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 were carried out. Simulations show that the model reproduces these experimental results qualitatively and quantitatively.

Introduction

Sound synthesis by modal decomposition is based on an input impedance measurement, which captures the passive acoustical response of a real instrument. This method thus has the advantage of capturing the acoustical subtleties that differentiate two clarinets by means of a single measurement. Other methods, such as delay lines [START_REF] Guillemain | Real-time synthesis of clarinet-like instruments using digital impedance models[END_REF], waveguides [START_REF] Paul | An acoustic analysis of single-reed woodwind instruments with an emphasis on design and performance issues and digital waveguide modeling techniques[END_REF][START_REF] Mignot | Réalisation en guides d'ondes numériques stables d'un modèle acoustique réaliste pour la simulation en temps-réel d'instruments à vent[END_REF] or spatial discretization [START_REF] Bilbao | Numerical sound synthesis: finite difference schemes and simulation in musical acoustics[END_REF][START_REF] Ernoult | Full waveform inversion for bore reconstruction of woodwind-like instruments[END_REF] would require more effort on the geometrical description of the resonator to render such acoustical subtleties.

Furthermore, sound synthesis by modal decomposition requires little RAM compared to such other methods, which can be beneficial for embedded devices. Indeed, in modal decomposition synthesis, the temporal integration scheme requires to keep only a few previous iterations (precisely two for [START_REF] Guillemain | Real-time synthesis of clarinet-like instruments using digital impedance models[END_REF]) to compute a new one. For the delay line synthesis, it is necessary to keep in memory all the temporal iterations during a round trip, i.e. during 2LF s /c 0 iterations for an academic cylindrical resonator without lateral holes. Although this is not a problem for most embedded processors, fine modeling of viscothermal losses in the waveguide formalism also requires additional computations involving fractional derivatives [START_REF] Bilbao | Finite difference time domain simulation for the brass instrument bore[END_REF]. Finally, the ODE formalism is particularly well suited to the bifurcation analysis, which is not the case of the PDE [START_REF] Bilbao | Finite difference time domain simulation for the brass instrument bore[END_REF] or of the DDE formalisms [START_REF] Guillemain | Digital synthesis models of clarinet-like instruments including nonlinear losses in the resonator[END_REF].

The input impedance is a measure of the linear frequency response of the resonator, for a low-amplitude excitation. However, in the case of woodwind instrument playing, the measured acoustic pressure and velocity in the resonator can be very high. For instance, [START_REF] Bergeot | Response of an artificially blown clarinet to different blowing pressure profiles[END_REF] measure a pressure in the mouthpiece of 4 kPa, i.e. 163 dB for a monochromatic wave. According to [START_REF] Chaigne | Acoustics of musical instruments[END_REF]Chap. 8.4.5], from an acoustic speed of roughly 1 m/s, jet separation phenomena appear. At the level of a geometrical discontinuity, such as the open end of a pipe [START_REF] Disselhorst | Flow in the exit of open pipes during acoustic resonance[END_REF] or a lateral orifice [START_REF] Ingård | Acoustic circulation effects and the nonlinear impedance of orifices[END_REF], vortices are observed. A part of the kinetic energy of the jet is absorbed by these vortices and is dissipated as heat by friction. These losses are accounted for through a nonlinear relationship derived from Bernoulli's law, as demonstrated by the implementation in waveguide modeling or delay lines of [START_REF] Atig | Saturation mechanism in clarinet-like instruments, the effect of the localised non-linear losses[END_REF], [START_REF] Guillemain | Digital synthesis models of clarinet-like instruments including nonlinear losses in the resonator[END_REF], [START_REF] Dalmont | Oscillation and extinction thresholds of the clarinet: comparison of analytical results and experiments[END_REF] and [START_REF] Taillard | Theoretical and experimental study of the role of the reed in clarinet playing[END_REF].

