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Magnetic coordinates and equilibrium magnetic field

This note addresses some properties of confining magnetic configurations. In a first step, it is shown that confinement is ensured if the field lines lie on surfaces, called magnetic (or flux) surfaces. These surfaces have to be tori in accordance with the hairy ball theorem. The existence of magnetic flux surfaces is granted when the configuration is axisymmetric. When it is not, flux surfaces can still exist under some reasonable conditions. A set of curvilinear flux coordinates can then be built, that reflect the structure of the magnetic field. The second step consists in calculating the force exerted on the plasma. The condition of force balance leads to a constraint on the magnetic field called the Grad-Shafranov equation. The equation prescribes the magnetic field, for given pressure and current profiles. Examples of solutions of the Grad-Shafranov are given. It is also shown that a vertical magnetic field is needed to ensure an equilibrium.

Warning: hasty readers may skip sections with a star.

A toroidal system of coordinates (ρ, θ, ζ) is chosen, anticipating that field lines are winded on tori in a well suited confining magnetic configuration. The surface ρ(x) = cte is a

Introduction

The choice of coordinates in a magnetised plasma is essential. The notion of field lines allows understanding this point. Field lines are defined as curves that are tangent to the magnetic field at every point. Conversely the magnetic field is a continuous vector tangent field associated with a set of field lines. When the magnetic field is intense, charged particles follow closely field lines, at least for some time -hence the name magnetic guide field 1 . Magnetic field lines can therefore be seen as geodesics. As in general relativity, it is appealing to define a set of coordinates well adapted to describe these geodesics. A logical next step is to derive an equation that constrains the magnetic topology, here the Grad-Shafranov equation, for given sources which appear to be the thermal pressure and current density profiles. Good confinement properties of a magnetic field are shown to imply that field lines are winded on magnetic flux surfaces, or flux surfaces in short, which are tori. Flux surfaces and field lines offer a powerful way to construct a set of coordinates that spouse the magnetic topology. These are called flux coordinates. Flux coordinates reflect the structure of the magnetic field, and thus embed some basic properties of the field, like magnetic fluxes, hence their name. This simplifies calculations and more importantly allows a deep understanding of the physics at play. This matters for instance to devise equilibrium magnetic configurations with good confinement properties. Differential geometry appears as a powerful mathematical tool to define and handle flux coordinates 2 . 2 Structure of the equilibrium magnetic field in a tokamak

One way of ensuring charged particle confinement is to enforce field lines to lie on bounded surfaces. These surfaces, when they exist, are called magnetic flux surfaces (or flux surfaces) [START_REF] Hazeltine | Plasma Confinement[END_REF][START_REF] Boozer | Physics of magnetically confined plasmas[END_REF] 3 . Flux surfaces have to be tori thanks to the "hairy ball" theorem [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF]. A casual version of this theorem is the following. Field lines can be seen as "hair". Hair cannot be combed on a sphere without a field singularity (at the poles), whereas they can be combed smoothly on a torus. [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF] The 'hairy ball" (or "hedgehog") theorem can be formulated in a slightly more precise fashion. Under reasonable conditions (e.g. magnetic field smoothness on the invariant manifold, no singularity), a compact manifold in a 3D phase space is a 2-dimensional torus. While the "reasonable" conditions of smoothness can be granted, the key aspect is the compactness, which requires that field lines are bounded. This is the hard part of the demonstration, which is addressed in the next sections.

Existence of flux surfaces

torus, hence a coordinate that characterises the distance to the torus internal axis, while θ and ζ are poloidal and toroidal angles. A configuration is said axisymmetric if it is left invariant by a rotation around a symmetry axis (labelled by the coordinate Z) -see example on Fig. 1. However the most general case is not axisymmetric -an emblematic example is the stellarator (see Fig. 2) 4 . The angles (θ, ζ) are not necessarily geometric angles 5 . The notation ϕ is used when the toroidal angle is geometric and oriented in the conventional trigonometric direction. It must be stressed again that the winding of field lines on toroidal flux surfaces, is by no means granted. Nevertheless nothing prevents the use of an arbitrary set of toroidal coordinates. The vector potential can be written as A = χ(x)∇θ -ψ(x)∇ζ + ∇G A where χ, ψ and G A are functions of x = (ρ, θ, ζ). The functions χ and ψ get a physical interpretation by using the Gauss flux theorem that relates the contour integral of the vector potential to the flux of the magnetic fields. More precisely if Ψ is the flux of the magnetic field across a closed curve that lies on the torus ρ = cte and turns around the vertical axis (contour C at constant ρ and θ), and χ the magnetic flux trough a curve that turns around the axis of the torus ρ = cte in a "poloidal" plane ζ = cte (contour C at constant ρ and ζ) , then6 

Ψ (ρ, θ) = -2π C dζψ(x) (1) 
χ (ρ, ζ) = 2π C dθχ(x) (2) 
Ψ and χ are called "poloidal" and "toroidal" magnetic fluxes 7 . The magnetic field B = ∇ × A bears the following Clebsch representation [START_REF] Hazeltine | Plasma Confinement[END_REF] 

B = ∇χ × ∇θ + ∇ζ × ∇ψ (3) 
It is always possible to choose the radial coordinate ρ as ψ (or respectively χ). The relation Eq.(1) (resp. Eq.( 2)) then implies that ρ is minus the poloidal flux normalised to 2π (resp. the toroidal flux normalised to 2π). In some special cases, a scalar field may be a function of ρ only, i.e. does not depend on the poloidal and toroidal angles. Such a field is called a"flux function". By definition, field lines are such that B × d = 0, where d is a length element along the field line. This condition can be expressed as

dρ B • ∇ρ = dθ B • ∇θ = dζ B • ∇ζ
Choosing without loss of generality the radial coordinate as the normalised toroidal flux, ρ = χ, one gets the two following equations

dθ dζ = dψ dχ (4) 
dχ dζ = - dψ dθ (5) 
This set of equations is a set Hamiltonian equations where ψ(χ, θ, ζ) plays the role of the Hamiltonian and ζ the role of time [START_REF] Goldstein | Classical Mechanics[END_REF][START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF]. This corresponds to a dynamical system with This is equivalent to a 2D dynamical system where the "Hamiltonian" ψ is an invariant of motion. In this case field lines (trajectories) lie on surfaces of constant ψ, and are helices (see Fig. 3). These surfaces are magnetic flux surfaces, and are tori in accordance with the hairy ball theorem. The coordinates (ρ, ζ, θ) are called "flux coordinates" as long as the coordinate ρ is a function of ψ, i.e. a label of flux surface. The special case of axisymmetric configurations is detailed in the next section. 

Flux coordinates in axisymmetric configurations

The function ψ is the poloidal magnetic flux normalised to -2π. The radial coordinate ρ is chosen as ρ = ψ. The set of angle coordinates (θ, ζ) can be related to any other set of angle variables (θ , ζ ) via relations of the form

θ = θ + θ (ψ, θ, ζ) ζ = ζ + ζ (ψ, θ, ζ)
where θ and ζ are 2π-periodic functions in (θ, ζ) with zero mean. In the special axisymmetical case, the toroidal angle ζ can be chosen as minus the toroidal geometric angle ϕ, and ζ = ζ. The function θ depends on (ψ, θ) only. The expression of the magnetic field Eq.( 3) imposes that

B • ∇ζ B • ∇θ = ∂χ ∂ψ (ψ, θ) = q θ (ψ, θ)
where the function q θ measures the local pitch angle of field lines. The function q θ can be split as q θ (ψ, θ) = q(ψ) + q(ψ, θ)

where

q(ψ) = 1 2π 2π 0 dθq θ (ψ, θ)
and q(ψ, θ) is a modulation, i.e. a 2π-periodic function with zero mean. Defining the angle θ (ψ, θ) via the equation it appears that the new poloidal angle θ is such that

∂θ ∂θ ψ = 1 + q(ψ, θ) q(ψ)
B • ∇ζ B • ∇θ = q(ψ)
Hence the safety factor depends on the poloidal flux only with this choice of angles, so that a field line appears as straight in a plane (ζ, θ ) (see Fig. 4) -hence the name straight field line coordinates, which are a special choice of flux coordinates. The function q(ψ) is called safety factor, and its inverse rotational transform (sometimes with a 2π prefactor). An immediate consequence is that χ depends on ψ only, and is the toroidal magnetic flux normalised to 2π -geometric definitions of the poloidal and toroidal fluxes are shown on Fig. 5 and Fig. 6. To simplify the notation, this special set of ordinates will still be noted (θ, ζ), i.e. prime are removed. The expression of the vector potential is particularly agreeable in this set of coordinates

A = χ(ψ)∇θ -ψ∇ζ
up to a gauge function, and the magnetic field is

B = ∇χ × ∇θ + ∇ζ × ∇ψ (6) 
From now on, the notations (θ, ζ) will correspond to this particular choice of coordinates, called straight field line coordinates because of the constancy of the safety factor on a magnetic flux surface, i.e. the equation of a field line is ζ = q(ψ)θ + ζ 0 , where ϕ 0 is the value of the toroidal angle at θ = 0. Usually the poloidal angle is set to zero in the equatorial plane, which fully determines the angle θ. It is sometimes convenient to replace θ with a coordinate α = ζ -q(ψ)θ8 . In the system of coordinates (ψ, α, ζ), the equation of a field line is ψ = cte and α = ζ -q(ψ)θ = cte. In other words, a field line is fully determined by the values of α and ψ. Obviously this implies that B • ∇ψ = 0, and B • ∇α = 0. A compact Clebsch formulation of the field is

