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Aim-Aware Collision Monitoring: Discriminating between
Expected and Unexpected Post-Impact Behaviors

Benn Proper, Alexander Kurdas, Saeed Abdolshah, Sami Haddadin, Alessandro Saccon

Abstract— To speed up and reduce power consumption per
cycle in robotic manipulation, one option is to exploit intentional
collisions with the surrounding environment and objects, an
approach referred to as impact-aware manipulation. Within this
context, this paper focuses on developing an online collision
monitoring framework for distinguishing between expected and
unexpected post-impact behaviors. The classification is based on
a desired post-impact motion created via an idealized rigid robot-
object-environment model. To generate a classification error
bound, it employs a causal envelop filter that is needed due
to the unavoidable joint and environment flexibility. In this
way, it becomes possible to compare a desired idealized rigid
response, which is straightforward to obtain with existing tools,
with a measured impact response, which is affected by difficult-
to-model post-impact oscillations. The classifier can be used for
single-contact as well as multi-contact impact scenarios, such
as those occurring in surface-to-surface impacts, and allows for
tuning of the sensitivity between expected and unexpected post-
impact behaviors. The monitoring framework fuses a (bandpass)
momentum observer with impact-aware control to extend the
classical collision event pipeline. As a proof of concept, we show
the effectiveness of the approach through numerical simulations
as well as with preliminary experimental results.

I. INTRODUCTION

State-of-the-art physical interaction control typically resorts
to enforcing zero or near-zero relative contact velocity be-
tween a robot and its environment [1] and treats collisions
as unexpected and undesired behaviors [2]. However, the
development of robots with flexible joints [3], [4] combined
with validation of robot-environment impact laws [5], [6] is
opening the door to the exploitation of intentional dynamic
contact transitions for manipulation and locomotion. This
exciting field of research, that we refer to as impact-aware
robotics, requires the development of a new holistic framework
comprising modeling, learning, planning, sensing, and control
aspects, supported by collision-tolerant hardware.

In this context, we focus on the sensing aspect by proposing
a strategy capable of distinguishing between expected and
unexpected robot-environment impacts. We name this strategy
aim-aware collision monitoring to emphasize that classifica-
tion is performed based on the knowledge that the robot has
an explicit intention of impacting the environment as well as
a notion of what is expected to happen following the impact.
Successfully distinguishing between expected and unexpected
impact scenarios gives the robot the knowledge to attempt
a recovery action, which can include stopping the execution
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Fig. 1: The proposed aim-aware collision monitoring method in action. Using
the error between the predicted and measured impact response, a signal
envelope is generated. If the region inside the envelope (shaded light blue)
envelops 0, the impact sequence is classified as expected. If it does not (the
difference is shaded red), the impact sequence is classified as unexpected.

or activating a reflex motion. This allows for more robust
task execution while potentially reducing damage to the robot
and environment. Schematically, Fig. 1 depicts the proposed
aim-aware collision monitoring method, where classification is
based on analyzing a post-impact velocity error signal passed
through a signal envelope filter.
Related works. Originally intended for, but not limited to,
physical human-robot interaction (pHRI), the well-known
collision event pipeline [7] systematizes the contact han-
dling problem by dividing it into seven phases (namely, pre-
collision, detection, isolation, identification, classification, re-
action, and post-collision). State-of-the-art approaches for the
detection, isolation, and identification phases work regardless
of the impact source [8], [9], [10], [11], [12]. However,
for the classification and reaction phases, state-of-the-art ap-
proaches focus on pHRI [8], [13], [2], [14], resulting in robot-
environment impacts being classified as unintentional or as in-
tentional to stop the robot from, e.g., initiating a hand-guiding
teaching phase. Furthermore, current classification methods
rely on machine learning to discriminate among different types
of collisions [8], [9], [15], [16], [17], where the pHRI intention
is captured implicitly. For the emerging field of impact-aware
robotics, the focus must instead be placed on comparing the
planned post-impact behavior with the observed post-impact
behavior of the robot-object-environment interactions. Within
this context, the post-impact velocity jump, requiring some a
priori knowledge of the environment, can be predicted either
through analytical or learning approaches [5], [6].
Paper contribution. In this paper, we propose an extension to
the collision event pipeline for intentional robot-environment
and robot-object interactions and a first-of-its-kind classifier
for classifying post-impact behavior. We show that rigid object
and environment models with instantaneous and inelastic non-
smooth impact laws [18] allow for effective robot-environment
impact classification with an adjustable classification thresh-
old. Classification is performed in two steps, (1) through static
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Fig. 2: The proposed aim-aware collision monitoring method. For context, the top row shows an impact sequence for a simultaneous impact. The second row
shows the impact phases used in reference spreading and the coinciding collision event pipeline phases are shown in the third row. The fourth and fifth rows
show an illustrative example of a reference signal with an impact response and the error signal with a signal envelope, respectively. The data from the bottom
row is used to assess whether an impact occurred as expected. Illustrated damped oscillations, mostly due to joint flexibility, commonly last for about 100ms.

