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Abstract: The use of mesh-based numerical methods for a 3D elasticity solution of thick plates in-
volves high computational costs. This particularly limits parametric studies and material distribution
design problems because they need a large number of independent simulations to evaluate the
effects of material distribution and optimization. In this context, in the current work, the Proper
Generalized Decomposition (PGD) technique is adopted to overcome this difficulty and solve the 3D
elasticity problems in a high-dimensional parametric space. PGD is an a priori model order reduction
technique that reduces the solution of 3D partial differential equations into a set of 1D ordinary
differential equations, which can be solved easily. Moreover, PGD makes it possible to perform
parametric solutions in a unified and efficient manner. In the present work, some examples of a
parametric elasticity solution and material distribution design of multi-directional FGM composite
thick plates are presented after some validation case studies to show the applicability of PGD in
such problems.

Keywords: proper generalized decomposition; separated representation; functionally graded
material; material distribution design; plate bending

1. Introduction

Shear deformations are important in the flexural behavior of thick plates, especially
when they consist of composite or Functionally Graded Materials (FGM). Generally, flexural
plate theories (classical and higher orders) assume a predefined displacement profile and
shear effects over the thickness and, although this is sufficiently accurate in thin plates,
their accuracy in thick plates, especially those involving a composite and FGM, have been
in debate for a long time. In fact, the perfect approach in such cases is using the 3D
elasticity theory to accurately consider all strains. Unfortunately, the use of traditional
mesh-based numerical methods for solving plate problems based on 3D elasticity leads to
huge computations, which makes parametric studies more difficult. Therefore, the main
goal of the current work is to adopt an approach based on the PGD method that makes
it possible to deal with 3D elasticity solutions of plate problems, parametric studies and
material distribution design problems, while consuming small computational resources.

PGD is an a priori model order reduction technique, which is based on a separated
representation of field functions. In other words, field functions are defined as a product
of a univariate function, each of them in one coordinate direction of the problems space,
Ω ∈ RND . The problem space Ω is the geometrical space (x, y, z) extended by the extra
problem-specific parametric space (p1, p2, . . . ). The PGD technique reduces the solution of
an ND-dimensional problem defined in Ω to a series of 1D sub-problems. This technique
reduces computational costs considerably, and makes it possible to deal with problems in
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high-dimensional coordinate spaces. Due to these advantages, the application of PGD has
been quickly extended in a variety of problems in science and engineering. For a review on
different applications of PGD, refer to [1].

For some pioneering works in the context of the application of the PGD technique in
plate-like structures, refer to [2–5]. There have also been some new publications in this
field [6–10]. Although PGD is quite efficient in parametric and high-dimensional problems
and the parametric analysis/optimization of FGM materials is highly demanding, there
are no published works (to the best of the authors’ knowledge) regarding the application
of the PGD technique in FGM materials.

Many works have been published on the use of the 3D continuum theory of elasticity
for FGM plate problems and, while the majority of them consider uni-directional plates—
whose gradation takes places in the thickness direction (for a review, refer to [11,12])—,
there are some works considering in-plane gradation (bi-directional); for an example, refer
to [13] for a bending analysis of bidirectionally graded isotropic plates using FEM, [14]
for a free vibration and buckling analysis of rectangular and skew isotropic plates with
in-plane gradation using scaled boundary FEM and [15] for a free vibration analysis of a
bidirectionally graded isotropic plate using the Differential Quadrature Method (DQM).
There are very few works considering tri-directional plates. For example, in [16], a thermo-
elastic analysis of isotropic plates graded in all of the three directions is considered using
DQM.

The above-mentioned works on the 3D elasticity solution of FGM plates only consider
isotropic materials, whereas there are few works considering orthotropic behaviors. For
example, a semi-analytical hybrid DQM approach is used in [17] for a bidirectional FGM
orthotropic plate. The extended Kantorovich method is used in [18] to analyze the static
deflection of an orthotropic plate considering Levy-type boundary conditions. A combi-
nation of the Kantorovich and power series approaches is used in [19] for the elasticity
solution of in-plane grading orthotropic FGM plates.

A careful consideration of the above-mentioned works shows that:

• FGM plates with gradation in directions other than the thickness direction are of
current research interest, both from a theoretical and industrial point of view.

• In most cases, the Poisson’s ratios are considered constants, or a similar grading
function is used for different orthotropic moduli components (e.g., [20]) or directly for
the orthotropic stiffness coefficients (e.g., [17]). These non-physical assumptions are
performed to simplify the solution procedure, but can represent crude approximations
in many cases.

• Shear deformations are important in thick plates and, although high-order plate
bending theories are adopted to somehow consider it, the use of the 3D elasticity
approach is inevitable. There are only a few of this type of solution, and even fewer
for cases of orthotropic FGM plates and rarely for parametric analyses and material
distribution design problems.

• There are some analytical or semi-analytical solutions for three-dimensional elasticity
plate problems. Although these methods are successful in decreasing computational
costs, they are limited in special boundary conditions, loading and material character-
istics, and their application in general plate problems is restricted.

• Parametric studies and material distribution design problems are very limited because
they need many independent simulations, which leads to high computational costs
using numerical solutions of 3D elasticity problems.

