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Summary

This article develops the design of a sound
synthesis model of a woodwind instrument by
modal decomposition of the input impedance,
taking into account viscothermal losses as well
as localized nonlinear losses at the end of
the resonator. This formalism has already
been applied by Diab et al. (2022) to the
study of forced systems. It is now imple-
mented for self-oscillating systems. The em-
ployed method extends the definition of the
input impedance to the nonlinear domain by
adding a dependance on the RMS acoustic ve-
locity at a geometric discontinuity. The poles
and residues resulting from the modal decom-
position are fitted as a function of this veloc-
ity. Thus, the pressure-flow relation defined
by the resonator is completed by new equa-
tions which account for the dependence with
the velocity at the end of the tube. To as-
sess the ability of the model to reproduce a
real phenomenon, comparisons with the ex-
perimental results of Atig et al. (2004) and
Dalmont et al. (2007) were carried out. Sim-
ulations show that the model reproduces these
experimental results qualitatively and quanti-
tatively.

1 Introduction

Sound synthesis by modal decomposition is
based on an input impedance measurement,

which captures the passive acoustical re-
sponse of a real instrument. This method thus
has the advantage of capturing the acousti-
cal subtleties that differentiate two clarinets
by means of a single measurement. Other
methods, such as delay lines [18], waveguides
[23, 22] or spatial discretization [5, 17] would
require more effort on the geometrical descrip-
tion of the resonator to render such acoustical
subtleties.

Furthermore, sound synthesis by modal de-
composition requires little RAM compared to
such other methods, which can be beneficial
for embedded devices. Indeed, in modal de-
composition synthesis, the temporal integra-
tion scheme requires to keep only a few previ-
ous iterations (precisely two for [18]) to com-
pute a new one. For the delay line synthesis,
it is necessary to keep in memory all the tem-
poral iterations during a round trip, i.e. dur-
ing 2LFs/c0 iterations for an academic cylin-
drical resonator without lateral holes. Al-
though this is not a problem for most em-
bedded processors, fine modeling of viscother-
mal losses in the waveguide formalism also re-
quires additional computations involving frac-
tional derivatives [6]. Finally, the ODE for-
malism is particularly well suited to the bi-
furcation analysis, which is not the case of
the PDE [6] or of the DDE formalisms [19].

The input impedance is a measure of the
linear frequency response of the resonator,
for a low-amplitude excitation. However, in
the case of woodwind instrument playing, the
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measured acoustic pressure and velocity in the
resonator can be very high. For instance,
[4] measure a pressure in the mouthpiece of
4 kPa, i.e. 163 dB for a monochromatic wave.
According to [7, Chap. 8.4.5], from an acous-
tic speed of roughly 1 m/s, jet separation phe-
nomena appear. At the level of a geometrical
discontinuity, such as the open end of a pipe
[15] or a lateral orifice [20], vortices are ob-
served. A part of the kinetic energy of the
jet is absorbed by these vortices and is dissi-
pated as heat by friction. These losses are ac-
counted for through a nonlinear relationship
derived from Bernoulli’s law, as demonstrated
by the implementation in waveguide modeling
or delay lines of [2], [19], [11] and [28].

Following [20], the works from Atig [2, 3]
and Dalmont [13, 11] model localized nonlin-
ear losses through a resistive impedance Zt.
This impedance is in series with the radiation
impedance ZR, and depends on the amplitude
of the acoustic velocity v0 at the location of
the discontinuity:

Zt =
4cd
3π

|v0|
c0

Zc, (1)

where Zc = ρ0c0/S is the characteristic
impedance of the medium for plane waves,
and cd ∈ [0; 3] is a parameter depending on
the geometry of the termination. The larger
the radius of curvature at the output, the
smaller this coefficient is. The coefficient cd
is difficult to predict theoretically, and easier
to determine experimentally [2]. As shown
by [2], nonlinear losses have a significant in-
fluence on the playing range of a clarinet,
hence models of sound production in wood-
winds should include such effects.

Models of woodwind instruments taking
into account localized nonlinear losses at the
end of the resonator have never been devel-
opped in the framework of modal synthesis.
This is the main contribution of this work.

First, a method proposed by [14] to account
for nonlinear losses by modal decomposition
is presented. It is then applied to a cylin-
drical tube with nonlinear losses located at
the open end. From this resonator, a self-
oscillating clarinet-like system is defined and

simulated by time integration. These simula-
tions are finally compared to the experimental
results published by [2] and [11].