conditions that provide an initial guess for the classification
at the time of impact, and (2) through post-impact analysis
inspired by [5], where the post-impact oscillations in the order
of 100ms are interpreted as fast dynamics superimposed to
the rigid nonsmooth impact response. Emphasis is placed on
classifying intentional simultaneous impacts, where multiple
contact points ideally make contact at the same time. We
employ the notion that an inelastic impact law is capable of
capturing the gross rigid velocity jump when contact is fully
established [19]. Our classifier is supported by extensions to
methods to encode impact tasks through reference spreading
[20], [21] and detect impacts regardless of the current contact
state of the robot using a momentum observer [10], [22],
[23]. For illustrative purposes, in Fig. 2, the state of the
robotic manipulator is linked to the impact phases used in
reference spreading [10], [22], [23] and the collision event
pipeline [7] combined with an example showing the reference
and execution of the task and the error signal used for
classification.
Paper structure. Sec. II presents preliminary material. The
aim-aware collision monitor is described in Sec. III. Numerical
and experimental validation of the approach is presented in
Sec. IV. Concluding remarks are provided in Sec. V.

II. PRELIMINARIES

The proposed aim-aware collision monitoring method uses
impact and robot dynamics to predict the impact behavior and
uses impact detection to initiate classification. Below, the robot
dynamics (Sec. II-A), the simultaneous impact map (Sec. II-
B), and the momentum observer (Sec. II-C) are discussed.

A. Dynamical Model

For the numerical simulations, we adopt the standard robot
with flexible joints (RFJ) model [24]

M(q)q̈+C(q, q̇)q̇+ g(q) = τJ +DK−1τ̇J + τext,

Bθ̈ +DK−1τ̇J + τJ = τact,
(1)

where q ∈ Rn are the link-side joint positions, θ ∈ Rn are the
motor positions adjusted with gear ratio, M(q) ∈ Rn×n is the

inertia matrix, C(q, q̇) ∈ Rn×n is the Coriolis matrix, g(q) ∈
Rn is the gravity vector, τJ ∈ Rn and τext ∈ Rn are the spring
and external joint torques, respectively, B = diag(b) ∈ Rn×n

is the reflected motor inertia matrix after the transmission, and
D = diag(d) ∈ Rn×n is the joint damping matrix. Here, the
diag operation turns a vector of size n into an n×n diagonal
matrix. Angles θ and q both contribute to the joint torques
via τJ = K(θ− q), where K = diag(k) ∈ Rn×n is the joint
stiffness matrix. We assume motor friction to be compensated
in the motor controller. Finally, τact ∈ Rn are the actuation
torques obtained from a low-level torque controller [24].

