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[1] We have compiled results obtained from four high sedimentation rate hemipelagic sequences from the
Celtic sector of the NW European margin (NE Atlantic) to investigate the paleoceanographic and
paleoclimatic evolution of the area over the last few climatic cycles. We focus on periods characteristic of
deglacial transitions. We adopt a multiproxy sedimentological, geochemical, and micropaleontological
approach, applying a sampling resolution down to ten microns for specific intervals. The investigation
demonstrates the relationships between the Bay of Biscay hydrography and the glacial/deglacial history of
both the proximal British-Irish Ice Sheet (BIIS) and the western European continent. We identify recurrent
phases of laminae deposition concurrent with major BIIS deglacial episodes in all the studied cores.
Evidence for abrupt freshwater discharges into the open ocean highlights the influence of such events at a
regional scale. We discuss their impact at a global scale considering the present and past key location of the
Bay of Biscay versus the Atlantic Meridional Overturning Circulation (AMOC).
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1. Introduction

[2] It is now commonly accepted that major gla-
cial-interglacial climatic changes are primarily
forced by changes in the insolation budget, directly
linked to the Earth’s orbital parameters [Berger,
1978; Imbrie et al., 1989; Berger and Loutre,
1991]. During the Quaternary, boundary conditions
between glacial and interglacial stages were repeat-
edly reached in response to the 100,000 year period
of the eccentricity cycle [Imbrie et al., 1993;
Shackleton, 2000]. The forcing linked to the pre-
cession and the obliquity cycles are also registered,
the former especially in tropical paleoenvironments
through its influence on monsoon dynamics.

[3] Nevertheless, high-resolution paleoclimatic
and paleoceanographic studies, recently supported
by modeling experiments, have shown that the
orbital forcing may not have been the only control
on ice sheet growth and decay [e.g., Shackleton,
2000; Khodri et al., 2001; Crucifix et al., 2001;
Charbit et al., 2002]. Sub-orbital abrupt events
associated with ice sheet calving over the last
40,000 years known as Heinrich events [Heinrich,
1988] clearly illustrate such a phenomenon as their
cyclicity does not match any of the classic orbital
periodicities [e.g., Bond et al., 1993]. Additional
evidence similarly comes from the recurrent asyn-
chronism that is observed between major ice sheet
decay and optimum values of June insolation at the
top of the atmosphere at 65�N. This parameter is
classically taken by the paleoclimatic community
to represent the solar forcing of changing global
climate [Imbrie et al., 1993]. Such asynchronism
indicates major feedback mechanisms involving
the atmosphere, the cryosphere, the oceans and
the biosphere, that are far from being completely
understood [e.g., Piotrowski et al., 2004, 2005].

[4] Global climate modeling is one of the best
tools to investigate these questions: the develop-
ment of models of intermediate complexity
(EMIC) has furnished robust hypotheses to explain

global climate sensitivity [e.g., Petoukhov et al.,
2005]. Nevertheless, ice sheets incorporated in
these models are often highly simplified in their
dimensions, especially with regards to their latitu-
dinal extent. They are classically resolved as mas-
sive polar ice caps, following the pattern of those
that were developed over large continental areas
during glacial maxima [e.g., Smith et al., 2003].
Even if the physical processes which drive ice sheet
growth and decay are increasingly precisely incor-
porated into models predicting isostatic rebound
and sea level rise calculation (e.g., Shennan et al.
[2000, 2002] for the UK; Spring AGU 2004 for the
Laurentide), until now few simulations [Crucifix et
al., 2001] have tested in detail the sensitivity of the
response of small-sized and temperate ice sheets to
global climate change. Although often small in
global terms, the mass balance of these ice sheets
is often very sensitive to moisture supply and sea
level change, and they are often situated in critical
and sensitive locations with respect to the thermoha-
line dynamics of the adjacent ocean. This is the case
for the British-Irish Ice Sheet (BIIS) [McCabe et al.,
2005]. This temperate ice sheet developed during the
Last Glacial Maximum (LGM) [Lambeck, 1995;
Scourse et al., 2000; Scourse and Furze, 2001;
Richter et al., 2001; Bowen et al., 2002; Bourillet
et al., 2003; McCabe et al., 2005; Hiemstra et al.,
2006] and during earlier glacial periods [Gibbard,
1988; Bowen, 1999; Gibbard and Lautridou, 2003].
On the basis of the identification of a typical sedi-
mentological facies, for which one of the major
distinctive features is the deposit of millimetric scale
laminations, previous work [Zaragosi et al., 2001a;
Mojtahid et al., 2005] has evidenced melting events
characteristic of the BIIS/Fleuve Manche paleoriver
discharges at the onset of major deglaciation. Until
now, these events were documented in the Bay of
Biscay on only two cores retrieved in the same area
of the Celtic margin [Mojtahid et al., 2005]. Here we
present data from additional cores retrieved on the
Celtic sector of the NW European Margin (from the
Porcupine Bight to the Trevelyan Escarpment), all of
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which show evidence of this typical laminated facies.
Integrating these new sequences, the purpose of
this paper is to document and discuss the sedimen-
tological and micropaleontological significance of
this facies. As it potentially represents abrupt BIIS/
European deglacial events, the significance of these
impacts on local and regional sea-surface conditions
will also be discussed, introducing some elements
concerning their possible significance on the Atlantic
Meridional Overturning Circulation (AMOC).

