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Abstract

This study addresses time-dependent orders that lead to recursive representations

based on a Max-Min configuration. The article introduces and analyzes a structure

that is combined with a time-varying multiple discounts. This setup contributes

to the understanding of the much discussed present biases. A representation result

for robust orders is also presented.
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1. Introduction

1.1 Motivation and Results

As a result of the evidence documented by numerous laboratory experiments, a

large body of recent literature on the evaluation of utility streams has focused on

the time inconsistencies and present biases. Naturally, this leads to a consideration

of time-dependencies in the preferences order of an economic agent.

In this spirit, we here assume that the economic agent is characterized by a set of

temporal evaluation orders (�T )∞T=, with �T denoting the decision maker’s prefer-

ence after T days, assuming he or she behaves in a time-consistent manner, in the

sense that the evaluation at time T never results in a disagreement with its present

and future if these two are in agreement with one another.

The analysis begins by considering a list of standard axioms in the temporal dis-

counting literature. The preferences orders can be represented by index functions

that are constantly additive and homogeneous of degree one. From this point on-

ward, the article follows two directions. The first direction tries to find an alternative

to classical representations and to clarify the conditions under which such preferences

are temporally consistent. The second direction is to examine whether temporal bias

preferences can be combined with multiple discount rates configurations that have

gained increasing popularity in the recent literature1.

By assuming that the temporal orders do not depend on the head of the sequences

and, crucially, that they satisfy a consistency property that indicates some agree-

ment among them—in other words, a strong monotonicity property—, the temporal

evaluation can be represented as a recursive convex sum between the utility level at

that date and the evaluation of the utility stream at the subsequence date. Inter-

estingly, the weighting parameters of this convex sum are not constant and depend

on the very nature of that stream. In other words, there is a possibility of multiple

choices for the discount rate that is used to evaluate the utility stream. In this

context, two configurations emerge; a configuration in which the economic agent is

more affected by the losses2 than by the gains and, conversely, a configuration in

which the joy of a gain is greater than the harm of a loss.

1See Chambers and Echenique (2018) or Drugeon et al. (2019).
2Usually called averse at loss behaviour.
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It is to be stressed that the possibility of multiple choices for discount rates does

not lead to contradiction with temporal consistency. Indeed, a generalization of

that property may be obtained by adding a stability condition, with the direct

consequence that the set of possible discount rates does not change over time and

does not affect the presence or or absence of loss aversion behavior.

Considering the scope for temporal biases, some behaviour shall be called as present

biased when the temporal distance between two successive dates is decreasing over

time. This means that the optimal discount factor is increasing. This is a conse-

quence of an axiom that constrains the range of admissible time-dependent orders.

In other words, the temporal distance that is perceived between two successive dates

in an immediate future is larger than the distance that is perceived between two

successive dates in a more remote future. The study concludes by providing a rep-

resentation result, i.e., a characterization of the set of possible discount rates being

used to evaluate inter-temporal utility streams, be it with or without temporal bi-

ases.

1.2 Related Literature

To the best of our knowledge, the work that is closest to this work is the study by

to Wakai (2007). That article follows a decision theory approach based on multiple

priors Gilboa and Schmeidler (1989) applied to infinite utility streams. The author

examines on temporal orders and streams of lotteries. The core analysis is based

on a time-variability aversion condition that can be considered an extension of an

ambiguity aversion property to an inter-temporal context. He provides an insight-

ful account of smoothing behaviors in which the optimal discount is defined in an

maxmin recursive representation.

Also related to the current study with an approach based on the set of bounded

real sequences, Chambers and Echenique (2018) put forth an axiomatic approach

to multiple discounts. Recently, this approach was revisited and extended by Dru-

geon and Ha-Huy (2021b) in which, based on an alternative system of axioms, an

axiomatization of α-Maxmin criteria with multiple discounts is built on the set of

unanimous pre-orders.

As for the present bias dimension of this study, the most influential works on tem-

poral inconsistencies under the so-called quasi-hyperbolic discounting dates back to
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Phelps and Pollack (1968) and, more recently, the contributions of Laibson (1997)

and Frederick et al. (2002). Numerous experiments have supported the accuracy

of this formulation.

Montiel Olea and Strzalecki (2014) have proposed an axiomatic approach to the

quasi-hyperbolic discounting representation and, more generally, to present-biased

preferences. They suppose that, for any two equivalent future sequences, a patient

one and an impatient one, pushing both toward the present, will distort the prefer-

ences towards the impatient choice. It is to be emphasized that, by contrast, this

article assumes the present bias notion for every given date and not only for the

initial one. The index functions at that date are further determined by a set of

multiple discount rates. The present bias notation of this article incorporates thus

two separate parts; the first one relating to the upper bound of discount rates and

the second one relating to the lower bound of discount rates.