• To the best of the authors’ knowledge, PGD, as an advanced model order reduction
technique, has not been applied in the elasticity solution of FGM composite plates
thus far.

Based on the above observations, the main motivations and objectives of the present
work are to consider all of the above-mentioned points and determine new contributions
in the field of the analysis of thick FGM plates. More specially, in the current paper:
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• Material grading is considered along three physical directions.
• Orthotropic FGM material constants are considered, consistent with real physics,

based on the volume fraction of the constitutive materials and using established
micromechanical models.

• An analysis is conducted based on the 3D theory of elasticity to consider shearing
deformations perfectly.

• All types of boundary conditions are considered without any limitations.
• Parametric studies are performed in an efficient manner in a high-dimensional coordi-

nate space.
• The application of the PGD technique in the parametric study of thick FGM plate

problems is introduced for the first time. The material distribution design is then
determined using the resulting parametric study.

In the following, after introducing the governing equations, the notion of a separated
representation is introduced and used for representing the space distribution of material
characteristics and, also, the displacement field. After that, the PGD technique is used to
obtain the unknown displacement field functions. To verify the method, some validation
examples are presented and the results are compared with available ones. Further examples
are also presented to show the applicability of the method in the material distribution
design problems.

2. Governing Equations and Weak Form

The static equilibrium equations for a 3D continuum domain considering body force
( fx, fy, fz) are as follows:

σxx,x + σxy,y + σxz,z + fx = 0

σxy,x + σyy,y + σyz,z + fy = 0

σxz,x + σyz,y + σzz,z + fz = 0

(1)

The linear elastic stress–strain relation is given by:

[σxx, σyy, σzz, σxy, σyz, σzx]
T = C[εxx, εyy, εzz, γxy, γyz, γzx]

T (2)

The elements of the elasticity matrix, C, are different functions of coordinate compo-
nents x, y and z, as well as the volume fraction, V, of different components which constitute
the medium and, also, physical properties of the components itself. The details of the
calculation of the elements of C are given in references such as [21].

The strain–displacement relations for small deformations ignoring the effects of tem-
perature changes are as follows:

εxx = ux,x, εyy = uy,y, εzz = uz,z

γxy = uy,x + ux,y, γyz =uz,y + uy,z, γzx = ux,z + uz,x
(3)

We used the weighted residual method to obtain the integral form of Equation (1),
and performed the integration by part; then, by introducing Equations (2) and (3), the weak
form of the governing equations and natural boundary conditions would be obtained as
follows. The detailed derivations can be found in [21].∫

Ω

(
u∗x,x(C11ux,x + C12uy,y + C13uz,z) + u∗x,yC44(uy,x + ux,y)

+u∗x,zC66(ux,z + uz,x)
)
dΩ =

∫
ΓN

u∗xtxdΓ +
∫

Ω
u∗x fxdΩ

(4)

∫
Ω

(
u∗y,xC44(uy,x + ux,y) + u∗y,y(C12ux,x + C22uy,y + C23uz,z)

+u∗y,zC55(uz,y + uy,z)
)

dΩ =
∫

ΓN

u∗ytydΓ +
∫

Ω
u∗y fydΩ

(5)
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∫
Ω

(
u∗z,xC66(ux,z + uz,x) + u∗z,yC55(uz,y + uy,z)

+u∗z,z(C13ux,x + C23uy,y + C33uz,z)
)
dΩ =

∫
ΓN

u∗z tzdΓ +
∫

Ω
u∗z fzdΩ

(6)

In Equations (4)–(6), u∗ is the first variation of the displacement components and
(tx, ty, tz) is the traction vector on the natural boundary ΓN . The left-hand side of
Equations (4)–(6) consists of 21 terms, all of which have the same structure. In other
words, the three equations given in Equations (4)–(6) could be rewritten as the following
generic form:

∑
a... f∈{S}

∫
Ω

u∗a,buc,dCe f dΩ =
∫

ΓN

u∗a tadΓ +
∫

Ω
u∗a fadΩ (7)

where the indices a, b, c, d, e and f should be selected according to set {S} to generate all
terms in Equations (4)–(6). Set {S} is given in Table 1 for each term of these equations.

Table 1. The indices sets {S} used in Equation (7).

Equation Term a b c d e f

Equation (4)

1 x x x y 1 1

2 x x y y 1 2

3 x x z z 1 3

4 x y y x 4 4

5 x y x y 4 4

6 x z x z 6 6

7 x z z x 6 6

Equation (5)

1 y x y x 4 4

2 y x x y 4 4

3 y y x x 1 2

4 y y y y 2 2

5 y y z z 2 3

6 y z z y 5 5

7 y z y z 5 5

Equation (6)

1 z x x z 6 6

2 z x z x 6 6

3 z y z y 5 5

4 z y y z 5 5

5 z z x x 1 3

6 z z y y 2 3

7 z z z z 3 3

The elasticity matrix C in Equation (2) consists of nine nonzero elements, Ce f , for
orthotropic materials. In FGM materials, these coefficients are continuous functions of
space coordinates. For instance, the space distribution of Ce f (x, y, z) depends on the space
variation of the volume fraction of the different material components which constitutes
the FGM and, also, their physical characteristics. The most realistic approach to obtain
these elements was by using, at first, a micromechanical model to obtain the engineering
elastic constants (elastic modules and Poisson ratios) and, then, using the generalized Hook
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law for orthotropic materials to obtain the space distribution of the elasticity coefficients
Ce f (x, y, z) (see [21]). This approach was used in the current work.