2. ‘‘Fleuve Manche Paleoriver’’

[5] The study area (Figure 1) is located in the
northern part of the Bay of Biscay on the Celtic
margin, a margin characterized by two mid-sized
deep-sea turbidite systems: the Celtic and Armori-
can fans [Auffret et al., 2000; Zaragosi et al., 2000,

2001b]. These systems were linked to north-western
European continental drainage areas via the
‘‘Fleuve Manche paleoriver’’ during low-stands
of eustatic sea level [Bourillet et al., 2003]. This
fluvial system extended from the southern North
Sea to the Bay of Biscay. It included the English
Channel, a portion of the continental shelf, the
slope where the canyons network split around
two structural heights, the Trevelyan escarpment
(TE) and its adjoining Meriadzek terrace (MT),
feeding down slope the Celtic and Armorican fans
[Bourillet et al., 2006]. The TE and MT stand at
least 600 meters above the adjacent abyssal plain
(Figure 1). During the most recent glacial stages of
the Quaternary, the Fleuve Manche paleoriver
flowed westward from the southern North Sea along
the centre of the English Channel [Lericolais, 1997,
Lericolais et al., 2003]. This paleoriver was

Figure 1. Location of the studied cores along the Celtic margin in relation to the paleogeography of the adjacent
continent during the LGM (BIIS maximal extension, after Stokes and Clark [2001]). The paleovalleys of the Fleuve
Manche river [after Lericolais, 1997] are shown in dark blue. Bathymetric contour intervals are 50 m on the shelf
(0–250 m), 500 m on the slope (500–4000 m), and 1000 m in the deep sea (4000–4900 m). Schematic view [after
Blindheim et al., 2000; McCartney and Mauritzen, 2001] of the North Atlantic major surface currents (NAD, North
Atlantic Drift; NAC, Norwegian Atlantic Current; IC, Irminger Current) and the intermediate Mediterranean Outflow
Water current (MOW).
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supplied via the connected drainage basins of
modern rivers including the Seine, the Somme,
the Solent and probably the Meuse, the Rhine
and the Thames [Larsonneur et al., 1982; Gibbard,
1988; Lericolais, 1997]. It fed via the paleovalley
[Lericolais, 1997] and the delta of the paleoriver
[Bourillet et al., 2006] into some of the canyons of
the slope [Bourillet and Lericolais, 2003] converg-
ing at the edge of the continental shelf (200 m) and
extending into the deep ocean (4500 m). Sediment
fluxes into the deep ocean were directly influenced
by the growth and decay of the adjacent BIIS, both
via the Fleuve Manche paleoriver and the Irish Sea
Basin [e.g., McCabe and Clark, 1998; Richter et
al., 2001; Bowen et al., 2002; McCabe et al.,
2005].

3. Materials and Methods

[6] Several cruises on board the oceanographic
research vessels Marion Dufresne II (IPEV) and
Atalante (Ifremer) have been undertaken on the
margin during the last 10 years (IMAGES 1,
SEDIMANCHE, ZEE-GASC, SEDIFAN, GINNA,
GEOSCIENCES, SEDICAR), allowing the discov-
ery of particular sites and the subsequent recovery
of high sedimentation rate sequences. Cores MD95-
2001 and MD95-2002 located respectively on the
TE and the MT (Table 1; Figure 1), complemented
by core AKS01 (SHOM cruise, 1996) retrieved at
the western boundary of the TE, reveal a detailed
record of the last 25 ka with a regionally coherent
deglacial scheme strongly influenced by the BIIS
history [Grousset et al., 2000; Zaragosi et al.,
2001a]. These records have been recently comple-
mented by cores MD01-2461 and MD03-2692,
retrieved from the western Porcupine Bight and
Trevelyan Escarpment respectively. These cores,
of which the longest extends to 360 ka, have
provided access to older terminations, i.e., Termi-
nations 2, 3 and 4.

[7] Following the work described by Zaragosi et
al. [2001a], a multidisciplinary approach has been

applied to study the four cited MD cores, using
physical, stratigraphical, geochemical, sedimento-
logical and micropaleontological tools.

[8] The microstructure of the sediment was inves-
tigated using X-ray imagery, using the SCOPIX
image-processing tool [Migeon et al., 1999]. For
part of the core containing laminae, this was cou-
pled to microscopic photography on impregnated
sediment sections (image acquisition consisted of a
fully automated Leica DM6000 Digital Microscope
with multiple magnifications giving access to a
10 mm resolution; see the detailed method of
Zaragosi et al. [2006]). This was complemented
by individual granulometric analyses (Malvern
Mastersizer S) of the laminae with a detailed sub-
sampling of the X-ray dark versus the X-ray bright
laminae for which automatical counts of lithics
>150 mm were also made.

[9] Known aliquots of the dried residues (>150 mm)
were counted for their planktonic foraminiferal con-
tent to obtain relative abundances (percentages) of
Neogloboquadrina pachyderma sinistral versus the
total planktonic fauna. The coarse lithic grains (CLG)
were characterized and counted on the same fraction
(>150 mm) and include Ice Rafted Detritus (IRD)
which indicate iceberg melt fluxes. The data were
then expressed in concentration: number of grains
per gram of dry sediment. Palynomorph analysis was
performed using the <150 mm fraction. Counting
included Quaternary and non-Quaternary (reworked)
dinocysts and the fresh-water alga Pediastrum sp.
The ratio calculated on the basis of reworked
versus modern dinocysts [Rd/Md] is here interpreted
as an index of allochtonous sedimentary supply
[Zaragosi et al., 2001a]. Identification of reworked
dinocysts shows that they are derived from mixed
sources of Jurassic, Cretaceous and Palaeogene
chalk, marl and limestone [Kaiser, 2001]. This
information does not really allow us to constrain
the sediment source area as these geological for-
mations can be found both in the Irish Sea, the south
of UK, the north of Belgium, the Paris basin and
the Manche substratum itself.