2 Method of modal decom-

position accounting for

localized nonlinear losses

The definition of a "nonlinear impedance"
(i.e. adjusting the impedance so that the link
between acoustic flow and pressure stays valid
in nonlinear conditions) opens the way to con-
sider localized nonlinear losses by modal de-
composition. In [14], the evolution of the sur-
face impedance of perforated plates is com-
puted by temporal simulation for a broadband
excitation, with respect to the RMS ampli-
tude of the acoustic velocity at the level of the
hole, noted vRMS. From the decomposition of
the impedance in the linear domain into a sum
of N modes, two methods are studied for in-
creasing values of vRMS: the interpolation of
the impedance, on one hand, and the regres-
sion of the poles and complex residues (sn, Cn)
on the other hand. This second method will
be considered hereafter.

Nonlinear effects are taken into account by
allowing the poles and residues to vary with
respect to vRMS. In the Laplace domain, the
modal decomposition of the input impedance
is written:

Z(s, vRMS) = Zc

N
∑

n=1

Cn(vRMS)

s− sn(vRMS)

+
C∗

n(vRMS)

s− s∗n(vRMS)
, (2)

where s is the Laplace variable and •∗ denotes
the complex conjugation operation. The rela-
tionship between poles and residues and vRMS

is assumed to be a rational fraction [14]. In
the present work, the approximation is lim-
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ited to a polynomial of degree Np:

Cn(vRMS) = C(0)
n +

Np
∑

k=1

C(k)
n (vRMS)

k , (3)

sn(vRMS) = s(0)n +

Np
∑

k=1

s(k)n (vRMS)
k , (4)

where the index •(0) refers to the linear part of
the modal coefficient. In [14], the regression
coefficients of the poles and residues are then
adjusted on a nonlinear surface impedance
model ZNL(vRMS), given by [21]. It is worth
noting that in the present paper, the poles and
residues are fitted on the dimensioned quan-
tity of the RMS velocity. Therefore, the unit
of coefficients C

(k)
n and s

(k)
n are expressed in

rad · s−1 · [m · s−1]−k.
The last step consists in computing vRMS,

given by:

v2RMS(t) =
1

t

∫ t

0

v0
2(τ)dτ, (5)

where v0(t) = u0/S is the acoustic velocity
at the discontinuity, of cross section S. This
definition is rather impractical in the frame-
work of a time-domain simulation. In order
to obtain a state formalism, it is replaced by:

∂(tv2RMS)

∂t
= v0(t)

2, (6)

which is equivalent. By considering the right-
hand side of Eq. (6) as an input for the ODE
solver, tv2RMS can be computed, hence vRMS.

3 Application to a cylindri-

cal tube with nonlinear

losses at the open end

The impedance regression technique pre-
sented by [14] is applied to the case of a
closed-open cylinder of radius R and length
L, which is a similar case study to [2]. Vis-
cothermal losses are taken into account in the
propagation:

Γ(s) =
s

c0
+ (1 + j)

η
√
s

R
√
2jπ

, (7)

where η = 3 · 10−5 s1/2. The boundary con-
dition at x = L is given by the radiation
impedance ZR, which includes in series the
nonlinear impedance Zt defined by Eq. (1):

ZR = Z
(lin)
R + Zt,

where Z
(lin)
R = Zc

(

jk∆l +
1

4
(kR)2

)

,

Zt = Zc
vRMS(L, t)

c0
KNL,

(8)

and jk = s/c0, ∆l ≈ 0.6R [7, Chap. 12.6.1.3],
KNL = 4cd/(3π). In the following, vRMS(L, t)
will be denoted as vRMS for reading comfort.
The input impedance is defined by:

zin = tanh
(

ΓL+ tanh−1(zR)
)

, (9)

introducing the dimensionless notation
z• = Z•/Zc. A linear input impedance z

(lin)
in

is also defined, such that

z
(lin)
in = tanh

(

ΓL

+ tanh−1
[

jk∆l +
1

4
(kR)2

])

, (10)

which is equivalent to zin for vRMS = 0.
Figure 1 illustrates the evolution of zin

