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Summary

This article develops the design of a sound
synthesis model of a woodwind instrument by
modal decomposition of the input impedance,
taking into account viscothermal losses as well
as localized nonlinear losses at the end of
the resonator. This formalism has already
been applied by Diab et al. (2022) to the
study of forced systems. It is now imple-
mented for self-oscillating systems. The em-
ployed method extends the de�nition of the
input impedance to the nonlinear domain by
adding a dependance on the RMS acoustic ve-
locity at a geometric discontinuity. The poles
and residuals resulting from the modal decom-
position are interpolated as a function of this
velocity. Thus, the pressure-�ow relation de-
�ned by the resonator is completed by new
equations which account for the dependence
with the velocity at the end of the tube. To
assess the ability of the model to reproduce
a real phenomenon, comparisons with the ex-
perimental results of Atig et al. (2004) and
Dalmont et al. (2007) were carried out. Sim-
ulations show that the model reproduces these
experimental results qualitatively and quanti-
tatively.

1 Introduction

Sound synthesis by modal decomposition is
based on an input impedance measurement,

which captures the passive acoustical re-
sponse of a real instrument. This method thus
has the advantage of capturing the acousti-
cal subtleties that di�erentiate two clarinets
by means of a single measurement. Other
methods, such as delay lines [17], waveguides
[22, 21] or spatial discretization [5, 16] would
require a costly extensive geometrical descrip-
tion of the resonator to render such acoustical
subtleties.

Furthermore, sound synthesis by modal
decomposition requires little RAM memory
compared to the other methods, giving it a
decisive advantage for embedded devices. In-
deed, in modal decomposition synthesis, the
temporal integration scheme requires to keep
only few previous iterations (precisely 2 for
[17]) to compute a new one. For the delay
line synthesis, it is necessary to keep in mem-
ory all the temporal iterations during a round
trip, i.e. during 2LFs/c0 iterations.

The input impedance is a measure of the
linear frequency response of the resonator,
for a low-amplitude excitation. However, in
the case of woodwind instrument playing, the
measured acoustic pressure and velocity in the
resonator can be very high. For instance,
[4] measure a pressure in the mouthpiece of
4 kPa, i.e. 163 dB for a monochromatic wave.
According to [6, Chap. 8.4.5], from an acous-
tic speed of roughly 1 m/s, jet separation phe-
nomena appear. At the level of a geometrical
discontinuity, such as the open end of a pipe
[14] or a lateral ori�ce [19], vortices are ob-
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served. A part of the kinetic energy of the jet
is absorbed by these vortices and is dissipated
as heat by friction. These losses are accounted
for through a nonlinear relationship derived
from Bernoulli's law, as demonstrated by the
implementation in waveguide modelling or de-
lay lines of [2], [18], [10] and [27].

Following [19], the works from Atig [2, 3]
and Dalmont [12, 10] model localized nonlin-
ear losses through a resistive impedance Zt.
This impedance is in series with the radiation
impedance ZR, and depends on the amplitude
of the acoustic velocity vhole at the level of the
discontinuity:

Zt =
4cd
3π

|vhole|
c0

Zc, (1)

where Zc = ρ0c0/S is the characteristic
impedance of the medium for plane waves,
and cd ∈ [0; 3] is a parameter depending on
the geometry of the termination. The larger
the radius of curvature at the output, the
smaller this coe�cient is. The coe�cient cd
is di�cult to predict theoretically, and easier
to determine experimentally [2]. As shown
by [2], non-linear losses have a signi�cant in-
�uence on the playing range of a clarinet,
hence models of sound production in wood-
winds should include such e�ects.

Models of woodwind instruments taking
into account localized nonlinear losses at the
end of the resonator have never been devel-
opped in the framework of modal synthesis.
This is the main contribution of this work.

First, a method proposed by [13] to account
for nonlinear losses by modal decomposition
is presented. It is then applied to a cylin-
drical tube with nonlinear losses located at
the open end. From this resonator, a self-
oscillating clarinet-like system is de�ned and
simulated by time integration. These simula-
tions are �nally compared to the experimental
results published by [2] and [10].