Table 1. Details of the Studied Cores

Core Latitude, �N Longitude, �E Water Depth, m Core Length, m Cruise Year Institute

MD95-2001 46.80 �8.67 3788 22 IMAGES 1 1995 IFRTP
MD95-2002 47.45 �8.53 2174 30 IMAGES 1 1995 IFRTP
MD01-2461 51.75 �12.55 1153 21 GEOSCIENCES 2001 IFRTP
MD03-2692 46.83 �9.52 4060 39 SEDICAR 2003 IFRTP
AKS01 46.83 �9.52 4030 5 ACORES 1996 SHOM
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[10] The age models of the studied cores have been
established on the basis of AMS 14C dates between
0 and 30 ka for MD95-2002 (Figure 2, Table 2;
11 14C dates [Zaragosi et al., 2006]), MD01-2461
(13 14C dates for the last deglaciation [see Peck et
al., 2006]) and MD03-2692 (Table 2; 16 14C dates,
this study). Radiocarbon ages were calibrated to
calendar years before present (years B.P.) using
the CALIB program (version 5.1.0 with the
MARINE04 data set, incorporating a 400 year
correction for marine reservoir; same methods
and correction as those used by Menot et al.
[2006]). Oldest ages were converted using Bard
[1998]. Ages between the stratigraphic references
have been calculated by polynomial regression - d� 5
for MD95-2002 and MD03-2692 (cores used in
this paper as references for the area; Figure 2). A
polynomial fit was calculated separately for the
14C ages and for the calibrated ages. Calibrated
ages in Table 2 are based on the original dates and
not on 14C ages derived for the respective depth
from the polynomial fit. Beyond the range of AMS
14C ages, the stratigraphy has been complemented
by stable isotope and carbonate content measure-

ments. Benthic and planktonic d18O records reveal
climatic oscillations that can be used to constrain the
age models by a direct comparison with the SPEC-
MAP d18O curve [Martinson et al., 1987]. The
software used for this peak to peak correlation was
the ‘‘AnalySeries’’ software [Paillard et al., 1993]
(the detailed method is explained byMojtahid et al.
[2005]). Stable isotope carbonate, and light reflec-
tance records obtained also on the closely related
sequences AKS01 and MD95-2001 were used to tie
their stratigraphy to a regional scheme.

4. Results and Discussion

4.1. What Is Characteristic of the
Laminated Sequences of the Celtic Margin?

[11] The studied sequences all consist of hemipela-
gic clays. On the basis of X-ray imagery, we have
recognized typical sedimentary fabrics and facies,
i.e., laminated sediments, that previous studies have
genetically linked to increased runoff of the Fleuve
Manche paleoriver both due to deglacial melting of
the BIIS and of Alpine glaciers [Zaragosi et al.,
2001a; Mojtahid et al., 2005]. In this paper, we
show that these laminated sequences occur in
almost all the studied cores from the northernmost
(51.7�N) to the southernmost site (46.8�N) of the
investigated area (Figure 1), therefore potentially
enlarging the BIIS/European deglacial melting
plume influence on the Celtic Margin. Figure 3
identifies their intervals within the respective
records. They are presented in depth in the cores
to underline the regional similarity of their thick-
ness, that extends from 100 cm for the thinner (core
MD95-2001, MIS 6) to 270 cm for the thickest
record (core MD95-2002, MIS 2). These laminated
deposits are distinguished from the rest of the
hemipelagic background sedimentation on the basis
of the following criteria (Figures 4 and 5):

[12] 1. The laminae intervals consist of a succes-
sion of strictly horizontal and parallel X-ray dark
and bright laminations (Figure 4). All the laminae
present a main granulometric mode at 4 mm con-
firming that they are primarily composed of clays.
Granulometric curves of the dark laminae present
slightly higher values in the silt and sand fractions
(black curves in Figure 4). Observations of the
sediment slides (Figure 4) show that the coarse
fraction is characterized by sub-angular silts and
sands within a clayey matrix. This suggests that all
the laminae are composed by the same clayey
material but with the addition of coarse grained
clasts for the X-ray dark laminae. The absence of

Figure 2. Age models for the last 30 ka B.P. of the two
reference cores MD95-2002 and MD03-2692 (see also
Table 2).
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cross bedding, graded bedding and the mainly
clayey composition of all the laminae exclude a
contouritic or turbiditic origin for the laminae. These
coarse-grained clasts therefore probably originated
from the deposition of ice-rafted debris. According
to sedimentation rates of about 0.5 cm/yr, the thin
section in Figure 4a (core MD03-2692) represents
about 20 years of sedimentation; 16 ice-rafted
laminae are found within this interval.

[13] 2. Concentrations of coarse lithic grains (CLG,
including ice-rafted detritus (IRD)) are low in the
studied cores, except during deglacial events, i.e.,
Heinrich Events (HEs) [Heinrich, 1988; Grousset
et al., 2000; Zaragosi et al., 2001a; Auffret et al.,
2002; Mojtahid et al., 2005; Peck et al., 2006].

With regard to the laminae deposits, these CLG
concentrations reach values in between 200 to
500 grains/g dry sed. (Figure 5). The laminae are
often marked by abrupt changes in the CLG concen-
trations. No clear temporal succession is observed for
the deposits of MIS 6, in contrast to MIS 2 where
the laminae sequence records a typical multi step
structure associated with Termination 1 (Figures 5a
and 5b).