3. Separated Approximate Representation (SAR)

Consider g(x, y, z, p1, p2, . . . ) as a generic field function defined in the problem space,
Ω ∈ RND . The field function g(x), where x = (x, y, z, p1, p2, . . . ), may be an unknown field
such as displacement component ua or a known field such as body force component fa
or the elements of the elasticity matrix Ce f . Neverhteless, it is generally possible to find
a separated approximate representation (SAR), gh(x), for the generic field function g(x)
as follows:

g(x) ≈ gh(x) =
NG

∑
i=1

Xi(x)Yi(y)Zi(z)P1i(p1)P2i(p2) . . . (8)

where Xi(x), Yi(y), Zi(z), P1i(p1), . . . are modes in x, y, z, p1, . . . directions, respectively.
Equation (8) defines a separated approximate representation of field function g(x). In other
words, the approximated field gh(x, y, z, p1, . . . ) was constructed by a superposition of
different functions, each of them consisting of a product of univariate functions in different
directions of the problem space. Hereafter, just for simplicity, we dropped the superscript
h, but we knew that the above separated representation was an approximation because the
number of modes, NG, was considered finite.

Modes Xi(x), Yi(y), Zi(z), P1i(p1), . . . could be written in terms of a set of approxima-
tion functions and corresponding coefficients as used in traditional function approximation
approaches as follows:

g(x) =
NG

∑
i=1

MT
1 (x)G1i MT

2 (y)G2i MT
3 (z)G3i · · · =

NG

∑
i=1

ND

∏
j=1

MT
j Gji (9)

where ND is the number of dimensions of the problem space, Ω ∈ RND . The functions
M j(xj), j = 1, 2, . . . , ND are the vectors of approximation functions in term of the j-th
coordinate direction, (x, y, z, p1, p2, . . . ), and vectors Gji are coefficient vectors associated
with the j-th coordinate for the i-th mode.

The Lagrange interpolation functions or any other approximation functions could
be used to define the approximation functions M j(xj). It was also possible to define a
different order of approximations in different coordinate directions to capture specific
physical characteristics.

As stated before, the generic function g(x) might be a known or an unknown field
function. In the former case, the coefficients vectors Gji were considered known and could
be obtained using an iterative process given below in Section 4. On the other hand, if generic
function g(x) was an unknown field function (e.g., displacement fields), the coefficient
vectors Gji were unknown and had to be obtained using the governing equations and PGD
method as described later in Section 5.

4. SAR of a Given Field Function

Consider g(x) as a given (known) field function in the problem space, Ω ∈ RND . We
were interested in obtaining a SAR of g(x) in terms of a set of univariate approximation
functions, M j, and a set of coefficients, Gji, as given in Equation (9). Regarding M j,
different sets of approximation functions could be selected generally without any specific
restrictions. However, the coefficient vectors Gji should be computed as explained here.
Without the loss of generality, consider that we already had the first (n− 1) terms (modes)
of the summation in Equation (9), and we wanted to find the next term (mode), n. Then,
the residual of the first (n− 1) modes was as follows:

rn−1(x) = g(x)−
n−1

∑
i=1

ND

∏
j=1

MT
j Gji (10)
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Therefore, the n-th mode had to be obtained in such a way that determined an
approximation for the residual rn−1(x). We had:

ND

∏
j=1

MT
j Gjn ≈ rn−1(x) (11)

To find the coefficients Gjn that gave the best approximation for the residual rn−1(x),
the following error norm had to be minimized:

‖e‖ =
∫

Ω

(
ND

∏
j=1

MT
j Gjn − rn−1(x)

)2

dΩ (12)

In other words, the coefficients Gjn had to be obtained in a least square sense. To mini-
mize the error norm ‖e‖, its first derivatives with respect to all elements of the coefficient
vectors Gjn, j = 1, ..., ND had to vanish. Therefore, we had the following set of equations:

∂‖e‖
∂Gα

dn
= 0, d = 1, 2, ..., ND, α = 1, 2, ..., Nd (13)

where Gα
dn is the α-th element of the coefficient vector Gdn in the d-th direction of the

coordinate space. Nd is the number of approximation functions in the d-th direction. The
equations given in Equation (13) could be arranged as follows:

∂‖e‖
∂Gα

dn
= 0⇒

∫
Ω

Mα
d(MT

d Gdn)
ND

∏
j = 1
j 6= d

(MT
j Gjn)

2dΩ =

∫
Ω

Mα
d

ND

∏
j = 1
j 6= d

(MT
j Gjn)rn−1(x)dΩ

(14)

where Mα
d is the α-th approximation function in the d-th direction of the coordinate space.