2 Method of modal decom-

position accounting for

localized nonlinear losses

The de�nition of a "nonlinear impedance"
(i.e. adjusting the impedance so that the link
between acoustic �ow and pressure stays valid
in nonlinear conditions) opens the way to con-
sider localized nonlinear losses by modal de-
composition. In [13], the evolution of the sur-
face impedance of perforated plates is com-
puted by temporal simulation for a broadband
excitation, with respect to the RMS ampli-
tude of the acoustic velocity at the level of the
hole, noted vRMS. From the decomposition
of the impedance in the linear domain into
a sum of N modes, two methods are studied
for increasing values of vRMS: the interpola-
tion of the impedance, on one hand, and the
interpolation of the poles and complex resid-
uals (sn, Cn) on the other hand. This second
method will be considered hereafter.
Nonlinear e�ects are taken into account by

allowing the poles and residuals to vary with
respect to vRMS. In the Laplace domain, the
modal decomposition of the input impedance
writes therefore:

Z(s, vRMS) = Zc

N∑
n=1

Cn(vRMS)

s− sn(vRMS)

+
C∗

n(vRMS)

s− s∗n(vRMS)
, (2)

where s is the Laplace variable and •∗ denotes
the complex conjugation operation. The re-
lationship between poles and residuals and
vRMS is assumed to be a rational fraction [13].
In the present work, the approximation is lim-
ited to a polynomial of degree Np:

Cn(vRMS) = C(0)
n +

Np∑
k=1

C(k)
n (vRMS)

k , (3)

sn(vRMS) = s(0)n +

Np∑
k=1

s(k)n (vRMS)
k , (4)

where the index •(0) refers to the linear part
of the modal coe�cient. In [13], the inter-
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polation coe�cients of the poles and residu-
als are then adjusted on a nonlinear surface
impedance model ZNL(vRMS), given by [20].
It is worth noting that in the present paper,
the poles and residuals are interpolated on
the dimensioned quantity of the RMS veloc-
ity. Therefore, the unit of coe�cients C

(k)
n and

s
(k)
n are expressed in rad · s−1 · [m · s−1]−k.
The last step consists in computing vRMS,

given by:

v2RMS(t) =
1

t

∫ t

0

v2hole(τ)dτ, (5)

where vhole(t) = uhole/S is the acoustic ve-
locity at the hole, of cross section S. This
de�nition is rather impractical in the frame-
work of a time-domain simulation. In order
to obtain a state formalism, it is replaced by:

∂(tv2RMS)

∂t
= vhole(t)

2, (6)

which is equivalent. By considering the right-
hand side of Eq. (6) as an input for the ODE
solver, tv2RMS can be computed, hence vRMS.

3 Application to a cylindri-

cal tube with nonlinear

losses at the open end

The impedance interpolation technique pre-
sented by [13] is applied to the case of a
closed-open cylinder of radius R and length
L, which is a similar case study to [2]. Vis-
cothermal losses are taken into account in the
propagation:

Γ(s) =
s

c0
+ (1 + j)

η
√
s

R
√
2jπ

, (7)

where η = 3 · 10−5 s1/2. The boundary con-
dition at x = L is given by the radiation
impedance ZR, which includes in series the
nonlinear impedance Zt de�ned by Eq. (1):

ZR = Z
(lin)
R + Zt,

where Z
(lin)
R = Zc

(
jk∆l +

1

4
(kL)2

)
,

Zt = Zc
vRMS(L, t)

c0
KNL,

(8)

and jk = s/c0, ∆l ≈ 0, 6R [6, Chap. 4.6.4],
KNL = 4cd/(3π). In the following, vRMS(L, t)
will be denoted as vRMS for reading comfort.
The input impedance is de�ned by:

zin = tanh
(
ΓL+ tanh−1(zR)

)
, (9)

introducing the dimensionless notation
z• = Z•/Zc. A linear input impedance z

(lin)
in

is also de�ned, such that

z
(lin)
in = tanh

(
ΓL

+ tanh−1
[
jk∆l +

1

4
(kL)2

])
, (10)

which is equivalent to zin for vRMS = 0.
Figure 1 illustrates the evolution of zin

(computed through Eq. (9) and Eq. (10), in
which the Laplace variable is substituted by
j2πf) as a function of the RMS velocity at the
open end. It can be observed that taking into
account nonlinear losses has a consequence on
the amplitude, but not on the frequency of the
resonance peaks. The second panel of Figure
1 shows that this impact is particularly accen-
tuated on the �rst resonance peak: its ampli-
tude is 43 % lower for vRMS = 24 m/s than in
the case without nonlinear losses. The di�er-
ence is reduced to 30 % for the second peak,
and to 16 % for the sixth peak. Near the
antiresonances, the negative relative discrep-
ancies are high, since the impedance values
are all close to zero. The absolute deviation
remains very low. From the lack of frequency
variation of the resonance peaks with vRMS,
we could anticipate that nonlinear losses at
the end of the pipe would rather impact dy-
namics than intonation.