B = ∇α × ∇ψ
3 Magnetostatic equilibrium

Force balance equation

We admit here that flux surfaces exist, labelled by the radial coordinate ρ. This property was shown for axisymmetric configurations, and it will be seen that it holds for nonaxisymmetric configurations under some reasonable assumptions. The full determination of the magnetic field requires the determination of the flux function ψ(ρ, θ, ζ) 9 . The equilibrium field is chosen up-down symmetrical from now on. Some physical considerations other than the Maxwell equations have to be accounted for in order to constrain ψ. The MHD force balance equation reads [START_REF] Davidson | An Introduction to Magnetohydrodynamics[END_REF][START_REF] Goedbloed | Magnetohydrodynamics[END_REF] 

ρ m (∂ t + V • ∇) V = -∇P + J × B + ρ m ν∇ 2 V (7)
where ρ m is the mass density, V the fluid velocity, P the pressure, ν the kinematic viscosity (supposed constant to simplify the notations). This equation can be understood as a Navier-Stokes equation that incorporates the Lorentz magnetic force J × B. For a hot plasma immersed in a strong magnetic field, the viscous force is small against the other terms, unless some singularity of the flow appears. If the Mach number is small the inertial force (V • ∇) V is also small against the pressure gradient. In a steady situation, this means that the plasma equilibrium is ruled by the force balance equation

F = J × B -∇P = 0 ( 8 
)
where F is the force exerted on the plasma. The current density J is divergence-free ∇ • J = 0 (a consequence of charge conservation), and is tightly linked to the magnetic field via the Ampère equation

∇ × B = µ 0 J (9) 
Moreover there is no current normal to the flux surface due to the constraint B • ∇P = 0, which results from the projection of the magnetostatic force balance equation along the magnetic field. Indeed B•∇P = 0 imposes that the pressure is a flux function, i.e. depends on ρ only. Thus each flux surface is an isobar. Moreover the perpendicular component of the current

J ⊥ = B × ∇P B 2 (10) 
satisfies J ⊥ • ∇ρ = 0. Hence the current density J is locally tangent to a flux surface. The current J ⊥ , related to the pressure gradient, is said "diamagnetic" since its poloidal component produces a field that counteracts the toroidal magnetic field, as shown in Fig. 7.

Field line bending and curvature

The force exerted on the plasma Eq.( 8) can be written in an alternative form using the Ampère equation Eq.( 9)

F = -∇ P + B 2 2µ 0 + 1 µ 0 (B • ∇) B
This expression gives some insight in the nature of the electromagnetic forces. The quantity B 2 2µ 0 acts as the thermal pressure P , and is accordingly called magnetic pressure -it is also the density of magnetic energy. The force (B • ∇) B is somewhat more difficult to grasp. It can be written

1 µ 0 (B • ∇) B = B 2 µ 0 κ + e • ∇ B 2 2µ 0 e
where κ = (e ∇•)e is the field line curvature. The second term can be regrouped with the gradient of the magnetic pressure, so that the total force reads in fact

F = -∇ ⊥ P + B 2 2µ 0 + B 2 µ 0 κ
where the perpendicular gradient is defined as ∇ ⊥ = ∇ -e e • ∇ , and the property e • ∇ P = 0 has been used. Two conclusions can be drawn: • The steady state condition F = 0, gives a useful relationship

κ = µ 0 ∇ ⊥ P B 2 +
∇ ⊥ B B that relates the field line curvature with the perpendicular gradient of kinetic and magnetic pressures.

• Let us assume that the plasma is submitted to a small displacement ξ directed along the normal to the field line, opposite to the curvature κ (see Fig. 8). The projection of the force B 2 µ 0 κ along ξ is negative, hence opposes to the displacement. This implies that this component of the force opposes field line bending. 

Tensorial expression of the force balance equation

Since the magnetic field is divergence free, the force can be rewritten in a tensorial form10 

F k = ∂T ik ∂X i = 0 ( 11 
)
where the symmetrical tensor T ik is the sum of the Maxwell stress and pressure stress tensors

T ik = -P + B 2 2µ 0 δ ik + B i B k µ 0
The pressure P has to be replaced by a thermal stress tensor in presence of pressure anisotropies. This expression also provides the matching condition across a surface that separates two parts of the plasma, or the plasma from the vacuum. Indeed the force on the surface that encloses a finite volume is

F S = -dS P + B 2 2µ 0 + (dS • B) B
Continuity is ensured if P + B 2 2µ 0 and n • B are continuous across the surface, where n is the vector normal to the surface.

Axisymmetric configurations

Axisymmetry simplifies considerably the determination of the equilibrium magnetic field. As seen in section 2.2, it derives from a vector potential A = χ∇θ -ψ∇ζ where the toroidal flux function χ is a function of ψ only, and θ is a straight field line poloidal angle. It also appears that the magnetic field can be related to the poloidal current that flows across a major radius that lies on a flux surface. The force balance equation then leads to a differential equation that rules ψ(x), the Grad-Shafranov equation.

Alternative expression of the magnetic field

Let us apply the Gauss flux theorem on the magnetic field

C B • dx = µ 0 S J • dS
where the contour C that bounds the surface S is a circle of major radius R that lies on a flux surface ψ = cte 11 . The right hand side is the current that flows through the contour C, and depends on ψ only. Moreover the divergence-free condition on the current density imposes that J • dS does not depend on a peculiar choice of the contour C, provided it lies on the flux surface. The contour integral C B • dx is therefore equal to a flux function I that depends on ψ only (see Fig. 9). A mixed co-and contravariant expression of the field, frequently found in the literature, is therefore

B = I(ψ)∇ζ + ∇ζ × ∇ψ (12) 
The magnetic field is thus the sum of a toroidal component B T = I(ψ)∇ζ and a poloidal field B p = ∇ζ × ∇ψ. The intensity of the poloidal field is usually smaller than its toroidal counterpart. The total field intensity decreases with major radius since |∇ζ| = 1/R, hence the denomination "low field side" (by convention the equatorial plane on the low field side is often chosen as the origin of the poloidal angles θ = 0 ). The current I(ψ) is related to the Jacobian of the coordinate systems (ψ, θ, ζ) via the relation

√ g = [(∇ζ × ∇ψ) • ∇θ] -1 = 1 B • ∇θ = qR 2 I
11 a choice made possible by the assumption of axi-symmetry.

Figure 9:

The flux of current across a circle that lies on a flux surface does not depend on the choice of its location. The poloidal current density J p is tangent to the flux surface, so that its flux across the surface vanishes. The current is divergence free, which implies that its flux across one circle has to be equal to its flux across another circle.

Grad-Shafranov equation

The perpendicular diamagnetic current can be recast as

J ⊥ = dP dψ B B 2 × ∇ψ = dP dψ I B B 2 -R 2 ∇ζ
so that the current density becomes

µ 0 J = KB -µ 0 dP dψ R 2 ∇ζ
where K is a function of (ψ, θ). The second part of this expression is divergence-free. Hence the condition ∇ • J = 0 imposes that B • ∇K = 0, i.e. K is a function of ψ only (Fig. 10). This function is identified as K = -dI dψ by using the Ampère equation ∇ × B = µ 0 J. Hence the expression

µ 0 J = - dI dψ B -µ 0 dP dψ R 2 ∇ζ ( 13 
)
This expression of the current calls for some comments. The first part of the current is "paramagnetic" since its poloidal component produces a field in the same direction as the toroidal field. The second part is the toroidal component of the diamagnetic current. Quite clearly, the parallel current density

J = - dI dψ B -µ 0 I B dP dψ
is not constant on a flux surface. The paramagnetic component goes like B while the diamagnetic piece goes like 1/B. This structure comes from the compressibility of the perpendicular diamagnetic current, which must be balanced by a parallel current, called Pfirsch-Schlueter current, which ensures an overall diverge-free current, i.e. The projection of Eq.( 13) on the toroidal covariant vector e ζ = R 2 ∇ζ yields the toroidal current

B • ∇ J B + ∇ • J ⊥ = 0
µ 0 J ζ = µ 0 R 2 (J • ∇ζ) = -I dI dψ -µ 0 R 2 dP dψ (14) 
Using the identity ∇ζ 12 , one finds

• ∇ × B = -∇ • (∇ζ × B)
∇ 2 * ψ = R 2 ∇ • 1 R 2 ∇ψ = -I dI dψ -µ 0 R 2 dP dψ ( 15 
)
where ∇ 2 * ψ is a conventional notation for the modified Laplacian that appears in the l.h.s of this equation. This is the Grad-Shafranov equation, which gives the field ψ(x) for given pressure P (ψ) and current I(ψ) profiles, plus a boundary condition. The boundary condition can be given by the value of ψ on a flux surface (fixed boundary), or by matching the solution with an external solution consistent with the current that flows in the poloidal coils. If the matching is handled on the separatrix (the last flux surface with closed field lines), and if it is admitted that no current flows in the outer region, it is then convenient to write the field as B = ∇υ (υ for "vacuum"), where υ is a scalar field such that ∇ 2 υ = 0. This field is itself matched with the field produced by the coils. Matching conditions on the separatrix are satisfied if P + B 2 2µ 0 and n • B are continuous across the separatrix, where n is the vector normal to the surface.