The integrals in Equation (14) could be separated and the equation could be arranged as
follows:

(∫
Mα

d Mddxd

)T
Gdn =

∫
Mα

d dxd ∏ND

j = 1
j 6= d

∫
MT

j Gjndxj

∏ND

j = 1
j 6= d

∫
(MT

j Gjn)2dxj
(15)

Consider that d = 1, 2, ..., ND and α = 1, 2, ..., Nd; then, Equation (15) would consist of
ND systems of equations, each one consisting of Nd algebraic nonlinear equations.

The above procedure is the basic mathematical description to obtain the SAR of a given
generic field function g(x) in terms of an arbitrary set of approximation functions M j(xj).
This procedure would be simplified considerably if the linear Lagrange interpolation
function was selected as the approximation function. Finally, the simplified system of
equations given in Equation (15) could be solved using the fixed point iteration method
to obtain all coefficient vectors Gjn. More explanations and other techniques to obtain the
SAR of a known field function can be found in references [22,23].

The above procedure gave the n-th mode of the SAR. This process could be continued
to generate next subsequent modes one by one. A convergence criterion was also needed
to terminate the whole process and limit the number of modes to NG as appeared in
Equation (9).
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5. Proper Generalized Decomposition

As explained in Section 4, a SAR can be constructed for any given (known) functions
in the problem space, Ω. For example, the elements of the elasticity matrix, Ce f (x), are
known functions in the problem space, Ω. In addition, the body force components, fa(x),
are also given functions. The traction components ta(x) are known functions defined on the
plate surfaces (RND−1). It was possible to use the technique given in Section 4 to construct
a SAR for each of these functions as follows:

Ce f (x) =

NCe f

∑
i=1

ND

∏
j=1

MT
j Ce f ji (16)

fa(x) =
N fa

∑
i=1

ND

∏
j=1

MT
j Faji (17)

ta(x) =
Nta

∑
i=1

ND−1

∏
j=1

MT
j Taji (18)

where, NCe f , N fa and Nta are the numbers of modes in the SAR of Ce f , fa and ta, respectively.
The vectors Ce f ji, Faji and Taji are corresponding vectors of coefficients regarding the i-th
mode in the j-th space direction.

The PGD technique is an approach to obtain a SAR for unknown field functions. For
instance, the displacement components ux(x), uy(x) and uz(x) are unknown field functions
which must be obtained using PGD based on the weak form of governing equations given
in Equations (4)–(6).

Consider displacement field ua(x), where a ∈ x, y, z, without the loss of generality,
assume that the first (n− 1) terms (modes) of their separated representation are known,
and we wanted to find the next mode n as follows:

ua =
n−1

∑
i=1

ND

∏
j=1

MT
j uaji +

ND

∏
j=1

MT
j uajn (19)

The first variation of the displacement component u∗a could be obtained as follows:

u∗a =
ND

∑
d=1

Md

ND

∏
j = 1
j 6= d

MT
j uajn (20)

In other words, the unknown coefficient vectors uajn had to be obtained in such a way
that resulting displacement fields ua as given in Equation (19) satisfy the weak form of the
governing equations. This is a sequential approach and, after obtaining the n-th mode,
the process repeats to obtain subsequent modes. A termination criterion should stop the
process after reaching the desired accuracy level.

Now, Equations (16)–(20) were introduced into the weak form given in Equation (7).
This gave a set of nonlinear algebraic equations that had to be solved to obtain the coefficient
vectors uajn. The simplest approach for solving this system of equations is the fixed point
iteration method. In each iteration, just one vector is considered as unknown and the other
ones are considered known. This process continues until reaching a termination criteria for
the fixed point iterations. In summary, the PGD technique consists of two loops. The outer
loop try to enrich the solution by adding more modes, and the inner loop runs on the fixed
point iteration to solve the system of nonlinear algebraic equations.

The above procedure is the standard PGD technique and there are a lot of detailed
explanations regarding theoretical formulations and, also, the practical implementation of
the technique. For instance, refer to [22].
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6. Numerical Examples

Three examples were presented in this section considering parametric study. The
first two examples were adopted in such a way that the results for some specific values of
material parameters could be validated using the exact solutions available in the literature.
The last example provided further studies on the parametric solution of tri-directional FGM
plates. The resulting parametric study was then used to perform a material distribution
design (optimization) based on a failure criteria.

6.1. Example 1

In the first example, the parametric study of the bending behavior of an orthotropic
FGM plate based on one material parameter was considered and the results were compared
with the exact closed-form solution presented in [24] for some specific values of the material
parameter. The plate and the coordinate system are schematically shown in Figure 1. The
plate dimensions were given as Lx = Ly = 3m and Lz = 1m. Three sets of boundary
conditions, SSSS, CCCC and CSFF, were considered and explicitly defined in Table 2. A
distributed sinusoidal traction was applied over the top surface of the plate (z = Lz):

tz = qmax sin
πx
Lx

sin
πy
Ly

(21)

where tz is the vertical component of the traction vector on the top surface. Other compo-
nents of the traction vectors on all parts of the natural boundaries were zero. The FGM
mechanical characteristics of the plate changed exponentially along the thickness (in the z)
direction and the resulting elasticity matrix C was given as follows [24]:

C = C0epz (22)

where p is the exponential factor that determines the material distribution in the z direction.
The three cases of material parameter, p = 0, p < 0 and p > 0, corresponded to homo-
geneous, graded soft and graded stiff materials, respectively. In Equation (22), the base
elasticity matrix C0 was obtained using the engineering material constants given in Table 3
and using the generalized Hook law for orthotropic materials [24].