B. Simultaneous Inelastic Impact Map

Rigid impact maps consider impact events as instantaneous
events and are used to describe the post-impact motion includ-
ing friction and switching contact for a given impact configu-
ration using nonsmooth mechanics [18], [25], [26]. We derive
the simultaneous rigid impact map with the assumptions:

• The robot has rigid dynamics.
• The impact is inelastic.
• Joint displacements remain constant during impact.

Using these assumptions, the impact equation

Mr(q̇
+ − q̇−) =

nc∑
i=1

J⊤
i,NΛN,i + J⊤

i,TΛT,i, (2)

can be derived from (1). Here, for each contact point i,
Ji,N (q) ∈ R1×n and Ji,T (q) ∈ R1×n are the normal
and tangential components of the Jacobian Ji(q) as defined
in [20], respectively, ΛN,i and ΛT,i denote the normal and
tangential impulsive contact force, respectively, superscripts
(·)− and (·)+ denote an ante- and post-impact quantity,
and Mr(q) ∈ Rn×n is the rigid joint equivalent of M(q)
defined as Mr(q) = M(q) + Bθ [27], with Bθ ∈ Rn×n

apparent reflected motor inertia matrix after gear reduction.
Furthermore, Newton’s impact law can be written as

Ji,N q̇+ = µNJi,N q̇−. (3)

In the simplest case, assuming that the impact is frictionless
(ΛT,i = 0) and inelastic (µN = 0), (2) and (3) are used to
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derive the simultaneous impact map as
q̇+

ΛN,1

...
ΛN,nc

 =


Mr −J⊤

1,N . . .−J⊤
nc,N

J1,N 0 . . . 0
...

...
. . .

...
Jnc,N 0 . . . 0


−1 

Mrq̇
−

0
...
0

 . (4)

Note, (4) is applicable to the simple case considered in this
paper because the (unilateral) constraints are linearly indepen-
dent, thus constraining different degrees of freedom. Suitable
regularization for more complex impact scenarios considering
more than two contact points in 2D and three in 3D and
friction is found in available solvers1. Additionally, while we
assume a frictionless impact for simplicity, the accuracy of the
prediction for real systems can be improved using models that
consider impacts with friction [28], [29].

C. Momentum Observer

The state-of-the-art impact detection methods are based
on external joint torque estimators such as the momentum
observer [10], [22], [23]. The momentum observer can isolate
the impacted link and identify the external torque using the
generalized momentum p ∈ Rn defined as

p = M(q)q̇. (5)

Using (1), (5), and the known property that Ṁ(q) = C(q, q̇)+
C(q, q̇)⊤ , the momentum observer is defined as

r(t) = KO

[
p(t)−

∫ t

0

(τJ +DK−1τ̇J

+C⊤(q, q̇)q̇− g(q) + r(t))ds− p(0)

]
, (6)

with r satisfying the dynamic constraint

ṙ = KO (τext − r) . (7)

To detect an impact, a threshold can be defined for the residual
r ∈ Rn: if an entry of r surpasses this threshold during
operation, then that link is affected by an impact.

III. AIM-AWARE COLLISION MONITORING

The proposed aim-aware collision monitoring method is a
framework that requires three main components to function.
These components are (1) encoding of an impact task, (2) de-
tecting impacts regardless of the current contact state, and (3)
relevant classification criteria. For the first two components,
we provide extensions to existing methods for use with our
classifier in Sec. III-A and Sec. III-B. For the classification
criteria, we propose the distinction between an instantaneous
and time-window impact classification strategy. Sec. III-C
describes an approach to defining static conditions that can be
assessed at the time of impact and provides an initial guess on
whether the impact was expected. Sec. III-D then describes a
method that refines the classification by analyzing post-impact
oscillations against the predicted motion using an online signal
envelope filter. All of these components are compiled into a
complete classifier in Sec. III-E.