Following [START_REF] Ingård | Acoustic circulation effects and the nonlinear impedance of orifices[END_REF], the works from Atig [2, 3] and Dalmont [START_REF] Dalmont | Experimental Determination of the Equivalent Circuit of an Open Side Hole: Linear and Non Linear Behaviour[END_REF][START_REF] Dalmont | Oscillation and extinction thresholds of the clarinet: comparison of analytical results and experiments[END_REF] model localized nonlinear losses through a resistive impedance Z t . This impedance is in series with the radiation impedance Z R , and depends on the amplitude of the acoustic velocity v 0 at the location of the discontinuity:

Z t = 4c d 3π |v 0 | c 0 Z c , (1) 
where Z c = ρ 0 c 0 /S is the characteristic impedance of the medium for plane waves, and c d ∈ [0; 3] is a parameter depending on the geometry of the termination. The larger the radius of curvature at the output, the smaller this coefficient is. The coefficient c d is difficult to predict theoretically, and easier to determine experimentally [START_REF] Atig | Saturation mechanism in clarinet-like instruments, the effect of the localised non-linear losses[END_REF]. As shown by [START_REF] Atig | Saturation mechanism in clarinet-like instruments, the effect of the localised non-linear losses[END_REF], nonlinear losses have a significant influence on the playing range of a clarinet, hence models of sound production in woodwinds should include such effects. Models of woodwind instruments taking into account localized nonlinear losses at the end of the resonator have never been developped in the framework of modal synthesis. This is the main contribution of this work.

First, a method proposed by [START_REF] Diab | Nonlinear broadband time-domain admittance boundary condition for duct acoustics. application to perforated plate liners[END_REF] to account for nonlinear losses by modal decomposition is presented. It is then applied to a cylindrical tube with nonlinear losses located at the open end. From this resonator, a selfoscillating clarinet-like system is defined and simulated by time integration. These simulations are finally compared to the experimental results published by [START_REF] Atig | Saturation mechanism in clarinet-like instruments, the effect of the localised non-linear losses[END_REF] and [START_REF] Dalmont | Oscillation and extinction thresholds of the clarinet: comparison of analytical results and experiments[END_REF].

2 Method of modal decomposition accounting for localized nonlinear losses

The definition of a "nonlinear impedance" (i.e. adjusting the impedance so that the link between acoustic flow and pressure stays valid in nonlinear conditions) opens the way to consider localized nonlinear losses by modal decomposition. In [START_REF] Diab | Nonlinear broadband time-domain admittance boundary condition for duct acoustics. application to perforated plate liners[END_REF], the evolution of the surface impedance of perforated plates is computed by temporal simulation for a broadband excitation, with respect to the RMS amplitude of the acoustic velocity at the level of the hole, noted v RM S . From the decomposition of the impedance in the linear domain into a sum of N modes, two methods are studied for increasing values of v RM S : the interpolation of the impedance, on one hand, and the regression of the poles and complex residues (s n , C n ) on the other hand. This second method will be considered hereafter.

Nonlinear effects are taken into account by allowing the poles and residues to vary with respect to v RM S . In the Laplace domain, the modal decomposition of the input impedance is written:

Z(s, v RM S ) = Z c N n=1 C n (v RM S ) s -s n (v RM S ) + C * n (v RM S ) s -s * n (v RM S ) , (2) 
where s is the Laplace variable and • * denotes the complex conjugation operation. The relationship between poles and residues and v RM S is assumed to be a rational fraction [START_REF] Diab | Nonlinear broadband time-domain admittance boundary condition for duct acoustics. application to perforated plate liners[END_REF]. In the present work, the approximation is lim-ited to a polynomial of degree N p :

C n (v RM S ) = C (0) n + Np k=1 C (k) n (v RM S ) k , (3) 
s n (v RM S ) = s (0) n + Np k=1 s (k) n (v RM S ) k , (4) 
where the index • (0) refers to the linear part of the modal coefficient. In [START_REF] Diab | Nonlinear broadband time-domain admittance boundary condition for duct acoustics. application to perforated plate liners[END_REF], the regression coefficients of the poles and residues are then adjusted on a nonlinear surface impedance model Z N L (v RM S ), given by [START_REF] Laly | Acoustical modeling of micro-perforated panel at high sound pressure levels using equivalent fluid approach[END_REF]. It is worth noting that in the present paper, the poles and residues are fitted on the dimensioned quantity of the RMS velocity. Therefore, the unit of coefficients

C (k) n and s (k) n are expressed in rad • s -1 • [m • s -1 ] -k .
The last step consists in computing v RM S , given by:

v 2 RM S (t) = 1 t t 0 v 0 2 (τ )dτ, (5) 
where v 0 (t) = u 0 /S is the acoustic velocity at the discontinuity, of cross section S. This definition is rather impractical in the framework of a time-domain simulation. In order to obtain a state formalism, it is replaced by:

∂(tv 2 RM S ) ∂t = v 0 (t) 2 , (6) 
which is equivalent. By considering the righthand side of Eq. ( 6) as an input for the ODE solver, tv 2 RM S can be computed, hence v RM S .