Finally, Chakraborty (2017) presented a generalized notion of present biases within

the Fishburn and Rubinstein (1982) approach, in which preferences are defined

based on the realization of a single outcome at a given date. Even though this

was based on an different approach from ours, his weak present bias axiom A4

shares some similarities with the decreasing temporal distance axiom B1 in our

article. Recently, Bich et al. (2021) extended the axiomatic approach of Chambers

and Echenique (2018) to a MaxMin representation that encompasses the quasi-

hyperbolic discounting in the literature. Following an alternative system of axioms,

Drugeon and Ha-Huy (2021b) provide an α-Maxmin presentation of the scope for

present biases.

1.3 Contents

This article is organized as follows. Section 2 details how the introduction of time-

dependencies in the preference order will result in a recursive representation. Sec-

tion 3 shows that adding structure may provide a new picture for multiple temporal

biases. Section 4, considering the robust orders, equips the analysis with a repre-

sentation result for time-dependent orders. Proofs are given in the Appendix.
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2. Basic Axioms and a Recursive Min-Max

Representation

2.1 Fundamentals, Basic Axioms, and the Construction

of an Index Function

This article introduces an axiomatic approach to the evaluation of infinite util-

ity streams in a discrete time configuration. In order to avoid confusion, the let-

ters x, y, z will be used for the sequences (of utilities) (xs)
∞
s=, (ys)

∞
s=, and (zs)

∞
s=

with values in R. The notations c1, c′1 will be used for the constant sequences

(c, c, c, . . .) and (c′, c′, c′, . . .). The notation 1 is simply the constant unitary se-

quence (, , , . . . ).

The space `∞ is defined as the set of real sequences (xs)
∞
s= such that sups≥ |xs| <

+∞. For every x ∈ `∞ and T ≥ , let x[,T ] = (x, x, . . . , xT ) denote its first T + 

components; and x[T+,∞) = (xT+, xT+, . . .) its tail starting from date T + , and

(z[,T ], x[T+,+∞)) = (z, z, . . . , zT , xT+, xT+, . . .). By convention, if T = −, let

(z[,T ], x[T+,∞)) = x.

As we will see in this article, a sequence
(
1[,T ],1

)
represents x such that x = x =

. . . = xT =  and xT+s =  for every s ≥ . The sequence
(
1[,T ], 1

)
represents

y such that y = y = . . . = yT =  and yT+s =  for every s ≥ . Similarly, the

sequence
(
1[,T ],−1

)
represents z such that z = z = . . . = zT =  and zT+s = −

for every s ≥ .

The preferences of the economic agent are characterized by a sequence of temporal

orders (�T )∞T=, being defined on the set of real bounded sequences `∞. The order�T
evaluates utilitiy sequences from time T . More precisely, given x, y ∈ `∞, the order T

makes a comparison between them while disregarding their heads x, x, . . . xT− and

y, y, . . . , yT−. Such a comparison is independent of what happens before period

T . The main properties and the relation between temporal orders are presented in

the following fundamental axiom.

Axiom F. For every T ≥ , the order �T satisfies the following properties:

(i) Completeness and transitivity For every x, y ∈ `∞, either x �T y or y �T x. If

x �T y and y �T z, then x �T z. Denote as x ∼T y the case in which x �T y
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and y �T x. Denote as x �T y the case in which x �T y and y �T x.

(ii) Monotonicity If x, y ∈ `∞ and xs ≥ ys for every s ≥ T , then x �T y.

(iii) Archimedeanity For x ∈ `∞, and constants c, c′ such that c1 �T x �T c′1,

there are  < λ, µ <  such that

(− λ)c1 + λc′1 �T x �T (− µ)c1 + µc′1.

(iv) Weak convexity For every x, y ∈ `∞, constant c and  < λ < ,

x �T y ⇔ (− λ)x+ λc1 �T (− λ)y + λc1.

(v) Head-insensitivity For T ≥ , x, y, z, z′ ∈ `∞,

x �T y if and only if (z[,T−], x[T,∞)) �T (z′[,T−], y[T,∞)).

(vi) Consistency For every x, y ∈ `∞, if xT ≥ yT and x �T+ y, then x �T y.

Conditions (i) to (iv) are commonly used in the temporal axiomatization literature.

Curious readers may find a careful analysis and comments on these in Chambers and

Echenique (2018). Combined with the non-triviality condition (there exist x and

y such that x �T y), they ensure the existence of an index function IT representing

the order �T . Such an index function is furthermore positively homogeneous and

constantly additive.

Observe that we do not exclude the possibility that, for some T , the temporal order

�T is trivial.3 Such a generalization is aimed at encompassing situations in which

the economic agent cares only about what happens before some fixed date but is

indifferent afterward. See de Andrade et al. (2021) for an interesting discussion

about this type of behavior. Throughout the article and when needed, we will make

precise the non-triviality property.