Grad-Shafranov equation in curvilinear coordinates*

The Grad-Shafranov equation Eq.( 15) is covariant, so that any set of coordinates can be used. The contour lines of ψ in a poloidal plane give the shape of the flux surfaces. The set of cylindrical coordinates (R, ζ, Z) is the easiest one to handle. The effective Laplacian then reads

∇ 2 * ψ = R ∂ ∂R 1 R ∂ψ ∂R + ∂ 2 ψ ∂Z 2
The cylindrical set of coordinates (R, ζ, Z) is not always the most suited to a given problem. In some cases the straight field lines set of coordinates (ρ, θ, ζ) is more appropriate.

The subset (R, Z) must then be replaced by the new set (ρ, θ). The coordinate ζ is orthogonal to any set (ρ, θ), and can be treated separately. To keep on handling a direct set of coordinates (positive signature), it is convenient to reorder the cylindrical coordinates as (R, Z, ζ), which is direct provided that ζ is chosen anti-trigonometric. The subset (R, Z) behaves as a set of two Cartesian coordinates. A 2D problem is then isolated by determining the metric tensor associated with the change of variables (R, Z) → (ρ, θ). The distance element is

ds 2 = dR 2 + dZ 2 + R 2 dζ 2 = g ik dξ i dξ k
The elements of the reduced metric 2D tensor

g ik = g ρρ g ρθ g ρθ g θθ
can be calculated by using the expressions of R(ρ, θ) and Z(ρ, θ) and calculating their partial derivatives. The other coefficients satisfy g ζϕ = R 2 , and g ζρ = g ζθ = 0. The metric tensor is easily inverted by isolating the (2, 2) submatrix to give

g ik = 1 J g θθ -g ρθ -g ρθ g ρρ
where J = g ρρ g θθ -g 2 ρθ is the determinant of the submatrix. Moreover g ζζ = 1/R 2 , and g ζρ = g ζθ = 0. The Jacobian is

√ g = J 1/2 R.
Using the covariant expression of divergence and gradient operators (see Appendix A), the Grad-Shafranov equation can then be written as 

R 2 √ g dψ dρ ∂ ∂ρ g θθ √ g dψ dρ - ∂ ∂θ g θρ √ g dψ dρ = -I dI dρ -R 2 µ 0 dP dρ

Solving the Grad-Shafranov equation

The Grad-Shafranov equation is usually solved numerically. Analytical solutions are found in some special cases that deserve being commented. Analytical solutions are useful for many applications, like trajectories computation, stability calculations or transport solvers. Moreover they are mandatory to verify equilibrium numerical solutions. Two main lines can be identified. A first strategy consists in solving the Grad-Shafranov in Cartesian coordinates (R, Z) for a class of pressure and current profiles. This provides the poloidal flux ψ(R, Z), and therefore the field. Poloidal cross-sections of the flux surfaces are the contour lines of ψ(R, Z). Therefore the shape of the flux surfaces is the outcome of the calculation. The second approach consists in imposing the geometry of flux surfaces via a change of coordinates (R, Z) → (ρ, θ), where ρ is a flux label. This change of coordinates is parametrized by a set of flux functions that prescribe the shape. The Grad-Shafranov equation is then solved in curvilinear coordinates by using standard procedures of differential geometry. Solving the Grad-Shafranov equation fixes the shaping functions.

In that case, geometry imposes the magnetic field. Solov'ev equilibria [START_REF] Solov'ev | The theory of hydromagnetic stability of toroidal plasma configurations[END_REF][START_REF] Solov'ev | The theory of hydromagnetic stability of toroidal plasma configurations[END_REF] are a first instance of exact global solutions of the Grad-Shafranov equation. If the functions I dI dψ and dP dψ are chosen as suitable functions of R and Z, it is possible to construct exact solutions ψ(R, Z) of Eq. [START_REF] Shafranov | Reviews of Plasma Physics[END_REF]. A simple example is given in Appendix B and in Fig. 11. The main advantage of the family of Solov'ev equilibria is that it allows a large variety of shapes, and more importantly null point of the poloidal field (X-point). Hence it is possible to calculate equilibria close to those encountered in modern tokamaks.

Another important class of solutions are Miller equilibria [START_REF] Miller | Noncircular, finite aspect ratio, local equilibrium model[END_REF], after ideas developed by Mercier and Luc [START_REF] Luc | Report No. EUR-5127e 140[END_REF]. In an earlier work Mercier studied the topology of the magnetic field in non axisymmetric configurations near the magnetic axis, which has deep implications on the various paths to design a stellarator [START_REF] Mercier | Equilibrium and stability of a toroidal magnetohydrodynamic system in the neighbourhood of a magnetic axis[END_REF]. These are local solutions of the Grad-Shafranov equation, i.e. valid in the vicinity of a reference flux surface. Their main advantage is that the pressure gradient and the safety factor can be changed without changing the shape of the reference flux surface. This is quite useful for parametric studies of the effect of the geometry at fixed gradients. This is why Miller equilibria are widely used in turbulence local codes. The basic principles are described in Appendix C. Solutions can be found for D-shape flux surfaces [START_REF] Miller | Noncircular, finite aspect ratio, local equilibrium model[END_REF] 

R = R 0 + ∆(ρ) + ρ cos ϑ + sin -1 δ(ρ) sin ϑ Z = ρκ(ρ) sin ϑ (16) 
where the functions κ(ρ) and δ(ρ) describe the ellipticity and triangularity of the flux surfaces, and ∆(ρ) is a Shafranov shift (Fig. 12). This description allows highly shaped flux surfaces. Explicit calculations are available when (R, Z) → (ρ, ϑ) are written as Fourier series in ϑ [START_REF] Candy | A unified method for operator evaluation in local grad shafranov plasma equilibria[END_REF]. The drawback of Miller equilibria is also their advantage: they are not global solutions of the Grad-Shafranov equation. Finally another way to define an equilibrium is to define the correspondence between the set of coordinates (R, Z) and the set (ρ, ϑ) as an expansion in a small parameter , where is an inverse aspect ration a/R 0 (a the plasma size). The normalised pressure µ 0 P B 2 scales as 2 and the current flux I as

B 0 R 0 1 + o( 2 )
, where B 0 is a reference field, and R 0 a reference major radius. A convenient expansion, sometimes called the "Culham" equilibrium [14], is

R = R 0 + ρ cos ϑ + 2 ∆(ρ) + m m S m (ρ) cos (mϑ) + 3 L(ρ) cos ϑ Z = ρ sin ϑ + m≥1 m S m (ρ) sin (mϑ) -3 L(ρ) sin ϑ
where L(ρ) is an adjustment needed to define a proper safety factor, and hence to build a system of straight field line coordinates (θ, ϕ). The function ∆(ρ) describes the radial shift of flux surfaces, and is called "Shafranov shift" [START_REF] Shafranov | Reviews of Plasma Physics[END_REF]. The other functions S m (ρ) are used to define the geometry of the flux surfaces. The simplest case S m = 0 corresponds to shifted circular flux surfaces [START_REF] Shafranov | Reviews of Plasma Physics[END_REF] and is treated in Appendix D -see Fig. 13. In most cases, the analysis is restricted to m = 1 and m = 2. The function E(ρ) = S 1 (ρ) describes the ellipticity of the flux surfaces, while T (ρ) = S 2 (ρ) is related to their triangularity. The Grad-Shafranov equation can be solved order by order in . One important property is that S m (ρ) is found to vary as ρ m . Hence the triangularity and higher order shaping functions fade away when getting close to the magnetic axis. One drawback of this expansion is that it does not allow defining a separatrix with a null point of the poloidal field due to the ordering. On the other hand, the advantage of this expansion is that it provides a global solution of the Grad-Shafranov equation. Hence it has proved quite useful for MHD stability [14] calculation and transport solvers [START_REF] Fitzpatrick | On the '1 1 / 2 -d' evolution of tokamak plasmas in the case of large aspect ratio[END_REF]. A set of circular concentric flux surfaces ∆ = 0, S m = 0 is not a solution of the Grad-Shafranov solution. Nevertheless it is often used as a proxy that allows tractable analytic calculations. 

Non-axisymmetric configurations

The existence of flux surfaces is simpler to demonstrate when the configuration is axisymmetric. Axisymmetry also grants a compact form of the magnetic field, leading to a tractable form of the force balance equation. It appears that some of these results still hold in non-axisymmetric configurations under some reasonable assumptions related to the regularity of the pressure field.