Application to a cylindrical tube with nonlinear losses at the open end

The impedance regression technique presented by [START_REF] Diab | Nonlinear broadband time-domain admittance boundary condition for duct acoustics. application to perforated plate liners[END_REF] is applied to the case of a closed-open cylinder of radius R and length L, which is a similar case study to [START_REF] Atig | Saturation mechanism in clarinet-like instruments, the effect of the localised non-linear losses[END_REF]. Viscothermal losses are taken into account in the propagation:

Γ(s) = s c 0 + (1 + j) η √ s R √ 2jπ , (7) 
where η = 3 • 10 -5 s 1/2 . The boundary condition at x = L is given by the radiation impedance Z R , which includes in series the nonlinear impedance Z t defined by Eq. ( 1):

Z R = Z (lin) R + Z t ,
where

Z (lin) R = Z c jk∆l + 1 4 (kR) 2 , Z t = Z c v RM S (L, t) c 0 K N L , (8) 
and jk = s/c 0 , ∆l ≈ 0.6R [7, Chap. 12.6.1.3], K N L = 4c d /(3π). In the following, v RM S (L, t) will be denoted as v RM S for reading comfort.

The input impedance is defined by:

z in = tanh ΓL + tanh -1 (z R ) , (9) 
introducing the dimensionless notation

z • = Z • /Z c . A linear input impedance z (lin) in is also defined, such that z (lin) in = tanh ΓL + tanh -1 jk∆l + 1 4 (kR) 2 , (10) 
which is equivalent to z in for v RM S = 0. Figure 1 illustrates the evolution of z in (computed through Eq. ( 9) and Eq. [START_REF] Colinot | Influence of the "ghost reed" simplification on the bifurcation diagram of a saxophone model[END_REF], in which the Laplace variable is substituted by j2πf ) as a function of the RMS velocity at the open end. It can be observed that taking into account nonlinear losses has a consequence on the amplitude, but not on the frequency of the resonance peaks. Figure 1 b shows that this impact is particularly accentuated on the first resonance peak: its amplitude is 43 % lower for v RM S = 24 m/s than in the case without nonlinear losses. The difference is reduced to 30 % for the second peak, and to 16 % for the sixth peak. Near the antiresonances, the negative relative discrepancies are high, since the impedance values are all close to zero. The absolute deviation remains very low. From the lack of frequency variation of the resonance peaks with v RM S , we could anticipate that nonlinear losses at the end of the pipe would rather impact dynamics than intonation.

Figure 1: Input impedance of a cylinder z in (computed through Eq. ( 9) and Eq. ( 10)) of length L = 64 cm and radius R = 8 mm for different values of the acoustic RMS velocity at the open end. The value of c d has been set to 13/9, which corresponds to a radius of curvature of 0.3 mm, according to [START_REF] Atig | Non-linéarité acoustique localisée à l'extrémité ouverte d'un tube. Mesure, modélisation et[END_REF]. From top to bottom, from left to right : modulus of the input impedance; relative gap between nonlinear and linear definition of z in ; detail view on the first peak; detail view on the fourth peak.

Modal decomposition of the nonlinear input impedance

In order to take into account nonlinear losses in temporal simulation, the modal coefficients of the input impedance must be determined.

In the same way that the nonlinear input impedance depends on the acoustic velocity at the open end, the coefficients C n and s n derived from the modal decomposition of z in also depend on v RM S . To formulate the relationship between the modal coefficients and v RM S , a minor adaptation of the method presented in [7, Chap. 5.5.3] is used. The definition of z R used in [START_REF] Chaigne | Acoustics of musical instruments[END_REF] is substituted by the expression given by Eq. ( 8), taking into account nonlinear losses at the end of the tube.