1For example nonsmooth.gricad-pages.univ-grenoble-alpes.fr/siconos

A. Encoding the Intentional Impact Task

Model-based planners for control systems undergoing im-
pacts is an active field of research [30]. For the robust
execution against modeling and perception errors, we use an
impact-aware control strategy called reference spreading [20],
[21], [31]. Here, we generate ante- and post-impact trajectories
that are extended so that overlap in time is present before
and after the nominal impact time [32], [33]. The intended
impact motion is encoded into these trajectories by having
the velocity jump from ante- to post-impact trajectory at the
intended impact time td satisfy an impact law such as (4).

For illustration purposes, in this work, we consider a planar
motion of the end effector on a vertical plane orthogonal to an
impact surface as sketched in Fig. 2. For the end-effector longi-
tudinal and vertical displacements (x,y) and orientation (ϕ) we
define desired ante- and post-impact positions/orientations and
their first- and second-order time derivatives for t0, td, and tf ,
where td is the desired impact time. The post-impact velocities
at td are determined using the simultaneous impact map (4)
with the ante-impact velocities at td as input as presented in
[20]. With these desired parameters, fifth-order polynomials
can be generated for t0 ≤ t ≤ td and td ≤ t ≤ tf . An
example of a trajectory is shown in Fig. 3.

The manipulator is commanded via an impact-aware
impedance controller that follows an ante-impact trajectory
until an impact is detected, after which the reference switches
to the post-impact trajectory [31]. To take into account small
deviations from the expected impact surface, the post-impact
motion in the y direction is controlled by applying a constant
force on the impact surface.

B. Simultaneous Impact Detection

In Sec. II-C, impacts are detected by defining a threshold
against r, but this does not guarantee an impact detection
if the system is already in contact with the environment.
Applying a high-pass filter to r would allow for detecting
fast changes in torques [2], but this implementation was not
designed for discrete time. To allow for detecting impacts in
simultaneous impact scenarios in discrete time, a threshold
against the numerical time derivative of (6) defined as

∆rk
∆t

=
rk − rk−1

tk − tk−1
, (8)

is used instead. The differences between r and ∆r/∆t are
shown in Fig. 4 for a simulated simultaneous impact scenario.
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Fig. 3: Schematic illustration of the ante- and post-impact trajectories in
relation to the desired trajectory parameters. Ante- and post-impact trajectories
are denoted by (·)a (green) and (·)p (ocra), respectively. Solid lines are the
desired impact trajectories, while dashed lines are extended trajectories. Green
and ocra markers represent the desired trajectory parameters.
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Fig. 4: The momentum observer residual and its numerical derivative during
a simulated simultaneous impact sequence. The dashed red line is the impact
detection threshold rb. By adjusting rb, smaller impacts that are of lesser
interest for the classification method can be included or excluded.

The threshold against ∆r/∆t allows for detecting impacts
regardless of the current contact state. The detection criterion
with detection bound rb is then formulated as:

Time instant tk = k∆t is considered an impact time if and
only if there exists an entry i ∈ {1, . . . , n} of ∆rk such that∣∣∣∣∆rk,i

∆t

∣∣∣∣ ≥ rb,i, and
∣∣∣∣∆rk−1,i

∆t

∣∣∣∣ < rb,i. (9)

C. Instantaneous Impact Classification
Instantaneous impact classification seeks to provide an ini-

tial guess at the classification result at the time of impact with
low computational burden through data available at the time
of impact, the expected behavior, and user-defined thresholds.
In this paper, the impact trajectory is designed around one
(ideally) simultaneous impact. We can then define a threshold
for the error between the detected impact times and the desired
impact time td as∥∥tj − td

∥∥ ≤ ζ, for j ∈
{
1, . . . , jf

}
(10)

where jf is the index of the final detected impact and,
similarly, for the measured and predicted configurations∥∥q(tj)− qd(td)

∥∥ ≤ ϵ, for j ∈
{
1, . . . , jf

}
, (11)

where tj is the j-th detected impact time, td is the desired
impact time for a single expected impact, ζ > 0 is the user-
defined time difference threshold, qd ∈ Rn is the expected
joint configuration, and ϵ > 0 is the user-defined impact
configuration error threshold. For simultaneous impact clas-
sification performance, the time difference between individual
impacts is also considered∥∥tj − tj−1

∥∥ ≤ ι, for j ∈
{
2, . . . , jf

}
, (12)

where ι > 0 is the admissible time difference between two
consecutive impacts.