3.1 Modal decomposition of the
nonlinear input impedance

In order to take into account nonlinear losses
in temporal simulation, the modal coe�cients
of the input impedance must be determined.
In the same way that the nonlinear input
impedance depends on the acoustic velocity
at the open end, the coe�cients Cn and sn
derived from the modal decomposition of zin
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Figure 1: Input impedance of a cylinder zin (computed through Eq. (9) and Eq. (10)) of length
L = 64 cm and radius R = 8 mm for di�erent values of the acoustic RMS velocity at the open
end. From top to bottom, from left to right : modulus of the input impedance; relative gap
between nonlinear and linear de�nition of zin; detail view on the �rst peak; detail view on the
fourth peak.

also depend on vRMS. To do so, a minor adap-
tation of the residuals method presented in [6,
Chap. 5.5.3] is used: the nonlinear de�nition
of zR is implemented through Eq. (8) instead
of the linear one.

3.1.1 Expression of the poles sn

Eq. (9) can also be written as:

zin =
sinh [Γ(s)L+ h(s, vRMS)]

cosh [Γ(s)L+ h(s, vRMS)]
,

where h(s, vRMS) = tanh−1(zR).

(11)

The poles sn(vRMS) are the solutions of
cosh [ΓL+ h] = 0, i.e.:

Γ(sn)L+h(sn, vRMS)−j
(2n− 1)π

2
= 0. (12)

The solutions of Eq. (12) give sn, for di�er-
ent input values of vRMS. They are plotted
on Figure 2a. Considering nonlinear losses
at the end of a cylindrical pipe has almost
no in�uence on ℑ(sn), which is the resonance
pulsation of peak n. However, increasing
vRMS induces a shift to the negative values
of ℜ(sn). This shift remains almost the same
regardless of the index of the pole. How-
ever, in terms of relative deviation, the ratio
|ℜ(sn − s

(lin)
n )/ℑ(sn)| is decreasing as n in-

creases. This is signaled by the amplitude of
peaks of higher index appearing less a�ected
by nonlinear losses, as shown in the second
panel of Figure 1.
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(a) Real and imaginary parts of poles

sn(vRMS), calculated by solving Eq. (12). De-

tailed view on s1.

(b) Real and imaginary parts of residuals

Cn(vRMS), calculated with Eq. (14). Detailed

views on C1 and C4.

Figure 2: Graphical representation of the N = 8 �rst poles and residuals. The values of vRMS

are linearly chosen between 0 m/s and 24 m/s, according to [1]. The value of cd has been set
to 13/9, which corresponds to a radius of curvature of 0.3 mm, according to the same author.

3.1.2 Expression of the residuals Cn

It remains to calculate residue Cn(vRMS). In
the vicinity of a pole sn, the denominatorD of
zin can be written through a �rst-order series
expansion of cosh:

D = (s− sn)D
′(sn, vRMS)

where D′ = (Γ′L+ h′) sinh (ΓL+ h) ,
(13)

introducing notation •′ = ∂ • /∂s. According
to [6, Chap. 5.5.3], after application of the
residuals theorem, the modal decomposition
of the input impedance for the n-th peak can
be written as

Zin,n =
Pn(s)

U(s)
= Zc

Cn

s− sn
, where

Cn(vRMS) =
1

Γ′(sn)L+ h′(sn, vRMS)
.

(14)

The evolution of coe�cients Cn with respect
to vRMS is plotted on Figure 2b. Real and
imaginary parts of Cn slightly decrease when
vRMS increases. Following [13], it remains to
interpolate the modal coe�cients with respect
to vRMS, as in the example of Eq. (3).