[14] The HE1 boundary we used conforms to the
age limits published by Elliot et al. [1998, 2001]
and those used by Zaragosi et al. [2001a]. Accord-
ing to our records, HE1 first occurrence of CLG at
18.2 ka cal B.P. (15 ka 14C B.P.) synchronously
corresponds to first evidence of N. pachyderma

Figure 3. Position of the laminated sequences (number of laminae per cm) in the respective cores studied with
regards to the light reflectance data (L*). Grey bars underline the interglacial marine isotopic stages (MIS 5 to 9). The
dark star localizes a deep-sea coral that has been found during the sampling procedure of core MD01-2461 and dated
by U-TH methods (GEOTOP, http://www.geotop.uqam.ca/).
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monospecific values and to the onset of laminae
deposits. Concentrations of CLG then increase from
0 to a mean of 300 grains/g dry sed., a concentration
that remains constant during the laminae event. It is
later followed by an abrupt increase by a factor 4 to
5 of CLG concentrations (up to 2000 grains/g dry
sed.), that corresponds to the massive Canadian
discharge [Grousset et al., 2000; Zaragosi et al.,
2001a; Auffret et al., 2002; Menot et al., 2006]. It
has been attributed to a two-step regional record
within HE1, first with diluted IRD concentrations,
that indicate iceberg calving but also high freshwa-
ter and sedimentary fluxes from proximal sources in
response to ice and snowmeltwater (fluvial-sourced
via the Fleuve Manche paleoriver in connection to
major European rivers, including those linked to
the French Alps [Zaragosi et al., 2001a; Menot et
al., 2006; B. Van Vliet-Lanoë, personal communi-
cation, 2006). Indeed sedimentation rates reach
400 cm ka�1 in core MD95-2002. This event is
then followed by the major calving of pan-Atlantic

ice sheets (Figure 6) [Zaragosi et al., 2001a; Auffret
et al., 2002; Mojtahid et al., 2005], documented as
early as 17.5 ka cal B.P. in the North Atlantic by a
cessation of the AMOC [McManus et al., 2004].
Interestingly, this change in IRD concentrations and
sedimentary fluxes (Figure 6) occurs synchronously
from a BIIS extensive deglaciation [Bowen et al.,
2002]. At 16.7 ka cal B.P. (14 ka 14C B.P.), a short
ice sheet readvance known as the Killard Point
stadial [McCabe et al., 2005] is noted on land in
northern Britain but also in the north Irish Sea
basin. This was followed by a rapid ice recession
after 16.4 ka cal B.P. (13.8 ka 14C B.P.).

[15] 3. Other analyzed proxies (micropaleontolog-
ical tools) complement the characterization of sea-
surface conditions linked to the laminae deposits.
The deposits show quasi-monospecifism of the
polar foraminiferal species N. pachyderma sinis-
tral. This indicates cold sea-surface temperatures
(SST), with a mean annual SST of <5�C. This
could be linked to either migration of the Polar

Figure 4. X-ray imagery and microphotography of the sediment thin sections corresponding to laminae in (a) MIS 2
core MD01-2461 and (b) MIS 6 core MD03-2692. Black arrows indicate the laminae position and are proportional
to the larger grain concentrations. Black stars indicate 14C AMS age positions in core MD03-2692 (15,100 years
14C B.P. at 203 cm and 15,160 years 14C B.P. at 260 cm). Grain size diagrams showing in red X-ray bright laminae
and in black X-ray dark laminae: (c) MIS 2 in core MD03-2692 and (d) MIS 6 in core MD01-2461.
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Front or the local establishment of cold superficial
conditions. Evidence for such cold environments
suggests a zonal change in the water mass distri-
bution. This change was particularly marked by the
contrasting conditions prevailing prior to the onset
of laminae deposition which, as demonstrated by
low values in N. pachyderma s. percentages, must
correspond to warm SST (Figures 5a and 5b).

[16] With the study of palynomorphs from the
<150 mm fraction, we also observed major changes
in the composition of the phytoplanktonic micro-
flora (Figure 5). The most pronounced feature is a
marked increase in the relative abundances of the
estuarine dinocyst L. machaerophorum, synchro-

nous with an increase in the flux of non-Quaternary
reworked palynomorphs and freshwater algae
(Pediastrum sp.). This association was observed
for the laminae section of both MIS 2 and MIS 6,
suggesting surficial water masses invaded by large
freshwater plumes.

[17] Together these coherent observations indicate
large freshwater injection events in the northern
Bay of Biscay. We name these Celtic-freshwater
pulses (Celtic-FWP). This work shows, for the first
time, that these events could have extended over a
radius as far as 500 km away from their main
source area, i.e., the mouth of the Fleuve Manche
paleoriver, probably at this time joined by a con-

Figure 5. Structure of Terminations I (Figures 5a and 5b) and II (Figures 5c, 5d, and 5e) with regard to the
multiproxy studies conducted on the cores (No. of laminae/cm; % Nps, relative frequencies of the polar species
Neogloquadrina pachyderma s.; CLG. c., coarse lithic grain concentrations; palynomorphs, concentration in
Pediastrum sp./cm3; % Estuar. d., relative frequencies of the estuarine dinocyst species; nQ/Q, ratio non Quat. din./
Quat. din.). The same depth scale has been kept for each of the sections presented here to highlight the difference in
the recovery of the laminae events (grey bars). For core sections of MIS 2 the limits of the Heinrich Event 1 (HE1)
conform to those published by Zaragosi et al. [2001a, Figure 6] and Elliot et al. [1998, 2001]. The end of the Last
Glacial Maximum (LGM) period is also noted. The grey bands underline the laminae events only.
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tributor through the Irish Sea basin [McCabe et al.,
2005; Hiemstra et al., 2006]. Material included in
the laminae was derived from large decay both
linked to riverine and meltwater sources [Zaragosi
et al., 2001a, 2006; Menot et al., 2006].