Representation of the magnetic field

The equations of field lines Eq.(4,5) exhibit an Hamiltonian structure, where the poloidal flux plays the role of an Hamiltonian, and the toroidal angle replaces the time. In the case of an axisymmetric configuration, the Hamiltonian is obviously an invariant of motion, which suffices to demonstrate the existence of magnetic field lines. The argument is not valid for a non axisymmetric configuration. However an alternative argument, proposed by Boozer [START_REF] Boozer | Physics of magnetically confined plasmas[END_REF], and based on the force balance equation, can be used to infer the existence of flux surfaces. If the magnetostatic force balance equation is fulfilled, i.e. J × B = ∇P , where J is the current density, then the pressure P is a dynamical invariant since (B • ∇)P = 0. Assuming that the pressure is a smooth function P (x), and that isobar surfaces are bounded, this grants the existence of invariant (isobar) tori by virtue of the "hairy ball" theorem, already mentioned 13 . This can be understood as follows. Let us start from the Clebsch expression of the magnetic field Eq.( 3). Pressure is chosen as the radial coordinate, i. The functions χ and ψ can be decomposed as a mean over the angles ϑ and ζ and a modulation

χ(ρ, ϑ, ζ) = χ(ρ) + χ(ρ, ϑ, ζ) ψ(ρ, ϑ, ζ) = ψ(ρ) + ψ(ρ, ϑ, ζ)
The constraint Eq.( 17) can be incorporated in the expressions of fluxes as

∂χ ∂ρ (ρ, ϑ, ζ) = d χ dρ (ρ) + ∂λ ∂ϑ (ρ, ϑ, ζ) ∂ψ ∂ρ (ρ, ϑ, ζ) = d ψ dρ (ρ) - ∂λ ∂ζ (ρ, ϑ, ζ)
where λ is a periodic function of ϑ and ζ with zero mean. The Clebsch representation of the magnetic field Eq.( 17) then becomes B = ∇ χ × ∇θ + ∇ζ × ∇ ψ, where

θ = ϑ + 1 d χ dρ λ(ρ, ϑ, ζ)
is a straight field line poloidal angle. The bars on the new toroidal and poloidal fluxes χ and ψ are now removed to simplify the notations, so that the final structure of the magnetic field is

B = ∇χ × ∇θ + ∇ζ × ∇ψ (18) 
where χ and ψ are flux functions that depend on ρ only. Defining the safety factor q(ρ) (inverse of the rotational transform) as q = dχ dψ , it appears that the Clebsch structure

B = ∇ (ζ -qθ) × ∇ψ
that was found for axisymmetric configurations also holds for a non axisymmetric field.

The derivation above calls for some comments. It relies on the condition (B • ∇)P = 0, and the implicit assumption that the pressure field exhibits some nice properties of continuity and smoothness (differentiability). Besides isobar surfaces should be bounded. Let us choose a set of straight field line coordinates (ρ, θ, ζ). The pressure can be decomposed as a Fourier series P = mn P mn e i(mθ+nζ)

It is easy to find the expression of the pressure gradient along the field (B • ∇)P by using the expression of the field Eq.( 18) and a set of flux coordinates (ρ, θ, ζ)

(B • ∇)P = i(B • ∇ζ) m =0,n =0 n + m q(ρ)
P mn e i(mθ+nζ)

The condition (B • ∇)P = 0 imposes that the pressure P is a function of ρ, i.e. a flux function as expected, up to an infinite sum of Kronecker delta functions centred on n + m/q(ρ). The flux surfaces which satisfy n + m/q(ρ) = 0 are called resonant surfaces 14 . One may expect that any singularity δ (n + m/q(ρ)) will be regularised after some time by dissipative processes (e.g. viscous dissipation that was neglected in the force balance equation), thus imposing after a relaxation time that the pressure is a flux function. However any force F, even small, that will appear in the force balance equation (e.g. thermal noise) will induce singularities in the pressure field via the equation (B • ∇)P = B • F. The usual argument that is put forward is that dissipative processes, and/or instabilities localised on resonant surfaces, will wipe out these singularities over a fast time scale. In other words, the plasma should self-organize 15 . We will assume in this section that this is indeed the case.

Structure of the current density*

As noticed by Boozer [START_REF] Boozer | Physics of magnetically confined plasmas[END_REF], the current density behaves with respect to the magnetic field in the same way as the magnetic field with respect to the vector potential. Indeed it is divergence-free ∇ • J = 0 and is the curl of the magnetic field µ 0 J = ∇ × B (Ampère equation). Moreover the force balance equation imposes that the current lies on flux surfaces J • ∇ρ = 0 (see section 3.1). Hence the current density can be written in a Clebsch form similar to the magnetic field 16

µ 0 J = ∇G × ∇θ + ∇I × ∇ζ
where G and I are functions of the set of straight field line coordinates (ρ, θ, ζ). Following closely the methodology described in the previous section, the constraint J • ∇ρ = 0 is used to find an equivalent form of the current density µ 0 J = ∂G ∂ρ ∇ρ × ∇θ + ∂I ∂ρ ∇ρ × ∇ζ 14 A flux surface does not necessarily exists in the plasma since it requires that the safety factor is equal to a rational number -m/n that may be out of the range of accessible values of the function q(ρ). 15 Other ways exist that grant the existence of flux surfaces. For instance stellarators are known to exhibit flux surfaces even without plasma. These surfaces are probed with electron beams. 16 The notations G and I are inverted compared with Boozer's conventions.

together with the constraint

∂G ∂ζ - ∂I ∂θ = 0
The current flux functions G and I can be decomposed as sums of means G(ρ) and I(ρ) and modulations, constrained by Eq.( 19). This can be formulated in a convenient form

∂G ∂ρ (ρ, θ, ζ) = dG(ρ) dρ + ∂ν ∂ϑ (ρ, θ, ζ) ∂I ∂ρ (ρ, θ, ζ) = dI(ρ) dρ + ∂ν ∂ζ (ρ, θ, ζ)
where ν(ρ, θ, ζ) is a periodic function in θ and ζ with zero mean. The current density becomes µ 0 J = ∇G × ∇θ + ∇I × ∇ζ -∇ν × ∇ρ

This relation provides the covariant expression of the magnetic field

B = G(ρ)∇θ + I(ρ)∇ζ -ν(ρ, θ, ζ)∇ρ + ∇H(ρ, θ, ζ) (19) 
where H is a gauge function. Of course one would like to manipulate 3 flux functions and not 4. This is done by changing the system of coordinates, i.e. by changing (θ, ζ) in another set (θ , ζ ). As noticed by Boozer, the magnetic field is invariant by any change of the form

θ = θ + ι(ρ) ζ ρ, θ , ζ ζ = ζ + ζ ρ, θ , ζ
where ι(ρ) = 1/q(ρ). Since this change of coordinates leaves invariant the combination ζ -qθ = ζ -qθ. The structure of the field Eq.( 19) remains the same with (θ, ζ) replaced by (θ , ζ ) , but with new functions ν and G B such that

ν = ν + ι dG dρ + dI dρ ζ H = H + (ιG + I) ζ
Hence ν or H can be set to zero via a suitable choice of ζ. It must be stressed that even if the toroidal angle ζ would be chosen as the geometric angle in the first place, the new toroidal angle is usually not a geometric angle any more. The choice ν = 0 corresponds to Hamada coordinates, while H = 0 determines the Boozer coordinates.

Both have their interest for instance in the context of the Hamiltonian formulation of trajectory equations (Boozer coordinates) or neoclassical transport (Hamada coordinates). it appears that the Grad-Shafranov equation can be written in an elegant form when using Boozer/Hamada coordinates. This form is particular compact when choosing Hamada coordinates -moreover the Jacobian then appears to be a flux function. More details can be found in Appendix E or in references [START_REF] Hazeltine | Plasma Confinement[END_REF][START_REF] Boozer | Physics of magnetically confined plasmas[END_REF][START_REF] Helander | Theory of plasma confinement in non-axisymmetric magnetic fields[END_REF].

Force exerted on the plasma*

The force balance equation Eq.( 7) reads ρ m (∂ t + V • ∇) V = F, where F = -∇P + J × B is the force exerted on the plasma when the viscous force is neglected. The force has no component along the field lines, i.e. B • F = 0. Thus it can be decomposed as [START_REF] Hirshman | Steepest descent moment method for three dimensional magnetohydrodynamic equilibria[END_REF] 

F = F ρ ∇ρ + F ∧ B B 2 × ∇ρ
Both the magnetic field and the current density can be expressed in a covariant/contravariant form J = J i e i = J i e i , B = B i e i = B i e i , with B ρ = B • ∇ρ = 0 since the magnetic field is tangent to a flux surface. The force covariant components then read

F ρ = √ g J θ B ζ -J ζ B θ - dP dρ F ∧ = -J ρ
The field structure Eq.( 18) imposes that

B θ = 1 √ g dψ dρ B ζ = 1 √ g dχ dρ
The contravariant components of the current density are computed from the Ampère's equation, using the expression of a curl operator in curvilinear coordinates Eq.( 20). After a bit of algebra, the force components can be written in the following form

F ρ = 1 µ 0 (B • ∇)B ρ -B θ ∂B θ ∂ρ -B ζ ∂B ζ ∂ρ - dP dρ F ∧ = - 1 µ 0 √ g ∂B θ ∂ζ - ∂B ζ ∂θ
It is reminded that the covariant components of the field are related to the contravariant components via the relation

B i = g iθ B θ + g iζ B ζ
Since the force must vanish , F ∧ = -J ρ = -J • ∇ρ = 0, which imposes that the current is tangent to flux surfaces, a result that was already obtained in the special axisymmetric case. At this point, it is useful to express force F ρ component in the special axisymmetric case. The condition F ∧ = 0 imposes that B ζ = I(ρ) depends on ρ only, a result that was also already found. The component F ρ is found to be

F ρ = - 1 µ 0 √ g dψ dρ ∂ ∂ρ g θθ √ g dψ dρ - ∂ ∂θ g θρ √ g dψ dρ - 1 µ 0 R 2 I dI dρ - dP dρ
The condition F ρ = 0 appears to be equivalent to the Grad-Shafranov equation Eq.( 15), using the covariant expression of the divergence of a vector ∇ • V (see Appendix A), with

V ρ = 1 R 2 dψ dρ , V θ = V ζ = 0 and g ρρ = R 2 g θθ g , g θρ = -R 2 g θρ g .
Hence the condition of force balance is equivalent to the Grad-Shafranov equation. It provides a powerful method to calculate the equilibrium of a magnetic configuration that is not axisymmetric [START_REF] Hirshman | Steepest descent moment method for three dimensional magnetohydrodynamic equilibria[END_REF][START_REF] Hirshman | Three dimensional free boundary calculations using a spectral green's function method[END_REF].