D. Time-Window Impact Classification
Time-window impact classification focuses on using the time

evolution of the impact response for classification to verify
that the post-impact behavior agrees with the intended motion.
It occurs once contact has been completed, e.g., when the
entire end-effector is in contact with the impact surface (after
the impact time and configuration have been verified during
the instantaneous phase described previously). Time-window
classification is slower and more computationally expensive
but it allows for enhancing considerably the sensitivity of the
classifier by incorporating for the first time the intended post-
impact motion. It is the core of our approach.

As was shown in [5], post-impact oscillations can be inter-
preted as fast dynamics superimposed to the rigid nonsmooth

impact response before converging. For simultaneous impact
scenarios, this can be formulated as

evel(t) → 0n×1, for t ∈
(
tjf , tend,jf

]
, (13)

where

evel(t) = q̇(t)− q̇d(t). (14)

Here, evel(t) ∈ Rn is the error between the measured joint
velocity q̇(t) ∈ Rn and the expected post-impact joint velocity
q̇d(t) ∈ Rn which is obtained from the post-impact reference
trajectory discussed in Sec. III-A. Finally, tend,jf = tjf + ξ
where ξ ∈ R≥0 is the tunable time until final classification,
which is dependent on the natural impact-induced oscillations.

Signal envelope detection [34] is used here to extract from
the measured oscillatory impact response a signal that can be
related to the equivalent rigid response following the slow-fast
post-impact dynamics philosophy [5]. The required envelope
filter would need to be causal to allow for online post-impact
classification. This causal signal envelope filter is defined
using the element-wise minima and maxima operation on a
vector signal over a prescribed window length

xmin,k = min {xk−m, . . . ,xk} ,
xmax,k = max {xk−m, . . . ,xk} .

(15)

Here, xmin,k ∈ Rn and xmax,k ∈ Rn are defined as a vector
containing the minima and maxima of a measured response
x ∈ Rn at timestep k, determined from data from timestep
k − m to timestep k where m ∈ N is the desired window
length. Afterward, (15) can be used to define an upper and
lower envelope that can adjust to a newly measured extremum

xlb,k = min
{
xmin,k, (1− a∆t)xlb,k−1 + a∆txmin,k

}
,

xub,k = max
{
xmax,k, (1− a∆t)xub,k−1 + a∆txmax,k

}
,

(16)
where a ∈ R>0 is the decay rate of the envelope that is chosen
depending on the decay rate of the impact response, ∆t =
tk − tk−1 is the sampling time, xlb ∈ Rn and xub ∈ Rn are
the lower- and upper envelope of the signal, respectively.

The filter described in (15) and (16) can be used on an
arbitrary oscillatory signal x to produce an envelope. In
this work, x is substituted by evel, and the time-window
classification condition is defined as

evel,lb(t)− em ≤ 0n×1 ≤ evel,ub(t) + em,

∀t ∈
(
tjf , tend,jf

]
, (17)

where evel,lb ∈ Rn and evel,ub ∈ Rn are the lower- and upper
envelope encompassing signal evel as calculated using (15)
and (16), respectively. Additionally, em ∈ R≥0 is an additional
user-defined margin on the envelope, which can be changed
depending on the noise level, the tracking error, and other
user-defined requirements. For simplicity, we choose em to
be uniform over all joints. However, intuitively and assuming
the impact happens at the end-effector, the joints closer to the
base will be perturbed less severely. For enhanced accuracy,
em could be chosen to be smaller for joints closer to the base,
but investigating the benefit is left for future work.