Condition (v), head-insensitivity, characterizes a core property of temporal orders.

The comparison by order �T between x and y is independent of what happens before

the date T . In other words, the values of x, x, . . . , xT− and y, y, . . . , yT− have

no effect on the comparison between x and y.

Condition (vi), consistency, is the most important one and establishes some agree-

ment between the temporal orders. It states that, an order �T never leads to a

3For every x, y ∈ `∞, x ∼T y.
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disagreement with its evaluations of the present and the future, if these two are to

agree with each other. This may also be considered a generalization of the mono-

tonicity property. It is interesting to remark that this intuitive and almost obvious

condition will play a key role in obtaining of a recursive representation with multiple

discount rates.

We will first present in Lemma 2.1 the main properties of the index functions. If

the order �T is non-trivial, it can be represented by an index function IT in the

sense that, x �T y if and only if IT (x) ≥ IT (y). More precisely, this index function

is defined as

IT (x) = sup
{
c ∈ R such that x �T c1

}
. (1)

The proof of parts (i) and (ii) of Lemma 2.1 can be found in Drugeon and Ha-Huy

(2021a), Lemma 2.1. As to part (iii), by the head insensitivity property, it is obvious

that the value of IT (x) does not depend on x, x, . . . , xT−.

Lemma 2.1. Assume axiom F and that the order �T is not trivial. Then this order

can be represented by index function IT in (1). This function satisfies the positive

homogeneity, constantly additive and head-insensitivity properties:

(i) IT (λx) = λIT (x), for every λ ≥ .

(ii) IT (x+ c1) = IT (x) + c, for every constant c ∈ R.

(iii) For every T ≥ , x, z ∈ `∞,

IT (z[,T−], x[T,∞)) = IT (x).

For the sake of simplicity, by convention, in the case in which the order �T is trivial,

the temporal index function IT will be defined as: IT (x) =  for every x ∈ `∞. To

end this subsection, as a remark, if the order �T is not trivial, from the monotonicity

property, for every x ∈ `∞ and a constant c, we have infs≥ xs ≤ IT (x) ≤ sups≥ xs

and IT (c1) = c.

2.2 A Recursive Representation

2.2.1 Asymmetry between Gains and Losses

Let χTg be the evaluation of a constant gain in the future when considered from time

T + onward, and let χT` denote the evaluation of a constant loss in the future when
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considered from time T +  onward. More precisely,

χTg = IT
(
1[,T ],1

)
,

χT` = −IT (1[,T ],−1).

It is obvious that both χTg and χT` belong to the interval [, ]. Two configurations

naturally come under consideration, namely those that correspond to the cases χTg ≤
χT` and χTg ≥ χT` . The first case represents loss aversion behavior, in which the loss

affects the economic agent more than the gain. The second case represents the

opposite behaviour.

Lemma 2.2 is an important step toward the establishment of a recursive formula

with multiple rates of discount. The evaluation at period T is a recursive convex

combination between the utility level at this time and the evaluation at period

T + . It is important to note that, the convex parameter is not a constant and

depends on the sequence at stake. If the future from period T +  onward is better

than the utility level at time T , then the convex parameter in use is χTg , the one

corresponding to a constant gain. In the opposite case, in which the future from

period T +  onward is worse, it is the parameter corresponding to a constant loss,

namely χT` , that is used.

Lemma 2.2. Assume axiom F. Assume also that the order �T is non-trivial. For

every x ∈ `∞,

(i) If xT ≤ IT+(x), then

IT (x) = (− χTg )xT + χTg IT+(x).

(ii) If xT ≥ IT+(x), then

IT (x) = (− χT` )xT + χT` IT+(x).

Corresponding to these two configurations, two recursive operators, namely min

and max, emerge. Proposition 2.1 presents one of the main results of this article.

It introduces the two recursive operators that, at each period T , chose the optimal

discount rates as a function of the utility streams.

Proposition 2.1. Assume axiom F. Assume also that the order �T is no trivial.

Let δT = min{χTg , χT` } and δT = max{χTg , χT` }.
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(i) If δT = χTg and δT = χT` , then:

IT
(
x
)

= min
δT≤δ≤δT

[(− δ)xT + δIT+(x)] .

(ii) If δT = χTl and δT = χTg , then:

IT
(
x
)

= max
δT≤δ≤δT

[(− δ)xT + δIT+(x)] .

At each date, the evaluation of a utility stream is based on a recursive convex sum

between the utility level at that date, and the evaluation at the subsequent date of

this stream. Hence, a multitude of choices is possible for the weighting parameters

of this convex sum.