6 Variational principle and virial theorem

Energy principle and related variational methods

The Grad-Shafranov equation is not easy to solve, and its analogue in non-axisymmetric configurations is even more challenging. This is why it is sometimes replaced by a variational principle, which allows using a projection on a basis of functions and a suitable truncature. One common form is based on the plasma energy where ς is the adiabatic index 17 . This definition of the plasma energy is not the most general that could be thought of. It does not include the energy density associated with the electric field, and reduces the energy density of the plasma to its thermal energy P ς-1 , in principle valid when the plasma can be described as a perfect gas. Let us assume that flux surfaces exist, and labelled by a flux coordinate ρ. The position on a flux surface is a vector x (ρ, θ, ζ), where (θ, ζ) are poloidal and toroidal angles. The force balance equation is equivalent to minimizing W with respect to any virtual displacement of the magnetic field and pressure that is consistent with the equations of ideal MHD, i.e. that preserves the magnetic fluxes, and under the constraint of an adiabatic transform that keeps P (ρ) dV dρ ς constant (see Fig. 14), where

W = d 3 x B 2 2µ 0 + P ς -1
dV dρ = ρ dθdζ J
is the differential volume element (dV is the volume element between the flux surfaces ρ and ρ + dρ). The transform must be done for a given plasma surface. In other words, if ξ labels the displacement of flux surfaces, which therefore become x (ρ, θ, ϕ) + ξ after a transformation as described above, the variation of energy is

δW = d 3 x (∇P -J × B) • ξ
The demonstration is given in Appendix F. If δW exhibits an extremum with respect to the displacement ξ then J × B = ∇P . Quite interestingly, this property does not depend on the precise value of the adiabatic index ς. Hence a "Lagrangian" version of this principle can be devised by choosing ς = 0

L = d 3 x B 2 2µ 0 -P 17 
The traditional notation γ is avoided here as it is also the usual notation for an instability growth rate.

Variations must then be done at constant pressure P (ρ) when changing the shape of the flux surfaces. This variational approach has proved efficient to compute equilibria in stellarators [START_REF] Hirshman | Steepest descent moment method for three dimensional magnetohydrodynamic equilibria[END_REF][START_REF] Hirshman | Three dimensional free boundary calculations using a spectral green's function method[END_REF], and in particular to design optimised non-axisymmetric configurations.

The above theorem applies when the last closed flux surface is prescribed. The energy principle can be extended to match with a vacuum field B υ by adding -d 3 x B 2 υ 2µ 0 to W.

Figure 15: A vertical field combined with the plasma current balances the radial force due to thermal and magnetic forces.

Virial theorem

The virial theorem consists in multiplying the tensorial form of the force balance equation Eq.( 11) by a displacement vector ξ and integrate over a suitable volume V. This is the usual procedure to build the weak variational form associated with a differential equation.

The resulting functional exhibits an extremum when varying the displacement ξ. This extremum provides a solution of the force balance equation. It provides a convenient way to resolve numerically the equilibrium magnetic configuration by expanding ξ on a suitable set of basis functions 18 . The original version of the virial theorem corresponds to a displacement ξ = X i êi = X i êi , and êi = êi are the Cartesian unit vectors. Using the relation

∂ ∂X i X k T ik = T kk + X k ∂ ∂X i T ik
and noting that the last term vanishes, an integration over the volume V yields

V d 3 x 3P + B 2 2µ 0 = ∂V (dS • ξ) P + B 2 2µ 0 - 1 µ 0 ∂V (dS • B) (ξ • B)
where ∂V is the surface that encloses the volume V, and dS a surface element on ∂V. The right hand side vanishes if the surface ∂V is located far away from the plasma since the pressure is then null and the magnetic field decreases as the cubic power of the distance (for a dipolar field -multipolar components decay even faster). Hence an external force must be exerted to maintain the plasma. Some geometrical considerations show that this force is horizontal. It comes from both the pressure gradient and electromagnetic forces. A modified version of the virial theorem can be devised to determine this force. The displacement vector is now chosen to lie in a poloidal plane ξ = Xê X + Y êY . This displacement is radial since ξ = Rê R , where R is the major radius, and êR = ∇R is the unit vector in the conventional set of cylindrical coordinates (R, Z, ϕ). This allows calculating a moment of the radial force

< RF R > V = V d 3 xξ k ∂ ∂X i T ik
where the bracket indicates an average over the volume V. The integral over the volume of Eq.( 20) yields the covariant expression

< RF R > V = V d 3 x 2P + B 2 Z 2µ 0 - ∂V (dS • ξ) P + B 2 2µ 0
where the property dS • B = 0 has been used since ∂V is a flux surface. Inside the plasma, the flux surfaces shift radially to ensure the force balance equation < RF R >= 0. This is nothing else than the Shafranov shift. Outside the separatrix, an external radial force is needed to maintain the plasma. This force is due to three causes [START_REF] Freidberg | Plasma Physics and Fusion Energy[END_REF][START_REF] Freidberg | Ideal MHD[END_REF]:

• a force due to pressure. This force is analogous to the one felt by an inflated tire, which expands. It is sometimes called "tire tube force".

• an electromagnetic force due to the plasma current and the poloidal field. A current filament tends to expand under the Lorentz force associated to the current and the magnetic field it produces. This force is called the "hoop force".

• an electromagnetic force due to the Lorentz force that results from the toroidal magnetic field and the poloidal current that flows in the plasma -this current can be diamagnetic or paramagnetic. The toroidal field is inversely proportional to the major radius. A net force results from the imbalance between the jump of magnetic field on high and low field sides. It is called "1/R force".

This radial force is compensated in a tokamak by a vertical magnetic field, such that the Lorentz force due to the vertical field and the toroidal plasma current balances the expanding forces (Fig. 15).

Appendices

A Curvilinear coordinates: definition and properties

A.1 Curvilinear coordinates

A position vector is noted x. Cartesian coordinates provide the usual framework to characterize a vector, namely x = X i êi , where X i = X i are the Cartesian coordinates, and the êi = êi is a set of orthonormal basis vectors 19 . The gradient of a differentiable function f (X i ) is defined as ∇f = ∂f ∂X i êi , or put it differently df = ∇f • dx. Curvilinear coordinates are defined as a set ξ 1 , ξ 2 , ξ 3 that can be mapped on the set of Cartesian coordinates (X 1 , X 2 , X 3 ), i.e. each coordinate ξ i is a well defined and invertible function of the X i 's -invertible means that the X i 's are well behaved functions of the x i 's. The coordinates ξ i are vector fields, noted ξ i (x). The subspace ξ i (x) = cte is a surface. The coordinate gradient ∇ξ i is a vector normal to this surface since dξ i = ∇ξ i • dx (Fig. 16)). Hence the set ∇ξ 1 , ∇ξ 2 , ∇ξ 3 form a basis provided the Jacobian is non zero. One can define a dual basis by using the cross-products of the vectors ∇ξ i . Any vector field B(x) can then be written as

B = B i e i = B i e i where e i = ∇ξ i = ∂ξ i ∂x ; e i = ∂x ∂ξ i = ijk √ g ∇ξ j × ∇ξ k where √ g = ∇ξ 1 × ∇ξ 2 • ∇ξ 3 -1 is the Jacobian of the set of coordinates ξ 1 , ξ 2 , ξ 3 .
The e i (respectively e i ) are the covariant (resp. contravariant vectors) 20 , and satisfy the property e i • e k = δ k i . The latter property reflects the derivative chain rule

∂ξ i ∂X j • ∂X j ∂ξ k = δ k i
If the contravariant vectors e i = ∇ξ i are known, a matrix inversion provides the covariant vectors e i = ∂x/∂ξ i . Obviously B i = B • e i and B i = B • e i . The norm of a vector field is

B = |B| = (B i B i ) 1/2 .
The vectors e i or e i are usually not orthogonal, and not normal. Nevertheless, in some special cases (e.g. cylindrical or spherical coordinates), they do form a set of orthogonal vectors. In this case it is convenient to normalise them and thus build a convenient orthonormal basis. They are then noted with an arrow, to make a distinction with co-or contra-variant vectors and defined as êi = e i / |e i |. An important property is êi = êi , so that co-or contra-variant notations do not matter any more. Obviously Cartesian coordinates is a special case of a set of orthogonal vectors.