The application of the causal signal envelope filter to
evel for simulated and experimental expected and unexpected
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Fig. 5: Defining various impact scenarios. (a) The impact approach angle α, impact surface inclination β, and desired impact location ximp are defined. (b)
A snapshot of experiments where the robot is impacting the impact platform for an expected (top) and unexpected (bottom) impact scenario at starting time
t0, first detected impact time t1, and end time tf .

scenarios are shown in Fig. 6. In this figure, the area enclosed
by the envelope shaded in blue is used for classification. If
this envelope encompasses 0, as described in (17), the impact
is classified as expected. If not, the impact is classified as
unexpected. To make it visible when the envelope does not
encompass 0, in Fig. 6 a red shade is explicitly drawn.

E. Classifier construction

For the full classifier, further conditions can be defined to
reduce false positive classification. Firstly, with simultaneous
impacts, the system’s response between the first and final
impact, also known as the interim phase [20], [21], is un-
predictable and full contact needs to be established before full
state feedback control can be applied. As a consequence of this
unpredictability and to avoid the interim phase affecting the
generated envelope, the generated envelope and the window
length are reset after each detected impact. For each iteration
afterward, the window length increases by 1, until it reaches
the desired maximum window length mmax ∈ N.

Secondly, the ideal post-impact trajectory based on a fully
rigid robot model and rigid contact assumes an instant change
in velocity after an impact while a realistic response is fast but
non-instantaneous due to the robot and environment flexibility.
To take this difference into account, an additional tuning
parameter mc ∈ N, the number of timesteps after an impact
before time-window classification starts, is defined. Using this
parameter, classification only starts when

tk ≥ mc∆t+ tj , (18)

The resulting schematic representation of the classifier is
shown in Algorithm 1.

IV. VALIDATION

Validation of the proposed aim-aware collision monitoring
method is performed numerically (Sec. IV-A) and through a
preliminary experimental validation (Sec. IV-B)

A. Numerical validation

A graphical illustration of the chosen validation impact
scenario and snapshots taken from experiments are presented

Algorithm 1: Impact classifier
initialisation: Impact = YetUnknown

InstImpact0 = YetUnknown
Post-Impact0 = Off
m1 = 1

input : tk , tj , q(t), evel, evel,ub,k−1, evel,lb,k−1, mk ,
InstImpactk−1, Post-Impactk−1

output : evel,ub,k , evel,lb,k , mk+1, InstImpactk ,
Post-Impactk

parameter : a, ϵ, ζ, ξ, ι, em, mc, mmax, td, qd(td), ∆t

if tk = impact time according to (9) then
mk = 1
if (10) and (11) and (12) then

InstImpactk = Expected
Post-Impactk = YetUnknown

else
InstImpactk = Unexpected
Post-Impactk = Unexpected

end
evel,lb,k = evel,k
evel,ub,k = evel,k

else
Calculate evel,lb,k and evel,ub,k using (15) and (16) with evel
InstImpactk = InstImpactk−1
Post-Impactk = Post-Impactk−1

end
if Post-Impactk = YetUnknown then

if (¬ (17)) and (18) then
Post-Impactk = Unexpected

else
if tk − tj > ξ then

Post-Impactk = Expected
end

end
end
if Post-Impactk ̸= YetUnknown and tk − tj > ξ then

if InstImpacttk = Expected and Post-Impactk = Expected then
Impact = Expected

else
Impact = Unexpected

end
end
if mk < mmax then

mk+1 = mk + 1
end

in Fig. 5. The simulation2 uses the robot dynamics described
in Sec. II-A and simulates realistic frictionless contact using
the exponentially extended Hunt-Crossley model [35], [36].