2.2.2 An asymmetry between Head Insensitivity and Tail Insensitiv-

ity

With respect to earlier formulations in the literature, it is of interest to emphasize

the specificity of the scope for separability between time T and the past dates, which

is central to this study. Indeed, both the classical approach of Koopmans (1960) and

the more recent axiomatization of quasi-hyperbolic discounting due to Montiel Olea

and Strzalecki (2014) assume that the first or the first and second components of two

utility streams can be compared independently of their future components. Together

with stationarity or quasi-stationarity postulates on the preferences ordering, these

imply the existence of a unique discount rate for every day or every generation, such

a discount rate being constant for any T > 0 with stationarity postulate, or constant

from T =  onward with a quasi-stationarity postulate.

In contrast, the approach of this article postulates that the components of two utility

streams starting from a given date can be compared independently of their earlier

past components, which gives rise to the possibility of multiple discount rates.

The following example proves that, for multiple discount rates, neither the indepen-

dence nor the extended independence of Koopmans (1960) is satisfied. Hence, the

two approaches differ, be it in their formulation or in their predictions.

Example 2.1. Consider a configuration in which for any T ≥ , δT = ., δT = .

and the operator is min. For any T , the order �T is represented by

IT
(
x
)

= min
.≤δ≤.

[(− δ)xT + δIT+(x)] .

8



Consider the following two utility streams x = (, , , , . . .) and y = (., ., , , . . .).

Obviously, I
(
x
)

= , and hence, I(x) = ( − .) ×  + . ×  = .. Similarly,

since I(y) = , we have I
(
y
)

= ( − .) × . + . ×  = .. This implies

I
(
y
)

= (− .)× .+ .× . = .. Hence, x � y.

Consider now x′ = (, , ., ., . . .) and y′ = (., ., ., ., . . .). The two se-

quences x and y are changed by keeping the first two components intact. Since

y′ is a constant sequence, I(y
′) = .. For the same reason, x′ is constant from

T = , so I(x
′) = .. Calculus give I

(
x′
)

= (− .)×  + .× . = . and

I(x
′) = (− .)× + .× . = .. Hence, y′ � x′. The extended stationarity

property of Koopmans (1960) is therefore not satisfied.

2.2.3 Time-Variability Aversion and MaxMin Representation

It is to be stressed that, relying on a system of axioms based on time-variability

aversion, i.e., a generalization to an inter-temporal context of the well-known ambi-

guity aversion of Gilboa and Schmeidler (1989), Wakai (2007) provided an insightful

account of smoothing behaviors with gain/loss asymmetry that explicitly builds on

a related recursive representation with multiple discount rates and a min operator

for every time T . Combined with a stability property, the sets of discount rates over

time were proven by the author to have the same lower and upper bounds.

This application of an ambiguity aversion property leads to a maxmin representa-

tion, corresponding to a loss aversion configuration, in which the losses affect the

economic agent more than his or her gains. Based on a simpler set than the set of

lotteries but using only the consistency property, this article presents a more gen-

eral recursive representation with multiple discount rates, which encompasses the

configuration in Wakai (2007) as a special case.

Axiom S 1. For any constant c ∈ R, and utility streams x, y ∈ `∞,

(c, x) � (c, y) if and only if x � y.

Corollary 2.1. Assume axioms F and S1. Suppose that the order � is non-

trivial.

(i) For every T , δT = δ and δT = δ. Let δ and δ be respectively the former and

the later values of the discount rate. Either, for every T , the corresponding
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operator is min,

IT (x) = min
δ≤δ≤δ

[
(− δ)xT + δIT+(x)

]
,

or for every T , the corresponding operator is max,

IT (x) = max
δ≤δ≤δ

[
(− δ)xT + δIT+(x)

]
.

(ii) Assume that the convexity condition is satisfied: if x ∼ y, one has (/)x +

(/)y � x. Then for every T ,

IT (x) = min
δ≤δ≤δ

[
(− δ)xT + δIT+(x)

]
.

In Wakai (2007), it is proven that a stability condition is sufficient to ensure the

time-independency property of these rates. We remark that this condition is imposed

in (i) only on the present order � corresponding to T = . Under an additional

convexity property and for (ii), we obtain a maxmin representation for every period

or, in other words, the economic agent becomes averse to losses.

3. A Multiple Discount Formulation for

Present-Biased Preferences

3.1 An Alternative Understanding of Multiple Present

Biases

In the literature, present bias is commonly understood as a behavior in which, an

event that happens today affects the decision maker more than the same event

some day in the future. A gain (loss) today causes more happiness (unhappiness)

than the same gain or loss in the future. This is one of the main sources of time

inconsistencies : the decision maker may prefer some small amount of money (or

consumption good) today to a larger amount tomorrow, but that same small amount

tomorrow is less enjoyable than the same larger amount on the day after tomorrow.