Expression of the poles s n

Eq. ( 9) can also be written as:

z in = sinh [Γ(s)L + h(s, v RM S )] cosh [Γ(s)L + h(s, v RM S )] , where h(s, v RM S ) = tanh -1 (z R ). (11) 
The poles s n (v RM S ) are the solutions of cosh [ΓL + h] = 0, i.e.:

Γ(s n )L+h(s n , v RM S )-j (2n -1)π 2 = 0. ( 12 
)
The solutions of Eq. ( 12 )/ℑ(s n )| is decreasing as n increases. This is signaled by the amplitude of peaks of higher index appearing less affected by nonlinear losses, as shown in Figure 1 b.

Expression of the residues C n

It remains to calculate residue C n (v RM S ). In the vicinity of a pole s n , the denominator D of z in can be written through a first-order series expansion of cosh:

D = (s -s n )D ′ (s n , v RM S ) where D ′ = (Γ ′ L + h ′ ) sinh (ΓL + h) , (13) 
introducing notation

• ′ = ∂ • /∂s.
According to [7, Chap. 5.5.3], after application of the residues theorem, the modal decomposition of the input impedance for the n-th peak can be written as

Z in,n = P n (s) U(s) = Z c C n s -s n
, where

C n (v RM S ) = 1 Γ ′ (s n )L + h ′ (s n , v RM S ) . ( 14 
)
The evolution of coefficients C n with respect to v RM S is plotted on Figure 2b. Real and imaginary parts of C n slightly decrease when v RM S increases. Following [START_REF] Diab | Nonlinear broadband time-domain admittance boundary condition for duct acoustics. application to perforated plate liners[END_REF], it remains to fit the modal coefficients with respect to v RM S , as in the example of Eq. (3).

Polynomial fitting of the modal coefficients

Figure 3a shows the mean relative fitting error for polynomials of different degrees, for the same data as in Figure 2. For linear regression, the mean relative error stays around 10 -7 for each mode n, both for C n and s n . Further simulations reveal that choosing an excessive values of c d tends to increase this error. For a tube with sharp edges at the open end, [START_REF] Atig | Saturation mechanism in clarinet-like instruments, the effect of the localised non-linear losses[END_REF] estimated a maximum value of c d = 2.8. For c d = 5, for instance, the mean relative error of linear regression is around 10 -5 . Although this error has increased, it remains very low. Moreover, Figure 3b shows that choosing an polynomial regression degree larger than 1 has no consequence on the error over z in between modal decomposition with fitted coefficients and the definition given by Eq. ( 9). This error is therefore inherent to the modal decomposition approximation (Eq. ( 2)) of the input impedance (Eq. ( 9)).

According to these previous results, in the rest of this article, the modal coefficients will both be fitted by a polynomial of order 1.

Application to the timeintegration simulation of a clarinet-like system

The cylindrical tube considered in section 3 is now treated as the resonator of a clarinetlike instrument. The physical model governing the self-sustained oscillations of the instrument is presented in section 4.1. It is then simulated by time integration, imposing a linear increase of the blowing pressure (crescendo) followed by a linear decrease (diminuendo). Details and results from the simulations are given in section 4.2.

Physical model for the selfsustained oscillations

The self-sustained system consists of three main parts: reed dynamics, reed channel and resonator. This last subsystem is enriched compared to the classical modal decomposition formalism [START_REF] Vincent Dubos | Theory of sound propagation in a duct with a branched tube using modal decomposition[END_REF][START_REF] Silva | Simulation of single reed instruments oscillations based on modal decomposition of bore and reed dynamics[END_REF][START_REF] Taillard | Modal analysis of the input impedance of wind instruments. application to the sound synthesis of a clarinet[END_REF] by the addition of nonlinear losses at the end of the pipe.