The robot is tasked to impact a surface with a flat end-
effector with an approach angle α and impact location ximp,

2Found at gitlab.tue.nl/robotics-lab-public/aim-aware-collision-monitoring
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(a) (b)

Fig. 6: Post-impact behavior classification using the causal signal envelope filter applied to the joint-velocity error for expected and unexpected impact scenarios.
(a) Simulated simultaneous impact scenarios. (b) Experimental simultaneous impact scenarios. In these figures, the bright blue line represents the joint velocity
error evel, which is encompassed by the envelope generated by the causal signal envelope filter. The interval used for classification is represented with the
blue shaded area between the envelope bounds. If condition (17) was not satisfied, the difference is shaded in red.

measured horizontally. The impact approach angle α ranges
from 60 and 120 deg with a 2 deg resolution and the desired
impact location ximp from 0.2 to 0.4m with a 0.02m reso-
lution. Without loss of generality, the desired impact motion
assumes the surface orientation β, to be zero and will generate
a trajectory as described in Sec. III-A in all experiments.
In the simulation, the surface orientation with respect to the
horizontal line ranges from −10 to 10 deg with a resolution
of 1 deg. We expect the collision monitor to be able to
discriminate between an expected and unexpected value of
β, depending on user-adjustable thresholds.

Classification results for simulated simultaneous impacts
are presented in Fig. 7 for three different sets of tuning
parameters, which are found in Tab. 1. The different blue
shades in Fig. 7 illustrate that the sensitivity of the classifier
can be tuned to change the range of inclinations that are
classified as expected. Additionally, a quite thin area of about
2 deg, where the impact is not always classified as expected
or unexpected, is present on both sides of the blue band for
all sensitivities. Finally, beyond this ambiguous area, 100% of
the experiments are classified as unexpected. Using the size of
the ambiguous area as a performance measure, we can observe
the effectiveness of the collision monitoring method and the
consistent performance between sensitivities.

Currently, there is no systematic approach to tune the
classifier and a particular range of inclinations that are always

classified as expected can only be obtained by hand-tuning the
classifier. The instantaneous classification conditions can be
correlated to desired impact properties, as they refer to desired
outcomes of the impact trajectory. Time-window classification
parameters can be extracted from measured post-impact mo-
tion behavior, but extracting these values for classifier tuning
is not the focus of this work.

B. Preliminary Experimental Validation

The aim-aware collision monitor has been tested on a
Franka Emika Research robot arm [37] as illustrated in
Fig. 5(b). The robot arm is equipped with a custom-made
3D-printed flat end-effector wrapped in a soft cloth to provide
additional damping. The impact surface, made of Item profiles,
can be rotated around a central axis and is held in place by
tightening the screws on the guide rail, where the inclination
is measured using a digital goniometer3.

To assess the functioning of the classifier on an experimental
setup, four impact trajectories are considered which differ
in the approach angle α ranging from 100 to 130 deg, with
a resolution of 10 deg, while keeping the impact location
constant at ximp = 0.51. The vertical height, measured with
respect to the robot base, was set to zimp = 0.15m to
ensure that the impact target was at the center of the impact
platform. The impact platform inclinations β were varied

3Stabila TECH 1000 DP
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(a) (b) (c)

Fig. 7: Expected impact classification percentage for simulated simultaneous impact scenarios when tuned for varying sensitivities. The blue band represents
the range of inclinations that are always classified as expected. (a) The tuned classifier always classifies β = 0 as expected. (b) The tuned classifier always
classifies β ∈ {−2, . . . , 2} as expected. (c) The tuned classifier always classifies β ∈ {−4, . . . , 4} as expected.

Parameter Fig. 7(a) Fig. 7(b) Fig. 7(c) Unit
mmax 10 15 15 −
mc 10 15 15 −
a 30 18 18 1/s
ϵ 0.042 0.067 0.115 rad
ζ 0.1 0.1 0.11 s
ξ 0.1 0.1 0.1 s
em 0.033 0.1 0.236 rad
ι 0.1 0.1 0.1 s

Tab 1: Tuning parameters for simulated simultaneous impact classification.
Each column is associated with its respective figure in Fig. 7

Parameter Fig. 8(a) Fig. 8(b) Unit
mmax 13 13 −
mc 5 5 −
a 19 19 1/s
ϵ 0.12 0.15 rad
ζ 0.1 0.1 s
ξ 0.1 0.1 s
em 0.18 0.2 rad
ι 0.1 0.1 s

Tab 2: Tuning parameters for experimental simultaneous impact scenarios.
Each column is associated with its respective figure in Fig. 8.

between −20 to 20 deg with a resolution of 2 deg for two
sets of tuning parameters to vary the classification sensitivity.
The parameter values and associated results can be found in
Tab. 2 and Fig. 8, respectively.