(computed through Eq. (9) and Eq. (10), in
which the Laplace variable is substituted by
j2πf) as a function of the RMS velocity at the
open end. It can be observed that taking into
account nonlinear losses has a consequence on
the amplitude, but not on the frequency of
the resonance peaks. Figure 1 b shows that
this impact is particularly accentuated on the
first resonance peak: its amplitude is 43 %
lower for vRMS = 24 m/s than in the case
without nonlinear losses. The difference is re-
duced to 30 % for the second peak, and to
16 % for the sixth peak. Near the antireso-
nances, the negative relative discrepancies are
high, since the impedance values are all close
to zero. The absolute deviation remains very
low. From the lack of frequency variation of
the resonance peaks with vRMS, we could an-
ticipate that nonlinear losses at the end of the
pipe would rather impact dynamics than in-
tonation.
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Figure 1: Input impedance of a cylinder zin (computed through Eq. (9) and Eq. (10)) of length
L = 64 cm and radius R = 8 mm for different values of the acoustic RMS velocity at the open
end. The value of cd has been set to 13/9, which corresponds to a radius of curvature of 0.3 mm,
according to [1]. From top to bottom, from left to right : modulus of the input impedance;
relative gap between nonlinear and linear definition of zin; detail view on the first peak; detail
view on the fourth peak.

3.1 Modal decomposition of the
nonlinear input impedance

In order to take into account nonlinear losses
in temporal simulation, the modal coefficients
of the input impedance must be determined.
In the same way that the nonlinear input
impedance depends on the acoustic velocity
at the open end, the coefficients Cn and sn
derived from the modal decomposition of zin
also depend on vRMS. To formulate the re-
lationship between the modal coefficients and
vRMS , a minor adaptation of the method pre-
sented in [7, Chap. 5.5.3] is used. The defi-
nition of zR used in [7] is substituted by the
expression given by Eq. (8), taking into ac-
count nonlinear losses at the end of the tube.

3.1.1 Expression of the poles sn

Eq. (9) can also be written as:

zin =
sinh [Γ(s)L+ h(s, vRMS)]

cosh [Γ(s)L+ h(s, vRMS)]
,

where h(s, vRMS) = tanh−1(zR).

(11)

The poles sn(vRMS) are the solutions of
cosh [ΓL+ h] = 0, i.e.:

Γ(sn)L+h(sn, vRMS)−j
(2n− 1)π

2
= 0. (12)

The solutions of Eq. (12) give sn, for differ-
ent input values of vRMS. They are plotted
on Figure 2a. The consideration of nonlinear
losses at the end of a cylindrical pipe has al-
most no influence on ℑ(sn), which is the reso-
nance angular frequency of peak n. However,



Szwarcberg et al., p. 5

a larger vRMS increases |ℜ(sn)|. This shift re-
mains almost the same regardless of the index
of the pole. However, in terms of relative de-
viation, the ratio |ℜ(sn − s

(lin)
n )/ℑ(sn)| is de-

creasing as n increases. This is signaled by the
amplitude of peaks of higher index appearing
less affected by nonlinear losses, as shown in
Figure 1 b.

3.1.2 Expression of the residues Cn

It remains to calculate residue Cn(vRMS). In
the vicinity of a pole sn, the denominator D of
zin can be written through a first-order series
expansion of cosh:

D = (s− sn)D
′(sn, vRMS)

where D′ = (Γ′L+ h′) sinh (ΓL+ h) ,
(13)

introducing notation •′ = ∂ • /∂s. According
to [7, Chap. 5.5.3], after application of the
residues theorem, the modal decomposition of
the input impedance for the n-th peak can be
written as

Zin,n =
Pn(s)

U(s)
= Zc

Cn

s− sn
, where

Cn(vRMS) =
1

Γ′(sn)L+ h′(sn, vRMS)
.

(14)

The evolution of coefficients Cn with respect
to vRMS is plotted on Figure 2b. Real and
imaginary parts of Cn slightly decrease when
vRMS increases. Following [14], it remains
to fit the modal coefficients with respect to
vRMS , as in the example of Eq. (3).

3.1.3 Polynomial fitting of the modal

coefficients

Figure 3a shows the mean relative fitting er-
ror for polynomials of different degrees, for
the same data as in Figure 2. For linear re-
gression, the mean relative error stays around
10−7 for each mode n, both for Cn and sn.
Further simulations reveal that choosing an
excessive values of cd tends to increase this
error. For a tube with sharp edges at the
open end, [2] estimated a maximum value of
cd = 2.8. For cd = 5, for instance, the mean

relative error of linear regression is around
10−5. Although this error has increased, it
remains very low.