[18] Concerning the recurrence of these events, an
outstanding question is the absence of laminae in
core MD01-2461 during Termination 1 [Peck et al.,
2006] while they are well preserved during the MIS
6 laminae event (Figure 2). It should also be noted
that this facies was also absent within the OMEX
cores from the deeper parts of the Goban Spur
(Figure 1) [Hall and McCave, 1998a, 1998b]. This
dissimilarity occurring between the two time peri-
ods could be explained by a different routing of
meltwaters [Knight and McCabe, 1997; McCabe et
al., 1998, 2005]. For the last deglaciation, the
melting of the Irish Ice sheet was mainly routed
via the Irish Sea toward the Bay of Biscay as
demonstrated with the mapping of an Irish Sea
Basin paleo-ice stream [Stokes and Clark, 2001;
Richter et al., 2001;McCabe et al., 2005; Hiemstra
et al., 2006]. Maybe this routing did not allow the
laminations to occur as far north as the Porcupine
Seabight. This could also be due to differences in the
margin of the Fennoscandian Ice Sheet which may
have extended within the paleo-catchment of the
FleuveManche paleoriver (case of MIS 6 [Svendsen
et al., 2004]) and could potentially have led to a
higher freshwater run-off that induced laminae for-
mation in the Porcupine Seabight. Further cores are
clearly needed in order to address this issue.

4.2. Laminae: An Imprint of the BIIS
Seasonal Decay?

[19] The duration of the FWP events is a key
question that relates to the question of laminae
frequency: do the laminae constitute a multiannual,
annual, or even a seasonal signal? It is important
that this is interpreted in the light of the radiometric
data. We therefore focus our discussion on the

laminae event of ‘‘early Termination 1.’’ This event
is recorded in the cores MD95-2001, MD95-2002
and MD03-2692 (Figures 1 and 3). We previously
interpreted it as the record of annual changes in
sedimentation [Mojtahid et al., 2005; Zaragosi et
al., 2006]. This interpretation was supported by the
glacial context of the region at this time involving
large IRD flux into the Bay of Biscay from seasonal
decay during the spring. Such a model was first
presented byMojtahid et al. [2005] on the basis of a
comparison with the results obtained during HEs in
the Labrador Sea [Hesse and Khodabakhsh, 1998].
For the present work, six AMS radiocarbon dates
were obtained within the laminated sequence in
core MD03-2692 to address the critical issue of
its exact duration (Figure 6). These 14C dates
indicate that the laminated sequence accumulated
over an interval of 700 years (1000 years cal B.P. at
this period). Previous work on core MD95-2002
[Zaragosi et al., 2001a] constrained the duration of
this event to 800 ± 100 years (14C) on the basis of
two dates over the laminated interval. However,
these durations could be questioned regarding the
reservoir ages in this period of intensified freshwa-
ter release and probable ventilation inhibition
[Waelbroeck et al., 2001; Björck et al., 2003; Peck
et al., 2006]. Accordingly, the dates we obtained
potentially overestimate or underestimate the dura-
tion of the laminae event. To solve this question,
other dating methods need to be investigated (e.g.,
optically stimulated luminescence dating, work in
progress). This would also be improved by accurate
micro-sampling of the laminae.

[20] Apart from these methodological problems,
however, the laminae duration could be compared
to results of recent modeling exercises that show that
HEs were abrupt and extreme events [Ganopolski
and Rahmstorf, 2001; Roche et al., 2004]. For
example, for HE4, one of the most extreme HEs
recorded in the North Atlantic [Cortijo et al.,
1997], the duration of the freshwater release was

Figure 6. MIS 2 BIIS MWP in cores MD95-2002 and MD03-2692. Empty lozengic dots indicate the age control
points. HE1 and HE2 limits after Elliot et al. [1998, 2001] after conversion with CALIB (version 5.1.0 with the
MARINE04 data set, incorporating a 400 year correction for marine reservoir). The mid-ages of theses events (dark
horizontal bars) are taken from Thouveny et al. [2000]; for HE1 it conforms to those of Bond et al. [1993] and Peck et
al. [2006] and to the Heinrich 1 meltwater event of Hall et al. [2006]. Vertical bars on the left locate the major
hydrographic events identified in the proximal North Atlantic Ocean: AMOC collapse [after McManus et al., 2004];
BMevent, British Margin negative d18O event [after Knutz et al., 2007]. Lozengic dots locate terrestrial events of the
BIIS history. BIIS–DEG, BIIS extensive deglaciation; BIIS-MAX, maximum BIIS size, after Bowen et al. [2002];
KPS, Killard Point stadial after McCabe et al. [2005]; K-MWP, Kilkeel meltwater pulse after Clark et al. [2004].
Planktonic d18O measurements in MD95-2002 were carried out on G. bulloides and N. pachyderma; benthic d18O
measurements in MD03-2692 were carried out on Uvigerina peregrina, Pullenia bulloides, and Planulina
wuellerstorfi.

Geochemistry
Geophysics
Geosystems G3G3

eynaud et al.: continental margin laminated facies 10.1029/2006GC001496

11 of 19



calculated as representing a perturbation of 250 ±
150 years [Roche et al., 2004]. This is quite short
compared to our estimation for the HE1 laminae
event, that constitutes in any case only the first part
of the injection of freshwater in the system (early part
of HE1 only). Conversely, a duration of 700 years
is compatible with the data presented by Hemming
[2004], who gives a range for the duration of HE1 of
between 208 and 1410 years.