Currently, computational routines and validation of simul-
taneous impact maps on real robots such as those developed
in [5], [6] and introduced in Sec. II-B are not yet readily
available. Therefore, the post-impact velocity predictions used
in Sec. III-A were substituted with data-driven predictions
extracted from post-impact motion behavior of the four nom-
inal impact scenarios in the nominal condition β = 0. These
experiments intend to show that our classifier is effective as
long as a reference trajectory that embeds the gross velocity
jump induced by the desired impact is available. Such a
gross velocity jump can be obtained both from a data-driven
approach and a model-based approach, the second having
our preference for scalability to arbitrary impact scenarios.
Additionally, we make the underlined assumption that desired
impact trajectories are such that a unique post-impact outcome
is present (typically true with inelastic impact, with additional
conditions on the constraints [25] and that small perturbations
do not destroy this property but rather present a form of
continuity that is discussed, e.g., in [19].

Fig. 8 confirms that the sensitivity of the classifier (max
inclination angle that is classified as expected) can be modified

(a)

(b)

Fig. 8: Expected impact classification percentage for simultaneous impact
scenarios on the experimental setup tuned for varying sensitivities. The blue
band represents the range of inclinations that are always classified as expected.
(a) The tuned classifier classifies β = 0 as expected. (b) The tuned classifier
classifies β ∈ {0, . . . , 8} as expected.

with the parameters. If desired, the classification band (shaded
blue) can be quite selective, similar to what simulation results
show. It can be thus concluded that the proposed framework
has the potential to be used in practical applications.

In Fig. 8(a), a visible qualitative difference, when compared
to Fig. 7, is that the uncertainty region is now asymmetric.
Furthermore, as seen in Fig. 8(b), reducing the sensitivity
results in a blue band that is not symmetric around β = 0.
While the sensitivity curve should not be expected to be asym-
metric in general, the different shapes between the simulations
and physical experiments are noticeably different considering
they represent the same intentional impact scenario. While
the reason for this qualitative difference has to be further
investigated, we suspect that such a difference is due to both
the lack of contact friction in the numerical simulation as well
as a bias in the data-driven post-impact velocity prediction that
was used to generate the post-impact reference motion. The
latter in particular does skew the definition of the post-impact
error which is fed to the envelop filter as described in Sec. III.

V. CONCLUSION

In this paper, we proposed a collision monitoring framework
able to discriminate between expected and unexpected post-
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impact behaviors using a prediction with a small computa-
tional burden. The sensitivity of the classifier can be tuned,
resulting in an adjustable range of impact scenarios that are
always classified as expected. Scenarios deviating further from
this range are eventually always classified as unexpected. The
method has been developed and validated via numerical sim-
ulations and later tested on an experimental platform. Results
are comparable, besides an asymmetry in the classification
region which we ascribe to the current lack of suitable software
to compute and properly validate the nominal inelastic impact
map. In future work, software and validation of inelastic
impact maps for simultaneous impacts should be developed
along with a systematic approach to tune the classifier. The
method should also be further evaluated experimentally also in
different and more challenging desired impact scenarios. Addi-
tionally, expanding the classifier to allow for more fine-grained
classification beyond expected/unexpected would allow for the
design of a richer palette of reaction reflexes, each tailored to
address a specific type of failure and making the execution
more robust. Nevertheless, with the presented classification
method, we claim that the first important step towards the
realization of robust and useful monitoring for impact-aware
robotics has been achieved.
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