Reed dynamics

The dynamic behavior of the reed is modeled for its dimensionless displacement x(t) by the given by Eq. ( 9) and modal decomposition approximation z (modal) in defined by Eq. ( 2). This error is plotted with respect to the degree of the fitting polynomial of C n and s n . 3a), and its consequence on the discrepancy between modal decomposition and definition (9) on z in (Figure 3b). following equation :

1 ω 2 r ẍ(t) + q r ω r ẋ(t) + x(t) = p(t) -γ(t) + F c (x, ẋ), (15) 
where ω r = 2π × 2200 rad/s is the reed resonance angular frequency [START_REF] Chatziioannou | Estimation of clarinet reed parameters by inverse modelling[END_REF] and q r = 0.4

is the reed damping [START_REF] Silva | Approximation formulae for the acoustic radiation impedance of a cylindrical pipe[END_REF]. γ(t) = P m (t)/p M is the dimensionless blowing parameter and p(t) = p (dim) (t)/p M is the dimensionless pressure at the input of the resonator. The beating pressure p M is the value of the blowing pressure P m for which the reed closes the reed channel, in quasistatic regime. F c (x, ẋ) is the contact force function. In the following, a model of "ghost reed" [START_REF] Colinot | Influence of the "ghost reed" simplification on the bifurcation diagram of a saxophone model[END_REF] is considered, i.e. F c = 0.

Reed channel

The characteristic of the flow u(t) through the reed channel is described by the following equation, according to [START_REF] Theodore | Operating modes of the clarinet[END_REF]:

u(t) = -λ ẋ(t) + ζ [x(t) + 1] + sgn γ(t) -p(t) |γ(t) -p(t)|, (16) 
where λ = 5.5•10 -3 /c 0 is the reed flow parameter [START_REF] Dalmont | Nonlinear characteristics of single-reed instruments: Quasistatic volume flow and reed opening measurements[END_REF], ζ is the embouchure parameter, and γ(t) is the dimensionless blowing pressure.

The operator

[•] + = (• + | • |)/2
refers to the positive part function. For the simulations, the absolute value functions are regularized to smooth the irregularities of the quasi-static flow characteristic, without altering its behavior, according to [START_REF] Colinot | Numerical simulation of woodwind dynamics:investigating nonlinear sound production behavior in saxophone-like instruments[END_REF]. Thus, | • | → • 2 + η, with η = 0.001.

Resonator

The resonator is described in the frequency domain by its input impedance z in , under its modal decomposition form given by Eq. ( 2). The modal poles and residues s n and C n are chosen to be linearly dependent on v RM S , i.e.:

C n (v RM S ) = C (0) n + C (1) n v RM S , s n (v RM S ) = s (0) n + s (1) n v RM S .
The modal decomposition of z in allows to write the relation between the dimensionless pressure p and flow u in the temporal domain:

ṗn (t) -s n (v RM S )p n (t) = C n (v RM S )u(t),
where

p(t) = 2 N n ℜ(p n (t)). ( 17 
)
The values of s n and C n must be updated at each time step by computing v RM S (L, t). The method for calculating the mean velocity at nonlinearity is detailed in the following section.

Computation of v RM S at each time step

To compute v RM S (L, t), the pressure at the termination L must be calculated. First, a linear problem is considered. The value of s n is therefore chosen for v RM S = 0 m/s. The modal components of the pressure are related to the total pressure at L through the following equation:

p(L, t) = 2ℜ N n p n (t)φ n (L) , where φ n (ξ) = cosh(Γ(s (0) n )ξ), (18) 
and ξ ∈ [0, L] is the distance along the longitudinal axis of the resonator. For reading comfort, the expression p(t) will be reserved to denote p(0, t).

The dimensionless acoustic velocity at the open end is then calculated from its definition which is related to the pressure field through the dimensionless Euler equation:

∂p ∂ξ (ξ, t) = - 1 c 0 ∂v ∂t (ξ, t). (19) 
The dimensionless acoustic velocity v(L, t) is thus obtained by numerical integration of the following equation :

v(L, t) = -2c 0 ℜ N n p n (t) dφ n dξ (L), where dφ n dξ (ξ) = Γ(s (0) n ) sinh Γ(s (0) n )ξ . ( 20 
)
The RMS velocity is finally obtained by double time integration of Eq. ( 20), according to Eq. ( 6). Since the equations of the system characterizing the self-sustained oscillations are dimensionless, it is necessary to resize v RM S , because the modal coefficients C

(k) n and s

(k)
n presented in Eq. ( 3) have been regressed from the dimensioned velocity. To do so, v (adim) RM S is multiplied by p M /(ρ 0 c 0 ). In the following simulations, a value of p M = 8.5 kPa is set, according to experimental results from [START_REF] Atig | Saturation mechanism in clarinet-like instruments, the effect of the localised non-linear losses[END_REF].