This section examines such a phenomenon within the current multiple discount

setup. The following axiom is a move in that direction. As a result of the asymmetric

nature of gain and loss, an axiom consists of two separate parts. The first part says
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that the delay of a perpetual gain to the next day and at time T diminishes a

decision maker’s happiness more than it would do at time T + or for other dates in

the future of T . The second part introduces another behavior: delaying a perpetual

loss at date T makes the decision maker happier than delaying the same loss in the

future of T .

Axiom B 1. For any T ≥  and  < c < ,

(i) If (1[,T ],1) ∼T c1, then (1[,T+],1) �T+ c1.

(ii) If (−c)1 ∼T (1[,T ],−1), then (−c)1 �T+ (1[,T+],−1).

The supremum values—the greatest of the minorants—of the parameter c in parts

(i) and (ii) can be used to determine the perception of the temporal distance between

date T and date T + . These extremum values are determined by the evaluation

at date T of the two sequences (1[,T ],1) and (1[,T ],−1). Axiom B1 means that

this temporal distance is decreasing as a function of T .4

Delaying gain and loss affects the decision maker more at time T than at time T +.

Indeed, at time T , delaying the gain for one day diminishes the welfare value from

 to c. Delaying the same gain at time T +  will diminish the welfare from  to

some value c′ ≥ c. Similarly, delaying a loss at time T increases the welfare value

from − to −c, which is a higher welfare increases than that obtained by delaying

the same loss at time T + , namely from − to some value (−c′) smaller than −c.

In other words, the temporal distance that is perceived between dates T and T + 

is larger than the one that is perceived between dates T +  and T + : at date

T , the evaluation of a constant sequence from tomorrow onward is lower than its

corresponding evaluation at date T + . This intuition is detailed in the following

statement:

Proposition 3.1. Assume axioms F and B1. Assume also that �T is non-trivial

for every T . Then the two sequences
{
δT
}∞
T=

and
{
δT
}∞
t=

are increasing: δT ≤ δT+

and δT ≤ δT+.

The orders {�T}∞T= are hence to be understood as being present biased.

4Axiom 10 in Montiel Olea and Strzalecki (2014) corresponds to the second part of axiom B1.
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3.2 A Multiple Discount Acception for Generalized Quasi-

Hyperbolic Preferences

The following quasi-stationarity axiom, which is similar to axiom 4 in Montiel Olea

and Strzalecki (2014), implies a generalization of quasi-hyperbolic discounting in

that the preferences satisfy a stationarity axiom for every T ≥ .

Axiom B 2. For any constants c, c′ ∈ R and utility streams x, y ∈ `∞,

(c, c′, x) � (c, c′, y) if and only if (c, x) � (c, y).

Under axiom B2, one can establish a multiple discount rates version of quasi-

hyperbolic discounting.

Proposition 3.2. Assume axioms F and B2. Assume also that, for every T , the

order �T is non-trivial.

(i) For any T ≥ , δT = δ and δT = δ.

(ii) Adding axiom B1, one obtains δ ≤ δ and δ ≤ δ.

Although for each date T , there exists a set of possible discount rates, the quasi-

stationarity axiom B2 ensures that these sets are the same for any date T ≥ . As

this is clarified in Proposition 3.2(ii), combined with axiom B1, the set of discount

rates associated with date T =  has smaller lower and upper bounds that the sets

associated with T ≥ .

Remark 3.1. This result provides an interesting generalization of the quasi-hyperbolic

discounting of Phelps and Pollack (1968) and Laibson (1997). Consider the case

in which for any T , δT = δT = δT with δ ≤ δ = δ.5 The comparison between two

inter-temporal streams becomes: x � y if and only if

(− δ)x + δ

(
∞∑
s=

(− δ)δsx+s

)
≥ (− δ)y + δ

(
∞∑
s=

(− δ)δsy+s

)
,

which is equivalent to

x + β

(
∞∑
s=

δsxs

)
≥ y + β

(
∞∑
s=

δsys

)
,

for β = [(− δ)δ]−δ(− δ) ≤ .

5This property can be obtained by adding the following assertion: x � y if and only if x+ z �
y + z for any z ∈ `∞. In decision theory, this is the famous independence property that rules out

ambiguity.
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Bich et al. (2021) also propose a multiple quasi-hyperbolic discounts and a MaxMin

representation of the index function, with a similar set of possible discount rates

(δ, δ) ∈ [δ, δ]× [δ, δ]. Relying on a different approach and an alternative axiomat-

ical system, Drugeon and Ha-Huy (2021a) present an α−Maxmin representation

with discount rates satisfying a temporal stability property from a certain date in

the future.