Figure 1. Schematic representation of plate, coordinate system and their dimensions.

Table 2. Explicit definition of plate boundary conditions regarding to Examples 1, 2 and 3.

B.C. Type Face (x = 0) Face (x = Lx) Face (y = 0) Face (y = Ly)

SSSS uy = uz = 0 uy = uz = 0 ux = uz = 0 ux = uz = 0
CCCC ux = uy = uz = 0 ux = uy = uz = 0 ux = uy = uz = 0 ux = uy = uz = 0
CSFF ux = uy = uz = 0 — uy = uz = 0 —
CFSF ux = uy = uz = 0 uy = uz = 0 — —
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Table 3. Base engineering elastic constants for Example 1.

Ex 6.89476 GPa
Ey 172.369 GPa
Ez 6.89476 GPa
Gxy 3.44738 GPa
Gyz 3.44738 GPa
Gzx 1.37895 GPa
νxy 0.01
νyz 0.25
νzx 0.25

In the present example, a parametric study was conducted based on factor p in range
[−1, 1]. Therefore, the problem space, Ω, consisted of three geometrical coordinates, x, y, z,
and one material parameter p. In other words, the elasticity problem was solved in a 4D
problem space (x, y, z, p) using the PGD technique. It reduced this 4D problem into a set
of 1D sub-problems, each of them in a single dimension of the problem space. Therefore,
this technique reduced the computational cost significantly, and made it possible to solve
problems in high-dimensional spaces.

After solving this 4D problem, the separated representation of displacement fields
was obtained. The first six modes of displacement components ux, uy and uz versus space
coordinates x, y ,z and p are shown in Figure 2 for the boundary conditions SSSS. Note
that the vertical axes in this figure show 1D functions X(x), Y(y), Z(z) and P(p) (see
Equation (8)). These functions did not have a clear physical description or unit, but their
multiplications represented physical quantities (here, displacements) with a unit of length.

Figure 2. The first six modes of displacement components (ux, uy, uz) with respect to space coordi-
nates (x, y, z, p) for Example 1 for boundary conditions case SSSS.

To validate the results, three specific material parameters p = −1, p = 0 and p = 1
were considered, and the resulting values of displacements ux, uy and uz were obtained at
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two locations (x, y, z) = (0.75, 0.75, 0) and (0.75, 0.75, 1), which were located at the bottom
and top plate faces, respectively. The displacements are presented in Table 4. To study the
effect of grid sizes, three different combinations of 1D grid sizes in each space directions
were selected. The number of nodes in each direction was arranged as {n1, n2, n3, n4} and
shown at the top of each column in Table 4. In addition, in this table, the closed-form
solutions given in [24] were compared with the present results. The percentage error, with
respect to these reference solutions, was shown in parenthesis next to each displacement
value. The results showed an excellent agreement between PGD and reference solutions,
even for course grid sizes.

Table 4. The displacement components for three values of material parameter p, for Example 1, for boundary conditions
SSSS obtained using different grid sizes.

Dis. Loc. p Ref. [24]
Present

{21 × 21 × 11 × 11} {41 × 41 × 15 × 15} {61 × 61 × 21 × 21}

ux

z = 0

−1 6.4876 6.3892 (1.5) 6.4416 (0.7) 6.4629 (0.4)

0 4.5491 4.4825 (1.5) 4.5182 (0.7) 4.5324 (0.4)

1 3.0359 2.9864 (1.6) 3.0128 (0.8) 3.0236 (0.4)

z = 1

−1 −7.0921 −6.9544 (1.9) −7.0267 (0.9) −7.0577 (0.5)

0 −3.9492 −3.8791 (1.8) −3.9161 (0.8) −3.9317 (0.4)

1 −2.0888 −2.0502 (1.9) −2.0705 (0.9) −2.0792 (0.5)

uy

z = 0

−1 2.6853 2.5854 (3.7) 2.6357 (1.8) 2.6599 (0.9)

0 1.7737 1.7070 (3.8) 1.7406 (1.9) 1.7568 (1.0)

1 1.1232 1.0779 (4.0) 1.1007 (2.0) 1.1117 (1.0)

z = 1

−1 −3.643 −3.4934 (4.1) −3.5678 (2.1) −3.6046 (1.1)

0 −2.0733 −1.9945 (3.8) −2.0338 (1.9) −2.0531 (1.0)

1 −1.1419 −1.0992 (3.7) −1.1206 (1.9) −1.1310 (1.0)

uz

z = 0

−1 21.134 20.823 (1.5) 20.987 (0.7) 21.055 (0.4)

0 13.095 12.918 (1.4) 13.012 (0.6) 13.050 (0.3)

1 7.7749 7.6602 (1.5) 7.7207 (0.7) 7.7457 (0.4)

z = 1

−1 28.412 28.076 (1.2) 28.249 (0.6) 28.322 (0.3)

0 16.568 16.384 (1.1) 16.480 (0.5) 16.519(0.3)

1 9.4808 9.3593 (1.3) 9.4229 (0.6) 9.4492 (0.3)

The numbers in parenthesis show the percentage error with respect to the reference solution. The displacements are given on bottom and
top surfaces at location x = y = 0.75 m. All displacement values are given in 10−5.