[21] The highest concentration of laminae, with at
least two laminae per cm, is recorded at the
beginning of the event. During this interval, sedi-
mentation rates were in excess of 500 cm/ka,
equivalent to 0.5 to 1 cm per year. This high
accumulation rate implies that the laminae are
likely to be annual or semi-annual in nature and
supports the seasonal hypothesis presented by
Mojtahid et al. [2005]. On the basis of the assump-
tion of an annual signal, individual counting of
laminae in MD03-2692 gives an age of 91 years
for the duration of the event. This must, however,
represent a minimum estimate, as fine laminae
might have been missed and also because contin-
uous laminae deposition through time is rare, even
in lakes [Tian et al., 2005], and should therefore
not be expected in the deep-sea environment of the
Bay of Biscay.

4.3. Laminae: Are They Recurrent
Phenomena Marking the Onset
of Terminations?

[22] As previously shown in Figure 3, laminae
events were also recorded during the late Marine
isotope stage (MIS) 6. They were observed in the
three cores extending beyond MIS 5, therefore
representing a latitudinal expansion as large as
for the MIS 2 event. The stratigraphical position
of these laminae events was determined on the
basis of a correlation between the SPECMAP
curve [Martinson et al., 1987] and our benthic
d18O records, as explained in section 3. In the core
MD01-2461, the dating of a perfectly preserved
coral found at 1560 cm by U-TH methods (GEO-
TOP, http://www.geotop.uqam.ca/) has given a
date of 139.77 ka B.P. ± 2500 years (C. Hillaire-
Marcel and B. Ghaled, personal communication,
2003). This solitary coral was stratified more than
200 cm above the uppermost occurrence of lami-
nae, implying therefore that their deposit occurred
prior to Termination 2. This result corroborates
Mojtahid et al. [2005], who have dated this Celtic-
FWP between 150 and 145 ka B.P. This event
hence represents an early event of melting that

leads the onset of northern hemisphere deglacia-
tion (Figure 7). The existence of this delay reflects
the long-standing debate concerning the chronology
of Termination 2 initiated by the dating of a
speleothem (Devil’s Hole, US) by Winograd et
al. [1992, 1997]. The speleothem position at stage
6/5e transition at Devil’s Hole at 144 years B.P.
suggests that the penultimate deglaciation may
have begun earlier that the SPECMAP marine
isotope curve reveals. This was later supported by
230Th and 231Pa dating of coral terraces [Gallup
et al., 2002]. On the other hand, stacked benthic
d18O curves including SPECMAP [e.g., Imbrie et
al., 1984; Martinson et al., 1987; Raymo, 1997;
Waelbroeck et al., 2002] depict a double step
process for the penultimate deglaciation, with a
first deglacial pulse dated between 150 and 145 ka
(6.3 event, if we follow the recent and robust
chronology of Waelbroeck et al. [2002]) that per-
fectly fits with the Celtic-FWP.

[23] Climate warming preceding high-latitude ice
sheet retreat at Termination 2 has been reported
from other records worldwide. In the north Atlantic,
the Celtic-FWP event is contemporaneous with a
warming recorded in the tropics [Schneider et al.,
1999]. This warming is registered in UK-37 SST, in
phase with an eccentricity minima but it shows a lag
of 20 ka with the benthic d18O record. Such an early
warming has also been suggested by Lea et al.
[2002], with the onset of the warming at around
150 ka B.P. The cited records are from midlatitudes
to low latitudes implying that the warming during
the glacial-interglacial transition occurred first at
low latitudes. No pertinent records exist closer to
the area of the Celtic margin to depict this early
warming in Europe (neither speleothems, nor pollen
records with the requested resolution and strati-
graphic accuracy for this time slice). Some confusion
could occur considering the Zeifen interstadial but
several studies date this later within Termination 2
(after 140 ka [Seidenkrantz et al., 1996; Sanchez
Goni et al., 1999]).

[24] Interestingly, the age of 150 ka corresponds in
the northern hemisphere insolation curve to a
decoupling between the 15�N and 65�N July
insolation values, with a maxima for tropical inso-
lation larger than 25 Watt/m2 comparing to the
maxima that occurs at the same time in high
latitudes (Figure 7). Such a feature is distinctive
but seems recurrent prior to every termination. This
decoupling could argue for early response of the
temperate BIIS, asynchronously from boreal ice
sheets. It may therefore imply that the BIIS decay
is first forced by low-latitude climatic changes. If
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confirmed, this result underlines its sensitivity and
maybe a precursive reaction to climate change. It is
also coherent with models that show that deglaci-
ation is primarily driven by insolation [Charbit et
al., 2005]. Our results reinforce the doubts over the
age and duration of the glacial maximum in MIS 6,
as still debated for the orbital theory of ice ages
[see Cannariato and Kennett, 2005].

[25] The discussion of the occurrence of laminae
for the older terminations is limited by the fact that
to date, only the MD03-2692 core preserves a
record for these periods. In this core, no lamina-
tions were associated with either Termination 3 or
Termination 4 (as far as our record allows us to
document the last millennia of MIS 10). For
Termination 3, Mojtahid et al. [2005] interpreted
this as related to the size of the BIIS. It is consistent
with the trend observed in the late Quaternary
based on benthic oxygen isotope records [e.g.,
Shackleton et al., 1988; Waelbroeck et al., 2002;

Siddall et al., 2003] which show a reduced mid-
amplitude of Northern Hemisphere glaciation
during MIS 8. If BIIS development was then
limited, deglacial meltwater flux may not have
been large enough to allow laminae deposition. If
correct, this observation could definitively argue
for a genetic link between laminae and maximal
BIIS development. No deposition could also be
inferred from changes in the extend of the Scandi-
navian Ice Sheet into middle Europe and in the
routing for the meltwater run-off. At least during
MIS 6, the Scandinavian Ice Sheet advanced much
further south into Germany and the Netherlands
[Svendsen et al., 2004]; hence its melting ice edge
would have been closer to the study area and could
potentially have led to a higher freshwater run-off
that induced laminae formation. However, precise
paleogeographic information is lacking to interpret
correctly MIS 8 ice sheet extension and its poten-
tial meltwater routing [Mangerud et al., 1996].