The core difference from the current work is that, whereas in Bich et al. (2021) and

Drugeon and Ha-Huy (2021a), the optimal discount rates are chosen at the begin-

ning of the evaluation, in this article and as a result of the recursive representation,

they are chosen in each period, by comparing the utility values of the present with

those of the future. Moreover, in this article, a present bias property is present, with

the lower and upper bounds of possible sets increasing (or at least, not decreasing)

over time.

4. The Robust Temporal Pre-orders �∗T

In decision theory, the classical contribution of Gilboa and Schmeidler (1989) opened

the way for a huge literature in which Savage’s famous sure-thing principle is not

satisfied. Without this property, the decision of an economic agent is regarded as

being based on a set of probabilities on the possible set of states of nature. Recently,

this idea has been developed in the temporal discounting literature. To cite some

contributions, the work of Chambers and Echenique (2018) characterizes conditions

under which there are multiple possible discount rates. Bich et al. (2021) and

Drugeon and Ha-Huy (2021a), using different approaches, extended to a situations

encompassing temporal bias phenomena.

The purpose of this section is to follow the same idea and to give a characterisation

of the set of possibles discount rates being used to evaluate inter-temporal utility

streams.

In the same spirit as Ghirardato et al. (2004), we define the robust time-dependent

order �∗T as follows: x �∗T y if and only if, for any z, x + z �∗T y + z. Proposition

4.1 will then provide a characterization of the weight set ΩT that represents the ro-

bustness order �∗T. A utilities sequence x is considered robustly better than another

one y if under every time discounting evaluation belonging to ΩT , the value of x is

13



greater than that of y.

As a preparation step, we present the following axiom.

Axiom A 1. Tail-insensitivity For any x, y, z ∈ `∞, ε > , there exists a T such

that, for any s ≥ T,(
x[,T+s], y[T+s+,∞)

)
�T

(
x[,T+s], z[T+s+,∞)

)
− ε1.

The tail-insensitivity condition implies that for any x, y ∈ `∞,

lim
s→∞

IT
(
x[,T+s], y[T+s+,∞)

)
= IT (x).

The usual conditions in the literature typically assume that the effect of the tail

utilities converges to zero, for example the continuity at infinity of Chambers and

Echenique (2018). Under the tail-insensitivity property, every temporal weight

system belongs to the set `.
6

Proposition 4.1 then equips the analysis with a representation of the weight set ΩT.

Proposition 4.1. Assume axiom F. Assume that either for every T , the corre-

sponding operateur is min, or for every T , the corresponding operator is max. Then,

if the order �T is non-trivial, the weights set ΩT is the convex hull of the set{(
− δT, δT(− δT+), δTδT+(− δT+), . . . , δTδT+ . . . δT+s(− δT+s+), . . .

)}
,

where δT+s ∈
{
δT+s, δT+s

}
for any s.

It is well known in the literature that, besides the initial order �T , there exists

a robust or unanimous pre-order, defined on a set of linear index functions. A

given utility stream is robustly better than another one if such a comparison is

unanimous among a set of linear orders associated with the initial order. Proposition

4.1 provides a clear and precise description of this set.

A. Proofs for Section 2

A.1 Proof of Lemma 2.1

Suppose that the order �T is non-trivial.

6As an illustration, consider the order represented by the index function I(x) = ( −
δ)
∑∞

s= δ
sxs, with some  < δ < .
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(i)-(ii). A proof for the existence of index function IT with properties described in

the statement of this proposition can be found in Drugeon and Ha-Huy (2021a),

proof of Lemma (2.1).

Part (iii) is a direct consequence of head-insensitivity condition. QED

A.2 Proof pf Lemma 2.2

Fix x ∈ `∞. To simplify the exposition, let c = IT+

(
x
)
. By consistency property,

we have x ∼T (x[,T ], c1). Equivalently, IT
(
x
)

= IT
(
x[,T ], c1

)
. We recall that

χTg = IT (1[,T ],1).

From the constant additive property,

IT (1[,T ],−1) + IT (1) = IT (1[,T ], ).

Since the order �T is non-trivial, IT (1) = . This implies

χT` = −IT (1[,T ],−1) = − IT (1[,T ], ).

Consider the case xT ≤ c. From head-insensitivity property,

IT
(
x
)

= IT
(
x[,T ], c1

)
= IT

(
xT1[,T−], xT , c1

)
= xT + IT

(
1[,T ], (c− xT )1

)
= xT + (c− xT )IT (1[,T ],1)

=
(
− IT (1[,T ],1)

)
xT + IT (1[,T ],1)c

= (− χTg )xT + χTg c.

In the case where xT ≥ c, with head-insensitivity property:

IT
(
x
)

= IT
(
x[,T ], c1

)
= IT

(
(xT − c)1[,T−], xT − c, 1

)
+ c

=
(
xT − c

)
IT (1[,T ], 1) + c

= IT (1[,T ], )xT +
(
− IT (1[,T ], 1)

)
c

= (− χT` )xT + χT` c.