Regarding the calculation of v(L, t), it is not numerically guaranteed that the mean value of v(L, t) remains zero. Consequently, the integral v(L, t) = t 0 v(L, t)dt may diverge. To avoid these divergence problems when integrating v(L, t) and v 2 (L, t), a short-memory term τ is added within each integral. Thus, v(L, t) is now defined by the following convolution product:

v(L, t) = t 0 v(L, u)e -t-u τ du, (21) 
which is written, in the Laplace (L) domain, as:

L [v(L, t)] = L [ v(L, t)] 1 s + 1/τ . ( 22 
)
By going back to the time domain, Eq. ( 21) becomes :

v(L, t) = -2c 0 ℜ N n p n (t) dφ n dξ (L) - 1 τ v(L, t). ( 23 
)
The same method is applied for the computation of v RM S :

v 2 RM S = 1 τ t 0 e -t-u τ v 2 (L, u) du (24) ⇔ L v 2 RM S = 1 τ L v 2 (L, t) 1 s + 1/τ (25) ⇔ ∂(τ v 2 RM S ) ∂t = v 2 (L, t) -v 2 RM S . (26) 

Complete system of equations

The complete self-sustained system is governed by the equations defined in sections 4.1.1, 4.1.2, 4.1.3 and 4.1.4. This article shows the resolution of this problem using an ode solver. The Cauchy problem Ẏ = F (Y, t) writes, according to Eq. ( 28), as:

F (Y, t) = F            x(t) ẋ(t) v(L, t) τ v 2 RM S p 1 (t) . . . p N (t)            (27) =               ẋ(t) -q r ω r ẋ(t) + ω 2 r [p(t) -γ(t) -x(t)] -2c 0 ℜ N n p n (t) dφ n dξ (L) -1 τ v(L, t) v 2 (L, t) -v 2 RM S C 1 (v RM S )u(t) + s 1 (v RM S )p 1 (t)
. . .

C N (v RM S )u(t) + s N (v RM S )p N (t)               , (28) 
where u(t) is computed by using Eq. ( 16), C k (v RM S ) are computed with Eq. ( 14), and s k (v RM S ) are computed with Eq. ( 12). The initial conditions Y 0 will be set to 0 in the following simulations.

Simulation including nonlinear losses at the open end

The model including nonlinear losses at the open end as represented by the system of Eq. ( 28) is now simulated by time integration, using the solver ode45 from Matlab. The input data of the problem are based on experimental results from [START_REF] Atig | Saturation mechanism in clarinet-like instruments, the effect of the localised non-linear losses[END_REF].

Simulation parameters

The parameters related to the resonator, the reed and the reed channel are presented in table 1. Six values of c d have been taken from [START_REF] Atig | Saturation mechanism in clarinet-like instruments, the effect of the localised non-linear losses[END_REF], which are between c d = 0 and c d = 2.8. The value of ζ = 0.28 was calculated using data corresponding to a "loose embouchure" configuration. For the calculation of v RM S , the short-memory term was set to the period of the first impedance peak, i.e. τ = 2π/ℑ(s 1 ). The evolution of γ is first linearly ascending, from γ = 0 to γ = 3 in 8 s, then linearly descending, from γ = 3 to γ = 0 in 8 s. The total simulation time is therefore 16 s. Simulations were performed for N = 4 modes. A convergence study showed that the dynamic behavior of the system did not change for a higher number of modes.

Table 1: Main constants used for the simulations.

L (cm) R (mm) N modes ω r /2π (Hz) 64 8 4 2200 q r λ (s) ζ p M (kPa) 0.4
1.6 • 10 -5 0.28 8.5

Results

The bifurcation diagram of the input pressure p (dim) = p•p M over the blowing pressure P m = γ • p M is represented on Figure 4, with the parameters detailed in section 4.2.1. 4a), the oscillation threshold is located near 5.7 kPa (γ th ≈ 0.67). This threshold remains the same, whether nonlinear losses are taken into account (c d = 0) or not (c d = 0). However, nonlinear losses have a significant influence on the extinction threshold γ extup , i.e. the blowing pressure from which the reed stops oscillating and is pressed completely against the mouthpiece. This influence is shown in Table 2. When c d is increased (i.e. nonlinear losses increase), γ extup diminishes. Similarly to the experiments conducted by [START_REF] Atig | Saturation mechanism in clarinet-like instruments, the effect of the localised non-linear losses[END_REF], nonlinear losses have an important influence on the dynamic playing range of the musician. Figure 4 shows that when nonlinear losses are low, the range of stable oscillation amplitude that can be obtained is larger.