A.2 Metric tensor

An elementary distance element is

ds 2 = g ik dξ i dξ k = g ik dξ i dξ k
where the metric elements are

g ik = e i • e k = ∂x ∂ξ i • ∂x ∂ξ k ; g ik = e i • e k = ∇ξ i • ∇ξ k
The metric matrix g ik is in fact a tensor, as it changes from one system of coordinates to another one via usual chain rules for changes of variables. The tensor g ik is the inverse of the tensor g ik . With the conventions above, √ g is the determinant of the matrix g ik .

Hence

√ g = det (g ik ) = 1 det (g ik )
The change from co-to contra-coordinates read 

B i = g ik B k and B i = g ik B k .

A.3 Most common expressions of vectorial operators in curvilinear coordinates

The knowledge of the metric tensor gives access to explicit expression of most vectorial operators, which are reminded below. Divergence of a vector B

∇ • B = 1 √ g ∂ ∂ξ i √ gB i Curl of a vector B (∇ × B) i = 1 √ g ijk ∂B k ∂ξ j
Components of a scalar gradient

(∇φ) i = g ik ∂φ ∂ξ k
Laplacian of a scalar

∇ 2 φ = 1 √ g ∂ ∂ξ i √ gg ik ∂φ ∂ξ k
The element of volume is dV = d 3 x = √ gdξ 1 dξ 2 dξ 3 . The integration element on the surface ξ i = cte is dS i = ijk √ gdξ j dξ k . This is consistent with the Green-Ostrogradsky theorem

V dV∇ • B = ∂V dS • B
where V is a volume and ∂V the surface that encloses it. The element of length is given by the relation dx = dξ i e i , which is consistent with the Gauss theorem

S dS • ∇ × B = ∂S dx • B
where S is a surface and ∂S the curve that bounds it

A.4 Flux surface average

Let us choose a set of curvilinear coordinates (ρ, θ, ζ), periodic in θ and ζ. A surface average of a function f (ρ, θ, ζ) is defined as the variation of the volume integral of f between two nearby surfaces ρ and ρ + δρ

f ρ = δ ρ d 3 xf δ ρ d 3 x = ρ dθdζ √ gf ρ dθdζ √ g
In the special case of a magnetic field of the form Eq.( 6) in an axisymmetric configuration, the magnetic surface average, defined as the average of a function in between two nearby magnetic surfaces ψ and ψ + δψ, becomes

f ψ = ψ dθ B•∇θ f ψ dθ B•∇θ B Solov'ev equilibrium
Solov'ev equilibria are exact global solutions of the Grad-Shafranov equation [START_REF] Solov'ev | The theory of hydromagnetic stability of toroidal plasma configurations[END_REF]. Let us remind its form

∇ 2 * ψ = -I dI dψ -µ 0 R 2 dP dψ
where

∇ 2 * ψ = R 2 ∇ • 1 R 2 ∇ψ = R ∂ ∂R 1 R ∂ψ ∂R + ∂ 2 ψ ∂Z 2
and let us assume that µ 0 dP dψ = -A I dI dψ = γ 1+α 2 R 2 0 A where A, γ < 1, R 0 and α are constant parameters. A particular solution of Eq.( 20) is then

ψ = A 2 (1 + α 2 ) R 2 -γR 2 0 Z 2 + α 2 4 R 2 -R 2 0 2
The level curves of the function ψ(R, Z) are cross sections of flux surfaces in a poloidal plane. Near the magnetic axis R = R 0 , Z = 0 , i.e. where x = R-R 0 R 0

1 and z = R R 0
1, a Taylor development of Eq.( 20) at order 3 in x ∼ z ∼ yields

[x + ∆(x, z)] 2 + 1 -γ α 2 z 2 = x 2 ψ + o( 4 )
where

x 2 ψ = 2ψ AR 4 0 1 α 2 + 1 is a flux label, and ∆(x, z) = 1 2 x 2 + 1 α 2 z 2
Near the axis magnetic axis x = z = 0, flux surfaces are ellipses with ellipticity α √ 1-γ . The horizontal displacement ∆(x, z) is a Shafranov shift (see following section). The separatrix is determined by the "X-points" such that |∇ψ = 0| (null poloidal magnetic field), i.e. ∂ψ ∂R = ∂ψ ∂Z = 0. Using the general expression of ψ Eq.( 20) two X-points exist such that R X = √ γR 0 and Z X = ± 1-γ 2 αR 0 . Generalisations of this simple example to more sophisticated equilibria have been developed, which allow a broad variety of surface shapes [START_REF] Cerfon | One size fits all analytic solutions to the gradshafranov equation[END_REF].

C Miller equilibrium

Finding a global solution of the Grad-Shafranov equation is difficult for arbitrary pressure and current profiles. However it is relatively easy to build a local solution near a flux surface with prescribed shape and poloidal magnetic field [START_REF] Luc | Report No. EUR-5127e 140[END_REF][START_REF] Miller | Noncircular, finite aspect ratio, local equilibrium model[END_REF]. Let us consider a given flux surface with a poloidal flux ψ 0 . The surface cross section, a poloidal curve labelled C, can be described by a curvilinear abscissa . The position x p on this curve is prescribed by a vertical and horizontal positions i.e. x p ( ) = R s ( )ê R + Z s ( )ê Z . Near the reference flux surface, the vertical and horizontal coordinates can be written in the form

R( , ρ) = R s ( ) + ρ cos ϑ( ) Z( , ρ) = Z s ( ) + ρ sin ϑ( )
where ρ is a flux label that measures the distance to the reference flux surface, and ϑ( ) is a poloidal angle to be defined. Let us define ê as the unit tangent vector associated with the curve C, then

dx p d = ê = dR s d êR + dZ s d êZ
The condition |ê | 2 = 1 imposes that dRs d and dZs d must be cosine and sine functions of an angle. There is some flexibility on the choice of the angle origin. Anticipating that derivatives of Z and R with respect to ρ and will be needed to compute the metric tensor, a suitable choice is

dR s d = -sin ϑ( ) dZ s d = cos ϑ( )
so that ê = -sin ϑ( )ê R + cos ϑ( )ê Z . The derivative of the tangent vector with respect to is dê d = -1 Rc( ) êρ , where êρ = cos ϑ( )ê R + sin ϑ( )ê Z is a unit vector normal to the curve C and R c is the curvature radius. This imposes that dϑ d = 1 Rc( ) . Note that with these conventions the coordinate system (ρ, , ζ) is direct. These relations give the needed partial derivatives dR dZ = cos ϑ -J sin ϑ sin ϑ J cos ϑ dρ d

where J(ρ, ) = 1+ ρ Rc( ) is the matrix determinant. A matrix inversion provide the reverse relationship

dρ d = cos ϑ sin ϑ -sin ϑ J cos ϑ J dR dZ
This result can be summarised as ∇ρ = êρ , ∇ = 1 J ê and ∇ζ = 1 R êζ . The 3D Jacobian is √ g = JR.

We now solve the Grad-Shafranov equation,

∇ 2 * ψ = R 2 ∇ • 1 R 2 ∇ψ = -I dI dψ -µ 0 R 2 dP dψ
The effective Laplacian ∇ 2 * ψ can be reformulated as

∇ 2 * ψ = R 2 √ g ∂ ∂x i √ g R 2 g ik ∂ψ ∂x k
where it is reminded that the metric elements satisfy g ik = ∇ξ i • ∇ξ k , so that

g ik = |∇ρ| 2 ∇ρ • ∇ ∇ρ • ∇ |∇ | 2 = 1 0 0 1 J 2
The Grad-Shafranov equation then reads

R J ∂ ∂ρ J R ∂ψ ∂ρ + R J ∂ ∂ 1 JR ∂ψ ∂ = -I dI dψ -µ 0 R 2 dP dψ
The poloidal flux can be expanded near the reference flux surface as

ψ = ψ 0 + ψ 1 ( )ρ + ψ 2 ( )ρ 2 + o(ρ 3 )
The poloidal field reads

B p = ∇ζ × ∇ψ = - 1 R ∂ψ ∂ êρ + 1 R ∂ψ ∂ρ ê
On the reference flux surface ρ = 0, the poloidal field is tangent to the curve C, as expected, i.e. B ps = 1 Rs( ) ψ 1 ( )ê . Let us call B ps the norm of B ps , then ψ 1 ( ) = B ps ( )R s ( ). The poloidal field is supposed to be given on the reference flux surface, as well as its shape. Thus this constraint fully determines ψ 1 . The next order flux contribution ψ 2 is prescribed by the Grad-Shafranov equation, by taking the limit ρ → 0. A straightforward calculation yields

ψ 2 = 1 2 B ps cos ϑ - R s R c -I dI dψ ψ=ψ 0 -µ 0 R 2 s dP dψ ψ=ψ 0
This fully determines the solution to the Grad-Shafranov equation in the vicinity of the reference flux surface ψ = ψ 0 . It is entirely determined by the gradients of pressure P and current I on the reference flux surface, its geometry and the poloidal magnetic field on this surface. The great advantage of the Miller equilibrium is that the magnetic shear and pressure gradient can be changed without changing the shape of the flux surface. This is why it is commonly used in local turbulence or MHD numerical simulations. 