The displacement values at two above-mentioned locations were also plotted versus
material parameter p, and shown in Figure 3 for boundary condition case SSSS. In this
figure, the line graphs show the present solution, while the solid dots show the reference
solutions given in [24].
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Figure 3. The displacement components at two locations (x, y, z) = (0.75, 0.75, 0) and (0.75, 0.75, 1)
versus material parameter p for Example 1 considering boundary conditions SSSS; the reference
solution given in (Pan 2003) [24] is shown by solid dots.

The displacements ux, uy and uz for boundary conditions CCCC and CSFF were also
calculated in a similar manner and were plotted for the full range of material parameter p
at the above-mentioned points, and are shown in Figures 4 and 5. This example revealed
that the PGD technique made it possible to obtain the system performance for the full
range of a material parameter instead of considering some specific values.

To obtain a simple estimate for the computational advantages of the PGD technique
versus traditional mesh-based methods (e.g., FEM), it should be mentioned that for the
coarsest grid in the present example, we had {21× 21× 11× 11} nodal points (see Table 4).
In the traditional mesh-based methods, such a grid would lead to 53361 nodes and its
computational complexity would be of the order of O(533612), whereas, in the PGD
technique, the computational complexity would be of the order of O(212) + O(212) +
O(112) +O(112). This considerable reduction in computational costs was a direct result of
the reduced order modeling that reduced a 4D problem into a set of 1D problems.

Figure 4. The displacement components at two locations (x, y, z)=(0.75, 0.75, 0) and (0.75, 0.75, 1)
versus material parameter p for Example 1 considering boundary conditions CCCC.
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Figure 5. The displacement components at two locations (x, y, z)=(0.75, 0.75, 0) and (0.75, 0.75, 1)
versus material parameter p for Example 1 considering boundary conditions CSFF.

6.2. Example 2

For the second validation example, the benchmark problem presented in [19] was
considered. In this problem, a unidirectionally reinforced high-modulus graphite epoxy
composite FGM plate of size Lx × Ly × Lz, as shown in Figure 1, was considered. Two
cases of fiber orientation were studied. In the first case, the reinforcements were placed
along the x axis (i.e., 0◦), and in the second one, were placed along the y axis (i.e., 90◦). The
volume fraction of the fibers, V f , was considered varying with respect to the x axis, with
symmetry about the mid span of the plate, as follows:

V f = V f
min +

(
V f

max −V f
min

)
w(p) (23)

w(p) = 4(2p− 1)
(

x
Lx

)2
− 4(2p− 1)

(
x

Lx

)
+ p (24)

where V f
min and V f

max are the minimum and maximum values of the fiber volume fraction,

respectively. The values V f
min = 0.1 and V f

max = 0.7 were assumed from the practical point
of view. The weighting function w(p) determined the distribution of the fiber volume
fraction across the plate in terms of the material parameter p ∈ [0, 1], which controlled the
distribution. The distribution given in Equations (23) and (24) was a generalization of a
simpler form that has been considered in other works such as [19,25–27].

The two cases of fiber orientations, i.e., 0◦ and 90◦, are schematically shown in Figure 6
for two specific cases of material parameters p = 0 and p = 1. As was visible in this figure,
the fiber volume fraction at the plate mid-span was greater than either sides for the extreme
case p = 0. This condition was reversed for another extreme case p = 1.

The engineering elastic constants of the components of the unidirectional high-
modulus graphite epoxy composite are given in Table 5. For the fiber phase, the subscripts
L and T stand for the fiber longitudinal and transverse directions, respectively. For the
matrix phase, an isotropic behavior was considered.

To obtain the macroscopic engineering elastic constants of the composite materials,
there were several micromechanics relations given in the literature. In the present example,
we used the Halpin–Tsai relation, which has been widely accepted as sufficiently accurate
and simple to use. The Halpin–Tsai relation was given below, and more details about this
micromechanical model can be found in references such as [28].
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EL = E f
LV f + EmVm

ET = Em 1 + 2λV f

1− λV f where λ =
E f

T − Em

E f
T + 2Em

GLT = Gm 1 + λV f

1− λV f where λ =
G f

LT − Gm

G f
LT + Gm

GTT = Gm 1 + λV f

1− λV f where λ =
G f

TT − Gm

G f
TT + Gm

νLT = ν
f
LTV f + νmVm

νTL = νLT
ET
EL

νTT =
ET

2GTT
− 1

(25)

where the superscripts f and m show that those engineering constants referred to the fiber
phase and matrix phase, respectively.

Table 5. Engineering elastic constants of constitutive materials for Example 2.