In the diminuendo phase, the inverse threshold is the same (γ inv ≈ 0.89) for each geometry at the open end of the pipe. Around this threshold, the amplitude of the input pressure decreases slightly as the losses increase. This behavior is also observed in the experimental curves of [2, Figure 12 a, c ande].

This comparaison with the experimental results of Atig et al. is limited to a qualitative study. Parameters such as the reed resonance angular frequency ω r and reed damping q r have a strong influence on the dynamics of the system, as demonstrated by [START_REF] Silva | Interaction of reed and acoustic resonator in clarinetlike systems[END_REF] for the oscillation threshold. The complete recalibration of the model on experimental results is beyond the scope of this article.

Comparison with experimental results from Dalmont and Frappé (2007)

An attempt to quantitatively validate the model of nonlinear losses is carried out. To do so, the values of the saturation threshold γ sat measured by [START_REF] Dalmont | Oscillation and extinction thresholds of the clarinet: comparison of analytical results and experiments[END_REF] are employed (see Figure 5). This threshold corresponds to the blowing pressure γ for which p is maximum during a crescendo. The authors measured this threshold for different reed openings, which are transcribed here in different values of ζ. The dimensioning pressure values p M used here correspond to the beating pressure estimated by the authors for a diminuendo. Furthermore, the measurements are performed on a cylindrical tube of dimensions L = 50 cm and R = 8 mm. The geometry at the opening has been estimated by the authors at c d = 2.8.

The experimental data are compared to simulations using the same parameters L and R as in the experiment. Simulations are performed for two cases: the first one does not take into account nonlinear losses (c d = 0), the other one takes them into account (c d = 2.8). The simulations are performed for ascending ramps of blowing pressure varying from γ = 0 to γ = 3 in 10 s. The other parameters are the same as those given in table 1.

The model presented in this paper is also compared to the Raman model including nonlinear losses proposed by [START_REF] Dalmont | Oscillation and extinction thresholds of the clarinet: comparison of analytical results and experiments[END_REF]. In this model, viscothermal losses are simplified by a frequency-independent coefficient α which replaces ℜ(Γ). The simplicity of this model allows the authors to obtain an analytical expression of the saturation threshold γ sat as a function of the parameter c d .

In the present work, the value of α was first adjusted at ℜ(Γ(jω 1 )), where ω 1 is the angular frequency of the impedance peak supporting the oscillation. However, this value produced excessively high estimates of γ sat compared to experimental results, especially for high values of ζ. To better match the experimental data, α = 2.7ℜ(Γ(jω 1 )) ≈ 0.147 was chosen. It should be noted that the analytical expression of γ sat exhibits a linear dependence in 1/α, for low values of α. Thus, γ sat is extremely sensitive to the value of α in Raman's model. It appears first that the saturation threshold is overestimated when nonlinear losses are not taken into account (+). In comparison, the two models taking into account nonlinear losses produce results much closer to the experiment. This shows the importance of taking this phenomenon into account in wind instrument simulations.

Furthermore, for the analytical solution given by the Raman model ( * ), the evolution of γ sat follows a straight line whose slope depends on 1/α. Although the results are close to the experimental ones, the high sensitivity of γ sat to α as well as the linear evolution of γ sat reflect the excessive simplicity of the Raman model to describe the dynamics of a wind instrument.

Finally, the model presented in this paper (×) has a good agreement with the experimental data, except for very low values of the mouthpiece parameter (ζ < 0.12). For these low values of ζ, the model overestimates γ sat compared to the experimental results. This overestimation may be related to the transient behavior at extinction caused by the temporal evolution of the control parameter γ. A characterization of the system by continuation could give results independent of the evolution rate of γ(t).