3.1.3 Interpolation of the modal coef-

�cients

Figure 3a shows the mean relative interpola-
tion error for polynoms of di�erent degrees,
for the same data as in Figure 2. For linear
interpolation, the mean relative error stays
around 10−7 for each mode n, both for Cn

and sn. Further simulations reveal that choos-
ing an excessive values of cd tends to increase
this error. For a tube with sharp edges at the
open end, [2] estimated a maximum value of
cd = 2.8. For cd = 5, for instance, the mean
relative error of linear interpolation is around
10−5. Although this error has increased, it
remains very low.

Moreover, Figure 3b shows that choosing an
interpolation degree larger than 1 has no con-
sequence on the error over zin between modal
decomposition with interpolated coe�cients
and de�nition given by Eq. (9). This error
is therefore inherent to the modal decompo-
sition approximation (Eq. (2)) of the input
impedance (Eq. (9)).

According to these previous results, in the
rest of this article, the modal coe�cients will
both be interpolated to order 1.
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(a) Mean relative error ε between interpolated

modal coe�cient X̃ = {s̃n, C̃n} and its actual

value X = {sn, Cn}. Interpolation is based on

Nv = 25 values of vRMS .

(b) L2-norm of the error over zin for every

frequencies, between de�nition z
(def)
in given by

Eq. (9) and modal decomposition approxima-

tion z
(modal)
in de�ned by Eq. (2). This error is

plotted with respect to the degree of the inter-

polation polynom of Cn and sn.

Figure 3: Error due to the interpolation of modal coe�cients Cn and sn (Figure 3a), and its
consequence on the discrepancy between modal decomposition and de�nition (9) on zin (Figure
3b).

4 Application to the time-

integration simulation of

a clarinet-like system

The cylindrical tube considered in section 3
is now treated as the resonator of a clarinet-
like instrument. The physical model govern-
ing the self-sustained oscillations of the in-
strument is presented in section 4.1. It is
then simulated by time integration, impos-
ing a linear increase of the blowing pres-
sure (crescendo) followed by a linear decrease
(diminuendo). Details and results from the
simulations are given in section 4.2.

4.1 Physical model for the self-
sustained oscillations

The self-sustained system consists of three
main parts: reed dynamics, reed channel and
resonator. This last subsystem is enriched
compared to the classical modal decomposi-
tion formalism [15, 24, 26] by the addition of
non-linear losses at the end of the pipe.

4.1.1 Reed dynamics

The dynamic behavior of the reed is modeled
for its dimensionless displacement x(t) by the
following equation :

1

ω2
r

ẍ(t) +
qr
ωr

ẋ(t) + x(t) = p(t)

− γ(t) + Fc(x, ẋ), (15)

where ωr = 2π × 2200 rad/s is the reed reso-
nance pulsation [7] and qr = 0.4 is the reed
damping [23]. γ(t) = Pm(t)/pM is the di-
mensionless blowing parameter and p(t) =
p(dim)(t)/pM is the dimensionless pressure at
the input of the resonator. The beating pres-
sure pM is the value of the blowing pressure
Pm for which the reed closes the reed channel,
in quasistatic regime. Fc(x, ẋ) is the contact
force function. In the following, a model of
"ghost reed" [9] is considered, i.e. Fc = 0.

4.1.2 Reed channel

The characteristic of the �ow u(t) crossing
the reed channel is described by the follow-
ing equation, according to [28]:
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u(t) = −λẋ(t) + ζ [x(t) + 1]+ sgn
[
γ(t)

− p(t)
]√

|γ(t)− p(t)|, (16)

where λ = 5.5·10−3/c0 is the reed �ow param-
eter [11], ζ is the embouchure parameter, and
γ(t) is the dimensionless blowing pressure.
The operator [•]+ = (•+ | • |)/2 refers to the
positive part function. For the simulations,
the absolute value functions are regularized
to smooth the irregularities of the quasi-static
�ow characteristic, without altering its behav-
ior, according to [8]. Thus, | • | 7→

√
•2 + η,

with η = 0.001.

4.1.3 Resonator

The resonator is described in the frequency
domain by its input impedance zin, under its
modal decomposition form given by Eq. (2).
The modal poles and residuals sn and Cn are
chosen to be linearly dependent on vRMS, i.e.:

Cn(vRMS) = C(0)
n + C(1)

n vRMS,

sn(vRMS) = s(0)n + s(1)n vRMS.

