µ0
+

P

ς − 1

)
when deforming set for flux surfaces with a virtual displacement ξ consistent with the
equations of ideal MHD. Let us remind here the basic equations of ideal MHD [6, 7, 23, 24]

ρmdtV = −∇P + J×B

∂tB = ∇× (V ×B)

dtP + ςP∇ ·V = 0

dtρm + ρm∇ ·V = 0

where dt = ∂t + V · ∇ is a Lagrangian derivative, V the plasma velocity, P the pressure,
B the magnetic field and ρm the mass density, and ς the adiabatic index. The two last
equations are consistent with the adiabatic transform constraint dt (Pρ−ςm ) = 0. A virtual
MHD displacement is such that ∂tξ = V, where ξ is supposed infinitesimal. One major
property of ideal MHD is the frozen-in law that grants flux conservation under the plasma
motion. Hence dtρ = 0, i.e. flux surfaces remain flux surfaces after a displacement. The
variation of the magnetic field verifies δB = ∇× (ξ ×B), so that the change of magnetic
energy density is24

1

µ0
B · δB = −ξ · (J×B) +

1

µ0
∇ · [(ξ ×B)×B]

24This property is most readily demonstrated by using the identity ∇(A×B) = B · ∇×A−A · ∇×B with
A = ξ ×B and the Ampère’s equation ∇×B = µ0J.
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The variation of pressure reads

δP = (ς − 1)ξ · ∇P −∇ · [ςPξ]

If the transform of flux surfaces is such that the last surface that encloses the plasma is
left unchanged, all divergence terms, i.e. the Poynting and thermal energy fluxes, vanish
after integration of the plasma volume since ξ = 0 at the boundary. The variation of
energy then verifies

δW =

∫
d3x (∇P − J×B) · ξ

An extremum of δW is reached when the force balance equation is satisfied. However
it must be kept in mind that this is true under some specific conditions: magnetic flux
conservation, adiabatic transform and constant plasma boundary.

G Using the virial theorem

It is quite instructive to apply the virial theorem [15, 23] to a set of shifted circular flux
surfaces, as described in the previous section.

< RFR > V =

∫
V
d3x

(
2P +

B2
Z

2µ0

)
−

∫
∂V

(dS · ξ)

(
P +

B2

2µ0

)
(25)

where d3x = 2πRdRdZ and ξ = RêR. Flux surfaces are given by

R = R0 + ∆(ρ) + ρ cosϑ

Z = ρ sinϑ

where ∆(ρ) is the Shafranov shift, and is supposed unknown at this stage. The magnetic
field is of the form

B = BT êϕ +Bpêϑ

where the “toroidal” and “poloidal” magnetic field intensities are

BT (ρ, ϑ) = B0

(
1− ρ

R0
cosϑ+ o

(
ε2
))

Bp(ρ, ϑ) = bθ(ρ)
(
1− Λ(ρ) cosϑ+ o

(
ε2
))

with

Λ(ρ) =
d∆

dρ
+

ρ

R0

The vectors

êρ = cosϑêR + sinϑêR

êϑ = êϕ × êρ = − sinϑêR + cosϑêZ

and êϕ = R∇ϕ constitute a set of orthonormal vectors. A quick check of this non-
covariant formulation can be done by noting that the distance between 2 flux surfaces of
radius ρ and ρ+ dρ is d`(ρ, θ) = dρ(1 + d∆

dρ cosϑ). The poloidal magnetic flux is such that
dψ = BpRd` , and is a function of ρ only, as expected.

The elements of integration elements that appear in Eq.(25) require some care when
moving from the system of coordinates (R,Z) to (ρ, ϑ). The normal to the surface is
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n = eρ, so that dS = dϑdϕρReρ. The volume element is d3x = 2πRρdρdϑ, so that the
following relations hold∫

V
d3x

{
2P +

B2
Z

µ0

}
= 2V (ρ)

{
< P > +

1

2

〈
b2θ

2µ0

〉}
∫
∂V

(dS · ξ)P = 2V (ρ)P (ρ)∫
∂V

(dS · ξ)

(
P +

B2
p

2µ0

)
= V (ρ)

b2θ
µ0

R0

ρ

d∆

dρ∫
∂V

(dS · ξ)
B2
T

2µ0
= 0

where V = 2πR0ρ
2 is the volume enclosed by the flux surface and< ... >= 2π2R0

V

∫ ρ
0 2ρ′dρ′....

The toroidal field does not contribute since B2
TdS · ξ = B2

0/R
2
0dϑdϕρ cosϑ, so that the

average over ϑ cancels exactly on each flux surface. Hence the force balance equation
< RFR >= 0 imposes

d∆

dρ
= − ρ

R0

(
βp(ρ) +

li(ρ)

2

)
The virial theorem can also be used to estimate the vertical field necessary to maintain the
plasma equilibrium. If the integration volume V is chosen to be very large in Eq.(25), all
the surface terms can be neglected since the magnetic field decreases as the cubic power
of the distance far from the current loop. Hence it is found that < RFR > is positive, so
that no equilibrium can be found. An equilibrium exists if a vertical field is applied. The
corresponding average force is

< RFR >= V
2R0

a

B2
θ (a)

µ0

BV
Bθ(a)

There exists several ways to calculate this field. One consists in assuming that the toroidal
field is discontinuous at the separatrix. Hence the contribution of the toroidal field does
no longer vanish. This implies that 3 causes emerge for the onset of the radial force:
pressure force, Lorentz force due to the poloidal field ans associated toroidal current
(this will come in via the plasma inductance), and the Lorentz force due to the toroidal
field discontinuity combined with the corresponding poloidal current. The vertical field
necessary to maintain the equilibrium is

BV = Bθa
a

2R0

[
ln

(
8R0

a

)
+ βp(a) +

li(a)

2
− 3

2

]
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