Figure 7. MIS 6 BIIS MWP in core MD03-2692 (labels: % Nps, relative frequencies of the polar species
Neogloquadrina pachyderma s.; CLG. c., coarse lithic grain concentrations). Ages indicated on the right are those
used as tie-points for the construction of the age model (correlation with SPECMAP d18O benthic record [Martinson
et al., 1987]; the SPECMAP stack was obtained from ftp://ftp.ncdc.noaa.gov/pub/data/paleo/paleocean/specmap/).
Insolation values after Berger and Loutre [1991]. The Termination 2 limits are those cited by Cannariato and Kennett
[2005]. Black stars on the right localized the tie-points used to constrain the age model by a direct comparison with
the SPECMAP d18O curve [Martinson et al., 1987].
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4.4. Could the Melting Have Introduced
a Perturbation in the AMOC System?

[26] The last deglaciation period is the only one that
allows a discussion on processes and feedback
mechanisms characteristic of deglacial transitions
thanks to a robust chronological framework. The
following discussion will thus be focused on the
MIS 2 Celtic-freshwater pulse (Celtic-FWP). We
will analyze the temporal sequencing of events
(Figure 6) to address the significance of the Celtic-
FWP to regional or even global climate.

[27] During the early deglaciation, the first deposit
of laminae is dated around 18 ka cal B.P., contem-
poraneous with the beginning of HE1 in the open
Atlantic [Elliot et al., 2001] and an induced col-
lapse of the AMOC [McManus et al., 2004; Hall et
al., 2006]. This laminae deposit ended at 17 ka cal
B.P., followed by the most intense phase of HE1
(in the sense of Heinrich [1988]). The Laurentide
Ice sheet (LIS) HE1 event, identified on the NW
European margin cores by high magnetic suscep-
tibility values [Zaragosi et al., 2001a; Auffret et al.,
2002], is recorded later in our core with CLG
concentrations approaching 2000 grains/cm3. This
two step structure, also previously identified on
this margin [Grousset et al., 2000; Zaragosi et al.,
2001a; Auffret et al., 2002; Knutz et al., 2001; Peck
et al., 2006; Hall et al., 2006] and in the Norwe-
gian Sea [Lekens et al., 2005] and off Portugal
[Schönfeld et al., 2003] suggests a regionally
consistent signature for HE1 on the NW European
margin.

[28] The phasing between the Celtic-FWP event
and then the BIIS decay with the major glacial
discharges of the Laurentide and Fennoscandian
ice sheets during HE1 might imply a causal rela-
tionship between the two events. There are at least
two possible candidate mechanisms: (1) a sea level
change and (2) a disruption of the thermohaline
circulation. We discuss them below:

[29] 1. The BIIS at the LGM, which was approx-
imately twice its ice volume during HE1, only
contributes to a global glacio-eustatic lowering of
0.91 m [Boulton et al., 1977], some 0.76% of the
global ice volume difference between the LGM and
the present-day [Scourse, 1997]. Thus, even if the
entire BIIS had collapsed during the early part of
HE1, which we know was not the case from
terrestrial evidence [McCabe et al., 2005], sea level
would only have risen by less than 0.5 m. The
actual figure may be estimated at being closer to
0.1 m. This value lies within the tidal range of the

region at this time [Uehara et al., 2006] and could
easily be generated by a small storm surge. It is
unlikely to cause widespread destabilization of
pan-Atlantic ice sheets and shelves.

[30] 2. The second mechanism is, to some extent,
supported by our data. We provide evidence for the
establishment of polar conditions in the Bay of
Biscay coeval with freshwater arrivals and the
deposition of the laminae. Prior to that, the Last
Glacial Maximum (LGM) (in the sense ofMix et al.
[2001]) was punctuated by several warm events in
this region [Zaragosi et al., 2001a; Mojtahid et al.,
2005] with palynological data suggesting active
penetration of the North Atlantic Drift (NAD)
across the Celtic margin [Eynaud, 1999]. The
warmth associated with this current would have
been inhibited as soon as freshwater/meltwater
injection began. This is evidenced south of the BIIS
by our data, but also in northwestern environments
by meltwater injections into the Rockall Trough
[Richter et al., 2001; Knutz et al., 2001; Clark et al.,
2004]. In these areas, the BIIS has been a potential
source of continuous iceberg releases [Knutz et al.,
2007]. Given the significance of freshwater flux in
controlling the stability of AMOC in the North
Atlantic [e.g., Broecker et al., 1990; McManus et
al., 2004; Hall et al., 2006], it could be possible, as
also suggested by Clark et al. [2004], that it has had
direct impact on the NAD, maybe partially deviat-
ing it far off the British Isles. It could thus have
possibly resulted in a perturbation of the subpolar
gyre with consequences on the Irminger Current
(IC) [Blindheim et al., 2000] (Figure 1). A change
in the heat flux associated with this major compo-
nent of the thermohaline circulation (THC) could
have had a very sensitive effect on the Nordic seas
(especially in the Iceland-Faeroe-Shetland major
sill area) and therefore on the surrounding conti-
nents. This scenario presently lacks modeling sup-
port, but very few coupled models possess the
required sensitivity and gridding at the resolution
required for the modeling of the Celtic-FWP and its
impact on the North Atlantic. However, we can
provisionally provide a conceptual scenario based
on the existing literature concerning the AMOC.