In conclusion, the correspondence between the results from the model presented in this article and the experimental data from [START_REF] Dalmont | Oscillation and extinction thresholds of the clarinet: comparison of analytical results and experiments[END_REF] highlights its ability to describe the dynamic behavior of a simplified wind instrument at saturation.

Conclusion

This article develops the design of a sound synthesis model of a reed instrument by modal decomposition of the input impedance, taking into account viscothermal losses as well as nonlinear losses at the end of the resonator. The input impedance now depends on the RMS acoustic velocity at a geometric discontinuity (here, the open termination). Poles and residues resulting from the modal decomposition are fitted as a function of this velocity. In a physical model of wind instrument, the pressure-flow relation defined by the resonator is then completed by new equations which account for this dependence with the velocity at the end of the pipe.

To evaluate the ability of the model to reproduce a real phenomenon, comparisons with the experimental results of [START_REF] Atig | Saturation mechanism in clarinet-like instruments, the effect of the localised non-linear losses[END_REF] and [START_REF] Dalmont | Oscillation and extinction thresholds of the clarinet: comparison of analytical results and experiments[END_REF] have been made. In the first case, simulations show a qualitatively similar behavior regarding the evolution of the extinction threshold depending on the geometry at the open end. In the second case, the model gives a good correspondence with the experimental results, in particular compared to a model without non-linear losses.

This formalism could be promising in the sound synthesis of wind instruments in real time, which employs the modal decomposition formalism in order to keep a minimum of memory. The inclusion of nonlinear losses in a complete clarinet model could more accurately translate dynamic phenomena essential to the experience of the musician, as suggested by [START_REF] Dalmont | Oscillation and extinction thresholds of the clarinet: comparison of analytical results and experiments[END_REF] : "any realistic model of the clarinet should include nonlinear losses in the side holes".

  (a) Real and imaginary parts of poles s n (v RM S ), calculated by solving Eq. (12). Detailed view on s 1 .(b) Real and imaginary parts of residues C n (v RM S ), calculated with Eq. (14). Detailed views on C 1 and C 4 .

Figure 2 :

 2 Figure 2: Graphical representation of the N = 8 first poles and residues. The values of v RM S are linearly chosen between 0 m/s and 24 m/s, according to [1]. As in Figure 1, c d = 13/9.

Figure 3 :

 3 Figure 3: Error due to the regression of modal coefficients C n and s n (Figure3a), and its consequence on the discrepancy between modal decomposition and definition (9) on z in (Figure3b).

Figure 4 :

 4 Figure 4: Bifurcation diagram of the L 2 norm of p (dim) with respect to P m , for different values of c d , in an ascending blowing pressure configuration (4a) and a descending one (4b).

Figure 5 :

 5 Figure 5: Experimental results from [11] for the saturation threshold (•), compared with three methods: modal decomposition without nonlinear losses (+); modal decomposition including nonlinear losses (×); analytical solution provided by Raman model including nonlinear losses ( * ).

Figure 5

 5 Figure5illustrates the evolution of the saturation threshold as a function of ζ in the experimental case, through modal decomposition simulation, and through the analytical expression based on the Raman model. It appears first that the saturation threshold is overestimated when nonlinear losses are not taken into account (+). In comparison, the two models taking into account nonlinear losses produce results much closer to the experiment. This shows the importance of taking this phenomenon into account in wind instrument simulations.Furthermore, for the analytical solution given by the Raman model ( * ), the evolution of γ sat follows a straight line whose slope depends on 1/α. Although the results are close to the experimental ones, the high sensitivity of γ sat to α as well as the linear evolution of γ sat reflect the excessive simplicity of the Raman model to describe the dynamics of a

  This shift remains almost the same regardless of the index of the pole. However, in terms of relative deviation, the ratio |ℜ(s n -s

	(lin) n

) give s n , for different input values of v RM S . They are plotted on Figure

2a

. The consideration of nonlinear losses at the end of a cylindrical pipe has almost no influence on ℑ(s n ), which is the resonance angular frequency of peak n. However, a larger v RM S increases |ℜ(s n )|.

Table 2 :

 2 Values of the extinction threshold P extup = p M • γ extup (kPa), for the simulation of Figure4a.

	c d	0	0.15 0.9 1.4 1.7 2.8
	P extup 17.7 17.3 15.3 14.5 14.2 13.2
	During a crescendo (Figure
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