The modal decomposition of zin allows to
write the relation between the dimensionless
pressure p and �ow u in the temporal domain:

ṗn(t)− sn(vRMS)pn(t) = Cn(vRMS)u(t),

where p(t) = 2
N∑
n

ℜ(pn(t)). (17)

The values of sn and Cn must be updated at
each time step by computing vRMS(L, t). The
method for calculating the mean velocity at
nonlinearity is detailed in the following sec-
tion.

4.1.4 Computation of vRMS at each

time step

To compute vRMS(L, t), the pressure at the
termination L must be calculated. First, a
linear problem is considered. The value of sn
is therefore chosen for vRMS = 0 m/s. The
modal components of the pressure are related

to the total pressure at L through the follow-
ing equation:

p(L, t) = 2ℜ

(
N∑
n

pn(t)ϕn(L)

)
,

where ϕn(ξ) = cosh(Γ(s(0)n )ξ),

(18)

and ξ ∈ [0, L] is the distance along the lon-
gitudinal axis of the resonator. For reading
comfort, the expression p(t) will be conserved
to denote p(0, t).
The dimensionless acoustic velocity at the

open end is then calculated from its de�nition
which is related to the pressure �eld through
the dimensionless Euler equation:

∂p

∂ξ
(ξ, t) = − 1

c0

∂v

∂t
(ξ, t). (19)

The dimensionless acoustic velocity v(L, t) is
thus obtained by numerical integration of the
following equation :

v̇(L, t) = −2c0ℜ
N∑
n

pn(t)
dϕn

dξ
(L),

where
dϕn

dξ
(ξ) = Γ(s(0)n ) sinh

[
Γ(s(0)n )ξ

]
.

(20)

The RMS velocity is �nally obtained by dou-
ble time integration of Eq. (20), according
to Eq. (6). Since the equations of the sys-
tem characterizing the self-sustained oscilla-
tions are dimensionless, it is necessary to re-
size vRMS, because the modal coe�cients C

(k)
n

and s
(k)
n presented in Eq. (3) have been inter-

polated from the dimensioned velocity. To do
so, v

(adim)
RMS is multiplied by pM/(ρ0c0). In the

following simulations, a value of pM = 8.5 kPa
is set, according to experimental results from
[2].
Regarding the calculation of v(L, t), it is not

numerically guaranteed that the mean value
of v̇(L, t) remains zero. Consequently, the in-
tegral v(L, t) =

∫ t

0
v̇(L, t)dt may diverge. To

avoid these divergence problems when inte-
grating v̇(L, t) and v2(L, t), a short-memory
term τ is added within each integral. Thus,
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v(L, t) is now de�ned by the following convo-
lution product:

v(L, t) =

∫ t

0

v̇(L, u)e−
t−u
τ du, (21)

which writes, in the Laplace (L) domain, as:

L [v(L, t)] = L [v̇(L, t)]
1

s+ 1/τ
. (22)

By going back to the time domain, Eq. (21)
becomes :

v̇(L, t) = −2c0ℜ

(
N∑
n

pn(t)
dϕn

dξ
(L)

)
− 1

τ
v(L, t). (23)

The same method is applied for the computa-
tion of vRMS:

v2RMS =
1

τ

∫ t

0

e−
t−u
τ v2(L, u) du (24)

⇔ L
[
v2RMS

]
=

1

τ
L
[
v2(L, t)

] 1

s+ 1/τ
(25)

⇔ ∂(τv2RMS)

∂t
= v2(L, t)− v2RMS. (26)

4.1.5 Complete system of equations

The complete self-sustained system is gov-
erned by the equations de�ned in sections
4.1.1, 4.1.2, 4.1.3 and 4.1.4. This article shows
the resolution of this problem using an ode
solver. The Cauchy problem Ẏ = F(Y, t)
writes, according to Eq. (28), as:

F(Y, t) = F



x(t)
ẋ(t)

v(L, t)
τv2RMS

p1(t)
...

pN(t)


(27)

=



ẋ(t)
−qrωrẋ(t) + ω2

r [p(t)− γ(t)− x(t)]

−2c0ℜ

(
N∑
n

pn(t)
dϕn

dξ
(L)

)
− 1

τ
v(L, t)

v2(L, t)− v2RMS

C1(vRMS)u(t) + s1(vRMS)p1(t)
...