D Configuration of shifted circular flux surfaces

An approximate equilibrium can be computed when the geometry of flux surfaces is close to circular [START_REF] Shafranov | Reviews of Plasma Physics[END_REF]. Before deciding of the shape of flux surfaces, some remarks on the choice of coordinates is necessary. A reasonable starting point is the set of cylindrical coordinates (R, ζ, Z). The subset of coordinates (R, Z) is to be replaced by a new set of flux coordinates (ρ, ϑ), where ρ is a label of flux surface, and ϑ a poloidal angle -here the conventional geometrical angle. The coordinate ζ is orthogonal to any set (ρ, ϑ), so that it can be treated separately. To keep on handling a direct set of coordinates (positive signature), it is convenient to reorder the cylindrical coordinates as (R, Zζ), which is direct if ζ is anti-trigonometric, so that the subset (R, Z) behaves as Cartesian coordinates. This is not mandatory, but makes life easier. The equation of a circle centred on R = R 0 is Z = ρ cos ϑ, R -R 0 = ρ sin ϑ. However concentric circular flux surfaces are not consistent with the Grad-Shafranov equation, because of the thermal and electromagnetic forces that push the plasma outward. Because of these forces, flux surfaces are shifted horizontally. A minimal update is to prescribe flux surfaces of the form (Fig. 17)

R = R 0 + ∆(ρ) + ρ cos ϑ Z = ρ sin ϑ
where ρ is the radius of each circular flux surface (ρ = 0 is the magnetic axis), and R 0 the major radius of the magnetic axis. The length ∆(ρ) measures the horizontal displacement of the centres of flux surfaces with respect to the magnetic axis. This displacement is called "Shafranov" shift and is due to forces exerted by kinetic and magnetic pressures. The inverse aspect ratio = a/R 0 is assumed to be small parameter 1, where a is the plasma minor radius. It is anticipated that the Shafranov shift normalised to a scales as 2 . The magnetic field is written as Eq.( 12) Its determinant is J(ρ, ϑ) = ρ 1 + d∆ dρ cos ϑ . This matrix is readily inverted in

B = I(ρ)∇ζ + ∇ζ × ∇ψ
dρ dϑ = 1 J(ρ, ϑ) ρ cos ϑ ρ sin ϑ -sin ϑ cos ϑ + d∆ dρ dR dZ
The Jacobian of the system of flux coordinates (ρ, ϑ, ζ) is therefore

√ g = [(∇ρ × ∇ϑ) • ∇ζ] -1 =
JR. These relations yield the vectors ∇ρ, ∇ϑ, and therefore a relationship between ∇ζ and ∇ρ × ∇ϑ. An alternative expression of the magnetic field is then derived

B = I(ρ) ρ R 0 1 + d∆ dρ - ρ R 0 + o 2 cos ϑ ∇ρ × ∇ϑ + ∇ζ × ∇ψ
The geometrical angle ϑ is not a straight field line coordinate since

B • ∇ϑ B • ∇ζ = b θ (ρ) I(ρ) R 2 0 ρ 1 - d∆ dρ - ρ R 0 + o 2 cos ϑ
is a function of ρ and ϑ. It is convenient to replace ϑ with a straight field line coordinate θ such that B•∇ζ B•∇θ = q(ρ), with q(ρ) the safety factor. The geometrical angle ϑ is related to the intrinsic poloidal angle θ via the near identity relation

θ = ϑ -δ(ρ, ϑ) + o 2
where the function δ is

δ(ρ, ϑ) = - d∆ dρ - ρ R 0 sin ϑ
This provides a link between the "poloidal" field b θ (ρ) and the current I(ρ), namely

b θ (ρ) = I(ρ) ρ qR 2 0
The magnetic field can be then written in the expected covariant form

B = ∇χ × ∇θ + ∇ζ × ∇ψ
where dχ/dψ = q(ρ). The Jacobian of the new system of coordinates (ρ, θ, ζ) is

√ g = ρR 2 /R 0 .
The Grad-Shafranov equation involves the effective Laplacian

∇ 2 * ψ = R 2 ∇ • 1 R 2 ∇ψ = R 2 √ g ∂ ∂x i √ g R 2 g ik ∂ψ ∂x k
The metric tensor associated with the set of variables (ρ, θ, ζ) is formally derived by using the identity g ik = ∂x ∂ξ i • ∂x ∂ξ k and g ik = ∇ξ i • ∇ξ k where ξ i = (ρ, θ, ζ). It can also be done by calculating the distance Eq.( 16) -g ik can also be computed by inverting g ik . The change of variables from (R, Z) to (ρ, θ) is given by Eqs. [START_REF] Freidberg | Plasma Physics and Fusion Energy[END_REF], whereϑ = θ + δ(ρ, θ), and δ(ρ, θ) = -d∆ dρ -ρ R 0 sin θ + o( 2 ). After a little bit of algebra, one gets where all coefficients are computed up to a o( 2 ). The determinant g matches wit the Jacobian √ g = ρR 2 /R 0 that was already calculated. The matrix is easily inverted by isolating the (2, 2) submatrix to give

g ik =     1 -2 d∆ dρ cos θ 1 ρ d dρ ρ d∆ dρ -ρ R 0 sin θ 1 ρ d dρ ρ d∆ dρ -ρ R 0 sin θ 1 ρ 2 1 + 2 d∆ dρ -ρ R 0 cos θ 0 0 0 1 R 2    
This provides a new expression of the effective Laplacian As expected the Shafranov shift is related to the thermal and magnetic pressures. The quantity l i (ρ) is the internal inductance of the flux surface r. Indeed, noting that the element is approximately dV = 2πR 0 2πρdρ, the definition above appears to be the volume integral of the density of poloidal magnetic energy b 2 θ 2µ 0 , normalised to the magnetic energy at the surface. The quantity β p (ρ) is called poloidal β and measures the ratio of the thermal pressure to the density of poloidal magnetic energy.

E Boozer and Hamada coordinates

Some more details are given here on two special choices of coordinates, called Boozer and Hamada coordinates, after their inventors. This section is highly inspired from textbook [START_REF] Hazeltine | Plasma Confinement[END_REF] and review articles [START_REF] Boozer | Physics of magnetically confined plasmas[END_REF][START_REF] Helander | Theory of plasma confinement in non-axisymmetric magnetic fields[END_REF]. interested readers should consult them for getting more details 22 . The contravariant expression of the magnetic field is23 

B = G∇θ + I∇ζ + K∇ψ + ∇H ( 20 
)
where the "currents" I and G depend on ψ only, and K, H depend on (ψ, θ, ζ). Boozer coordinates correspond to the choice H = 0, while Hamada coordinates are such that K = 0. The Lorentz force can be calculated by using the Clebsh form of the magnetic field Eq.( 6)

B = ∇χ × ∇θ + ∇ζ × ∇ψ (21) 
The final result reads 

µ 0 J × B =
)
where V is the volume enclosed by a magnetic surface normalised to 4π 2 , i.e. dV dψ = √ g.

Handling the force balance equation Eq.( 22) is somewhat less straightforward when using Boozer coordinates H = 0, K = 0. Let us note that an average of Eq.( 22) over the angles θ and ζ provides a solvability constraint Eq.( 23) (with a different meaning though since the coordinates are different) that can be used to yield the equation

q ∂K ∂ζ + ∂K ∂θ = µ 0 dP dψ √ g - dV dψ ( 24 
)
The Jacobian is readily obtained by multiplying Eq.( 20) by Eq.( 21). This procedure yields

√ g = Iq + G B 2
The equation Eq.( 24) hence provides the function K vs the current I, G and pressure P . Let us stress however that this equation is singular on resonant surfaces. Some regularisation is therefore needed either by setting locally a zero pressure gradient, or introducing some dissipation.

F Variational energy principle

This appendix aims at calculating the variation of the energy

W = d 3 x B 2 2µ 0 + P ς -1
when deforming set for flux surfaces with a virtual displacement ξ consistent with the equations of ideal MHD. Let us remind here the basic equations of ideal MHD [START_REF] Davidson | An Introduction to Magnetohydrodynamics[END_REF][START_REF] Goedbloed | Magnetohydrodynamics[END_REF][START_REF] White | Theory of Tokamak Plasmas[END_REF][START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF] 

ρ m d t V = -∇P + J × B ∂ t B = ∇ × (V × B) d t P + ςP ∇ • V = 0 d t ρ m + ρ m ∇ • V = 0
where d t = ∂ t + V • ∇ is a Lagrangian derivative, V the plasma velocity, P the pressure, B the magnetic field and ρ m the mass density, and ς the adiabatic index. The two last equations are consistent with the adiabatic transform constraint d t (P ρ -ς m ) = 0. A virtual MHD displacement is such that ∂ t ξ = V, where ξ is supposed infinitesimal. One major property of ideal MHD is the frozen-in law that grants flux conservation under the plasma motion. Hence d t ρ = 0, i.e. flux surfaces remain flux surfaces after a displacement. The variation of the magnetic field verifies δB = ∇ × (ξ × B), so that the change of magnetic energy density is24 

1 µ 0 B • δB = -ξ • (J × B) + 1 µ 0 ∇ • [(ξ × B) × B]
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 1 Figure 1: System of toroidal coordinates in an axisymmetric configuration.
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 2 Figure 2: Example of an non-axisymmetric configuration, here a quasi-helically symmetric stellarator (from [4]).
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 3 Figure 3: Helical field lines in an axisymmetric configuration.
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 4 Figure 4: Straight and non straight field line coordinates in an axisymmetric configuration.
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 5 Figure 5: Poloidal magnetic flux in an axisymmetric configuration.
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 6 Figure 6: Toroidal magnetic flux in an axisymmetric configuration.
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 7 Figure 7: Balance between pressure and Lorentz forces (poloidal projection).
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 8 Figure 8: Field line bending and normal component of the Lorentz force.
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 10 Figure 10: Current density in an axisymmetric configuration.