[31] Perturbations of the AMOC have been inten-
sively modeled during the last decade (hysteresis
response [e.g., Stocker and Schmittner, 1997;
Rahmstorf, 1999; Wood et al., 1999; Paillard,
2001; Seidov and Haupt, 2003; Roche et al.,
2004]) demonstrating the significance of thresholds
within the climate system. In a recent paper,
Charbit et al. [2005] demonstrated that, for the
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last deglaciation, the melting of the North Ameri-
can ice sheet was critically dependent on the
deglaciation of Fennoscandia through processes
involving switches of the thermohaline circulation
from a glacial mode to a modern one and associ-
ated warming of the northern hemisphere. Both the
surface and deep structure of the THC could be
affected by only a minor change in the saline
budget (freshwater runoff and precipitations) of
the Nordic seas if freshwater is injected into con-
vectively sensitive locales [see Clark et al., 2002].

[32] The geographic location of the freshwater
injection is more important than the absolute vol-
umes involved. Actually, evidence on BIIS thick-
ness and extent, and therefore volume, suggest that
in Sverdrup-equivalent units it was not sufficiently
large enough to disrupt the THC [Scourse, 1997;
Shennan et al., 2002; Clark et al., 2004; Evans et
al., 2005]. On the other hand, the western peri-BIIS
hydrographic setting is presently very sensitive
regarding thermohaline circulation, as it includes
two major components: the NAD and the Mediter-
ranean Overflow Waters (MOW), upwelled off
Ireland at 53�N (Porcupine Bank [Van Aken,
2000]). This junction has been named the ‘‘Med-
iterranean salinity valve’’ as the MOW increases
the salt budget of the NAD and contributes to the
warm inflow to the Nordic Seas [McCartney and
Mauritzen, 2001]. It has been recognized as a
major actor of the AMOC, especially during
glacial-interglacial climate changes, but also during
short-term climatic changes [Johnson, 1997;
Cacho et al., 2000; Schönfeld and Zahn, 2000;
Voelker et al., 2006; Dorschel et al., 2005].

[33] What kind of scenario then could be drawn
under glacial conditions? The major topographic
control of MOW flow suggests a significant reor-
ganization of this system from the Gibraltar Strait
to the Porcupine Bight [Dorschel et al., 2005].
Apart from periods of extreme low stand of sea
level, the MOW contribution to the AMOC was
effective, and possibly strengthened during HEs
[Voelker et al., 2006]. However, with surface
freshwater injections close to the area of MOW
upwelling, can we envisage that the salt advection
of the MOW was still effective? Does this impact
on the balance between the cyclonic flow of the
NAD along the Norwegian coast and its anticy-
clonic branch, the IC? According to Johnson
[1997], strengthening of the IC results in warming
of the Labrador Sea that enhances precipitation
over Northern Canada, finally driving the growth
of the Laurentide Ice Sheet. Conversely, following

Hulbe et al. [2004], this warming could have
initiated the disintegration of ice-shelves surround-
ing the Labrador Sea, thus initiating a HE.

[34] However a controversial point consists in how
the MOW impacts on AMOC: under ‘‘the deep
source’’ hypothesis, inflow waters to the Nordic
Seas originate from the core of the MOW in the
Gulf of Cadiz carried northward at mid-depth by the
eastern boundary undercurrent in the subtropics,
continuing into the subpolar gyre along the eastern
boundary, and rising from depths near 1200 m in
the Rockall Trough to less than 600 m to cross the
Wyville-Thomson Ridge into the Faroe-Shetland
Channel and thence the Nordic Seas [McCartney
and Mauritzen, 2001]. Following McCartney and
Mauritzen [2001], this deep source hypothesis is
however not fully supported by data. Accordingly,
the MOW forcing would be better defined in its
temperature-salinity relationship of the interior of
the subtropical gyre from which the NAD draws its
water, rather than by direct northward advection. If
verified, this last option definitively closes our
questioning regarding the impact of the Celtic-
MWP on AMOC via derived MOW perturbation.

5. Conclusions

[35] A regionally recurrent pattern of sedimenta-
tion characteristic of deglacial transitions has been
identified on the Celtic margin, characterized by
(1) freezing sea-surface conditions with evidence
for freshwater discharges and IRD deposition and
(2) laminae deposits possibly representing seasonal
signals. On the basis of a compilation of multicore
and multiproxy data, we interpret these facies as
representing deglacial signal of the adjacent BIIS
with a possible contribution from the Alps routed
via the Rhine river and the Fleuve Manche paleo-
river. It is likely that the injection of this freshwater
and the iceberg release into the climatically sensi-
tive NE Atlantic have perturbed regional hydrog-
raphy. This impact could have been emphasized by
the short duration of the event, possibly shorter
than 100 years (based on laminae counts).

[36] Interestingly, dates obtained on the younger
part of the studied cores reveal a synchronism of
the Celtic-FWP with the beginning of HE1 and
subsequently the last deglaciation in the open
Atlantic. On the other hand, this phasing is not
recorded for the penultimate deglaciation, suggest-
ing a decoupling of the BIIS response with the
larger boreal ice sheets and then possibly a tropical
control of BIIS decay mechanisms at this time.
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This addresses questions about the similarity and
structure of the terminations through time, and
consequently about the orbital ice-age theory.
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