Moreover, Figure 3b shows that choosing an
polynomial regression degree larger than 1 has
no consequence on the error over zin between
modal decomposition with fitted coefficients
and the definition given by Eq. (9). This
error is therefore inherent to the modal de-
composition approximation (Eq. (2)) of the
input impedance (Eq. (9)).

According to these previous results, in the
rest of this article, the modal coefficients will
both be fitted by a polynomial of order 1.

4 Application to the time-

integration simulation of

a clarinet-like system

The cylindrical tube considered in section 3
is now treated as the resonator of a clarinet-
like instrument. The physical model govern-
ing the self-sustained oscillations of the in-
strument is presented in section 4.1. It is
then simulated by time integration, impos-
ing a linear increase of the blowing pres-
sure (crescendo) followed by a linear decrease
(diminuendo). Details and results from the
simulations are given in section 4.2.

4.1 Physical model for the self-
sustained oscillations

The self-sustained system consists of three
main parts: reed dynamics, reed channel and
resonator. This last subsystem is enriched
compared to the classical modal decomposi-
tion formalism [16, 25, 27] by the addition of
nonlinear losses at the end of the pipe.

4.1.1 Reed dynamics

The dynamic behavior of the reed is modeled
for its dimensionless displacement x(t) by the
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(a) Real and imaginary parts of poles
sn(vRMS), calculated by solving Eq. (12). De-
tailed view on s1.

(b) Real and imaginary parts of residues
Cn(vRMS), calculated with Eq. (14). Detailed
views on C1 and C4.

Figure 2: Graphical representation of the N = 8 first poles and residues. The values of vRMS

are linearly chosen between 0 m/s and 24 m/s, according to [1]. As in Figure 1, cd = 13/9.

(a) Mean relative error ε between fitted modal
coefficient X̃ = {s̃n, C̃n} and its actual value
X = {sn, Cn}. Regression is based on Nv = 25
values of vRMS .

(b) L2-norm of the error over zin for every

frequencies, between definition z
(def)
in given by

Eq. (9) and modal decomposition approxima-

tion z
(modal)
in defined by Eq. (2). This error is

plotted with respect to the degree of the fit-
ting polynomial of Cn and sn.

Figure 3: Error due to the regression of modal coefficients Cn and sn (Figure 3a), and its
consequence on the discrepancy between modal decomposition and definition (9) on zin (Figure
3b).

following equation :

1

ω2
r

ẍ(t) +
qr
ωr

ẋ(t) + x(t) = p(t)

− γ(t) + Fc(x, ẋ), (15)

where ωr = 2π × 2200 rad/s is the reed res-
onance angular frequency [8] and qr = 0.4

is the reed damping [24]. γ(t) = Pm(t)/pM
is the dimensionless blowing parameter and
p(t) = p(dim)(t)/pM is the dimensionless pres-
sure at the input of the resonator. The beat-
ing pressure pM is the value of the blowing
pressure Pm for which the reed closes the reed
channel, in quasistatic regime. Fc(x, ẋ) is the
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contact force function. In the following, a
model of "ghost reed" [10] is considered, i.e.
Fc = 0.

4.1.2 Reed channel

The characteristic of the flow u(t) through
the reed channel is described by the follow-
ing equation, according to [29]:

u(t) = −λẋ(t) + ζ [x(t) + 1]+ sgn
[

γ(t)

− p(t)
]
√

|γ(t)− p(t)|, (16)

where λ = 5.5·10−3/c0 is the reed flow param-
eter [12], ζ is the embouchure parameter, and
γ(t) is the dimensionless blowing pressure.
The operator [•]+ = (•+ | • |)/2 refers to the
positive part function. For the simulations,
the absolute value functions are regularized
to smooth the irregularities of the quasi-static
flow characteristic, without altering its behav-
ior, according to [9]. Thus, | • | 7→

√

•2 + η,
with η = 0.001.

4.1.3 Resonator

The resonator is described in the frequency
domain by its input impedance zin, under its
modal decomposition form given by Eq. (2).
The modal poles and residues sn and Cn are
chosen to be linearly dependent on vRMS, i.e.:

Cn(vRMS) = C(0)
n + C(1)

n vRMS,

sn(vRMS) = s(0)n + s(1)n vRMS.