Figure 11 :

 11 Figure 11: Shape of flux surfaces for a Solov'ev equilibrium. Parameters are α = 6, γ = 0.5, R 0 = 1.

Figure 12 :

 12 Figure 12: D-shape flux surfaces with Shafranov shift, elongation and triangularity as described by Eq.(16). Left panel: effect of the Shafranov shift ∆(ρ). Right panel: shaping parameters for a single flux surface with minor radius a -κ = b/a is the elongation, δ is the triangularity. Parameters are R 0 /a = 2.8, ∆(a)/a = 0.3, a = 1m, κ = b/a = 2.5, δ = 0.5.

Figure 13 :

 13 Figure 13: Shifted circular flux surfaces.

  e. ρ = P , a label of flux surface since (B • ∇)P = 0. The flux functions χ and ψ are functions of the set of flux coordinates (ρ, ϑ, ζ). The Clebsch representation Eq.(3) combined with the condition (B • ∇)ρ = 0 implies

Figure 14 :

 14 Figure 14: Deformation of a flux surface that conserves the toroidal magnetic flux while keeping P (ρ) dV dρ

Figure 16 :

 16 Figure 16: Surface ξ(ξ) = cte and its normal vector ∇ξ.

Figure 17 :

 17 Figure 17: Torus with circular cross-section.

  where dψ dρ = b θ (ρ)R 0 and B 0 is the magnetic field at the magnetic axis. The cylindrical set of coordinates (R, Z, ζ) is associated with a well defined set of orthonormal vectors 21 êR = ∇R êZ = ∇Z êζ = R∇ζ A covariant expression of the field is obtained in the following way. The elements (dR, dZ) are related to (dρ, dϑ) via the matrix relation dR dZ = cos ϑ + d∆ dρ -ρ sin ϑ sin ϑ ρ cos ϑ dρ dϑ

  g ρρ = |∇ρ| 2 and g ρθ = ∇θ • ∇ρ have been used, and|∇ρ| 2 = 1 -

  

  

  √ g = (∇ψ × ∇θ) • ∇ζ. The force balance equation Eq.(7) then bears a convenient Note that this equation does not depend on the gauge function H. If Hamada coordinates are chosen, K = 0. It then appear that the Jacobian √ g depends on ψ only, is a flux function. The Grad-Shafranov equation becomes particularly simple

	where 1/												
	form	q	∂K ∂ζ	+	∂K ∂θ	-	dG dψ	-q	dI dψ	=	√ gµ 0	dP dψ	(22)
				dG dψ	+ q	dI dψ	= -µ 0	dP dψ	dV dψ	(23
					1 √ g		q	∂K ∂ζ	+	∂K ∂θ	-	dG dψ	-q	dI dψ

This is a proxy -in fact charged particles drift away from curved field lines. However drift velocities scale as the inverse of the field, hence vanish at high field.

A reader not familiar with curvilinear coordinates may read first the appendix A.

This condition is sufficient but certainly not necessary. One could think of a finite volume ergodised by a set of field lines, surrounded by flux surfaces. This system could be still called confining while not satisfying the condition of flux surface existence. However a set of flux surfaces is optimal in terms of confinement, admitting that particles follow closely field lines. It is also stressed that the existence of magnetic surfaces does not ensure perfect confinement, because of a slow transport process called Arnold diffusion.

Note however that the modulus of the magnetic field can be axisymmetric in a stellarator

A geometric angle θ, measured in radian, is defined as the ratio of the length of a circular arc to the radius of the circle. This does not imply that the curves ρ = cte are circles. Any periodic function of the geometric angle is also an angle. A similar definition applies to the angle ζ.

The toroidal length element is (∇ρ × ∇θ) √ gdζ, while a poloidal length element is (∇ζ × ∇ρ) √ gdθ. See

N.B.: the coordinate α is not an angle unless q is an integer

It could be χ(ρ, θ, ζ) as well -it will be seen that the knowledge of one gives the other one -this is already clear for an axisymmetric configuration since χ is a function of ψ.

Reminder: the X i s are cartesian coordinates

This comes from the more general identity ∇• (a × b) = b • ∇ × aa • ∇ × b.

If field lines are spatially bounded, then the invariant manifold associated with the field lines Hamiltonian dynamics Eq.(4,5) is compact. The 'hairy ball" or "hedgehog" theorem can then be applied, i.e. a compact manifold in a 3D phase space has to be a 2-dimensional torus.

In this case the solution is an approximate one due to the troncature. The variational aspect grants it is optimal for a given set of basis functions.

Doubled indices are summed throughout this note.

The index is upward when the component is contravariant, otherwise covariant

This set differs generally speaking from the co-or contra-variant basis vectors, which are usually not normal, nor orthogonal.

It is recalled here that the notations used in tokamak and stellarator communities are usually different. The notation ψ dubs the poloidal flux in tokamaks, while it often designates the toroidal flux in stellarators. Also the currents I and G are permuted. It is also reminded that stellarator experts prefer to use the rotational transform ι rather than the safety factor q -both are related via the relation ι = 1/q.

Here we choose ψ, the poloidal flux, as a radial coordinate ρ, i.e. ρ = ψ. To mark the difference, the notation -ν is replaced by K.

This property is most readily demonstrated by using the identity∇(A × B) = B • ∇ × A -A • ∇ × B with A = ξ × B and the Ampère's equation ∇ × B = µ 0 J.

Appendix A for details. 7 Note there is some piece of arbitrariness in these definitions. For instance, if the toroidal geometric angle is taken as the orientation direction for the contour C, then Ψ is the poloidal flux (without a minus).

The variation of pressure reads

If the transform of flux surfaces is such that the last surface that encloses the plasma is left unchanged, all divergence terms, i.e. the Poynting and thermal energy fluxes, vanish after integration of the plasma volume since ξ = 0 at the boundary. The variation of energy then verifies

An extremum of δW is reached when the force balance equation is satisfied. However it must be kept in mind that this is true under some specific conditions: magnetic flux conservation, adiabatic transform and constant plasma boundary.

G Using the virial theorem

It is quite instructive to apply the virial theorem [START_REF] Shafranov | Reviews of Plasma Physics[END_REF][START_REF] White | Theory of Tokamak Plasmas[END_REF] to a set of shifted circular flux surfaces, as described in the previous section.

where d 3 x = 2πRdRdZ and ξ = Rê R . Flux surfaces are given by

where ∆(ρ) is the Shafranov shift, and is supposed unknown at this stage. The magnetic field is of the form

where the "toroidal" and "poloidal" magnetic field intensities are

The vectors

and êϕ = R∇ϕ constitute a set of orthonormal vectors. A quick check of this noncovariant formulation can be done by noting that the distance between 2 flux surfaces of radius ρ and ρ + dρ is d (ρ, θ) = dρ(1 + d∆ dρ cos ϑ). The poloidal magnetic flux is such that dψ = B p Rd , and is a function of ρ only, as expected.

The elements of integration elements that appear in Eq.( 25) require some care when moving from the system of coordinates (R, Z) to (ρ, ϑ). The normal to the surface is n = e ρ , so that dS = dϑdϕρRe ρ . The volume element is d 3 x = 2πRρdρdϑ, so that the following relations hold

where V = 2πR 0 ρ 2 is the volume enclosed by the flux surface and < ... >= 2π 2 R 0 V ρ 0 2ρ dρ .... The toroidal field does not contribute since B 2

T dS • ξ = B 2 0 /R 2 0 dϑdϕρ cos ϑ, so that the average over ϑ cancels exactly on each flux surface. Hence the force balance equation

The virial theorem can also be used to estimate the vertical field necessary to maintain the plasma equilibrium. If the integration volume V is chosen to be very large in Eq.( 25), all the surface terms can be neglected since the magnetic field decreases as the cubic power of the distance far from the current loop. Hence it is found that < RF R > is positive, so that no equilibrium can be found. An equilibrium exists if a vertical field is applied. The corresponding average force is

There exists several ways to calculate this field. One consists in assuming that the toroidal field is discontinuous at the separatrix. Hence the contribution of the toroidal field does no longer vanish. This implies that 3 causes emerge for the onset of the radial force: pressure force, Lorentz force due to the poloidal field ans associated toroidal current (this will come in via the plasma inductance), and the Lorentz force due to the toroidal field discontinuity combined with the corresponding poloidal current. The vertical field necessary to maintain the equilibrium is