CN(vRMS)u(t) + sN(vRMS)pN(t)


,

(28)
where u(t) is computed by using Eq. (16),
Ck(vRMS) are computed with Eq. (14), and
sk(vRMS) are computed with Eq. (12). The
initial conditions Y0 will be set to 0 in the
following simulations.

4.2 Simulation including nonlin-
ear losses at the open end

The model including nonlinear losses at the
open end as represented by the system of Eq.
(28) is now simulated by time integration, us-
ing the solver ode45 from Matlab. The in-
put data of the problem are based on experi-
mental results from [2].

4.2.1 Simulation parameters

The parameters related to the resonator, the
reed and the reed channel are presented in
table 1. Six values of cd have been taken
from [2], which are between cd = 0 and
cd = 2.8. The value of ζ = 0.28 was cal-
culated using data corresponding to a "loose
embouchure" con�guration. For the calcula-
tion of vRMS, the short-memory term was set
to the period of the �rst impedance peak, i.e.
τ = 2π/ℑ(s1). The evolution of γ is �rst lin-
early ascending, from γ = 0 to γ = 3 in 8 s,
then linearly descending, from γ = 3 to γ = 0
in 8 s. The total simulation time is therefore
16 s.
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Table 1: Main constants used for the simula-
tions.

L (cm) R (mm) N modes ωr/2π (Hz)
64 8 4 2200

qr λ (s) ζ pM (kPa)
0.4 1.6 · 10−5 0.28 8.5

4.2.2 Results

The bifurcation diagram of the input pressure
p(dim) = p·pM over the blowing pressure Pm =
γ · pM is represented on Figure 4, with the
parameters detailed in section 4.2.1.

(a) Crescendo.

(b) Diminuendo.

Figure 4: Bifurcation diagram of the L2 norm
of p(dim) with respect to Pm, for di�erent val-
ues of cd, in an ascending blowing pressure
con�guration (4a) and a descending one (4b).

Table 2: Values of the extinction threshold
γextup for the simulation of Figure 4a.

cd 0 0.15 0.9 1.4 1.7 2.8
γextup 2.1 2.0 1.8 1.7 1.7 1.6

During a crescendo (Figure 4a), the os-
cillation threshold is located near 5.7 kPa
(γth ≈ 0.67). This threshold remains the
same, whether nonlinear losses are taken into
account (cd ̸= 0) or not (cd = 0). However,
nonlinear losses have a signi�cant in�uence on
the extinction threshold γextup, i.e. the blow-
ing pressure from which the reed stops oscil-
lating and is pressed completely against the
mouthpiece. This in�uence is shown in Ta-
ble 2. When cd is increased (i.e. nonlinear
losses increase), γextup diminishes. Similarly
to the experiments conducted by [2], nonlin-
ear losses have an important in�uence on the
dynamic playing range of the musician.
In the diminuendo phase, the inverse

threshold is the same (γinv ≈ 0.89) for each
geometry at the open end of the pipe. Around
this threshold, the amplitude of the input
pressure decreases slightly as the losses in-
crease. This behavior is also observed in the
experimental curves of [2, Figure 12 a, c and
e].
This comparaison with the experimental re-

sults of Atig et al. is limited to a qualita-
tive study. Parameters such as the reed reso-
nance pulsation ωr and reed damping qr have
a strong in�uence on the dynamics of the sys-
tem, as demonstrated by [25] for the oscilla-
tion threshold. The complete recalibration of
the model on experimental results is beyond
the scope of this article.

4.3 Comparison with experi-
mental results from Dal-
mont and Frappé (2007)

An attempt to quantitatively validate the
model of nonlinear losses is carried out. To
do so, the values of the saturation threshold
γsat measured by [10] are employed (see Figure
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5). This threshold corresponds to the blowing
pressure γ for which p is maximum during a
crescendo. The authors measured this thresh-
old for di�erent reed openings, which are tran-
scribed here in di�erent values of ζ. The di-
mensioning pressure values pM used here cor-
respond to the beating pressure estimated by
the authors for a diminuendo. Furthermore,
the measurements are performed on a cylin-
drical tube of dimensions L = 50 cm and
R = 8 mm. The geometry at the opening has
been estimated by the authors at cd = 2.8.