Fiber

E f
L 388 GPa

E f
T 7.17 GPa

G f
LT 6.79 GPa

G f
TT 2.41 GPa

ν
f
LT 0.230

ν
f
TT 0.486

Matrix
Em 3.5 GPa
Gm 1.3 GPa
νm 0.35

Figure 6. Schematic representation of fiber orientations and volume fraction distributions for the
FGM composite plate considered in Example 2; (a) 90◦, p = 0; (b) 90◦, p = 1; (c) 0◦, p = 0; (d) 0◦,
p = 1.
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After obtaining the engineering constants using the Halpin–Tsai model as given in
Equation (25) and volume fraction given in Equation (23), the elements of the elasticity
matrix Ce f (x) could be obtain as regular for orthotropic materials (e.g., refer to [21]). Note
that, for each case of fiber orientations, 0◦ and 90◦, the L and T directions in Equation (25)
should be aliened in proper x and y directions.

The loading of the plate was similar to the previous example, and a sinusoidal traction
in the z direction was distributed over the top surface of the plate. Three cases of boundary
conditions, SSSS, CCCC and CSFF, were applied on all boundaries similar to the previous
example, and its details are given in Table 2. The problem was solved for the square plate,
Lx = Ly, considering a different plate thickness, Lz. To present the displacements, the
following relation was used to make them dimensionless:

ūz =

(
100Em

qmaxLzS4

)
uz (26)

where S = Lx/Lz is the thickness ratio and qmax is the maximum load intensity (see
Equation (21)).

To validate the results, the dimensionless deflection ūz was computed at the center
point of the plate at location (Lx/2, Ly/2, Lz/2) for boundary conditions SSSS and material
parameter p = 0. These values are given in Table 6. To study the effect of grid sizes, four
different combinations of 1D grid sizes in each space direction were selected and shown at
the top of each column in Table 6. In addition, in this table, the closed-form solutions given
in [19] were compared with the present values. The percentage error with respect to the
reference solution was shown in parenthesis next to each values. The results showed an
excellent agreement between PGD results and reference solutions.

Table 6. The vertical dimensionless displacement, ūz, for material parameter p = 0, for Example 2, for different thickness
ratios, S, obtained using different grid sizes.

θ S Ref. [19]
Present

{21 × 21 × 11 × 11} {41 × 41 × 11 × 11} {61 × 61 × 11 × 11} {61 × 61 × 21 × 21}

0◦

5 0.752 0.742 (1.3) 0.746 (0.8) 0.746 (0.7) 0.750 (0.3)

10 0.329 0.324 (1.5) 0.327 (0.7) 0.327 (0.6) 0.328 (0.3)

20 0.209 0.203 (2.7) 0.207 (0.8) 0.208 (0.5) 0.208 (0.3)

90◦

5 0.576 0.570 (1.0) 0.572 (0.7) 0.572 (0.7) 0.575 (0.2)

10 0.27 0.267 (0.9) 0.269 (0.5) 0.269 (0.4) 0.270 (0.1)

20 0.186 0.183 (1.6) 0.185 (0.3) 0.186 (0.1) 0.186 (0.0)

The numbers in parenthesis show the percentage error with respect to the reference solution.

The dimensionless deflection, ūz, at the plate center point was also plotted versus
material parameter p and shown in Figure 7 for boundary condition cases SSSS. In this
figure, the line graphs show the present solution, while the solid dots show the reference
solutions given in [19].

Figures 8 and 9 also show the dimensionless displacement ūz with respect to material
parameter p for boundary condition cases CCCC and CSFF, respectively.
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Figure 7. The dimensionless displacement, ūz, at locations (x, y, z) = (Lx/2, Ly/2, Lz/2) versus
material parameter p for Example 2 considering boundary conditions SSSS; the reference solution
given in (Ravindran 2019) [19] is shown by solid dots.

Figure 8. The dimensionless displacement, ūz, at locations (x, y, z)=(Lx/2, Ly/2, Lz/2) versus material
parameter p for Example 2 considering boundary conditions CCCC.

Figure 9. The dimensionless displacement, ūz, components at locations (x, y, z)=(Lx/2, Ly/2, Lz/2)
versus material parameter p for Example 2 considering boundary conditions CSFF.
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6.3. Example 3

In this example, the parametric study and material distribution design (optimization)
of a tri-directional ceramic–metal FGM thick plate were considered. The parametric study
made it possible to use any optimization techniques to find the best material distribution
based on a failure theory. The plate dimensions and coordinate system are shown in
Figure 1 considering Lx = Ly = 3 and Lz = 1. Here, two material parameters were
considered to parameterize the material distribution in all spacial directions x, y and z.
Figure 10 shows that the material parameters p1 ∈ [0, 1] and p2 ∈ [0, 1] gave the ceramic
volume fraction Vc at six corners of the plate. The remaining two corners were maintained
at Vc = 0. A tri-linear distribution was considered for Vc(x, y, z) for internal points of the
plate as given below.

Vc(x, y, z) = w1(x, y, z)p1 + w2(x, y, z)p2 (27)

w1(x, y, z) = (1− z)(x + y− xy) (28)

w2(x, y, z) = z(x + y− xy) (29)

where, w1 and w2 are distribution functions. The material parameters combination p1 =
p2 = 0 corresponds to the homogeneous metallic phase, whereas any other combinations
of p1 and p2 correspond to a gradual change of material characteristics in the x, y and
z directions.