The modal decomposition of zin allows to
write the relation between the dimensionless
pressure p and flow u in the temporal domain:

ṗn(t)− sn(vRMS)pn(t) = Cn(vRMS)u(t),

where p(t) = 2

N
∑

n

ℜ(pn(t)). (17)

The values of sn and Cn must be updated at
each time step by computing vRMS(L, t). The
method for calculating the mean velocity at
nonlinearity is detailed in the following sec-
tion.

4.1.4 Computation of vRMS at each

time step

To compute vRMS(L, t), the pressure at the
termination L must be calculated. First, a
linear problem is considered. The value of sn
is therefore chosen for vRMS = 0 m/s. The
modal components of the pressure are related
to the total pressure at L through the follow-
ing equation:

p(L, t) = 2ℜ
(

N
∑

n

pn(t)φn(L)

)

,

where φn(ξ) = cosh(Γ(s(0)n )ξ),

(18)

and ξ ∈ [0, L] is the distance along the lon-
gitudinal axis of the resonator. For reading
comfort, the expression p(t) will be reserved
to denote p(0, t).

The dimensionless acoustic velocity at the
open end is then calculated from its definition
which is related to the pressure field through
the dimensionless Euler equation:

∂p

∂ξ
(ξ, t) = − 1

c0

∂v

∂t
(ξ, t). (19)

The dimensionless acoustic velocity v(L, t) is
thus obtained by numerical integration of the
following equation :

v̇(L, t) = −2c0ℜ
N
∑

n

pn(t)
dφn

dξ
(L),

where
dφn

dξ
(ξ) = Γ(s(0)n ) sinh

[

Γ(s(0)n )ξ
]

.

(20)

The RMS velocity is finally obtained by dou-
ble time integration of Eq. (20), according
to Eq. (6). Since the equations of the sys-
tem characterizing the self-sustained oscilla-
tions are dimensionless, it is necessary to re-
size vRMS, because the modal coefficients C

(k)
n

and s
(k)
n presented in Eq. (3) have been re-

gressed from the dimensioned velocity. To do
so, v

(adim)
RMS is multiplied by pM/(ρ0c0). In the

following simulations, a value of pM = 8.5 kPa
is set, according to experimental results from
[2].
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Regarding the calculation of v(L, t), it is not
numerically guaranteed that the mean value
of v̇(L, t) remains zero. Consequently, the in-
tegral v(L, t) =

∫ t

0
v̇(L, t)dt may diverge. To

avoid these divergence problems when inte-
grating v̇(L, t) and v2(L, t), a short-memory
term τ is added within each integral. Thus,
v(L, t) is now defined by the following convo-
lution product:

v(L, t) =

∫ t

0

v̇(L, u)e−
t−u

τ du, (21)

which is written, in the Laplace (L) domain,
as:

L [v(L, t)] = L [v̇(L, t)]
1

s + 1/τ
. (22)

By going back to the time domain, Eq. (21)
becomes :

v̇(L, t) = −2c0ℜ
(

N
∑

n

pn(t)
dφn

dξ
(L)

)

− 1

τ
v(L, t). (23)

The same method is applied for the computa-
tion of vRMS:

v2RMS =
1

τ

∫ t

0

e−
t−u

τ v2(L, u) du (24)

⇔ L
[

v2RMS

]

=
1

τ
L
[

v2(L, t)
] 1

s+ 1/τ
(25)

⇔ ∂(τv2RMS)

∂t
= v2(L, t)− v2RMS. (26)

4.1.5 Complete system of equations

The complete self-sustained system is gov-
erned by the equations defined in sections
4.1.1, 4.1.2, 4.1.3 and 4.1.4. This article shows
the resolution of this problem using an ode
solver. The Cauchy problem Ẏ = F(Y, t)
writes, according to Eq. (28), as:

F(Y, t) = F























x(t)
ẋ(t)

v(L, t)
τv2RMS

p1(t)
...

pN(t)























(27)

=





























ẋ(t)
−qrωrẋ(t) + ω2

r [p(t)− γ(t)− x(t)]

−2c0ℜ
(

N
∑

n

pn(t)
dφn

dξ
(L)

)

− 1
τ
v(L, t)

v2(L, t)− v2RMS

C1(vRMS)u(t) + s1(vRMS)p1(t)
...