QED
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A.3 Proof of Proposition 2.1

Suppose that χTg ≤ χT` , or equivalently, IT (1[,T ],1) + IT (1[,T ], 1) ≤ . We have

δT = χTg = IT (1[,T ],1),

δT = χT` = − IT (1[,T ], 1).

Using Lemma 2.2, in the case xT ≤ c,

IT
(
x
)

= (− δT )xT + δT IT+(x).

Since xT ≤ c, it is easy to verify that for every δ ≥ δT ,

(− δT )xT + δT c ≤ (− δ)xT + δc.

Hence,

IT (x) = min
δT≤δ≤δT

[(− δ)xT + δIT+(x)] .

Consider the case xT ≥ c. Always by Lemma 2.2, we have

IT
(
x
)

= (− δT )xT + δT IT+(x).

Since xT ≥ c, it is easy to verify that for every δ ≤ δT ,

(− δT )xT + δc ≤ (− δ)xT + δc.

Hence,

IT (x) = min
δT≤δ≤δT

[(− δ)xT + δIT+(x)] .

Now, suppose that χTg ≥ χT` , or equivalently, IT (1[,T ],1) + IT (1[,T ], 1) ≥ . We

have

δT = χT` = − IT (1[,T ], 1),

δT = χTg = IT (1[,T ],1).

Using the same arguments as in the first part of the proof, we obtain:

IT (x) = max
δT≤δ≤δT

[
(− δ)xT + δIT+(x)

]
,
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which establishes the statement. QED

A.4 Proof of Corollary 2.1

(i) Fix any T ≥ . Suppose that (1[,T+],1) ∼T+ c1. By head-insensitivy prop-

erty, we have (1[,T+],1) ∼T+ (1[,T ], c1).

Hence, by consistency property, (1[,T+],1) ∼ (1[,T ], c1). By axiom S1, this im-

plies (1[,T ],1) ∼ (1[,T−], c1), which, by head-insensitity property, is equivalent

to (1[,T ],1) ∼T c1. Hence χTg = χT+
g .

Using the same arguments with c such that (1[,T+],−1) ∼T+ (−c)1, we have

χT` = χT+
` .

The sequences {χTg }∞T= and {χT` }∞T= being constants through time, for any T ≥ ,

δT = δ and δT = δ. Moreover, this implies that either for every T , χTg ≤ χT` , or

for every T , χTg ≥ χT` . The statement in Corollary 2.1 is proved.

(ii) This is a direct consequence of the convexity property, which implies that the

operator corresponding to T =  is min. The details of the argument can be found

in Gilboa and Schmeidler (1989) or Wakai (2007). The rest follows part (i) of this

Corollary.

B. Proofs for Section 3

B.1 Proof of Proposition 3.1

Recall that, for any T ,

δT = min
{
IT (1[,T ],1), − IT (1[,T ], 1)

}
,

δT = max
{
IT (1[,T ],1), − IT (1[,T ], 1)

}
.

From axiom B1, both of the two sequences {IT (1[,T ],1)}∞T= and {−IT (1[,T ], 1)}∞T=

are increasing. This in its turn implies that the two sequences {δT}∞T= and {δT}∞T=

are also increasing.

B.2 Proof of Proposition 3.2

(i) Fix any T ≥ . Suppose that (1[,T+],1) ∼T+ c1. By head-insensitivy prop-

erty, we have (1[,T+],1) ∼T+ (1[,T ], c1).

Hence, by consistency property, (1[,T+],1) ∼ (1[,T ], c1). By axiom B2, this im-
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plies (1[,T ],1) ∼ (1[,T−], c1), which, by head-insensitity property, is equivalent

to (1[,T ],1) ∼T c1. Hence χTg = χT+
g .

Use the same arguments, one gets χT` = χT+
` . Then for any T ≥ , δT = δ and

δT = δ.

(ii) The second part is a direct consequence of the present bias property. QED

C. Proofs for Section 4

C.1 Proof of Proposition 4.1

First, recall that the dual space of `∞ , i.e., the set of bouneded real sequences can

be decomposed into the direct sum of two subspaces, ` and `d: (`∞)∗ = `⊕`d. The

subspace ` satisfies σ-additivity property. The subspace `d, the disjoint complement

of `, is the one of finitely additive measures defined on N. More precisely, for each

measure φ ∈ `d, for any x ∈ `∞, the value of φ · x depends only on the distant

behaviour of x, and does not change if there are only a change in a finite number of

values xs, s ∈ N.

Define P∗T as the positive polar cone of PT =
{
x ∈ `∞ such that x �∗T 1

}
in the

dual space
(
`∞
)∗

:

P∗ =
{

P ∈ (`∞)∗ such that P · x ≥  for every x �∗T 1
}
.