Figure 10. Material parameters for Example 3.

The engineering constants for ceramic and metal phases are given in Table 7. The
mixture rule was used to obtain the engineering elastic constants (Young modules and
Poisson ratio) at each point of the plate using the above-explained ceramic volume fraction
distribution. After that, the elements of elasticity tensor Ce f could be obtained using the
resulting engineering constants. In addition, the tensile and compressive allowable stresses
are also given in Table 7 for constitutive materials. The mixture rule was also used to obtain
the resulting allowable tensile and compressive stresses at each point.

Table 7. Engineering material constants for Example 3.

Ceramic

Ec 348.43 GPa
νc 0.24
Sc

tns 60 MPa
Sc

cmp 344.5 MPa

Metal

Em 201.04 GPa
νm 0.3262
Sm

tns 215 MPa
Sm

cmp 215 MPa
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A uniform traction tz = 107 was applied at the top surface, while a traction-free condi-
tion was considered for the other natural boundaries. The essential boundary condition
CFSF was considered here, and its details are given in Table 2.

The parametric study was performed here based on two material parameters p1 and
p2. Therefore, the problem space consisted of three geometrical coordinates and two
material parameters. In other words, the elasticity problem was solved in a 5D problem
space (x, y, z, p1, p2) using the PGD technique by reducing it into a set of 1D sub-problems,
each of them in a single direction of the problem space.

Using the PGD technique, the separated representation of the displacements was
obtained. The first six modes of displacements ux, uy and uz versus coordinates x, y, z, p1
and p2 are shown in Figure 11 for the above-mentioned loading and boundary conditions.
The vertical axes in this figure show the 1D functions X(x), Y(y), Z(z), P1(p1) and P2(p2)
(see Equation (8)).

Figure 11. The first six modes of displacement components (ux, uy, uz) with respect to space coordi-
nates (x, y, z, p1, p2) for Example 3.

Now, all displacement components were available and it was possible to calculate the
strain and stress fields using Equations (3) and (2), respectively.

After calculating the stress components and, also, the allowable stresses at each point
of the problem space Ω, a failure criteria could be used to evaluate the state of the material
at each point. To perform this, here, the Coulomb–Mohr static failure criteria, which is
commonly used for materials with different compressive and tensile behaviors, was used
to obtain the factor of safety due to failure at each point. The Coulomb–Mohr factor of
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safety was defined as below.

η(x, y, z, p1, p2) =
Scmp

m−1
2 (σ1 + σ2 + σ3) +

m+1
2

√
1
2 ((σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2)

(30)

where m = Scmp/Stns. Sten and Scmp are allowable tensile and compressive stresses for any
point of FGM plate based on the material properties given in Table 7 and volume fraction
given in Equation (27). σ1, σ2 and σ3 are principal stresses.

For each material parameter combination (p1, p2), it was possible to find the minimum
value of the factor of safety as follows:

ηmin(p1, p2) = min(η(x, y, z, p1, p2))x,y,z (31)

Figure 12 shows the contour plot of the distribution of the minimum factor of safety
ηmin over the full range of material parameters p1 ∈ [0, 1] and p2 ∈ [0, 1]. This figure
shows that ηmin had a maximum value of ηmin = 1.57 near the location (p1, p2) = (0.3, 0.9).
In other words, this combination of material parameters showed the optimum material
distribution regarding the selected failure criteria and the material parameterization.

Figure 13 shows the contour plot of the volume fraction, Vc, for the above-mentioned
optimum material distribution. The plate deformed configuration (with exaggerated
displacements) and contours of displacement field uz are shown in Figure 14 for the case of
the optimum material distribution.

Figure 12. Contour plot of the field of minimum factor of safety, ηmin(p1, p2), for the full range of
material parameters p1 and p2 for Example 3.

Figure 13. Contour plot of volume fraction distribution Vc(x, y, z) for the optimum material parame-
ters (p1, p2) = (0.3, 0.9) for Example 3.
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Figure 14. Deformed configuration (not scaled) and contour plot of displacement uz for the optimum
material parameters (p1, p2) = (0.3, 0.9) for Example 3.

7. Conclusions

PGD makes advanced parametric analyses possible, by considering parameters as
model extra-coordinates, while circumventing the resulting curse of dimensionality by
using separated representations. When applying a separated representation of the field
functions, the solution of a high-dimensional boundary value problem was reduced to a
sequence of low dimensional (1D) sub-problems. This reduced computational costs signifi-
cantly and allowed to deal with high-dimensional engineering problems in a reasonable
runtime on office computers. This technique would be especially very helpful in the case of
thick FGM plate bending problems, in which the material distribution design/optimization
is a big challenge. In this context, plate bending theories suffered from the lack of accuracy
in considering shear effects and using the 3D theory of elasticity was computationally
expensive. In the present work, PGD was applied, for the first time, in a parametric study
and material distribution design/optimization of FGM thick plates considering any types
of loading and boundary conditions.
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