CN(vRMS)u(t) + sN (vRMS)pN(t)





























,

(28)
where u(t) is computed by using Eq. (16),
Ck(vRMS) are computed with Eq. (14), and
sk(vRMS) are computed with Eq. (12). The
initial conditions Y0 will be set to 0 in the
following simulations.

4.2 Simulation including nonlin-
ear losses at the open end

The model including nonlinear losses at the
open end as represented by the system of Eq.
(28) is now simulated by time integration, us-
ing the solver ode45 from Matlab. The in-
put data of the problem are based on experi-
mental results from [2].

4.2.1 Simulation parameters

The parameters related to the resonator, the
reed and the reed channel are presented in
table 1. Six values of cd have been taken
from [2], which are between cd = 0 and
cd = 2.8. The value of ζ = 0.28 was cal-
culated using data corresponding to a "loose
embouchure" configuration. For the calcula-
tion of vRMS , the short-memory term was set
to the period of the first impedance peak, i.e.
τ = 2π/ℑ(s1). The evolution of γ is first lin-
early ascending, from γ = 0 to γ = 3 in 8 s,
then linearly descending, from γ = 3 to γ = 0
in 8 s. The total simulation time is there-
fore 16 s. Simulations were performed for
N = 4 modes. A convergence study showed
that the dynamic behavior of the system did
not change for a higher number of modes.
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Table 1: Main constants used for the simula-
tions.

L (cm) R (mm) N modes ωr/2π (Hz)
64 8 4 2200

qr λ (s) ζ pM (kPa)
0.4 1.6 · 10−5 0.28 8.5

4.2.2 Results

The bifurcation diagram of the input pressure
p(dim) = p·pM over the blowing pressure Pm =
γ · pM is represented on Figure 4, with the
parameters detailed in section 4.2.1.

(a) Crescendo.

(b) Diminuendo.

Figure 4: Bifurcation diagram of the L2 norm
of p(dim) with respect to Pm, for different val-
ues of cd, in an ascending blowing pressure
configuration (4a) and a descending one (4b).

Table 2: Values of the extinction threshold
Pextup = pM · γextup (kPa), for the simulation
of Figure 4a.

cd 0 0.15 0.9 1.4 1.7 2.8
Pextup 17.7 17.3 15.3 14.5 14.2 13.2

During a crescendo (Figure 4a), the os-
cillation threshold is located near 5.7 kPa
(γth ≈ 0.67). This threshold remains the
same, whether nonlinear losses are taken into
account (cd 6= 0) or not (cd = 0). However,
nonlinear losses have a significant influence on
the extinction threshold γextup, i.e. the blow-
ing pressure from which the reed stops oscil-
lating and is pressed completely against the
mouthpiece. This influence is shown in Ta-
ble 2. When cd is increased (i.e. nonlinear
losses increase), γextup diminishes. Similarly
to the experiments conducted by [2], nonlin-
ear losses have an important influence on the
dynamic playing range of the musician. Fig-
ure 4 shows that when nonlinear losses are
low, the range of stable oscillation amplitude
that can be obtained is larger.

In the diminuendo phase, the inverse
threshold is the same (γinv ≈ 0.89) for each
geometry at the open end of the pipe. Around
this threshold, the amplitude of the input
pressure decreases slightly as the losses in-
crease. This behavior is also observed in the
experimental curves of [2, Figure 12 a, c and
e].

This comparaison with the experimental re-
sults of Atig et al. is limited to a qualita-
tive study. Parameters such as the reed reso-
nance angular frequency ωr and reed damping
qr have a strong influence on the dynamics of
the system, as demonstrated by [26] for the
oscillation threshold. The complete recalibra-
tion of the model on experimental results is
beyond the scope of this article.
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4.3 Comparison with experi-
mental results from Dal-
mont and Frappé (2007)

An attempt to quantitatively validate the
model of nonlinear losses is carried out. To
do so, the values of the saturation threshold
γsat measured by [11] are employed (see Figure
5). This threshold corresponds to the blowing
pressure γ for which p is maximum during a
crescendo. The authors measured this thresh-
old for different reed openings, which are tran-
scribed here in different values of ζ . The di-
mensioning pressure values pM used here cor-
respond to the beating pressure estimated by
the authors for a diminuendo. Furthermore,
the measurements are performed on a cylin-
drical tube of dimensions L = 50 cm and
R = 8 mm. The geometry at the opening has
been estimated by the authors at cd = 2.8.