Observe that by the very definition of the order �∗, P is convex and separable by

the vector −1, the cone P∗ does not degenerate to {1}. We have x �∗T y if and

only if P · x ≥ P · y for every P ∈ PT .

For each P ∈ P∗, define

π(P) =


P · 1
P.

Since x �∗T 1 for every x ∈ `∞ satisfying xs ≥  for all s, it follows that P · x ≥ 

for every x such that xs ≥  for every s.

Now, we begin the main part of the proof.

Without loss of generalisation, we have only to prove Proposition 4.1 for T = .

Consider the case where every operator is min. For T ≥ ,

IT
(
x
)

= min
δT≤δ≤δT

[(− δ)xT + δIT+(x)] .
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We have

I(x) = min
δ≤δ≤δ,...,δT≤δT≤δT

{
(− δ)x + δ(− δ)x + . . .+ δδ . . . δT−(− δT )xT

+ δδ . . . δT IT+(x)
}
. (2)

Observe that

lim
T→∞

δδ . . . δT = .

Indeed, consider some value c > . Using (), it is easy to verify that

I
(
1[,T ], (−c)1

)
= (δδ . . . δT )× (−c).

By tail-insensitivity property, one has

lim
T→∞

I
(
1[,T ], (−c)1

)
= ,

which implies that

lim
T→∞

δδ . . . δT = .

Let ΩT is the convex hull of the set{(
− δT, δT(− δT+), δTδT+(− δT+), . . . , δTδT+ . . . δT+s(− δT+s+), . . .

)}
,

where δT+s ∈
{
δT+s, δT+s

}
for any s.

Since limT→∞ δδ · · · δT = , we verify that Ω ⊂ `.

Now, consider some sequence x ∈ `∞. First, we prove that

I(x) = inf
ω∈Ω

(ω · x).

Denote by {δ∗T}∞T= the sequence of discount rates such that for every T ≥ ,

IT
(
x
)

= (− δ∗T )xT + δ∗T IT+(x).

Recall that

I(x) = (− δ∗)x + δ∗(− δ∗)x + . . .+ δ∗δ
∗
 . . . δ

∗
T−(− δ∗T )xT + δ∗δ

∗
 . . . δ

∗
T IT+(x).

Let T converges to infinity, since δ∗δ
∗
 . . . δ

∗
T converges to zero, we have

I(x) = lim
T→∞

(
(− δ∗)x + δ∗(− δ∗)x + . . .+ δ∗δ

∗
 . . . δ

∗
T−(− δ∗T )xT

)
.
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Assume that I(x) > infω∈Ω(ω · x). Then there exists a sequence {δT}∞T= such that

for every T , δT ≤ δT ≤ δT , and

I(x) = lim
T→∞

(
(− δ∗)x + δ∗(− δ∗)x + . . .+ δ∗δ

∗
 . . . δ

∗
T−(− δ∗T )xT

)
> lim

T→∞

(
(− δ)x + δ(− δ)x + . . .+ δδ . . . δT−(− δT )xT

)
.

Hence, for T sufficiently large, one gets

(− δ∗)x + δ∗(− δ∗)x + . . .+ δ∗δ
∗
 . . . δ

∗
T−(− δ∗T )xT + δ∗δ

∗
 . . . δ

∗
T IT+(x)

> (− δ)x + δ(− δ)x + . . .+ δδ . . . δT−(− δT )xT + δδ . . . δT IT+(x),

a contradiction with ().

Let P = π(P), with P is defined in the first part of the proof. The set P

represents the weights set corresponding to the robuste order �∗. We have to prove

that P = Ω.

If Ω is not a subset of P, then there exists x �∗ 1 such that ω · x < , for some

ω ∈ Ω. This implies I(x) < : a contradiction. Hence, Ω ⊂ P.

Now, assume that for x, y ∈ `∞, we have ω · x ≥ ω · y for every ω ∈ Ω. It is easy

to verify that for any z ∈ `∞,

I(x+ z) = inf
Ω

ω · (x+ z)

≥ inf
Ω

ω · (y + z)

= I(y + z),

which implies x �∗ y, by the definition of the robuste order �∗. Hence, P ⊂ Ω.

Consider the case where every operator is max. For T ≥ ,

IT
(
x
)

= max
δT≤δ≤δT

[(− δ)xT + δIT+(x)] .

Define the order �̂T as: x�̂Ty if and only if (−y) �T (−x). We can verify that

the sequence of orders satisfies Axiom F. For every T ≥ , the order �̂T can be

represented by and index function ÎT . Moreover,

ÎT
(
x
)

= min
δT≤δ≤δT

[
(− δ)xT + δÎT+(x)

]
.

Applying the same arguments as in the first part of the proof, the claim of this

Proposition is proved.
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