The experimental data are compared to
simulations using the same parameters L and
R as in the experiment. Simulations are per-
formed for two cases: the �rst one does not
take into account nonlinear losses (cd = 0),
the other one takes them into account (cd =
2.8). The simulations are performed for as-
cending ramps of blowing pressure varying
from γ = 0 to γ = 3 in 10 s. The other pa-
rameters are the same as those given in table
1.

The model presented in this paper is also
compared to the Raman model including
nonlinear losses proposed by [10]. In this
model, viscothermal losses are simpli�ed by
a frequency-independent coe�cient α which
replaces ℜ(Γ). The simplicity of this model
allows the authors to obtain an analytical ex-
pression of the saturation threshold γsat as a
function of the parameter cd.

In the present work, the value of α was �rst
adjusted at ℜ(Γ(jω1)), where ω1 is the pul-
sation of the impedance peak supporting the
oscillation. However, this value produced ex-
cessively high estimates of γsat compared to
experimental results, especially for high val-
ues of ζ. To better match the experimental
data, α = 2.7ℜ(Γ(jω1)) ≈ 0.147 was chosen.
It should be noted that the analytical expres-
sion of γsat exhibits a linear dependence in
1/α, for low values of α. Thus, γsat is ex-
tremely sensitive to the value of α in Raman's
model.

Figure 5 illustrates the evolution of the sat-
uration threshold as a function of ζ in the
experimental case, through modal decompo-

Figure 5: Experimental results from [10] for
the saturation threshold (•), compared with
three methods: modal decomposition with-
out nonlinear losses (+); modal decomposi-
tion including nonlinear losses (×); analytical
solution provided by Raman model including
nonlinear losses (∗).

sition simulation, and through the analyti-
cal expression based on the Raman model.
It appears �rst that the saturation thresh-
old is overestimated when nonlinear losses are
not taken into account (+). In comparison,
the two models taking into account nonlinear
losses produce results much closer to the ex-
periment. This shows the importance of tak-
ing this phenomenon into account in wind in-
strument simulations.

Furthermore, for the analytical solution
given by the Raman model (∗), the evolution
of γsat follows a straight line whose slope de-
pends on 1/α. Although the results are close
to the experimental ones, the high sensitiv-
ity of γsat to α as well as the linear evolution
of γsat re�ect the excessive simplicity of the
Raman model to describe the dynamics of a
wind instrument.

Finally, the model presented in this paper
(×) has a good agreement with the experi-
mental data, except for very low values of the
mouthpiece parameter (ζ < 0.12). For these
low values of ζ, the model overestimates γsat
compared to the experimental results. This
overestimation may be related to the transient
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behavior at extinction caused by the tempo-
ral evolution of the control parameter γ. A
characterization of the system by continua-
tion could give results independent of the evo-
lution rate of γ(t).

In conclusion, the correspondence between
the results from the model presented in this
article and the experimental data from [10]
highlights its ability to describe the dynamic
behavior of a simpli�ed wind instrument at
saturation.

5 Conclusion

This article develops the design of a sound
synthesis model of a reed instrument by
modal decomposition of the input impedance,
taking into account viscothermal losses as well
as nonlinear losses at the end of the resonator.
The input impedance now depends on the
RMS acoustic velocity at a geometric discon-
tinuity (here, the open termination). Poles
and residuals resulting from the modal de-
composition are interpolated as a function of
this velocity. In a physical model of wind in-
strument, the pressure-�ow relation de�ned
by the resonator is then completed by new
equations which account for this dependence
with the velocity at the end of the pipe.

To evaluate the ability of the model to
reproduce a real phenomenon, comparisons
with the experimental results of [2] and [10]
have been made. In the �rst case, simulations
show a qualitatively similar behavior regard-
ing the evolution of the extinction threshold
depending on the geometry at the open end.
In the second case, the model gives a good cor-
respondence with the experimental results, in
particular compared to a model without non-
linear losses.

This formalism could be promising in the
sound synthesis of wind instruments in real
time, which employs the modal decomposi-
tion formalism in order to keep a minimum
of memory. The inclusion of nonlinear losses
in a complete clarinet model could more ac-
curately translate dynamic phenomena essen-

tial to the experience of the musician, as sug-
gested by [10] : "any realistic model of the
clarinet should include nonlinear losses in the
side holes".
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