The experimental data are compared to
simulations using the same parameters L and
R as in the experiment. Simulations are per-
formed for two cases: the first one does not
take into account nonlinear losses (cd = 0),
the other one takes them into account (cd =
2.8). The simulations are performed for as-
cending ramps of blowing pressure varying
from γ = 0 to γ = 3 in 10 s. The other pa-
rameters are the same as those given in table
1.

The model presented in this paper is also
compared to the Raman model including
nonlinear losses proposed by [11]. In this
model, viscothermal losses are simplified by
a frequency-independent coefficient α which
replaces ℜ(Γ). The simplicity of this model
allows the authors to obtain an analytical ex-
pression of the saturation threshold γsat as a
function of the parameter cd.

In the present work, the value of α was first
adjusted at ℜ(Γ(jω1)), where ω1 is the angu-
lar frequency of the impedance peak support-
ing the oscillation. However, this value pro-
duced excessively high estimates of γsat com-
pared to experimental results, especially for
high values of ζ . To better match the exper-
imental data, α = 2.7ℜ(Γ(jω1)) ≈ 0.147 was

chosen. It should be noted that the analytical
expression of γsat exhibits a linear dependence
in 1/α, for low values of α. Thus, γsat is ex-
tremely sensitive to the value of α in Raman’s
model.

Figure 5: Experimental results from [11] for
the saturation threshold (•), compared with
three methods: modal decomposition with-
out nonlinear losses (+); modal decomposi-
tion including nonlinear losses (×); analytical
solution provided by Raman model including
nonlinear losses (∗).

Figure 5 illustrates the evolution of the sat-
uration threshold as a function of ζ in the
experimental case, through modal decompo-
sition simulation, and through the analyti-
cal expression based on the Raman model.
It appears first that the saturation thresh-
old is overestimated when nonlinear losses are
not taken into account (+). In comparison,
the two models taking into account nonlinear
losses produce results much closer to the ex-
periment. This shows the importance of tak-
ing this phenomenon into account in wind in-
strument simulations.

Furthermore, for the analytical solution
given by the Raman model (∗), the evolution
of γsat follows a straight line whose slope de-
pends on 1/α. Although the results are close
to the experimental ones, the high sensitiv-
ity of γsat to α as well as the linear evolution
of γsat reflect the excessive simplicity of the
Raman model to describe the dynamics of a



Szwarcberg et al., p. 11

wind instrument.

Finally, the model presented in this paper
(×) has a good agreement with the experi-
mental data, except for very low values of the
mouthpiece parameter (ζ < 0.12). For these
low values of ζ , the model overestimates γsat
compared to the experimental results. This
overestimation may be related to the transient
behavior at extinction caused by the tempo-
ral evolution of the control parameter γ. A
characterization of the system by continua-
tion could give results independent of the evo-
lution rate of γ(t).

In conclusion, the correspondence between
the results from the model presented in this
article and the experimental data from [11]
highlights its ability to describe the dynamic
behavior of a simplified wind instrument at
saturation.

5 Conclusion

This article develops the design of a sound
synthesis model of a reed instrument by
modal decomposition of the input impedance,
taking into account viscothermal losses as well
as nonlinear losses at the end of the resonator.
The input impedance now depends on the
RMS acoustic velocity at a geometric disconti-
nuity (here, the open termination). Poles and
residues resulting from the modal decomposi-
tion are fitted as a function of this velocity.
In a physical model of wind instrument, the
pressure-flow relation defined by the resonator
is then completed by new equations which ac-
count for this dependence with the velocity at
the end of the pipe.

To evaluate the ability of the model to
reproduce a real phenomenon, comparisons
with the experimental results of [2] and [11]
have been made. In the first case, simulations
show a qualitatively similar behavior regard-
ing the evolution of the extinction threshold
depending on the geometry at the open end.
In the second case, the model gives a good cor-
respondence with the experimental results, in
particular compared to a model without non-

linear losses.

This formalism could be promising in the
sound synthesis of wind instruments in real
time, which employs the modal decomposi-
tion formalism in order to keep a minimum
of memory. The inclusion of nonlinear losses
in a complete clarinet model could more ac-
curately translate dynamic phenomena essen-
tial to the experience of the musician, as sug-
gested by [11] : "any realistic model of the
clarinet should include nonlinear losses in the
side holes".
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